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Abstract

This paper describes a criterion, based on Bayes' theorem, that defines the optimal set
of classes (a classification) for a given set of examples. This criterion is transformed into an
equivalent minimum message length criterion with an intuitive information interpretation. This
criterion does not require that the number of classes be specified in advance, this is determined
by the data. The minimum message length criterion includes the message length required to
describe the classes, so there is a built in bias against adding new classes unless they lead to a
reduction in the message length required to describe the data. Unfortunately, the search space
of possible classifications is too large to search exhaustively, so heuristic search methods, such
as simulated annealing, are applied. Tutored learning and probabilistic prediction in particular
cases are an important indirect result of optimal class discovery. Extensions to the basic class
induction program include the ability to combine category and real valued data, hierarchical
classes, independent classifications and deciding for each class which attributes are relevent.

1 Introduction

This paper describes a method for discovering (inducing) optimal classes from a given data
base. These classes can then be used to make predictions in particular cases or give insight
into the patterns that occur in the particular domain. Many previous authors have published
approaches and results in the area of automatic class discovery [7] , but these approaches have
been generally disappointing when applied to real data. These previous approaches are usually
based on some sort of "similarity" measure, and they give different results depending on the
similarity measure chosen. Even more disturbing is that these methods usually require the user
to specify the number of classes to be discovered, or rely on ad hoc methods for choosing an
appropriate number of classes. They produce classes when given random data, indicating a
serious problem with the classification criterion. The experiments described here can be viewed
as a first step toward intelligent systems that learn about their environment, with or without
human help.
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The approach described in this paper does not use a "similarity" measure—it is actually
finding the moat probable classification given the data (and prior expectations). The most
probable classification occurs when the members of a class are most predictive of each other—a
domain independent form of "similarity". The most probable classification also decides the
optimal number of classes, as well as the class definitions. The criterion for deciding which is
the most probable classification is not new, but was successfully applied to the classification
problem nearly 20 years ago [15], and is shown here to be a direct consequence of Bayes'
theorem. This Bayesian most probable criterion is shown (in section 4) to be equivalent to
finding the classification with the shortest possible total message length, a special case of the
Kolomogrov-Chaitin complexity criterion [11] for determining the best theory given a set of
data. The message length involves the information required to encode the data given the class
assignments, as well as that required to describe the classes. The decrease in message length
obtained by more specific classes is balanced aginast the cost of additional class descriptions.
This trade-off can be viewed as a formal implementation of Occam's razor.

The class induction procedure described in this paper has many new features. For example,
section 5.2.1 presents a method for combining both category-valued information (e.g. Sex) and
real-valued information (e.g. Blood-pressure). Another extension (section 5.2.2) allows the
system to optimally decide for each attribute whether it is informative for the particular class
description. The classification procedure can also be extended to include hierarchical classes
(section 5.2.3), and even independent (non exclusive) classes (section 5.2.4).

Even though we are searching for the most probable classification, the cost of performing
a complete search is computationally extreme. Consequently, we use a heuristic search; always
looking for a better classification than the current best. Experiments with different search tech-
niques give locally minimal results, but are not guaranteed to have found the global minimum.
These results are reported in section 3. The derivation of the minimum message length criterion
is given in section 4, along with the necessary assumptions. Relaxations of these assumptions
are given in section 5.2—particularly the extension to allow a mixture of category and real
data. The current statistical techniques for multivariate analysis (e.g. factor analysis) do not
allow mixed data to be combined, even though most data is of this form. The use of the dis-
covered classification for prediction purposes is discussed in section 6. This method of making
predictions via a mapping onto classes is a common pattern of human reasoning, and it has
excellent computational properties. The use of the class induction procedure for discovery of
classes and their subsequent use for prediction can be viewed as automatic discovery of expert
systems—without the expert.

2 Basic Learning Procedure

This section describes the method for automatic discovery of the most probable classification
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Figure 1: Patient Data Base

(i.e. the partition of a set of cases into classes), given the available data. The "most probable"
criterion is shown in Section 4.2 to be equivalent to finding the particular classification with
the Minimum Message Length (MML) for encoding the class descriptions and the data. This
MML criterion has the properties intuitively expected for an inductive procedure. The MML
criterion gives a bias toward classifications with fewer classes (i.e. "simpler" classifications),
unless there is sufficient information in the data to justify more classes. It is not necessary to
state initially how many classes are present—this is determined by the data. Unfortunately, in
practice it is computationally infeasible to find the classification that satisfies MML criterion;
instead heuristic search techniques for finding near optimal MMLs are discussed in the next
section.

A typical data base of the form required in this analysis is shown in Fig. 1. Assume that
all the data is in the form of an attribute list and fixed attribute ordering with known possible
values. Attributes are assumed to be categories. For example, it is possible to record if a
patient is married or not, but not whether two particular patients are married to each other.
This limitation can be overcome by considering pairs of patients, but such extensions are not
discussed here. If the data base has missing data (indicated by *), this is treated as another
possible value of the given attribute. The possible values of the "Sex" attribute are then: [Male,
Female, *]. The last column of Fig. 1 represents a particular class hypothesis (classification),
where every case is assigned to some class. The classes are required to be mutually exclusive and
exhaustive. We use the MML criterion to find the optimal (or near optimal) class assignment.

For a given classification, the total MML must be calculated. The total MML is the mini-
mum message length required to optimally encode all the data, as well as the class description
(i.e. the last column of Fig. 1). This total MML is compared with the MML for other possible
classifications, with the aim of finding the smallest classification. According to Information
theory, the minimum possible message length (MML)to encode the next (t'th) outcome in a
sequence of trials, where the ith outcome has probability Pi, is given by:



MML = -\ogPi (I)

Here, the outcomes are the particular attribute values that actually occurred. The — sign

ensures that the MML is positive, and that the base of the log can be chosen to be anything

convenient, as long as the same units are used throughout. For example, if the current proba-

bility of having blood-group "A+" in a particular class is .25, the MML required to encode an

°A+" outcome for a new case (in this class) is — Iog2(.25) = 2(bits). If we consider encoding

these outcomes serially, the probability of the next outcome is conditioned on all those that

went before. Typically, before the data is known, the user only knows how many possible values

a given attribute can have (/). After seeing N cases in a particular class, the user will know

0*1)"2,• ",«.,•••,i/) where n\ H \- nj = N, and n,-,is the number of occurrences of the
t'th value of an attribute. Given such information, the minimally informative probability (see

below) that the t'th value will be the next outcome for the next case in the particular class, is
given by:

? <2>
Equations (1) and (2) allow the calculation of the MML for the next observed attribute

value. That is, we can serially encode the values that actually occurred, updating the statistics

for each attribute value (the n,s) for subsequent use in Eqn. (2). For example, the MML

required to encode the Blood-group attribute (/ = 5) for the cases in class 1 (Fig. 1) is given
by:

MML for Blood-group = - In ~ln -^--ln ~m ^- • • • = 1.609+2.303+2.708+1.204-1- • • (3)
5 1U lo lu

An equivalent MML calculation must be performed for every attribute to give the total MML

for encoding the next case (based on its current class assignment). Assuming the attributes

within a class are mutually independent, the total MML for all the attributes for all the cases
in the class, is just the sum of the MMLs for each attribute separately. Note that we are not

actually encoding the cases—we are calculating what the total MML would be if they were to

be optimally encoded (e.g. by using a Huff encoding scheme).

Note that the probability to encode the first value, by Eqn. (2) is (I/I). This is assigning

equal (prior) probability to each possible outcome, and so does not favour any particular out-

come over another. This assignment may need to be modified if missing data are possible—there

may be a priori information on the probability of missing data distinct from the probability

of possible attribute values. With Eqn. (2), there is a reasonable probability assignment even

when there are no data (i.e. N = 0), but the probability rapidly approaches the classical defi-

nition (ni/N) for large N. That is, the prior probability (I/I) is rapidly overwhelmed by the



data. The prior term in Eqn. (2) can be regarded as distributing a single prior outcome over the

set of possibilities [13]. If stronger prior information is available, it can easily be accommodated

using the extended formula:

^' = lvTA; where fll + •- + «/ = A (4)
where A is the total prior size (it determines the prior strength of belief), and the o,-s are

the prior number of occurrences of each possible outcome. The prior sample is obtained from

all cases known to the user, but not in the data base. If these prior numbers are subjective

estimates, then approximate A and o,s can be extracted from estimates of the uncertainty of

the subjective probabilities [9]. Provided N ^> A, the data will eventually override the prior

probabilities, even if the priors are very misleading. 1

The serial encoding method for calculating the MML — Eqn (1) — starts with the prior prob-

ability j and uses the accumulated n,-s to compute the probability of the current outcome. The

n,-s are then updated based on the last outcome — i.e. the serial method adapts the probabilities

for the next outcome based on on the numbers that have been already been seen. This means

that there is typically a high information cost (MML) to encoding the first few cases, until

sufficient data has been seen to give a good estimates of the underlying probabilities. This high

initial cost is the prior information "penalty" paid for initially describing class probabilities.

This penalty is what prevents an excessive number of classes from being accepted. This effect

occurs because of the additional penalty must be paid for every attribute value if a new class

is added. This additional penalty is only overcome if the extra class has sufficiently different

underlying probabilities from the other classes.

Eqn. (2) gives the probability of a particular outcome based on the already known outcomes
with N cases within the same class already seen. The combined MML for all of the observed

outcomes of a particular attribute for a particular case (represented by the subtotals HI, • • • , n/)

within the same class is:

MML = £-lnPy = lnr(^l) + /lnr(l//)-^lnr(nt- + -); where r(z+l) = x!(5)
i «=i

This equation is found from the sum of the individual serial MML for each particular outcome
of an attribute (within a particular class), and rearranging the terms. Note that this total MML

equation is independent of the order of encoding of outcomes (since it only depends only on

the n,s) , as required. This equation can be accurately approximated with the help of Stirlings
approximation, and it provides an incremental form for calculating the change in MML when

when a single case is moved from one class to another.

'Eqn. (2) is found by using Bayes* theorem to invert the multinomial distribution, using a conjugate prior [13].
This analysis was originally performed by Laplace over 150 years ago, but the classical statistics literature
continues to use the asymptotic result (Pi = ni/N), even though it is meaningless in the small sample case.



In summary, this section describes how to compute the MML for a given assignment of the

cases to classes, as in Fig. 1. For each class, (i.e. the set of cases with the same class label),

calculate MMLs for all attributes using Eqn. (5), and the number of occurrences of each value

of that attribute (the n,s). The total MML is the sum of all the attribute MMLs for each case

in a class, and the MML required to give the class information. This class description MML is
found by regarding the last column of Fig. 1 as if it is just another attribute, and using Eqn.

(5) to calculate the corresponding MML (with N here being the total number of cases, and the

n,-s being the numbers in each class). The total MML is the information required to encode

the entire data base, including the information required to to describe the classes. The MML

criterion works because cases that tend to have the same attribute values are put into the same

class, where their similarity allows the latter cases to be more efficiently encoded.

3 Search Methods

The previous section describes how to compute the total MML for a given class assignment.

However, we want the class assignment that gives the smallest total MML for all possible class
assignments. The space of all possible class assignments is too large in a real problem to

use a brute force search. Instead, we calculate the change in MML caused by moving a case

from one class to another. If this change lowers the MML, a better classification has been

found. By moving an individual case from one class to another only if it lowers the total MML,
a minimum total MML can be found. Unfortunately, such minima are only local minima,

preventing a simple convergence on the global MML. To partially overcome this problem we

have experimented with strategies for searching for the best local minima within the time

alloted. This best local minima may also be the global minimum, but this is not likely unless a

significant search effort is invested. The search for the best local MML is the main cost of the

class discovery process.

3.1 Local Minima

In a series of experiments, we tried starting from different initial random class assignments

(number of classes fixed), and moved cases from one class to another if it lowered the MML,

until a minimum was reached. That is, we started with a particular data base where each

case was given an initial class assignment and cycled through all the cases, one at a time,

testing for each case which other classes (if any) would lower the total MML if this case were

to be reassigned. If found, the case was moved to the class that lowered the MML the most.

This procedure was repeated until no case could be moved to a better (i.e. lower MML) class.

Different total MMLs were found (see Fig. 2). This unfortunate result means that a simple

minimization procedure will not produce the MML—from the variances of the results, it is clear



n

h - t i i c r i ' '

-+-

~S £
V CO-.

"3 // /.
C /<* rr

/7 /8

Figure 2: Total MML verses number of classes

that the local minima it produces are not necessarily even close to the global minimum.
When these experiments were performed with a large number of initial classes, the simple

minimization procedure correctly reduced the number of classes (by producing classes with no
members), but different runs not only produced different MMLs, but also different numbers of
classes (see Fig 2).

3.2 Heuristic Search

Because of the local minima problem, we experimented with several heuristics for searching
for better local minima. These heuristics apply when the simple minimization procedure has
reached a local minima, and include:

1. Class Splitting—This heuristic selects a class (with a preference for classes with high
average MML per case—i.e. low intra-class cohesion), and randomly splits it into two (or
more) classes.

2. Dispersal—This heuristic empties the contents of a class randomly over all the other
(non-empty) .classes.

When either of these heuristics is applied, the cases are then moved to drive the system
back into a locally minimal MML. If the new minima MML is greater than the that for the
previous state, the procedure backtracks to the previous state and tries another random split



or dispersal. This heuristic search produces lower MMLs than just repeatedly generating local

minima from many random starts, for similar search time.

3.3 Simulated Annealing

Because we are searching for a global minimum MML in a space with many local minima, a

method of search called Simulated Annealing [10] is appropriate. Simulated annealing requires

a method of perturbing the current state and evaluating the resulting change in "energy". If

this energy is lower than for the previous state then the new state becomes the current state

and the cycle continues. If the new energy is greater than the previous (by amount AE), then
the new state may be accepted as the current state with a probability:

P = e~^ (6)

where T is the current "temperature". There is a finite probability that worse states will be

accepted, with the probability of acceptance decreasing with high A.E? and low T. As a result,

simulated annealing may escape from local minima. When simulated annealing is applied to

finding the global MML, the current MML is the equivalent of the "energy", and a perturbation

consists of altering a class assignment. When simulated annealing was applied to the classi-
fication problem, it generally produced classifications with significantly lower MMLs than did

heuristic search (for approximately equivalent search effort). Observation of the annealing pro-

cess showed interesting properties. As the temperature is lowered, the classes with the highest

mutual similarity (low average MML) emerge first and are stable. While the MML decreases on

average with temperature as classes begin to form, the total MML fluctuates strongly, and the

onset of stable class formation greatly reduces the number of classes. There is a strong analogy

here between the crystallization of substances from a molten mixture and the emergence of

classes at a particular temperature—hence the name simulated annealing.

4 Derivation

The total MML criterion for choosing between alternative classification hypotheses, de-

scribed in section 3, has the following properties:

4.1 Required Inductive Properties

• The data determines the number of classes—this number does not need to be specified in

advance.

• Cases with the most "similar" attribute values end up in the same class.



• Very small classes are discriminated against — unless a small set of cases happen to be

almost identical, the "penalty" in discovering the underlying probabilities is not paid for

by a reduced MML for the whole classification.

• Very similar classes can be distinguished if there are enough cases in each to expose the

(small) differences in their underlying probabilities.

• In many situations, there is a "left-overs" class with a high information (MML) cost per
case containing all those cases that do not fit in other "strong" classes.

These are the properties that one would expect of a good inductive class criterion, and

they have been amply confirmed in practice — both on real data and artificial data designed to

test these properties. This excellent behavior of the MML criterion is not a coincidence, since

the MML criterion is just the Bayesian maximum posterior probability criterion. That is, the

classification with the smallest MML is also the most probable by Bayes' theorem, as shown

below.

4.2 Derivation

Here, we use Bayes' theorem to assign a relative probability between two class hypotheses

Hi and Hj. A class hypothesis Hi is a particular partition of the known objects (cases or

examples) into specific classes — each class is implicitly defined by the set of cases assigned to
it. The relative probability of these hypotheses given the data D, by Bayes' theorem is:

P(Hi I P) = P(Hi) P(D I Hj)
P(Ht | D) P(Hj) P(D | Hf)

 (7)

In the absence of any prior knowledge implying that one class hypothesis is more likely

a priori than another, we assign them equal probability, so that P(Hi)/P(H}-) = 1. This is

just an application of the principle of indifference, although in this case, we are also assigning

equal probability to hypotheses with different number of classes. This leaves the problem of
determining P(D \ H^), for a class partition denoted by Hk. In Eqn. (7), D is the entire data

base, which can be further partitioned into subsets (D{) corresponding to the particular class

partition H^. That is:

P(D | Hk) = P(Di Id)- P(Dt | Q) • • • P(Dn | Cn) (8)

i.e., a product of component probabilities, where C\ is the /th class under the class hypothesis

HI, and DI is the set of cases that define the class Cj. Eqn. (8) shows the explicit partition

of the cases into independent classes under the hypothesis Hk. This expansion assumes that

information about the members of one class is non-informative about members of another class

(i.e. the classes are independent). This assumption is not true, for example, in hierarchical

9



classes. The connection between Bayes' theorem — Eqn. (7) — and minimum message lengths
(MMLs) is given by taking logs of Eqn. (7), to give:

log J) = log P(D | Hj) = ~

That is, the log of the probability ratio of two different class hypotheses Hf and Hj is the
difference in the message lengths required to minimally encode the data under the two different
hypotheses — the hypothesis with the shortest message length is the most probable. Eqn. (9)
implies that for two hypotheses with a difference in message length AMML, the ratio of their
posterior probabilities is exp(AMML), in favor of the shorter MML. This means that even a
relatively small AMML can overwhelmingly favor one hypothesis.

Each case C{ from the set DI = {c\ • • • cm}, is described by an ordered set of attribute values,
where each attribute value is drawn from a fixed set of possible values associated with each
attribute. The probability of a case is dependent on the other cases of the same class, i.e.

= P(CI | C,)P(c2 I C1(Q)P(C3 I ci,c2,C,)---P(cm I ci..-..^-!.^ (10)

This equation is just the multiplication theorem of standard probability theory corresponding
to a particular order of cases. An important property of probability theory is that the joint
probability is the same regardless of order in which cases are evaluated. The problem is now
to calculate terms such as:

P(cp|ci,-..,cp_i,C,) (11)

Where each case cp consists of an ordered set of attribute values, i.e cp —< oj, • • • , an >p. That
is, the probability of a particular attribute value in a case is conditioned on all the attribute
values seen in previous cases for that class. If the previous cases are strongly predictive, the
conditional probabilities in Eqn. (11) will be different from the probability that would result
from assigning all cases to the same class. If we assume that the attributes are independent
within a class, we can calculate the probability of the attribute values separately to obtain
the joint probability of all the observed attributes, as described in section 2. That is, for
independent attributes, the desired probabilities are only dependent on the total frequency of
occurrence of the particular attribute values within each class.

5 Limitations (Assumptions) and Extensions

The assumptions (or limitations) built into the MML criterion described in section 2 and
derived above are as follows:

10



5.1 Assumptions

1. That all attributes are category variables (e.g. Sex)—the extension to real variables is
discussed in the next section.

2. That all attributes are useful in distinguishing classes—the extension to allowing every
attribute to be either relevent or irrelevant to a particular class is discussed in the next
section.

3. That all classes are independent of each other—this implies that knowledge of the prob-
abilities of particular attributes in one class give no information about the underlying
probabilities in any other class. One method of removing this assumption is to introduce
hierarchical classes, discussed below.

4. Classifying all cases into a set of mutually exclusive and exhaustive classes is appropriate.
Independent classifications, discussed below, provides an alternative.

5. That the attributes within a class are independent—i.e. the attributes are conditionally
independent; conditioned on belonging to the given class. This is not correct when at-
tributes such as Height, Weight, Length etc., are used, since they are all dependent on a
common "shape" factor. It is possible to correct for such dependencies using interaction
terms in a Log-Linear model, but these correction factors are not discussed here.

6. That all the data can be cast in the form of properties of individual cases—i.e. no relations
between cases are permitted (see section 2).

7. That all class hypotheses (including ones with different number of classes) are equally
likely a priori.

These assumptions are discussed below and possible relaxations are presented.

5.2 Relaxation of Constraining Assumptions

5.2.1 Real and Category Data

Although some attributes, such as blood-type, can only have discrete values, other attributes
(variables), such as Age, Blood-pressure, etc., are real valued. It is possible to force these

variables into a category form by arbitrarily imposing intervals on the real scale and finding
which interval each particular value falls into. This crude method is commonly recommended in
statistics texts in order to force all data into the same format. Clearly, this crude approximation
is throwing away information—not only by losing where in the interval the particular values
fell, but also by ignoring the order of the intervals. Order is irrelevent for category attributes,

11



such as Blood-group, but can be very important for real variables. It is better to treat real

variables using models that fit the properties of reals.

The model we assume here is that the real values associated with a particular class are

samples from a normal distribution of initially unknown mean and standard deviation. A

normal distribution is the expected distribution if there is an underlying (unknown) value and

the measurements have random (unbiased) noise associated with them. Alternatively, if there

are only two moments to characterize an unknown probability distribution, then the maximum

entropy distribution is the normal distribution [14]. Using the normal model, the following

formula [13] gives joint probability of a set of real values (xi,i2,...,in).

where x'i and x'2 are two fictitious data points which represent our prior knowledge of the real

variable. Loosely, x\ and i'2 may be considered to be min-max bounds on x. These prior points

are similar in principle to the initial value used in the discrete case, Eqn. (2). Also e is the

empirical standard deviation of the data points (including x'j and Xj ):

a2 = (x - x)2 = x2

Note that these equations are scale and location invariant. This means that the origin

and units chosen to record the real values x,- does not effect the probability. If the x,-s are the

observed real attribute values in the data base, then - In P(XI, 12, ••-, %n) gives us the total MML

to encode this data. The terms dx\ dx-i • • • dxn are approximately equal to Axi, • • •, Axn—i.e.

the errors associated with the individual measurements. Since we are only interested in the

relative MML, and the Ax w dxs are common to all encodings, they can be dropped from the
MML calculation. This formula is analogous to the total MML discrete case Eqn. (5). Although

a normal (Gaussian) model was used here, other models with more (or less) parameters, (e.g.

Poisson models) could be used instead. In practice, mixed real and categorical information is

often given. With appropriate encoding, the MML criterion does not distinguish between the
types.

5.2.2 Attribute Relevency

The basic method presented in section 2 assumes that all the attributes are informative in

deciding class membership. This restriction can be removed by specifying for each class which

attributes are relevent to that class description. Those attributes that are relevent have their
MML calculated as previously described previously. Those attributes that are judged irrelevant

to a particular class description have their MML calculated using global statistics. That is, all

irrelevent attributes are merged into a global set, and it is the n,s of this set that are used in

Eqn. (2), instead of the class statistics.

12



An attribute is judged to be irrelevent to a class description if the total MML is smaller when

encoded globally rather than within the class. This is possible, because the prior penalty for

encoding globally is shared across all classes for which that attribute is irrelevent, rather than

being paid for within each class. In other words, if the probabilities of a particular attribute

in a particular class are similar to those of other classes, then a shorter MML is obtained by

pooling their statistics. Unfortunately, this complicates the search problem. The movement of

a single case from one class to another not only changes the relative MML, but can also change

the status of some of the attributes. We now have an extra degree of freedom to search—the

relevent/irrelevent assignments for every attribute in every class.

As always in Bayesian inference, you do not get something for nothing. Here, it requires in-

formation to specify the relevence/irrelevence information. This additional information penalty

must be paid by a reduced MML to encode the data; the data MML is smaller because we can

now chose between two sets of statistics—the global or local class statistics. Also, to specify

the relevence/irrelevence information it is necessary to specify a prior probability on the pos-

sible assignments. If we assume all attributes are as likely to be relevent as irrelevent a priori,

the information required to specify the actual assignment for A attributes and M classes is

Aln(2Af — M). This amount of information should be added to the class specification infor-

mation to give the full total MML. Note that this additional information adds a stronger bias

against a large number of classes M unless justified by the data.

5.2.3 Hierachical Classes

The assumption that all classes are independent of each other (as well as being mutually

exclusive and exhaustive) may not be correct in many applications. The independence as-

sumption implies that knowledge of the probability distribution for attribute values in one

class is non-informative about the corresponding distribution in another class. This assump-

tion can be relaxed by introducing hierarchical classes, where classes closer together on the

(hierarchical) tree are closer to each other. "Closer" here means that the classes tend to share

more attributes, rather than encode then separately. Sharing attributes is very similar to the

relevence/irrelevence criterion discussed above. The idea is that shared attributes use statis-

tics obtained by pooling all the data from the shared attributes belonging to the classes on

the same branch of the tree. The closer classes are to each other on the tree, the higher the

expectation that they will have shared attributes. This higher expectation is reflected in longer

MMLs to specify which attributes are not shared. Intuitively, closeness of classes on the tree

(i.e. adjoining sub-classes) indicates strong similarity between the classes. Unfortunately, the

search space of possible hierarchical classes is considerably larger than just the "flat" search

space in section 3. This means that local minima in possible hierarchies occurs as well as local

minima in the number and contents of possible classes.
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5.2.4 Independent Classifications

Perhaps the strongest assumption is that a classification is appropriate at all! That is, there
are many situations where the assumption of mutually exclusive and exhaustive classes is not
appropriate. HIV infected patients are either [Non-symptomatic, Pre-AIDS, ARC or AIDS] —
i.e., such patients must be one or other of these alternatives. On the other hand, diseases
are not mutually exclusive, so it is possible for a patient to both have typhoid and cholera
simultaneously.

The MML criterion can be extended to deal with situations where multiple (overlapping)
classifications are possible. The method is to add more ("independent") classifications, where
the optimal number of classes within each classification and the optimal number of different
classifications is to be determined by the data. For example, in Fig. 1, we would add extra
classification columns, so that every case now belongs to a class within each classification (i.e.
within each column). The goal is now to find the optimal number of columns and classes within
each column. To compute the smallest total MML with multiple classifications (columns), the
problem is to calculate the probability of each observed attribute value given multiple class
membership. If we assume that the classifications are independent of each other, and also
conditionally independent given each attribute value, the required equation is:

where n is the number of classifications, and P(Af \ Cj) is the probability of the t'th attribute
value given that the case is in the jth class under the Cth classification (and similarly for
the Dth classification). The terms such as P(A,- | Cj) are calculated as previously described in
section 2. The presence of extra classifications increases the size of the search space considerably.
During incremental search, the class a particular case is assigned to under one classification can
be changed (and the resulting AMML calculated) without disturbing any other classification.
The independence assumptions built in to Eqn. (8) could be relaxed by introducing cross terms
(joint probabilities) between the classes under different classifications. This interdependence
considerably complicates the analysis, and is not considered further here.

5.2.5 Extended Models

The smallest MML criterion for finding the best classification model (and its various ex-
tension discussed in this section) is of much greater generality. The derivation in section 4.2
has been specialized to classification, but other models are possible. For a description of appli-
cations of the MML criterion to domains such as learning of grammars, finite state machines,
line finding etc. see [8]. A natural extension of the automatic classification approach is to
include time dependent data bases — i.e. trend analysis. This extension will require models of
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how systems evolve with time and priors on these possible models. Temporal models are being

investigated.

6 Prediction

The purpose of finding good classifications is usually not clear in the AI and statistical pat-

tern recognition literature. The classification work reported here was motivated by the desire

to make (probabilistic) predictions directly from data. A previous approach [4], based on max-

imum entropy, allowed the direct calculation of the (conditional) probability of any attribute

value given any combination of other attribute values (i.e. given particular evidence). The do-

main information in the previous approach consisted of a set of joint probabilities (constraints)

that summarized all the significant information in the domain. These significant constraints
were found by comparing the expected probabilities of attribute value combinations with the

observed values in a data base. Unfortunately, the cost of computing the expected probabilities

increases exponentially with the number of known constraints, and becomes prohibitive when

there are many overlapping probabilistic interactions. The classification approach described

here was tried as a method of avoiding this computational bottle-neck.

In prediction, there are always two steps — the first step is to induce the model from the

known data (in our case the model is the best classification); and the second step is to use the

model and information about a particular case to make a (probabilistic) prediction The first
step has been the subject of this paper so far, the second step consists of taking the information

about the particular case and finding the corresponding posterior probability distribution over

the set of possible classes, then using these new class probabilities to calculate the probability

of the attributes of interest. That is, prediction is performed indirectly, by mapping the avail-

able information into a probabilistic class membership distribution (for the particular case),

then making predictions based on this class membership. From the conditional independence

assumption (section 5.1) built into our class induction procedure, the necessary equations are:

classes(c)

52 P(Ai | Cc) x P(Ce | Pj,Qk,---) Conditional Independence
classes(e)

where P(Af \ Pj,Qt^"} is tn« probability of the t'th value of attribute A given that the j'th

value of the Pth attribute occurred, etc. P(Ce \ Pj,Qic,---) is the probability of the the cth

class of the C classification. This is given by:

Ptr i P o i - P(Cc)P(Pj\ce)p(Qk\ce)p(ce | Py.g*,-) - -

15



Note that P(Pj,Qkt"°) is a normalizing constant that can be deduced from the requirement

that £eP(Cc | Pj,Qk,'") = 1- These equations are all that is necessary for making proba-

bilistic predictions, because terms such as P(Aj | Ce),P(Pj \ Ce) are known from the statistics

obtain during the class induction procedure. This method of using the information about the

particular case to decide the probability of class membership for that case, then using a weighted

sum of this membership information to make a prediction is a familiar pattern of human in-

ference. However, in people there is a strong tendency to decide which class the case belongs

to and make all predictions based on this identification. Clearly, this is non-optimal behavior,

since the information available is usually insufficient to make a clear identification.

This probabilistic class formation and prediction sheds some light on the controversy sur-

rounding fuzzy sets [2]. Zadeh [16], and many philosophers have noted that most common

concepts (e.g. cat, tall, chair etc.) do not have sharp definitions that allow all members to be

distinguished from non-members—a basic requirement for classical sets and predicates. The

approach described in this paper shows that for induced classes, clear class boundaries are not

required. Instead, we have a probabilistic definition of classes in terms of possible attribute val-

ues that allows us to give any case a probabilistic "degree of membership"—i.e. the probability

distribution given in Eqn. (11). A special case of this probabilistic analysis is so called "tu-

tored learning", where the class information is given, and the aim is to find the class definition

[12]. Because the class information is given, it is unnecessary to search—it is only necessary

to calculate the total MML for the given classification. In the process, the necessary statistics
will be collected (i.e. the necessary probabilities are computed), so that the probability of class

membership can be computed using Eqn. (11).

7 Discussion

The work reported in this paper may be regarded as a first step in the direction of truly
intelligent machines. The basic Bayesian theory for (probabilistic) induction provides a sound

basis for learning and prediction. The translation of the Bayesian criterion into an information

theoretic criterion (the MML criterion) provides a computationally convenient measure. The
major computational problem is a search problem, since the search space (the space of possible

theories) is far too large to be searched exhaustively. The major research issues for the future

are how to best perform such searches—the simulated annealing approach has yielded promising

results.

To apply the Bayesian approach to other problems will require the specification of the
hypothesis (theory) space and prior probabilities over them. It is this step which has caused so

much controversy in the past [3], [5], but the idea that it is possible to perform induction without

such a step has yet to produce a useful result. With few exceptions (e.g. IDS [12]), the majority

of work in induction (learning) in AI has implicitly used prior probabilities, but hidden them in

16



general "principles", such as "always prefer the simlpest theory unless there is evidence to the

contrary". The operational definitions of "simplicity" and "evidence to the contrary" embedded

in these inductive programs are just ad hoc attempts to meet correct Bayesian definitions.
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