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Summary

This paper presents a globally convergent adaptive regulator
for minimum or nonminimum phase systems subject to bounded
disturbances and unmodeled dynamics. The control strategy is
designed for a particular input-output representation obtained
from the state space representation of the system. The leading
coefficient of the new representation is the product of the
observability and controllability matrices of the system. The
controller scheme uses a Least Squares identification algorithm
with a dead zone. The dead zone is chosen to obtain convergence
properties on the estimates and on the ’covariance matrix’ as
well. This allows the definition of modified estimates which
secure well-conditioned matrices in the adaptive control law.
Explicit bounds on the plant output are given.

Introduction

Adaptive control techniques have been extensively studied for -
over a decade. The development of the theory has led to a better
understanding and improvement of the performance of adaptive
algorithms. Nevertheless, owing to the difficulties encountered
when dealing with nonminimum phase systems, most of the treatment
is confined to minimum phase systems.

Discrete time minimum phase systems have the appealing
property that boundedness of the output implies boundedness of the
input. This property has been thoroughly exploited in the
convergence analysis of adaptive schemes in which attention may be
exclusively focused to obtain bounds on the plant output. A
fortunate coincidence is that prediction error identification
methods 1like Least Squares and projection algorithms are also
focused on the plant output in the sense that they provide plant
model estimates that adequately predict the plant output. These
two facts allow one to compute a control sequence that produces an
arbitrary desired output regardless of the controllability of the
plant model estimate (refs. 1 through 10).

Discrete time systems having nonminimum phase characteristics
may appear in many different ways. For instance, all continuous
systems having a relative degree greater than two give rise to
nonminimum phase models when sampled at a fast rate with zero
order hold input (ref. 11). In that paper it was also found that
the pulse transfer function corresponding to 1/s” has zeros on or
outside the unit circle for nz2. This indicates the restricted
scope of application of those control laws for discrete time
systems which involve cancellation of discrete zeros. It also
underlines the importance of the study of adaptive control for
nonminimum phase plants.
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Parameter estimation methods 1like Least Squares and
projection algorithms are derived from an optimization problem
formulation considering basically the output prediction error. It
is not surprising that the plant model estimate obtained in such a
way may not retain some important characteristics of the process
like controllability, stability, delay, etc. .. Lack of
controllability has been a stumbling block for the development of
adaptive control of nonminimum phase systems. Unlike the minimum
phase case, adaptive control for nonminimum phase plants require
controllability of the plant estimate in order to assure that both
plant output and input remain bounded.

This problem has been addressed from two different
perspectives: one relying on persistent excitation ( P.E. ) and
the other not requiring P.E.. In the former an external signal
having a minimum amplitude and a minimum number of spectral lines
is introduced in the control loop. Such a signal will assure that
a certain P.E. condition on the plant input and output will be
satisfied. In the deterministic case, i.e. when there is no noise
in the plant, P.E. on the plant signals will in turn assure
convergence of the estimates to the true parameter values which
will guarantee boundedness of all the signals in the control loop
(refs. 12 through 15). This approach not only secures boundedness
of all the signals but also exponential stability.

However, in the presence of bounded disturbances or unmodeled
dynamics the amplitude and frequency richness of the external
signal should be large enough to secure P.E. of the plant input
and output and prevent the noise in the closed loop from
counteracting the external signal effect. Introducing an external
signal of such a size into the plant may conflict with the control
objective of having a small output tracking error. On the other
hand, from the practical point of view, it is not always feasible
or desirable to introduce extra noise into the system. For these
reasons adaptive control not relying on persistency of excitation
is an important alternative approach. Furthermore, adaptive
stabilization without resorting to any P.E. condition will pave
the way to a better understanding of the use of P.E. in the
control loop. Indeed, if desired, a probing signal with a
tolerable amount of P.E. could be introduced in the system to
improve a given performance index, but not to guarantee stability.

In the design of adaptive controllers whose stability does
not rely on P.E. one is readily confronted with the problem of
obtaining a controllable plant estimate. As pointed out above,
minimization of performance indices on the output prediction error
may not suit our control objectives. However, Least Squares type
identification algorithms offer some freedom to modify the
parameter estimates. As is well known, the " covariance matrix "
acts as a memory and can be used to measure the parameter
estimation error. It can also be used to define a modified
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parameter estimate that will essentially preserve the convergence
properties of the original parameter estimate. Such a modified
estimate is obtained by adding any linear combination of columns
of the " covariance matrix " to the current estimate. The weights
on the linear combination are arbitrary and can be chosen to our
advantage. This technique was used in the design of adaptive
control schemes in the deterministic case in references 16 and 17
wherein different modifications were proposed to the standard
Least Squares identification algorithm. These modifications secure
a nonsingular Sylvester resultant matrix obtained using the
modified parameter estimates. The Sylvester resultant matrix
appears in pole placement techniques and is nonsingular if and
only if the associated system 1is controllable (ref. 18). Other
modifications have been studied in reference 18 but the proposed
algorithms are less explicit than those in references 16 and 17.
Another interesting approach is presented in reference 18 where
the problem is solved for the class of plants whose parameters
belong to a convex region in the parameter space where the plant
is pointwise stabilizable. Further studies are required to
completely assess and characterize the plants belonging to that
class.

The modifications proposed to date in the literature have not
been proved to secure a uniform, strictly positive lower bound for
the singular values of the Sylvester matrix obtained using the
modified estimates. Since the control input depends on the inverse
of the Sylvester matrix, the size of that lower bound plays an
important role in the assessment of the robustness capabilities of
the adaptive control scheme. Clearly this problem is shared by any
control law making use of the certainty equivalence principle.

This paper presents a robust adaptive regulator for discrete
time systems in the presence of bounded disturbances and unmodeled
dynamics. The system is not restricted to be minimum phase and the
class of unmodeled dynamics considered is the same as in
reference 8 .The control objective is to achieve plant output
regulation.

The control strategy has been devised for a particular
input-output representation of the system. This representation is
obtained from the state space representation of the plant and has
the key feature that the matrix coefficient multiplying the
sequence of inputs is the product of the system observability and
controllability matrices. That product shall be refered to in the
paper, as the 1leading coefficient. Therefore the leading
coefficient can be directly identified and thus, the effect of any
modification of the estimates on the controllability of the plant
model estimate will appear more clearly . A Least Squares
identification algorithm with a particular dead zone is used. The
width of the dead zone is such that convergence properties can be
deduced,not only on the output prediction error but on the "



covariance matrix " as well. This leads to an explicit definition
of a modified parameter estimate for which the singular values of
the leading coefficient have a. uniform, strictly positive lower
bound. Explicit bounds for the plant output in the limit are also
presented.

The material that follows presents a discussion of a
particular input-output representation of the system and a simple
output feedback control law that achieves state regulation around
the origin; the proposed control scheme and its obtained
convergence properties.

Symbols

E prediction error vector

F covariance matrix

L a matrix such that F = LL’
order of the plant

u(t) plant input

x(t) state vector

y(t) plant output

W augmented error

ak normalized disturbance bound

1 controllability matrix

0 observability matrix

2] parameters vector

<] modified parameters estimate

e parametric distance

90 initial parameters estimate

¢ measurement vector

Ak forgetting factor

State Regulation via Output Feedback

Consider the following state space representation of a
single-input single-output discrete-time system



x(t+1) = Ax(t) + bu(t) + b’v’'(t) (1.

y(t) = ch(t) + v"'(t) (1.

where x is the (nx1) state vector, u and y are the plant input

a)

b)

and

output, A, b, b’ and c are matrices and vectors of appropiate

dimensions, and, v’ and v" are disturbances.
The control strategy proposed in this paper is based on

input-output representation presented in the following Lemma.

Lemma 1- The plant output and input in equation (1) satisfy
following input-output representation

Y(t+2n) = GU(t+n) + BU(t) + DY(t) + B'U(t-n) + N(t+2n) (2)

where
UT(t) = [ u(t), ... u(t+n-1) ] (3.
Yi(t+n) = [ y(t), ... ,y(t+n-1) ] (3.
B=0E¢ (3.
with
T
C
CTA n-1
0 = ; i €=[A"D, ...,Ab,b ] (3
c"rAn-l
D=0 A" 0! (3.
BP=0A"¢€-0A"0" (3.
0
Tb
G=1|°%°". (3.
Tn-2 =~ T
c A cb O

the

the

a)
b)

c)

.d)

e)

f)

g)



N(t+2n) = 08’'V’ (t) + G’'V’' (t+n) + V"(t+n)-

- 0A®07Y[G’ V' (t-n) + V"(t-n)] + OA™8’V’ (t-n) (3.h)

€’ and G' are obtained by replacing b by b’ in the expressions for
€ and G respectively. V' and V" are defined the same way as U in
equation (3.a).

The proof is given in Appendix A.

The input-output relationship in equation 2 is an alternative
representation of the system (eqn. 1) that has some particular
characteristics. If the system in equation 1 is reachable and
observable then B in equation 3.c is nonsingular. On the other
hand G in equation 3.g is always singular and for this reason we
reserved the name leading coefficient for B and not for G. It can
also be noted that Y(t+n) does not appear in equation 2 and this
will allow definition of a very simple control law.

Let Uk denote U at time t = 2kn, k= 0,1,2,.... . Assume
U(t-n) =0 for t = 2kn (2)
Note that U(t+n) 1is also equal to zero for t = 2kn because

U(2kn+n) = U(2(k+1)n-n). Then equation 2 can be written as

Yk+1 = DYk + BUk + Nk+1 (5)

Consider the control strategy defined by equation 4 and the
following

U = - B DY (8)

Note that Yk depends on output measurements up to time t = 2kn-1

as can be seen from equation 3.b. Then the control input in
equations 4 and 6 leads to



Yk+1 = Nk+1 (7)

Since Y(t+2n) = N(t+2n) and U(t+n) = O for t = 2kn, x(t+n) is
exclusively bounded by the disturbances N(t+2n), V’(t+n) and
V'(t+n) for time t = 2kn (eqn. A.3). Since U(t+n) = 0, x(t+2n)
will be bounded by x(t+n) and V’(t+n) for t = 2kn ( eqn. A.2).

The proposed control strategy can also be interpreted as an
alternated use of an n-step dead beat observer and an n-step dead
beat controller. It is prefered not to increase the complexity of
the control scheme at this stage to simplify the convergence
analysis of the corresponding adaptive scheme which follows.

Adaptive regulation

We will assume that equation 4 holds so that the system is
represented by equation 5 which can also be rewritten as

Vet =0 O ¥ Niyy (8)
where

6=[B: D] (8.a)

¢ = [ U : Y ] (8.b)

Consider the class of disturbances satisfying

max Il N(2kn+t) Il s 0 + pll ¢k Il (9)

n=T=2n

The following a-priori knowledge on the plant is required

Assumption 1 n and the upper bounds 1 and p in equation 9 are known

Assumption 2 A lower bound b0 is known such that



Assumption 3 Matrices FO > 0 and HO > 0 defining an ellipsoid in

the parameter space are known such that

)T =H

(e-2s9 o

-1
)FO (e -0

0 0

where 90 is any initial parameter estimate. The quantities b0 and

HO above are not actually required in the computation of the

control law but the stability and the performance of the algorithm
will depend on them.

The proposed adaptive scheme is now presented. The equations
are given in the order they appear in the computation of the
control input.

Description of the adaptive control algorithm

Normalized variables

xk_1 = ¢k—1/ (1+H¢k_1H) (10a)

Xk = Yk / (1+H¢k_lﬂ) (10b)
Prediction error

Ek = Xk - ek—lxk-l . (11)

Least Squares with dead zone



2 _ T T
W S E Bt xk—lFi-lxk-l (12)

Sy =mt+tn/ (1+n¢k_1u) (13)
0 if wi =< Gi (1+a)n
M T @ ] = 8 ((1+m) 2]
T otherwise
(14 gFpe 1 %e-1) 19l
(14)
>0
AF xX .F
F oo -k k-1"k-17k-1 k-1 (15)
kK~ k-1 -
L A P k- 1%k-1
_ T
O = Ok-1 * AMEX1Fx (18)
Bk = | Bk(nxn) , Dk(nxn) ] (17)
Factors of Fk and Bk
_ T
Fo= L, L =0 , (18)
_ . T o _
B,=Q S, ; QQ=I and S =0 (19)

Modified parameter estimate



L = [ ':ls_f’_’ff)] (20)

L; (nx2n)
B = Q Ly (21)
8, =6+ B Ly (22)
e, = [ Ek(nxn), Qk(nxn)] (23)
Control input
U = '—1—:91( Y, (24)

The Cholesky factorization in equation 18 and the polar
decomposition in equation 18 can be carried out for any szo and

any B, respectively. The reader is refered to Appendix B for a

k
brief explanation on equation 19 and to References 29, 30 and 31
for a more detail presentation. In fact the parameter estimate
modification in equation 22 is only required when Bk in equation

17 is ill-conditionned, but for sake of simplicity of notation and
since the modification will ultimately be required for convergence
analysis, it is decided to leave it on all the time.

Convergence Analysis
The convergence analysis of the adaptive control scheme
previously discussed is now presented. The main convergence

properties of the control scheme are given in the following
theorem.

10




Theorem 1. Consider the system equation 2 whose disturbances
belong to the class equation 9. Then subject to assumptions 1-3,
the control law in equations 4 and 10 through 24 has the following
10 properties.

1) The plant parameter vector 8 lies inside an ellipsoid centered
at the parameter estimate as follows

~ =1 ~T
ek Fk ek = Hk (25)

where 8 is the parametric distance

D2

k=e-ek (26)

and Hk is given by the following expression (ref 32)

T
A
o= Hep t A8 T - < e

T
L A 1Fk-1%k-1

2) The forgetting factor A, in equation 14 satisfies the following

k
inequalities

0=A =a, A

K F

< (28)

T
Kk-1"k-1%k~1

3) There exists a positive definite function Vk satisfying

Vk =V (29)

that is related to the size of the ellipsoid in equation 25 as
follows

Vk = tr ( Fk + Hk ) (30)

11



4) The augmented error w

Kk in equation 12 is bounded by &  in

k
equation 13 as follows

lim sup ( w> - 8> (14+a)n ) = 0 (31)
k k
k=

5) The covariance matrix Fk in equation 15 converges.

6) Ak in equation 14 is such that

I A8, is bounded (32)
k=1

7) The parameter estimate vector ek converges and is bounded by

T
o, o) = v§1 (33)

where Vo is given in equation 30 for k=0. The matrices involved in
the control law equation 24 satisfy

roo bl
8) Bk Ek z (34)
2
4 Vo
ot A 16V; I
9) ( B D ) ( B, D ) =ml = (34a)
2
b
0
10) If p in equation 9 is small enough that 3 €>0 such that
1 -¢
u= >0 (35)
[2n(1+a) (1+m) ]2

12



with @ and m as in equations 14 and 34a respectively, then all the
variables remain bounded and the plant output is bounded as
follows

limsup { Il Y, Il - [2n(1+a)]*?

Kk (n+pul)e } =0

ke
(36)

Each of the 10 properties previously described will now be proved

Proof :

1) From equation 8 it is seen that

Y =6 Xeq ¥ Nk (37)
where Xk and xk_1 are given in equations 10a and 10b and
uk = Nk/(1+H¢k_1H) (38)

In view of equations 9 and 13, Hk satisfies

N N =38 (39)

From equations 16 and 26 it follows

~

~ _ T
ek = ek_1 Ak Ekxk_le (40)
From equation 15 and the matrix inversion Lemma (ref. 18)

S Tt S, T

Fo = Feor * M%-1%-1

(41)

Combining equations 40 and 41 and noting that Fk= F; =0

13



6,F, 8, = (8, _1Fp A EX PP ) (8 T ANEFeo1Fi)
= By Pl 1950181 BB
AE 11+ BN P By
= By 1P * By g%y E) g% )

T T
A EE (A Fx ,-1) (42)

From equations 11, 26 and 37 it follows

8, %1~ E = (0 -Bk-l)xk-l—(zk-ek-lxk—l) = -N (43)
The quadratic term x;_lexk_1 can be obtained from equation 15 as

follows

T 2
T o A e P ¥y

Xe-1F %=1 = *k-1Fk-1%%-1

1+ A Fro1¥ee
T
S
1+ Ak"k -1"k%k-1
or
A %Y 1 = -1 (44)
Kk-1"k-1"k-1
1+ x F,

K'k-1" k-1"k-1
Introducing equations 43 and 44 into equation 42 and noting that

(see eqn. 39)

T T 2
NN = NNI=SI

14



gives

T
o.F %- 8 .F 18T =aNN - "k B B
Kk °k  Tk-1"k-1"k-1 = “kk-k

T
b+ A X 1Fr-1%k-1

T
A
= Akskl -
T
L A1 F - 1%k-1
= H - H_, (using eqn. 27) (45)

In order to prove equation 25 by induction, assume that

~ -1 ~T
He17 Ok-1Fk-1%-1 = O (46)

Equation 45 can also be written as

~ =1%T, = -1 ~T
H-H _,-6F '6+e6 .F_.08_ , =0 (47)

Adding equations 46 and 47 results in 25. Since by Assumption 3
equation 46 is true for k=1, the proof is complete.

2) The two expressions in equation 28 can be readily obtained
from equation 14.

3) Introducing equations 15 and 27 into equation 30 and using
equation 12 gives

. e |
Ve = Vi = A { & - (48)

T
L A 1 Fr-1%k-1

In view of the way the dead zone (eqn. 14) was defined, Vk = Vk-l

15



for wzs 6i(1+a)n . Study the case w§> Gi (1+a)n. From equation

48 and using equation 28

2 2
Vk-Vk_1 = Ak{ Bkn - wk/(1+a) }

Ak

(1+c)

{ 6§(1+a)n - wi }

1A

al |wk|-ak((1+a)n)“2l

s ((Gk((1+a)n)1/2-|wk|)(6k((1+a)n)

T
(1+a)(1+xk_1Fk_1xk_1)Iwkl

172

+Iwkl)}

a [Iwkl - ak((1+a)n)1/2]2

= (49)

T
(1+a) (1 +x _F 4% 4 )

-2 2 _
4) Equation 49 holds for W > 6k(1+a)n, otherwise Vk— Vk-l'

Then Vk is a positive nonincreasing sequence and therefore it

converges. Equation 31 follows from equation 48.

5) From equation 15 it is noted that F Then zTFk z,

k = Fr-1
where z 1s any constant vector, is a positive nonincreasing
function and thus converges. To complete the proof it is shown

that any element of Fk can be expressed as a combination of

quadratic terms of the form zTFk Zz . Define v, as the vector of

appropiate dimension whose elements are all zero except for the
i-th element which is equal to 1 . Then

T T
)- viFk i vJFka]/Z

F (1,9) = V;Fka = [lv+v )TFk(vi+v

J J

16



6) Define T as those time instants k at which wi > 6§(1+a)n.

From equation 14

@ X5 _1Fi_1%i-1

A F

XT X
1*1-11-1%1-1

T
X1 Fia1%i

< a
T -1
1+(xi_1F1_1x1_1)
o o trFo
< = (50)
1 + (trF_)! 1+trF
) 0

where the fact that F = FO (eqn. 15) and = 1 (eqn. 10a)

X
i-1 i-1
was used. Introducing equation 50 into equation 48

o]
LV Vier Ve Y%
k=1
2
2 wi
=Y A{8n- }
1€T atrF
1+ °
1 +trF
0
1+trFo 2 atrFo 2
=T A {a;n [1+ 1 -wil
let 1+trF_(1+a) 1+trF
(o] 0
1+trFo 2 ater 2
= L A { &nl1+ 1- &i(1+a)n }
14£rF (1+0) let L+trF_

17



1+trF
° T A 5°nac ( ! )

iet 11
1+trF°(1+a) 1+tr~F°

1A

Since A, = O for igr and §, is bounded, it finally follows

i k

- 2 2
A S0 = A S, = V (1+trF (1+a))/nax
k'k k 'k (o] (0]

k=1 1€T

7) Combining equations 40 and 41 produces

8F "= 8, . (F '.+2a

X LX) T
k-1 k"k-1"k-1

= AeBiie-1

1A N x (using eqn. 43)

Fk—l k=k"k-1

Op-1

From equation 32, ¥} Aiai is a bounded, nonincreasing positive

sequence and thus, it converges (ref. 28). Since 8 =z u > 0 (eqn. 13),
¥ Ai is also bounded and thus converges too. Since the elements of
uix;-l are all bounded then ¥ Aiuix;_lconverges. Therefore from

the expressions above and since Fk converges, it is concluded that

ek converges.

18



From equation 26

6, =6 + ( -ek)

Then using equation B.1 in Appendix B

T ~ ~T
ekek = 2( 66 + ekek) : (51)

From equation 25 and some properties of positive definite matrices
( see Appendix B ).

v

(ter)I Hk

v
D2
T

)]
[es]
p_—
—
>
"y

)~ (52)

v
o]
(o]
-

~~
-+
"3

2|

On the other hand

(trF, ) (trH ) = ([trFk+ter]/2)2

1A

V.74 ( using eqn.30)

FolY

n

= V/4 (using eqn. 29) (53)

Q

Substituting equation 53 into equation 52 gives

~ ~T 2 2
ekek =1 vk/4 =<1 v0/4 (54)

In order to obtain a bound on 66" we recall that asssumption 3
holds for any initial parameter estimate. Therefore equation 54
should also hold for a O initial estimate and thus

g0" = I v§ /4 (55)

19



Equation 33 follows after introducing equations 54 and 55 into
equation 51.

8) From equations 33 and 17

T
e, 66 = [ B D .1 k
k 'k k k DT
k
_ T T . 2
= BkBk + Dka = Vo I (56)
Define
g = 8. (LT)? (57)
k= Okl Ly _

Note that from equations 18, 25, 29, 30 and the above

* =T it
BBy = Oy Fy O

Hk = I ter

I Vk =1 Vo (58)

IA

1A

»*
Note also that Bk in equation 57 is such that

* T
0 = ek+ BkLk (59)

The expression above can be partitioned by using equations 8a, 17
and 20 to obtain

»
1,T
)

B = Bk + Bk(Lk (60)

Using equation B.1

20



T 1 *T x4 T
<
BB = 2[ BkBk + LkBk BkLk ]

1A

*Ti T
2( S;Sk + L;Bk BkL; 1 (using eqn 19)

T

T 1.1
2[ S Skt VoLl ] (using eqn. 58) (61)

1A

2T * %1
In the last equation the fact that Bk Bk and BkBk have the same

nonzero eigenvalues was also used (see Appendix B ). Assume that
T

Sk = §k §k then
T _ T T
S Sk = 5585
T 1/2
< [ Amaxsk] Sk { Amaxsksk ] Sk
T, ,1/2
= [ AmakaBk] Sk (using eqn. 19)
< Vb Sy (using eqn.586) (62)

Introducing equation 62 into equation 61 and in view of Assumption
2

T

1.1
] (63)

bo I =BB = 2V0 [ Sk + Lk L

From equations 17, 20, 22 and 23

T
_ 1
B, = B+ Bly

Introducing equations 19 and 21 into the above

21



Thus
T 1 11‘ T 1 IT
Bkgk = [ Sk + I..kLk 1°[ Sk + LkLk ] (using eqn.19)
= I bi / 4v§ (using eqn. 63) (84)
9)
-1 T, -1 _ AT T,-1
( B D) (B D) = Dl BB) "Dy

T T -1
gkgkkmax( Bk'B-l( )

1A

T T,-1
= DD (A BBy ]

T
D,

1A

2 2
Qk 4V0 / b0 (using eqn. 64)
(65)

From equations 17, 20, 22 and 23

D, = D *+BlLy
Then

T
T 2,.T 2
ngk Dka + LkBkBkLk ] (using eqn. B.1)

A
\Y)

2

T T
1,1, 2
V0 I +L Lk Lk 1 (using eqns.21 and 56)

IA
\V)
~—

~ N

T
1
= 21 vo * (Amax]"k

N

T
1 2,2
L) L2 ) 11

T T
< 2 1 1 2.2 2
= 20Vi+Qa LoLo+a L2L2)%41]1
= 2[Ve+(2a_LIL )%/ 11 (see below)
0 max kLk

22



= 4 Vs I (using eqns. 18, 29 and 30) (66)

where the fact that ( see eqn. 20)

e g2 o

was used. The result follows from equations 65 and 66

10) Define the modified prediction error

B % 7 8% (68)

T

Ee = B 1le-1%k-1 (using eqns. 11 and 22) (69)

Therefore, using equation B.1

T T T T T
EE® 2LEE* N ibe1PerPe-tbi-1¥-1 1 (7O

But from equations 18 and 21

T
T T 1 .1 T
L-1Pk-1Pk-11%-1 = Lpemrbe-1b-1l-1

Lk—lLi-lLk-lL;-l (using eqn. 67)

F;_l (using eqn. 18) (71)

1A

A

Introducing equation 71 into equation 70 and taking into account
equation 12 we get

gk = 2w (72)

Using equation 8b, 10 and 23, equation 68 can also be rewritten
as

23..



U,

E, = ! { Y - [Bk—1'9k-1][ ot ] } (73)

1+ lig, 0 k-1

Using the control law in equation 24, equation 73 reduces to

Y

Ek = (74)

1+ g0

Combining equations 72 and 74

2 2 T 2
21 W 6k(1+a)n 12 gkgk - 2 ak(1+a)n
T
Y, Y
= k 'k - 252(1+a)n (75)
2
(1+u¢k_1u)

From equations 8b and 24 it follows

u¢ku2 nvku2 + uuku2

1A

2 T,~-1 T o1
Y+ Y, (B'D) B DY,

1A

(1+m) uvku2 (see eqn. 34a) (78)

On the other hand, using equations 8 and 9 it is seen that

1Y = (el + p ) Ug_ Il +n (77)

Assume that HYkH grows unbounded. Define a subsequence tn along

which IIY, Il o and

t
n

24



HYt I = max HYiﬂ (78)
n 1<tn

Then using equation 76 and the above gives

IIYt ]

172
n = “Ytn-lu /7 [1 + (m+1) "Ytn-ln 1
1408, _, I
n
=1/ [ D2y, _ 0 (79)
. n
Introducing equations 79 and 13 into equation 75
2 2 172 -1.-2
2wy - 3, (1+a)n] = [(m+1) HY, _ 071 -
n n n
- 2(1+a)n [ g+ n/(141g, _,1) 17 (80)
n
IIYt ll4o implies |l ¢t _1H4w and IIYt _1H-m as can be seen from
n n n

equations 76 and 77. Therefore the RHS of equation 80 converges to
(see also eqn. 35)

1 - (1-¢)? N

m+1

(1+m) "' 2(1+a)n p° = 0

Since this 1limit is strictly positive it contradicts the fact that
the LHS of equation 80 satisfles equation 31. Therefore HYkH

should remain bounded and so should H¢k" and HUkH (see eqn. 76).
In order to obtain an explicit bound for Y. Il consider equation 75

k
again to obtain

257.’



2(wZ-32(1+a)n] = z, -(2n(1+a)) ' %5 +IY /(1410 _ 1) 1 (81)

k

where

z = [ (2n(1+cc))1/2

K 3, + HYkH/(1+H¢k_1") ] (82)

k

Introducing equation 13 into equation 81 gives

2 [ wi - ai (1+a)n 1 =

[0 - (20(1+a) 20 0+ p (1414 _ 1) } 1 2 / (1406, _ 1)
= Y0 - (2n(1+a) ™20 n 4 p o+ p(1em) 20y, 03 1z /(g 1)

(using eqn. 76)

=Y, I-(1-e)1Y, _ 1-(2n(14a)) ™2 0 + p ) 1 z /(11 1)

(using eqn. 35)

From equations 13, 82 and the boundedness of u¢k_1u it is clear
that zk/(1+H¢k_1H) is strictly positive. Therefore, from equation

31 and the above we conclude that

1/2

lim sup [quu - (1-e)qu_1u - (2n(1+a)) "“(n+p) 1 =0
ko
The result follows. ]

Concluding Remarks

This report presented an adaptive scheme that achieves
regulation without resorting to any persistent excitation
condition. The proposed algorithm can be used to control minimum
phase or nonminimum phase plants subject to bounded disturbances
and unmodeled dynamics.

An explicit modification for the parameter estimates was

presented that avoids having any ill-conditionned matrix in the
control law. This allowed the giving of explicit bounds for the
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plant output.

The proposed technique can also be used in adaptive control
of multivariable systems whenever the estimate of a matrix
coefficient is required to be non-singular.

Appendix A
Proof of Lemma 1
Iterating equation 1la
. i i-1
x(t+i) = A" x(t) + A~ "bult) =+..... + bu(t+i-1) +
+ Ai-lb’v’(t)+.... + b'v’ (t+i-1) (A. 1)
for i=n
x(t+n) = Ax(t) + BU(t) + &V’ (t) (A.2)

with €, ©', U(t) and V' (t) as defined in Lemma 1. Premultiplying

equation A.1 by c'r and using equation 1b gives

Y(t+n) = Ox(t)+GU(t)+G’ V' (t)+V"(t)
or :

x(t) = 0" [Y(t+n)-GU(t)-G'V’ (t)-V"(t) ] (A.3)
with G,G’, Y and V" as defined in Lemma 1. Iterating equation
A.2 produces

x(t+n) = A®x(t-n)+A"CU(t-n)+A"C’ V’ (t-n)+CU(t)+C’V’ (t) (A.4)

Substitution of equation A.4 in equation A.3 finally leads to
equation 2 with all the variables as defined in Lemma 1
|
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Appendix B

This Appendix is intended to recall some results from matrix
theory that are used in the report. Refer to References 28, 30 and
31 for a more detailed analysis.

1.- For any matrices A and B it follows that

(A+B)(A+B)T = (A+B)(A+B)T + (A-B)(A-B)"
=2 ( AAT + BB" ) (B.1)

2.- For any positive semi-definite matrix F = O it is noted that

i) (AminF) I =F= (AmaxF) I = (trF) I

11) 3 L such that F = LL'
-1 -1
iii) AmaxF = [ AminF 1
3.- For any matrix A, A?A and AAT have no negative eigenvalues

and have the same nonzero eigenvalues. (ref. 30 page 182)
Sketch of the proof

Let Ai and Vi be the eigenvalue and corresponding eigenvector

of AAT , then

T —
AA v; = Aivi (B.2)

premultiplying by AT

ATA (ATvi) = ATv, )

i
Premultiplying equation B.2 by v; results in nA.Tviu2 = Aiﬂviﬂa.
Then ATv1 # 0 for Ai # 0 and therefore A.Tvi is the eigenvector
corresponding to the eigenvalue A, of A?A. n

i

28




4.- Any matrix A can be expressed as A = Q S where QTQ = I and
S =2 0 (ref. 29 p286 )

Sketch of the proof

Let v, and A, such that

i i

A'A v, = AfviL v;vj =35 (B.3)
Then 3 z, , z';z‘j = 5, such that

Av, = Az, (B.4)
Define

Q=Fzyv] = Qv =z (B.5)

S=Y AJVJVS > Sv; = AV, (B.6)

Then from equations B.4 through B.6

Av, = A,.Qv

i 1@V = QSVi > A=QS

Furthermore, from equation B.6) S = 0 and from equation B.5

T, _ T T _ -
QQ = ? viZs § z‘jv‘j = § vivs I
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