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1 Introduction

Eddy current calculation is an important subject in classical electrody-
namics. Eddy currents are induced in a conductor, when an electromagnetic
field is incident upon it. Usually these phenomena result in flow of currents
in a region near the boundary. A common way of treating these problems,
in particular these induced currents, relies on estimating an appropriate
skin depth on the conductor. Once the skin depth is determined, the as-
sociated fields are obtained through an equivalence principle by imposing a
boundary condition on the region of current formulation. Such a treatment
may be found in [12]. The estimated skin depth (given at the end of the
paper) is obtained by the penetration of fields into an infinite planar slab.
However, if the conductor happens to have geometry other than that of a
planar slab, the procedure mentioned above will not work well. Moreover,
the incident waves need not be restricted to time-harmonic waves in general.
Pulse sources and surge waves which come from thunder or circuit breakers
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arise in practice. Therefore, one must have a procedure which reflects the
transient behavior of eddy currents.

Along this line, an effort was begun in [1], in which a frequency do-
main problem was considered. This procedure presented some possibilities
for further improvements and the feasibility of solving this class of prob-
lems in three dimensions. The work in 3] dealt with continuation of [1]
in conjunction with finite element methods. Unfortunately, only theoretical
details are available in this work. Moreover, the treatment in the three-
dimensional problem was restricted to time-harmonic fields. However, it
was established in [4] and [5] that the finite difference methods are effective
even for frequency domain problems, i. e. , pseudo-time marching. Our goal
is to use finite difference methods to solve these problems, in particular, the
two-dimensional problem in the time domain. In the engineering literature,
for example, in [6], the author pointed out the computational difficulties
in the problem. To motivate the ideas, the problem under consideration is
presented in the next section.

2 Formulation of the Problem

Let Q be the cross-section region in the x-y plane of a conducting cylin-
der with finite conductivity o,,, permeability p,,, and permittivity €,,. The
generators of the cylinder are parallel to the z axis. The ambient medium
is air with permeability y, and permittivity ¢,. The conductivity of the air
is neglected because it does not play a major role in this type of calcula-
tions. If desired, it could be incorporated into this model, in which case the
following treatment would still be valid. The incident field has the form

E; = Ei(a"', yat)k ’ (1)
H; Hil(m,y,t)i+ H,-g(x,y,t)j . (2)

Il

A typical situiation is depicted in Fig. 1. The electric field is parallel to the
axis of the cylinder and the magnetic field is transverse (TM) and in the
x-y plane. Writing Maxwell’s equations, assuming all material properties
are constant and isotropic, one obtains two sets of equations that are valid
inside and outside the conductor respectively.

In Q4 (Air)

OH, O0H,

e + e 0, (3)
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The first term on the right side of (8) is the conduction current and the sec-
ond term is the displacement current. In addition, the following conditions
are needed to make the problem well-posed.

On I' (Boundary of ) Tangential components of E and H are contin-
uous, i.e., no surface current density is assumed.

At infinity the scattered E and H both decay to zero (Radiation Condi-
tion).

The zero divergence and two-dimensionality of H in both regions suggest
the existence of a scalar function ¥ such that

ov
= —_— 9
oy
H, = ——. 10
2 Jr (10)

Substituting these in equations (4) and (7), we see that

E=-pp-. (11)

The function ¥k is identified as the magnetic vector potential. In turn,
using this scalar function, the problem can be rewritten as follows.




The governing equations are

R R R .
s +_3y2 = e“”“_at? in Q4, (12)
o’y %Y av %y .
I T T o (19

The interface conditions on I' are

¥\~ o\t
Ha (3{) = Hm (W) ’ (14)
ov\~ L AN
(@) = @) (18)
where the minus sign indicates transition from the exterior to the boundary
and the plus sign indicates transition from the boundary to the interior (2.

Since the problem is posed in the time domain, we require appropriate initial
conditions.

The initial conditions are

¥(z,y,0) = ¥i(z,y,0), (16)
o¥(z,y,0)  9¥y(z,y,0)
ot - ot : (17
Sommerfeld’s radiation condition is
o (s, oo

where ¥ represents the scattered wave.

3 Difficulties in the Problem

The problem presented in equations (12) through (18) yields an in-
terface problem with T being the interface. This model is also applicable
in calculating wave scattering by lossy dielectrics and the nondestructive
evaluation(NDE) of various kinds of composite materials. In the event of
composite materials, ym and €, will no longer be constants. Rather, they
will be functions of space. The frequency of the incident wave may range
from low frequencies to microwave frequencies.

In solving this problem, one encounters certain difficulties. They are
highlighted as follows:




. Implementation of the radiation condition.
. Implementation of the interface conditions.

. The large number of grid points that is needed to capture the skin

depth in the high-frequency case.

. Appropriate local boundary condition for the low-frequency cases,

where the wavelengths are much longer than the diameter of the con-
ductor.

To further address and answer the difficulties, we require scaling of the
problem. Our scaling is performed as follows.

1.

Scale ¥ by U, i. e. , ¥ = ¥/¥q, where ¥ is the amplitude of the
incident wave ¥;.

.Scalexand y by L,i.e. ,T=2/L, 7 = y/L, where L is a length of

the order of the scatterer’s diameter.

. Scale t by 1/w, i. e. , T = wt, where w is the angular velocity of the

incident wave.

As a result, the problem in these new coordinates has the following form:

Governing Equations

6;%+ %i‘yg = szzuaea%—?[—, (19)
%-{—a;% = wL2umam%—§+w2L2um€m-a;T\f. (20)

Interface Conditions
Y = pR U, (21)
or _ ov (22)

an on
Initial Conditions

@70 = T30, (29
ZEr0 = ZiEm0) (24)



Radiation Condition

lim 7'/ (_a& +k 3‘1’3) =0, (25)

F—00 or ¢ ot

where ko = wL /14€,.

The difficulty with these problems can be simply explained now. For
instance, if we consider a 60 Hz incident field and a conductor with a
diameter of .3141593 m , the parameters that appear in equations (19)
and (20) have the following values: k, = wL,/fa€; = 2.513274 X 1077,
ki, = WL\/Tom€m = 2.513274 X 1077, I, = L\/®m&n = 26.55045, where
we have used: po = pm = 1.256637 X 1075, €, = €, = 8.841941 x 10712
om = 3.72 X 107, and L = 0.2 in the MKS unit system. Thus, reconsid-
ering equation (19), we see that it behaves like Laplace’s equation, while
equation (20) behaves like a parabolic equation. These observations were
made in [13]. This only yields an approximation to the model given in equa-
tions (19) through (25). We believe that even though the value of k, is
extremely small, the problem is still governed by a wave phenomenon. This
is further justified by the results that we present later. Thus, we do not
approximate the model, but rather present procedures to solve the problem
as we have derived. This yields several difficulties, particularly in terms of
the computation. Our treatment is presented in the coming sections.

Thus retaining the wave nature in the exterior, we further scale the
problem for the purpose of treatment of boundary conditions. We scale the
time by k,. The result yield the following nondimensional problem that we
numerically solve:

Governing Equations

92y + 9% _ 9%y (26)
ox? ' 9yr oz’
v 9%y g 0¥ , 020
922 T o7 T tm gy R g (27)
where )
2 = wLpmom
m ka ’
and



Interface Conditions

P~ = pn ¥t (28)
oy~ vt (29)
on On
Initial Conditions
\I’((l!, Y, 0) = \I’;(z,y,O) ) (30)
ov ov;
W(m’y’o) - W(x’y,o) . (31)
Radiation Condition
ov ov
; 1/2 (Z%s sy —
rlinolor (3r+6t)_0’ (32)

Note that the bar notation has been dropped.

4 Radiation Condition

The radiation condition as given in equation (32) is hard to implement
numerically. It must be approximated in a suitable way before it is imposed
on a computation domain. For the waves with moderate to high frequencies,
the forms of this condition are well known. A summary may be found in [7].
The procedure here is to write the far-field scattered wave in the form:

SRl =) [y @O al)
v, = {0 (ao(e + 220 4 20 ). (33)

This expression is the extended D’Alembert’s principle and indicates the
fact that all the scattered fields are outgoing. From this, as in [7], it is easily
verified that ¥, satisfies '

v, 9v, 1 _ 1
ar + at +-2_r‘ps (ﬁ/—Z)

(34)

However, for low-frequency waves, equation (34) does not provide satis-
factory solutions. This is due to the fact that the wavelengths are very long
and the substantial distances for the far-field boundaries require at least
one wavelength. This is not practical for numerical implementation. Thus



we introduce a new concept of formulating near-field conditions. Again the
procedure is analogous to the one used in (33) and (34), but equation (33)
will be replaced by an outgoing near-field solution.

As suggested in [2], for low-frequency waves, the solution is dominated
by logarithmic terms in both space and wave number. Thus one can seek
solutions of the form:

¥, ~ (a+blnr)f(ka(r - 1)), (35)

where a, b are constants. From this one obtains

ov, 9Y, N
o T B + A()¥, =0, (36)
where 1 b
A(r) = ;(_a+b1nr) ’ (37)
For low-frequency time-harmonic waves,
kq
azb('y-i-ln?) ) (38)

where v is Euler’s constant. Substituting in A(r), we obtain

1 1
A(r) = - [-— ] . 39
(r) rl y=In2+Ink, +Inr (39)
It is easy to verify that A(r) is positive in the low-frequency case.
With equations (34) and (36) imposed on the exterior boundary, the
problem becomes well-posed. The proof for the uniqueness of the solution
is shown in the appendix A.

5 TFinite Difference Formulation of the Problem

The finite difference method has been found effective in time dependent
hyperbolic problems. In addition, the radiation conditions in the previous
section can easily be integrated in the scheme. Finite difference formulae
used in solving this problem are summarized as follows. Note that the spatial
differences in both x and y directions are chosen to be equal, i. e. , Az = Ay.
The superscript ‘i’ represents the time coordinate and the subscripts ¢’ and
‘k’ represent the grid coordinates in the x and y directions respectively.



In the exterior region, the following central-difference formula is used to
discretize equation (26):

At

1 _ i i—1
Uik =295 - Y + (E

2 . 13 . . .
(40)

In the interior region, the first-order time derivative 0¥ /0t is imple-
mented by a forward-difference method. The second-order derivatives are
implemented by central-difference methods. As the result, the following
difference formula is obtained for Eq. (27):

. , - . ) . . .
A = all, —bUS + (Wi + Wi+ Wiggn + Vigon — 4%50)- (41)
where
12
2+ B-At
—,
1+ Z-At
1
—
1+ 3-At
A
= (2:)?
1+ 13-At
On the radiation boundary, the total wave consists of two components:
the incident wave ¥; and the scattered wave ¥, i. e. ,

U=0;+17,. (42)

For the far field, the scattered wave propagates in a direction which is very
close to the radial direction. The origin is located at the center of the
scatterer as shown in Fig. 2. Using the derivatives in Cartesian coordinates,
the radiation condition has the following form:

3‘1’36030 + %, ind + ¥, + v,
oz dy y ot 2r

=0. (43)

Finite difference methods usually yield difficulties at the corners of the
rectangular radiation boundary. These are due to conflicts between the dif-
ference formulae at the corners. As a result, these corners become sources of
instability. To avoid corner problems, Engquist and Majda in [8] proposed



a different boundary condition be used for the nearest two grid points to
the corners. Unfortunately in this way, the implementation of the radia-
tion boundary condition becomes more complicated. In our experiment, a
method using a smooth transition was developed to solve corner problems.
The approach is depicted in Fig. 3 and explained as follows. On the bound-
ary A; to Ag, 0¥,/0z is implemented by a forward-difference formula and
9V, /0y is implemented by a backward-difference formula. On the boundary
By to By, 8%, /0z and ¥,/ 9y are both implemented by backward-difference
methods. It seems that implementation of 8¥,/dz on two boundaries will
conflict at the intersection grid C. But since the term is multiplied by cosf
and its value is 0 at C, the conflict can not take effect and corner problems
are avoided.

The difference formulae on the radiation boundary are summarized as
follows.

At Ay
(TR = a(¥, )§-k —b[(‘I’ )§+1,k = (¥o)ik) (44)
= R+ (49
On A1 - A2
(¥ )H—l = a(\Il,)j-'k - b[(\ps)§+1,k - (‘I’s);',k]
'C[(‘I’s)j, - (‘I’s)é,k—l] (46)
\I,;-’i;cl — (‘I’ t+1 +(‘I’ z+1 (47)
At C
(L)Y = a(T)is — cl(Wo)ik = (To)5pmnl (48)
v = (L) (49)
On Bl b Bg

(¥s); 4= a(‘l’s)j',k-b[(‘I’s)j',k—(‘I’s)j'-Lk]

—e(¥o)ix = (¥s)ipl (50)
\I,;-,{’-cl — (‘If )1+1+(\I, ;+l (51)



At By

(T)H = a(W,)ik — b(Ta)ik — (La)iorp] (52)
v = (TR (R (53)

Conditions on the lower boundary are handled by symmetry as the upper
boundary. The coefficients a, b, and ¢ are obtained in the following way:

. = At
2rAz ’
At
b = 0—
cos e
c = sinﬂﬂ-.
T

The implementation of equation (36) is similar to the above.

In the neighborhood of the interface, numerical implementation of the
interface conditions is complicated. In reference [11], interface conditions are
implemented by a cell integration method. Here we will propose a simple
way to solve it directly using the finite difference method.

First, for an interface boundary with some extent of curvature, we can
approximate it by a polygon with its vertexes occupying the regular grids.
For example, the circle I' in Fig. 4 can be approximated by the polygon r.
Then the field computation can be classified into two categories.

1. For grids in the exterior region, the wave equation in the air is used.

2. For grids in the interior region, the wave equation inside the conductor
is used.

For grids on the boundary, to obtain an accurate result, the following are
suggested:

1. When the grid separation is much larger than the estimated skin depth,
the interior wave equation is used.

2. When the grid separation is equal to or smaller than the estimated
skin depth, the exterior wave equation is used.

Secondly, the condition

ov—- 9vt
an = on (54)

11
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can be transformed into:

ov” cosf + 6w-sin0 = a\p+0030 + out
Oz 9y T Oz ay

sinf , (55)

where 0 is the angle between the normal direction and the x axis. Since
cosf and sinf are linearly independent, we have the following relations on
the interface boundary:

ov— oyt
oz oz '’ (56)
o~ avut
By = oy (57)

With these, when the field computation involves a grid in the other region, an
equivalent value at that grid can be obtained for computation. For example
, the field computation at the grid A in Fig. 5 belongs to the category of
the air. But a grid B in the conductor is involved in the difference formula
for A as shown below:

. . . At\2 . . . . .

\I’;;H =29 — \I’f‘i—l + (E) ((‘I’B)' + ‘I"C + \I’b + ‘I”E - 4\1’:4) y (58)
where U3 is the equivalent value of ¥~ at B. It can be obtained in the
following way:

p=U5+(1—-1/p)Ta . (59)

Substituting into the equation above, we obtain
i+1 R N N e ; '
Ui = 20 -0 () () U+ (3+1/)TY) . (60)

Similarly, using the first interface condition, the field at the grid 1 can be
calculated from the following:

\Ili-H = a‘I’i - b\I’i_l + C((‘I’;)i/ﬂr + (‘Ilg)i/l‘r + ‘Ilfi + ‘1’15 - 4‘1}1) ’ (61)

where a, b, and c are the same constants as those in equation (41).

When the relative permeability p, of the conductor is 1, approximating
the interface boundary by some other geometry is not necessary. The field
computation is classified in the same way as above. When a field computa-
tion involves a grid in the other set, the field at that grid will be directly




used for calculation because it equals to the equivalent value. For example,
in Fig. 6, from the interface conditions,

Up = \IIE ’ (62)
Uo-Vg = UE-0%. (63)

Thus ¥z = ¥}, As a result, the field at A can be obtained from the
following formula:

. ) . At\?2 . . . . .
Tt =20 — it 4 (_A_z> Yo+ YD+ Vs +Tr—4T%).  (64)

Similarly, the field at the grid 1 can be calculated from the following;:

U = U8 — bW (W) + UL+ U+ UL — 401) . (65)

6 Numerical Experiments

The numerical methods presented above were implemented in a com-
puter program running on a SUN4/260 workstation. The conductor is a
circular cylinder and is assumed to be aluminum. The grid coordinates with
useful parameters are shown in Fig. 7. The incident wave is assumed to be
a sinusoidal TM plane wave propagating in the x direction. The wave is as-
sumed to be incident on the left boundary starting at ¢ = 0. Therefore, the
incident component at the grid point (j,k) in the application of the radiation
condition is

(T:)iy = cos[ka(iAt — jAT)] (66)

where k, = wL /lia€,. The reason for this is that the incident wave which
arrives at the point (j,k) is the incident wave at the point (0,k), jAz time
units earlier.

The high frequency used in the numerical experiment is 2.387324 x 108
Hz. With this frequency, parameters have the following values:

o ky=1
o [2 =2.804814 x 10°

ok,2n=1.

13
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The numerical solution shown in Fig. 8 was obtained after ten periods from
the beginning. The CPU time is 74 seconds. From the history plot at a
point (67,34)(see Fig. 13), the solution is found to be at steady state.

The low frequency used in the experiment is 60 Hz. With this frequency,
parameters have the following values:

o k, =2.513274 x 107
o 12, =2.804814 x 10°
° k?n =1.

The numerical solution using the near-ficld condition(see Fig. 10), is ob-
tained after 2.513274 x 10~% period. The CPU time is about 1.7 hrs. I'rom
the history plot at a point (67,34)(see Fig. 14), the solution in the exterior
region is found to be in transient state but with a value almost approach-
ing that at steady state. For reasons of comparison, the numerical solution
using the far-field condition is also shown in Fig. 11.

7 Comparison of Numerical and Analytic Solu-
tion

Since aluminum is a good conductor, In the high-frequency case, con-
ductors such as aluminum behave close to a perfect conductor (o, = ).
The analytic solution for the perfect-conductor problem is found in the lit-
erature, [9] and [10], as follows:

_ el . Jn(kaa) —ikat!
U= (r,¢,t") = it encos(ng) | In(ker) = —22=l (D (kor)| e~ at')
(n,8) = 3 Peacos(n) | Jalhar) = St )
(67)
\I’+(1‘,¢,t’) = 0, (68)

where J,, is the Bessel function of first kind and order n, II,(II) is the Hankel
function of first kind and order n. g = 1 and €, = 2 for n > 1. This solution
assumes a circular cylinder of radius a. With respect to these coordinates,
the incident wave on the left boundary

‘I" = e—ikaILe—ikat’ , (69)



where z, is the distance from the center of the cylinder to the left boundary.
In our coordinates, the incident wave on the left boundary is:

U, = e~ tkat | (70)

Therefore, the analytic solution must be modified as

- = Jn(kqa)
U= (r,p,t) = 1"encos(ng) | Jn(kar) — ——H,(ll) kor
(r,¢,%) 2=:0 (n@) | Jn(kar) T
eikaxLe-ikat , (71)
Tt(r,é,t) = 0. (72)

For t = 10 periods, the analytic solution (taking the first ten terms in the
series) for the perfect-conductor case is plotted in Fig. 9. Comparing Fig. 9
to Fig. 8, we find that the magnetic field distributions of the two solutions in
air are in good agreement. The numerical solution also demonstrates a ten-
dency of penetration of the wave into a good conductor. Deeper penetration
occurs on the illuminated side than on the shadowed side. The difference
between the two solutions near the artificial boundary comes from the fact
that its distance from the center is not infinite. This trade-off, however,
makes the numerical implementation on a computer possible and efficient.

In the low-frequency case, the waves in both regions have the following
analytic forms:

U= (r,é,t) = 3 i"encos(nd)[Jn(kar) + anHM (ko))

n=0

efkazl,e—ikat , (73)
vt(r,¢,t) = Ei"encos(n¢)b,,]n(pr)eik“”e'"“‘t ) (74)

n=0

where p &~ /iwL2?0,, by, Using interface conditions, the coefficients a,, and
b, are determined from the following equations:

Jn(kqa) +anH,(Ll)(kaa) = prbpJn(pa), (75)

KalJo(kat) + an(HY) (Kaa)] = bapTi(pa) (76)

for n = 0,1,2,.... The first three coefficients in these two equations are
calculated to be:

i

ap = —1.027247 x 10™2% - {9.971206 x 10~2

15
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a7 = —2.004432 x 1071% — {2.852592 x 10714
a; = —1.817832x 1072% — {1.288663 x 10728
bo = —1.106546 x 10~8 + 8.582522 x 10~°
by = 2.314644 x 10~ + 43.575007 x 10714

b, = 3.629113 x 10™2! — §2.260305 x 1072} .

Taking the first three terms in the series, we plot the analytic solution for the
low frequency case in-Fig. 12. Comparing this to Fig. 11, we find that the
numerical solution using the far-field condition has a large numeric error
although its field pattern is similar to that of the analytic solution. The
error comes from the position where the radiation condition is applied. This
condition requires k.7 to be large. But in our low-frequency experiment, k.7
is very small (0(1076)). As a result, the error appeares to be large. On the
other hand, if we expand the computation domain to get a large k,r, the
grid size will become too large to be implemented on a computer. Therefore
a boundary condition which is appropriate to the case of low k,7 is needed
to solve the problem.

Comparison of figures 10 and 12 shows that the numerical solution us-
ing the near-field condition matches the analytic solution very well in the
exterior region. The root mean square error for the whole computation do-
main is calculated to be 1.772813 x 1073, Both solutions at the points with
r = 4,20,40,60, and 6 = 0,7/4,7/2,3n /4,7 are listed on Table 1. It shows
that the fields on the illuminated and shadowed sides are nearly the same
because of a strong diffraction for the low-frequency wave. The difference
of the inside field between the two solutions is due to the fact that the nu-
merical solution is in transient state while the analytic solution is at steady
state.

Vector potential is related to the scalar function ¥ by the following;:

A = pTk. (77)

Using this relation, we obtain three-dimensional plots of vector potentials in
various cases (see Fig. 15 through 18). In each plot, we see the magnitude of
¥ versus x and y axes. From these plots, we can observe the variation of ¥
over the whole computational domain. Fig. 15 and Fig. 16 are the numerical
and analytic solutions for the high-frequency case respectively. Fig. 17 and
Fig. 18 are the numerical and analytic solutions for the low-frequency case
respectively. We need these plots to check the numerical results near the
interface boundary. According to the interface conditions, the fields are



continuous on the boundary. Therefore ¥ must change smoothly near the
boundary. No sharp jumps are allowed. Usually this is a strict test for a
numerical result. Fig. 15 and Fig. 17 show that our numerical results pass
the test. The ¥ values change smoothly and no jumps happen near the
boundary.

To prove that our implementation for an interface problem is correct,
we need obtain a steady-state solution for the low-frequency case. Also to
capture an accurate eddy current phenomenon, the grid separation must be
chosen smaller than the estimated skin depth. This skin depth is defined in
the case of a plane scatterer of infinite depth as:

1
o=\ oo (78)

where fis the frequency of the incident wave, u,, and o,, are the permeability
and conductivity of the scatterer respectively. In the computations that
follow, we assume the conductor to be graphite with o,, = 4x 1045/ M(MKS
units), pm = pe and €, = €. The frequency of the incident wave is 6000
Hz. In this case, the estimated skin depth is 3.248737 cm. The grid size
is 25 x 25 with the diameter of the conductor occupying 21 grids. A grid
separation of .6544985 cm is chosen. Therefore the grid separation is about
1/5 of the estimated skin depth. The numerical results were obtained after
one period from the beginning. It took 20 minutes CPU time on a CRAY-
XMP-24. Fig. 19 and Fig. 20 show the results after one period of time.
Comparing the corresponding analytic solutions in Fig. 21 and Fig. 22,
the numerical results were found to be satisfactory. A clear example of eddy
current phenomenon is demonstrated. Fig. 23 is the history at a point P(3,0)
inside the conductor. A wave phenomenon is clearly observed in this figure.
This justifies the comment we made previously. Both regions are governed
by wave phenomena. Fig. 24 shows the numerical result for a quarter period.
In this plot, a mesh of 61 grids by 61 grids, with the conductor’s diameter
occupying 41 grids, is used. A grid separation of .3272493cm is chosen. A
conductor with o, = 104S/M, Um = He and €, = €, is assumed. The
frequency of the incident wave is also 6000 Hz. At a quarter period, the
incident magnetic field becomes identically zero. However, from Fig. 24, we
find a weak magnetic field still exists in the exterior region. At the beginning,
the field penetrates from the exterior region into the interior region. During
a quarter period, the interior field is so much stronger than the exterior
field and thus it penetrates back to the exterior region through the interface

17



conditions. Therefore the maximum value of ¥ occurs inside the conductor
at this time. For a general transient signal, the problem needs to be solved
in the time domain so that this phenomenon can be understood further.
Our procedure can deal with such situations. Corresponding calculations
will be reported elsewhere .

8 Concluding Remarks

From our investigation, the following conclusions are obtained:

1. Implementation of the interface problem in this paper is proved to
be satisfactory for both high- and low-frequency cases, by numerical
experiments.

2. Implementation of the radiation condition is found effectivein handling
corner problems.

3. To solve the low-frequency eddy current problem, a boundary condi-
tion which is appropriate to the case of low kor is needed. The bound-
ary condition obtained has been shown to work very well in numerical
experiments.

4. To obtain an accurate eddy current representation, the grid separation
near the interface should be smaller than the estimated skin depth in

(78).

5. In the low-frequency eddy current problem, our finite difference method
calls for extremely fine time steps. As a result for good conductors
such as aluminum, calculation of penetration of the field takes rela-
tively larger time than that for conductors such as graphite. Thus an
acceleration scheme is preferred so that calculations can be performed
inexpensively.



A Appendix: Uniqueness of the Solution

The problem considered can be written in the following form:

U, = AP in Qa, (79)
B2V +12¥, = AV in Q, (80)
V4T = ¥ onT, (81)

ovs 9t oY
on T on = om on T, (82)
U°(z,y,0),¥%{(z,y,0) = 0 in Qg, (83)
¥(z,y,0),¥y(z,y,0) = 0 inQ, (84)
Ul + Ui+ A(r)¥° = 0 onT.. (85)

Here A is the Laplacian operator. Subscripts ‘t’, ‘tt’, and ‘r’ represent
partial derivatives. Superscripts ‘s’ and ‘i’ represent scattered wave and
incident wave respectively. T, is the radiation boundary as shown in Fig.

25. Here we assume I', to be a circle. A(r) = 1/2r for the high-frequency
case and

1 1
A(r) = r [_'y—ln2+lnka+lnr] (86)

for the low-frequency situation.

First, assume that the problem has two solutions uy(z,y,t) and uz(z, y,t)
and v(x,y,t) = u2($7yat) - ul(:v, Y, t)' Then

vy = Av n Qy, (87)
Eive+12v, = Av ‘ in §, (88)
vm = ot on T, (89)

- +
aaLn = -aav—n onT, (90)
v(z,y,0),v:(z,y,0) = 0 inQy, Q, (91)
ve+vet+A(r)y = 0 on T. (92)

We construct a function
1
E@t) = —// (vt2 + Vv - v)dQa + l//(k?,,u? + v -o)dQ, (93)
2 Q4 2 Q

where v/ is the gradient operator and - is the operator for the inner product.
Taking the derivative of E(t) with respect to t, we obtain
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B@Q) = [[ (oe+vo-vo)da+ [ [ (owetov-ov)ie
A
/ / (viAv + v - Jve)dQa + //ﬂ(vtAv + v - g — 207)dQ
Qa
[ [ @-vvden+ [ [(-vvo-oban
A

= / vtvv-ﬂds-l-/vtvv-y_ds—//l,znvfdQ
Sa r Q

= / vtvnds—/vwnds-}-/vtvnds—// lfnv?dQ
| O r r Q

= / vtvnds—//lfnv?dﬂ
T. Q

= / vtv,ds—//lfnvfdﬂ
T. Q

- /F (=1 = A(r)o)ds - / /n 20240 . (94)

Thus we have

E'(t)-}-/r A(r)vvds = -/F v?ds—//‘;lfnvfdﬂ. (95)

The right side of the equation above is less than or equal to zero. Then

! 9 / _1_ 2
E'(t)+ 37 Jr. 2A(r)v ds<0. (96)

From the initial condition, v(z,y,0) = 0, vy(z,y,0) = 0, and E(0) = 0. It
follows that

E() + /F -;—A(r)vzds <o, (97)

so that 1
E(t) < —/I‘ -2-A(r)v2ds . (98)

From the structure of A(r) (section 4) for both high- and low-frequency
waves, A(r) > 0 on I'.. As a result, E(t) < 0. But from the definition,
E(t) > 0. Thus the possibility is E(t) = 0. This leads to v,(z,¥,t) = 0, i.e.,
v is constant for the time. Since v(z,y,0) =0, v(z,y,t) = 0 for all time and
all space. This means u;(z,y,t) = uz(z,y,t). Therefore we conclude that
the problem has a unique solution.
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Table 1. Solution Comparison for Low Frequency
Radius Grid Numerical Analytic

( 80, 0) 0.8035427D-01 0.7879715D-01
( 74, 14) 0.7969991D-01 0.7815606D-01

20 ( 60, 20) 0.8028407D-01 0.7879725D-01
( 45, 14) 0.8197310D-01 0.8042111D-01
(40, 0) 0.8021339D-01 0.7879735D-01
(100, 0) 0.1246082D+00 0.1227901D+00
( 88, 28) 0.1239659D+00 0.1221490D+00

40 ( 60, 40) 0.1245336D+00 0.1227901D+00
( 31, 28) 0.1250927D+00 0.1232822D+00
( 20, 0) 0.1244591D+00 0.1227902D+00
(120, 0) 0.1503752D+00 0.1485242D+00
(102, 42) 0.1498472D+00 0.1478831D+00

60 ( 60, 60) 0.1503764D+00 0.1485243D+00
( 17, 42) 0.1505956D+00 0.1486387D+00
( 0, 0) 0.1503784D+00 0.1485243D+00
( 64, 0) 0.1710767D-13 0.2201674D-04
( 62, 2) 0.1975745D-~18 -0.1127474D-05

4 ( 60, 4) 0.1719809D-13 0.2201422D-04
( 57, 2) 0.3046863D-14 0.1069381D-04
(56, 0) 0.1731365D-13 0.2201171D-04

*In Double Precision

expression.
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FIGURE 7. - GRID SIZE FOR THE NUMERICAL EXPERIMENT

IN SECTION 6.
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FIGURE 6. - GRID POINTS NEAR THE INTERFACE BOUNDARY WHEN p, =1.

MAGNETIC FIELD LINE, NUMERICAL

FIGURE 8. - CONTOUR PLOT OF THE NUMERICAL SOLUTION FOR THE
HIGH-FREQUENCY CASE. f = 2,387324 x 10° Hz: GRID SIZE AND
OTHER PARAMETERS ARE SHOWN IN FIG. 7; RESULT WAS OBTAINED
AFTER 10 PERIODS FROM THE BEGINNING.




MAGNETIC FIELD LINE, ANALYTIC

FIGURE 9. - CONTOUR PLOT OF THE CORRESPONDING ANALYTIC SOLU-
TION OF FIG. 8.
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FIGURE 11. - CONTOUR PLOT OF THE NUMERICAL SOLUTION, USING
THE FAR-FIELD BOUNDARY CONDITTION, FOR THE LOW-FREQUENCY
CASE., f = 60 Hz: GRID SIZE AND OTHER PARAMETERS ARE SHOWN
IN FIG. 7: RESULT WAS OBTAINED AFTER 2.513274 x 10 PER-
10D FROM THE BEGINNING.
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FIGURE 10. - CONTOUR PLOT OF THE NUMERICAL SOLUTION, USING
THE NEAR-FIELD BOUNDARY CONDITION. FOR THE LOW-FREQUENCY
CASE. f =60 Hz: THE GRID SIZE AND OTHER PARAMETERS ARE
SHOWN IN FIG. 7:; THE RESULT WAS OBTAINED AFTER 2.513274 x
10~ PERIOD FROM THE BEGINNING.
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MAGNETIC FIELD LINE, NUMERICAL VECTOR POTENTIAL, NUMERICAL

FIGURE 19, - CONTOUR PLOT OF THE NUMERICAL RESULT IN SEC- FIGURE 20. - SURFACE PLOT OF THE RESULT IN F16. 19.
TION 7. f = 6000 Hz: G, = 4.0 x 10" S/M; €, = €,
Wy = Ha: GRID SIZE IS 25 x 25 WITH THE DIAMETER OF THE
CONDUCTOR OCCUPYING 21 GRIDS; THE GRID SEPARATION IS
6544985 cm; THE RESULT WAS OBTAINED AFTER ONE PERIOD FROM
THE BEGINNING.
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MAGNETIC FIELD LINE, ANALYTIC

FIGURE 21, - CONTOUR PLOT OF THE CORRESPONDING ANALYTIC
SOLUTION OF FIG. 19.

3x19:2

VECTOR POTENTIAL. ANALYTIC
FIGURE 22. - SURFACE PLOT OF THE RESULT IN FIG. 21.
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FIGURE 23. - HISTORY PLOT AT P(3,0) WHICH IS INSIDE
THE CONDUCTOR., FOR THE RESULT IN FIG. 19.
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