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Abstract.

A modified cluster analysis method has been developed to identify spatial

patterns of planetary flow regimes, and to study transitions between them. This

method has been applied first to a simple deterministic model and second to

Northern Hemisphere (NH) 500 rob data.

The dynamical model is governed by the fully-nonlinear, equivalent-

barotropic vorticity equation on the sphere. Clusters of points in the model's

phase space are assoĉ ted with either a few persistent or with many transient

events. Two stationary clusters have patterns similar to unstable stationary

model solutions, zonal or blocked. Transient clusters of wave trains serve as

way stations between the stationary ones.

For the NH data, cluster analysis was carried out in the subspace of the

first seven empirical orthogonal functions (EOFs). Stationary clusters are

/*•
found in the low-frequency band of more than 10 days, and transient clusters

the band-pass frequency window between 2.5 and 6 days.

In the low-frequency band three pairs of clustgers determine, respectively, j£.

EOFs 1, 2 and 3. They exhibit well-known regional features, such as blocking,

the Pacific/North American (PNA) pattern and wave trains. Both model and low-

pass data show strong bimodality.

Clusters in the band-pass window show wave-train patterns in the two jet

exit regions. They are related, as in the model, to transitions between

stationary clusters.
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It is well known that certain large-scale atmospheric circulation patterns

persist for time intervals longer than those typical of midlatitude cyclones

[Baur, 1947; Namias, 19823. A few of these patterns also have a tendency to

recur from time to time. To identify the patterns which tend to both recur and

persist, as well as determine preferred transitions between them, can deepen

our knowledge of low-frequency atmospheric variability and enhance our skill

in long-range forecasting (LRF).

Recurrent and persistent patterns can be global, hemispheric or regional.
>v

Certain patterns associated with specific phases of the El Nino/Southern

Oscillation are known to be global [Rasmusson and Wallace, 19831. Most

blocking episodes, in both the northern and the southern hemispheres, are

regional in character [Dole, 1986; Dole and Gordon, 1983; Trenberth and Ho,

19853. Typical of hemispheric patterns are those associated with the dominance

of zonal wavenumbers three or four in the Southern Hemisphere [Mo, 1986; Mo and

Ghil, 1987].

In this article, we shall concentrate on recurrent and persistent patterns

of hemispheric extent, associated with the atmospheric circulation in the

Northern Hemisphere (NH) extratropics. These patterns will be studied first

in the solutions of a greatly simplified dynamical model, and then in an

atmospheric data set.

One way to identify hemispheric patterns which persist is the pattern

correlation method (PCM). A sequence of daily hemispheric weather maps is

defined to constitute a persistent or quasi-stationary (QS) event, if the

spatial correlation between any pair of maps within the sequence exceeds a

given threshold p , say p = O.S, and if the duration of the event so defined

also exceeds a given threshold. Based on the ensemble-mean decorrelation time
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of daily weather maps, typical duration thresholds for QS events are seven days

in the Northern, and five days in the Southern Hemisphere.

Using this criterion, Horel C198Sa] identified 58 OS events in a set of NH

winter data. These events were not easy to classify subjectively into a small

number of categories, due to the apparent diversity of their spatial patterns.

In the Southern Hemisphere, Mo [1986] classified most of 23 QS events into

three major categories by visual inspection: two were dominated by a planetary

wave of zonal wavenumber three, but with nearly opposite phases, one by zonal

wavenumber four. The question we are asking here is to what extent can purely

objective, statistical criteria be used to classify QS events into a usefully

small number of categories, and how can these categories, or flow regimes, be

used in LRF.

Recently the authors [Ghil, 1987; Mo and Ghil, 1987] have considered

systematic connections between the statistical and dynamical methods of

description and prediction of QS events. They found that, both in the

solutions of simple dynamical models and in atmospheric data sets, the first

few empirical orthogonal functions (EOFs) had patterns similar to the most

frequently occurring QS events. This could be explained by the fact that

these EOFs pointed to the largest concentrations of invariant measure in the

system's phase space, which were also the locus of the QS events. Such a

result had to be expected from the ergodic theory of dynamical systems [Eckmann

and Ruelle, 1385; Ghil and Childress, 1987, Sections 6.4 and 6.6; Ghil et al.,

1985, pp. 14-16], but the amount of specific information extracted for a complex

system like the Earth's atmosphere appears rather gratifying.

Still, the direct and exclusive use of EOFs in classifying QS events has

two main disadvantages. First, the spatial orthogonality imposed on the flow

patterns associated with each class, or flow regime, is an oversimplification,
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from relative dynamical independence to complete lack of statistical correla-

tion. Second, the spatial patterns of EOFs become successively more complicated,

with smaller and smaller scales present as the variance associated with them

decreases. Higher EOFs can therefore not be expected to resemble any large-

scale QS events, nor classes of such events.

The purpose of this article is to develop and apply an objective method for

the classification of QS events into a few planetary flow regimes, and to

examine transitions between these regimes. We develop a modified cluster

analysis method and apply it to two types of data sets. One is obtained from

extended integrations of a very simple, deterministic, nonlinear model of NH

flow CLegras and Ghil, 1985; Ghil and Childress, 1987, Section 6.4D. The other

is a set of 500 mb geopotential height maps for NH winter.

In Section 2, we describe the two data sets, and in Section 3 we present

the method. Results are reported in Section 4 for the simple model and in

Section 5 for the NH 500 mb data. Conclusions follow in Section 6.

2. DATA SETS AND THEIR PREPARATION

Model data

Following the approach of Mo and Ghil C19873, we first develop and check

our statistical methodology on a data set with a simpler structure, generated

by a nonlinear deterministic model. To the extent that model solutions are

time-dependent and actually aperiodic, they exhibit sufficient irregularity to

justify a statistical treatment, as explained by Ghil [1987].

The model is governed by the equivalent-barotropic form of the equation for

the conservation of potential vorticity on a sphere [Ghil and Childress, 1987,
/

Chapters 3 and 6; Legras and G/iil//19853, truncated to 25 spherical harmonics. A
I '

It has / forcing by a zonal jet, Ekman dissipation and a simplified topography
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of zonal wavenumber two representing two equal continental masses and two equal

oceans. Subsequent maps of the model's streamfunction fields use polar

stereographic projection from the North Pole onto a full disk. The position

of the model continents is indicated by heavy lines, on the periphery of this

disk. The distribution of land masses resembles, albeit schematically, more

that of the Northern than that of the Southern Hemisphere, and equatorial

symmetry makes this essentially a NH model.

In previous publications, the dependence of model behavior on various

parameters was carefully investigated. Here it suffices to use one set of

parameter values, which is both realistic CT. P. Barnett and J. 0. Roads,

personal communication, 19863 and at the center of the region in parameter

space where interesting solution behavior obtains. The forcing parameter p,

giving the intensity of the zonal jet, is set to the value p = 0.211, the

dissipation parameter a to a value corresponding to the relaxation time of a =

20 days, and the height of the topography to a nondimensional value of h =0.1,

relative to atmospheric scale height.

For this value of the parameters, a model integration of roughly 65 years

of simulated time was used. More precisely, this corresponds to a time interval

of 8000 t, where the sampling time x equals 1.5 nondimensional time units,

which is 3.0 days at p = 0.20 and 2.83 days at our value of p = p . The first

solution segment of lOOOr was omitted so as to make the results independent of

initial data. The time mean was computed by averaging over lOOlt * t * 8000t,

and the streamfunction anomaly at a given time is defined as the deviation

from this time mean.

The persistence properties of model solutions for p = p were discussed in

Mo and Ghil [1987]. Pattern correlations p(t+nrr, t+nt) for pairs of maps were

computed between each given time t^ and 5 consecutive sampling times after that
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. QS events were identified by requiring that the pattern correlations

between all maps within a series of 6 or more be larger than or equal to p =

0.5. If p[to+nrr, tQ+nt] > PQ for 0«m<n<5, and pCt^t, tQ+6-t] < pQ, then the

event is said to last Just S sampling intervals. On the other hand, if

p(t +mt, t +nt) > p for both (Km<n*5 and l*m<n$6, the QS event lasts 6o o o

intervals, and so on. Haps for all OS events were plotted.

Most events were easily classified subjectively by their similarity to one

or another of the model's stationary solutions. All such solutions are unstable

at this point in parameter space, but some of them generate persistent events in

their phase-space neighborhood by a mechanism explained in previous publications

[e.g., Ghil, 1987, Fig. IS]. The events with longest durations had patterns

resembling either blocking (Figures la,c) or a zonal type of flow (Figures lb,d).

[Fig. 1 near here, please]

From the time series of streamf unction anomaly coefficients, standardized by

the variance in time of each coefficient, the correlation matrix was computed,

and diagonalized by EOF analysis. In contradistinction from Ho and Ghil [1987D,

EOFs will be used here only for spatial filtering purposes. As explained in the

Introduction, retaining only a small number of EOFs, those associated with the

highest variances, will result in smoother large-scale fields, which presumably

contain the signal of the system's variability. It is these filtered fields on

which cluster analysis will be performed.

Atmospheric data

The data set consists of twenty years' worth of twice-daily 500mb geopoten-

tial height maps analyzed by the U.S. National Meteorological Center (NMC) from

January 1963 to December 1982. Spectral analysis was used to remove the

seasonal cycle at each grid point. The seasonal cycle is defined here as the
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20-year mean plus the 20-th and 40-th Fourier components of the time series.

Anomalies were then computed as differences between the data and this seasonal

cycle.

For greater conformity with the bulk of the existing literature on persist-

ent anomalies in the NH extratropics, we concentrate in this article on the

winter only. The winter season here is taken as the 120 days from November 15

to March IS.

Pattern correlations between pairs of maps one day apart were computed. QS

events were identified by requiring that pattern correlations between the pairs

of maps on 5 consecutive days be not less than 0.5.

After detrending the time series of anomalies, we filtered this series in

time by using separately a low-pass filter and a band-pass filter, as designed

by BJackmon C19763. The low-pass filter has a large-amplitude response for

frequencies 0 < f < 0.1 day , i.e., for periods 10 days £ T < <*>. Due to the

removal of the seasonal cycle and tjgfi) retention of winter data only, the

variability in this window reflects in fact two separate bands: 10 days <, T £

100 days and 300 days < T < ». The band-pass filter is sensitive to frequencies

0.17 < f < 0.4 day" , i.e., for periods of 2.5 days < T £ 6 days. The -two

filters have rather sharp cutoffs and little overlap, so that the two windows

of low and intermediate frequency are well separated. Cluster analysis will be

carried out separately for the low-pass filtered and band-pass filtered data.

The spatial filtering started by retaining only data at 358 points out of

NMC's 541-point NH grid. This grid of 358 points achieves a compromise between

a regular latitude-longitude distribution and an, unfortunately inexistent,

uniform-spacing distribution CBarnston and Livezey, 1987]. Anomalies at 305

points of this grid lying between 20N and TON were standardized by the variance

in time at each grid point, and the correlation matrix for the corresponding
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time series was calculated.

Table 1 gives percentages of variance for each EOF, separately in the low-

pass and band-pass windows. The expected error in this estimate of variance,

also given in the table, was evaluated by the heuristic formula of North et al.

C1982]

1/7
&\/\ = C2/N]

Here &\ is the standard deviation for eigenvalue X and N is the number of

independent samples. We took N=200 for the low-pass filtered data and N=400

for the band-passed time series. This is rather conservative, since the total

number of samples is 2x120x20=4800, and the decorrelation time, as we shall

see, is less than 10 days in the first band (Table 6) and about 3 days in the

second.

[Table 1 near here, please]

Convergence of the EOF expansion is slow in both windows. For the band-

pass window, 15 EOFs only give 43% of the total variance. In the low-pass

window, seven EOFs give 50% of the variance, and they will prove sufficient for

our analysis of low-frequency variability. The convergence for model data is

much more rapid, due to their limited spatial resolution and simplified dynamics

[compare Table 4 in Ho and Ghil , 19871.

3. METHODOLOGY

Probability density estimation

As indicated already in Sections 1 and 2, deterministic, but nonlinear

dynamics can generate time series of geophysical flow fields with an appearance

or randomness [Ghil et al., 1985]. This randomness is associated, heuristically

speaking, with a measure, or probability density function (pdf), which is

invariant under the equations describing the dynamics. These equations are
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also said to generate a flow In the system's phase space, as each point in

this space can be thought of as moving, or flowing, in time along the unique

orbit, or trajectory, passing through it [Ghil and Childress, 1987, Section

S.4].

With this terminology, the pdf is said to be invariant under the flow.

What is meant is simply that, if a set of points A in phase space is carried

by the flow into a set B, then the measure, i.e., the total or cumulative

probability, of the two sets is equal. For conservative dynamical systems, it

is well known that such an invariant measure exists, is essentially unique and

is just equal to the ordinary volume in the system's phase space. This result

goes usually under the name of Liouville's theorem.

For the forced, dissipative systems one encounters in geophysical fluid

dynamics (GFD), the situation is somewhat more complicated. The flow in phase

space is volume-reducing, rather than volume-preserving, and tends in general to

a strange attractor CLorenz, 1963; Ghil and Childress, 1987, Section 5.43. A

measure on such an attractor is known to exist under certain simplifying mathema-

tical assumptions, called Axiom A, which essentially state that for every point

on the attractor the linearization of the flow has no neutrally stable direc-

tions. Requiring that the measure behave essentially like length along the

unstable directions renders it also unique. Furthermore, this unique measure is

ergodic for almost all points near the attractor, as well as on the attractor.

That means that any physically or numerically observable time averages along

trajectories starting on or near the attractor will be equal to the correspond-

ing ensemble average with respect to the pdf on the attractor CEckmann and

RuelJe, 1985, pp. 639-641, and references therein; Ghil et al., 1985, pp. 14-16].

The main point of our line of investigation is that this pdf is far from

being either uniform or isotropic in the phase space of large-scale atmospheric
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flows. The most elementary form that such inhomogeneities can take is bi-

modality. In the case of the relatively simple phase-space flow induced by our

model (Section 2), such bimodality is clearly a result of the greatly enhanced

persistence near the two unstable stationary solutions with blocking and zonal-

flow patterns, respectively. The approximate form of the pdf near these two

generalized saddle points in phase space can actually be derived from the lineai —

ization of the equations at these points, and a small number of scaling para-

meters for the pdf can be determined from the data.

For the NH data set no such a priori form for the pdf can be derived, and

one has to use the tools of nonparametric estimation theory. This is a

particularly active field of modern statistics, which relies on an intelligent

and systematic use of computer power rather than on "cookbook" formulae valid

only for elementary problems involving well-known, classical pdfs. The methods

of nonparametric theory permit the reliable estimation of differences between

mean and median of an arbitrary distribution CEfron, 1982] or of the multi-

modality of a pdf CSilverman, 1986; Tapia and Thompson, 19781, based on samples

of moderate size.

The first nonparameteric method we used is discrete maximum penalized like-

lihood estimation (DMPLE) ISilverman, 1986, Section 5.4; Tapia and Thompson,

1978, Chapter S3, which estimates a univariate pdf o> = wCz], subject to a smooth-

ness constraint. Some such constraint, or regularization, is necessary for any

consistent, stable estimation from noisy data. It plays a role similar to lag

windows and frequency tapers in spectral analysis.

The likelihood function maximized is

o*f> 6*4 '/»'* far t.c.
m

exp -(«/h). (y) da)
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subject to

m
h £ y1 = 1 ; y, » 0 j = 1, .'.., m = 1 (lb,c)
j =1 J J

Here w. = \y , y., . .., y / is an approximation to the true pdf <o(z) at m + 1

equally spaced "nodes", or mesh points, with y = y = 0 since u(z) is assumed

to be zero outside the interval considered; h is the equal spacing between nodes,

and s(z ) is the interpolation by linear splines, defined with respect to the m

equal subintervals, of the n unequally spaced data z., where n >, m necessarily

r 2 2
and usually n » m. The sum in the exponent is an approximation to J(d u)/dz )dz,

and yields a smooth pdf estimate a). . by minimizing the "wiggles" of u(z) [Tapisvm)

and Thompson, 1978, Chapters 4 and 5].

The variable z chosen was a leading principal component of the data set of
t

intrest, as explained in Eq. (2) below. The maximization was carried out by the
A

algorithm NDMPLE from the International Mathematical Statistical Library

(IMSL). This algorithm was also used by Benzi et al. [19863 and Sutera [1986]

on NH winter data for December 1980 - February 1984, who chose the sum of the

squared amplitudes of zonal wavenumbers two, three and four as the unique

variable z of their pdf w(z).

We took m = 40 and h = 0.2, so that the total interval over which cj(z) is

allowed to be nonzero equals 8 standard deviations of the variable of our choice.

The smoothness parameter a was chosen by requiring the discrepancy between the

estimated pdf <o (a) and the theoretical limit pdf as a -» 0, w .(0), which is

an atomic measure concentrated at the m+1 equidistant mesh points, to satisfy

the Kolmogorov-Smirnov (K-S) test at a confidence level of 95% [Darling, 1957;

Sutera, 1986], The K-S test is distribution-free, i.e., it is independent of

the shape of the pdf w(z) approximated, provided u) is a continuous function of
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z CFisz, 1963, Section 10.11]. Robust approaches to an estimation of the

regularization parameter a from the data involve various resampling plans, which

are much more expensive computationally CEfron, 1982; Nahba and Nendelberger,

1980].

Cluster analysis

The major drawback of the DMPLE approach to pdf estimation in phase space is

that its extension to more than one variable is still prohibitively expensive.

Bimodality with respect to a single dimension is an important first step in

identifying multiple planetary flow regimes. But much more detail is needed to

use these regimes effectively as a foundation for LRF.

We turned therewith to cluster analysis [Anderberg, 1973; Silverman, 1986,

Section 6.2], which is a flexible multivariate approach. To classify QS events

objectively by the similarity of their flow patterns, one needs a quantitative

measure of similarity. In Legras and Ghil [19853 root-mean-square distance

between maps was used to study the proximity of persistent events to unstable

equilibria. Pattern correlations of anomalies correspond to the cosine of the

angle, centered at the time mean, of two maps seen as points in phase space,

rather than to their Euclidean distance. This measure is more sensitive to the

meteorologically significant shape and phase of anomalies CHorel, 1985a; Mo,

1986; Mo and Ghil, 1987]. It was already used to identify QS events, and we

used it for our cluster analysis.

We expand the time series <j>(x,t) of anomaly fields into EOFs

- vo
<)>(x,t) = A <t) E (x(x) , <2)
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where x is the spatial coordinate, E is the v-th eigenfunction of the correla-~ v

tion matrix, in decreasing order of the associated eigenvalues X [see Table 4

in Mo and Ghil, 1987, and Table 1 here], A is the corresponding principal

component [PC], and u is the truncation of the EOF expansion selected for

smoothing purposes [Barnett and Preisendorfer, 1978]. The pattern correlation

between <J>(x, t ) and <j>(x, t ), so truncated, is then given as^ m ~ n

vo
p(t , t > = E A (t ) A (t ) (3)m n = v m v n »

due to the orthonormality of the EOFs.

When an anomaly (2) is small in magnitude, the pattern correlation between

it and another anomaly cannot be expected to be meaningful. It was found

useful therefore to define a cluster of small anomalies, for which the

distance to the origin

( r> 2 \
d(t ) = { L A (t )> (4)n ^ " v n i

is below a given threshold d0.

For a cluster C = {$,,»•••. $ / whose elements <J>. are anomaly maps <(>(x, t ),
^ 1 n^ j M n.

we define the center c as the arithmetic mean of its elements,

c = - E <t>. - <Sa>n j =1 j
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Each element is interpreted as a vector in v -dimensional Euclidean space,

<J>. = [A1(tn ),..., Ay (tn )], so that Eq. (Sa) is equivalent to c = [A±, . . . , Ay J ,
j o j uo

with

n

A = - E A (t ) . (Sb)u n j=i u n.

Clustering criteria

All clustering algorithms require two basic criteria: one to determine

membership in a cluster, otherwise each point would form a cluster; the other

to determine separation between clusters, otherwise all points would form a

single cluster. In general, these criteria are chosen so that each point

belongs to one and only one cluster - hard clustering, or so that each point

belongs to one or more clusters- fuzzy clustering CBezdek, 1981].

In our application to large-scale atmospheric flows, it is quite clear

from synoptic experience that sizable portions of phase space are visited only

very rarely, so that considerable numbers of anomaly maps will be distributed

quite thinly over these portions. There is no use in trying to associate

these thinly populated portions of phase space with any planetary flow regime,

as they are most unlikely to recur and will not help in any substantial way to

either understand or predict low-frequency variability. Eliminating thus a

considerable number of points from the clustering procedure will enhance the

convergence rate of any specific clustering algorithm we choose. We depart

therewith from other clustering approaches by formulating a third criterion,

for non-membership in any cluster. Alternatively, this can be thought of as a

criterion for membership in a special, larger cluster of nonrecurrent flow

anomalies, into which the really interesting clusters are embedded.

Recalling the other special cluster, of small anomalies, the five criteria



-16-

we use are:

a) Membership criterion. The pattern correlation between the center of a

cluster c and any element[in the c lust erj<K\ should exceed a threshold r.,

vo

P<c, 0.) = Ay AU » r4 . (6a)

Remembering the interpretation of p(<J>',<|>") as the cosine of an angle in phase

space, requiring for instance that r. =0.86 means that any two elements <j>'

and <|>" in a given cluster form an angle smaller than 60° with the origin,

i.e., that they correlate better than 0.5. We shall use r. > 0.8.

b) Separation criterion. The pattern correlation between the centers of

two clusters, b and c, say, should not exceed a threshold r_,

\>o
P<b, c) E B C < r . <6b)

To prevent points from belonging to more than one cluster, we require that

arccos r > 2arccos r . We shall use r < 0.45, which satisfies this require-

ment for the lowest value of r..

c] Exclusion criterion. If a map <j> does not correlate sufficiently well

with the center c, of any cluster,

<7a>

and it does not satisfy the separation criterion for at least one cluster, c,
o
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say,

, c ) > r , <7b)
k i

then <{> belongs to the nonrecurring cluster. Direct observational evidence for

extratropical flows in either NH winter CCharney et al., 1981] or SH winter

CTrenberth and Mo, 1983] suggests that this cluster should take up about 2/3

of all anomaly maps analyzed.

d) Small-anomaly criterion. A map $<x, t ) belongs to the small-anomaly~ n

cluster, rather than to one of the significant clusters defined by (6a) or to

the special, nonrecurrent cluster defined by (7), if its distance (4) to the

origin satisfies

d(t ) < d = d - 1.8 a. , (8)n o d '

where d is the mean distance of the time series of anomalies to the origin and

a, is the variance of the distances about this mean IHo and Ghil, 19871.d

e) Small cluster criterion. Clusters with less than L elements are
o

assigned to the special, nonrecurrent cluster. L is taken as 25 for the

model results and as 8 for the NH data. This accelerates the search and

eliminates nonsignificant clusters.

The schematic diagram of our clustering criteria is given in Figure 2.

The exact search and clustering algorithm is given in Appendix A.

[Fig. 2 near here, please]

4. MODEL RESULTS

Clusters

For the time series of 7000 streamf unction anomaly maps based on 25
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spherical harmonics, ten EOFs contain 91% of the total variance. Table 4 in

Mo and Ghil [1987] shows that the first three, in fact, already contain 65%.

Cluster analysis using ten EOFs, r. = 0.8S and r_ = 0.4, yielded five

clusters. Using 12 EOFs, and varying r between 0.8 and 0.86, with 0.34 < r
1 * LI

$ 0.45, yielded the same number of clusters. The flow patterns of their

centers stayed much the same, only the number of elements in each cluster

varied from one set of criterion values to another.

The clusters for ten EOFs, r = 0.85 and r = 0.4, are listed in Table 2,
i it

in decreasing order of the number of elements. The distribution of

persistence for passages within each cluster is given. Flow patterns of the

centers of each cluster are shown in Figure 3.

[Table 2 and Figure 3 near here, please]

Clusters 1 and 2 are largest, with about 11% of the total number of points

each. They are also the most stationary, being the only ones with a significant

number of flow sequences persisting for longer than four sampling times within

the cluster. Cluster ± (Figure 3b) resembles clearly the model's zonal flow

(compare Figure Ic), while Cluster 2 (Figure 3c) is associated with blocking

(Figure Id).

In Mo and GhiJ [1987] we saw that the first EOF was nearly parallel to a

line segment extending from the unstable blocking equilibrium E to the

unstable zonal equilibrium B . This is now fully explained by the closeness

of the dominant Clusters 1 and 2 to the respective unstable equilibria. Both

c and c_ have indeed their largest components along EOF 1, with signs opposite

to each other (Figure 4).

[Figure 4 near here, please]

The detailed distribution of persistence times in Clusters 1 and 2 shows

that rapid passages through these stationary clusters are still the most
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frequent. In general, we expect the persistence time in either cluster to be

most strongly correlated with distance between the points of the sequence and

the unstable equilibrium nearby, cf. Legras and Ghil C1985, Figures 10, 13 and

16).

To verify this statement, we computed Euclidean distances between points

in each flow sequence of a cluster, and the center of that cluster, c. or c_,

as the case may be. We took the minimum distance, d , corresponding to each

sequence, and we averaged over all sequences with the same duration, in each

cluster separately. The resulting values d . are listed, as a function of

sequence duration, in Table 3.

[Table 3 near here, please]

The values of d , are increasing in general as the duration of themin

associated sequences decreases: in Cluster 1 from 0.45 for 170x to 2.32 for

2t, and in Cluster 2 from 0.82 for 34t to 1.72 for 2t. The increase is not

perfectly monotonic, due to variations in the direction of approach to the

unstable equilibrium and in the direction of ejection from its vicinity. But
/0*4

the correlation between close passage and persistence is clearly excellent.
A

The pattern correlation method (PCM), as defined in Section 2, identifies

only some of the most persistent passages as QS events.. First, the passages

have to last St or longer. Second, the membership criterion of r. = 0.8S

allows correlations between pairs within a cluster to be smaller than p = 0.5.

We shall return to a systematic comparison between the two approaches later in

this section.

Clusters 3 (Figure 3d) and 4 (Figure 3e) have similar anomaly patterns,

but with nearly opposite phases. Cluster 4 resembles the wave-train pattern

obtained by the correlation method in Mo and Ghil C1987, Figure 9cl. Table 4

there indicates that this pattern has similarities with EOF 2, and Figure 4
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here shows that cg and c^ do have large components of opposite signs along

this EOF, as well as along EOF 1. While EOF 1 is essentially determined by

the two dominant clusters, the orthogonality constraint on EOF 2 prevents it

from being uniquely determined by Clusters 3 and 4.

Cluster 5 (Figure 3f) is both the smallest and the least persistent, with

only three sequences lasting 2t and none longer. It resembles the model's

unstable Zonal 2 equilibrium. All five clusters are well separated, the highest

correlation between centers being p(c_, c_) = 0.38.
£t O

Correlating the mean $ of the time series with the anomaly maps of the

centers of the clusters, c,, k = 1,2,...,5, yields the largest correlation for
K

k = 1, the zonal-flow cluster, p($, c.) = 0.73. The correlations between $ and

all the other clusters are negative, and obviously smaller. This result could

explain why certain quasi-stationary wave patterns in NH winter have sometimes

been interpreted as amplifications of the climatology.

Fuzziness

To study flow sequences whose patterns are more or less constant, but slowly

moving in physical space, we introduce a special concept of fuzziness. This is

inspired to some extent by, but distinct from the classical fuzzy clustering

algorithms CBezdek, 1981].

The centers ^c, , of the clusters are kept fixed, but the number of points
I. ky

belonging to each given cluster C, is increased by relaxing the membership
K

criterion to

p(*' V * r3 ' r3 < rl • <9a,b)

This will allow a flow sequence with some maps already belonging to cluster C,
K
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but having also maps containing a slightly displaced version of the main feature,

e.g., a slowly retrogressing ridge, to belong entirely to the increased, fuzzy

cluster.

We note in passing that the method of complex correlations [e.g., Horel,

1984] has somewhat the same purpose, and we implemented a version of it. This

version only captured those flow sequences for which motion of features is

strictly zonal, and we renounced developing a version which would not exhibit

this shortcoming.

We used the fuzzy membership criterion (9), with r,, = 0.65. This is based
o

on the requirement that correlations be statistically significant at a 95% level.

For ten degrees of freedom, a simple algebraic transformation of the classical

Student t- test yields a lower bound on significant correlations of 0.63 CFisz,

1963, pp. 429-430], hence r = 0.65, by rounding up, for our ten EOFs.
O

The results for the fuzzy clusters, including now the small-anomaly cluster,

cf. criterion (8), are given in Table 4. We concentrate on comparing the follow-

ing characteristic times with those of the hard clusters in Table 2: T, is the

average duration of a passage in the cluster, while T is the average wandering
w

time between exit from that cluster and entry into any other cluster. A sequence

in a cluster is termed persistent if it lasts for five time units or longer, T.

» St. T is the average duration of persistent sequences.

[Table 4 near here, please]

Table 4 shows that relaxing the membership criterion has led to a total

number of elements in nontrivial clusters of 62% of all points, vs. 27% before,

slightly more than the double. Clusters 1 and 2 are still dominant, and most

persistent. The number of elements for them has increased the least, showing

that they are intrinsically stationary and well separated from all other

clusters. The numbers for the smaller clusters, 3, 4 and 5, has increased more



-22-

than threefold, indicating that they tend to contain sequences with slowly

moving features, rather than stationary ones.

The average residence time in Clusters 1 and 2 is T. = HT, while for

Clusters 3 through 6 it is T = 2T. The wandering times are T . s ST and T £

3.5T, respectively. The wandering times are smaller for all fuzzy clusters

(Table 4) than they are for the hard clusters (Table 2). This is due simply

to the decrease in size of the diffuse, nonrecurrent cluster in the fuzzy

formulation.

C-r/ f' *-l The average persistence time in zonal Cluster 1 decreases from T, - 21.ft

in Table 2 to T, - 10.ST in Table 4, while the aveage duration of persistent

sequences goes from T - 4lT to T - 24T. A change in the opposite direction

occurs for the blocked Cluster 2, with an increase of T. from GT to HT, and

of T from 10T to 35.ST, as cluster size increases due to fuzziness. This is

in agreement with the distribution of duration of persistent sequences given

in Figure 17 of Legras and Ghil [1985] and Figure 16a of GhiJ [1987], if we

accept the fact that the fuzzy clusters (Table 4) include a larger number of

passages of the trajectory not so close to the corresponding unstable equilib-

rium. There are proportionately more such short events captured by an

. / increase in cluster side for the zonal regime, as seen also direcujoy from the /TV*"

two tables.

Changing the fuzziness parameter r« from 0.65 to 0.7 or to 0.55 yields

smaller or larger numbers of elements in each cluster. But the relative

stationarity of Clusters 1 and 2, and the transient character of Clusters 3

through 6 remains the same.

Cluster Analysis and OS Events

To compare the results of the PCM method with those of cluster analysis,
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let Q be the set of all maps belonging to a QS event and Q be the set of all

maps belonging to one of the five nonexceptional clusters. Let

Tl = Ql n Q2 <10a)

be the set of elements belonging to both Q. and Q , while

10 (10b)

is the set of elements belonging to either Q. or Q (or both)
X £*

The ratio

#(T

between the number #(T.) of elements in T. and the number #<T_) of elements

in T_ gives a measure of the compatibility of the two methods. For the fuzzi-

ness parameter r = 0.65, we find r = 0.57. This is due to the large number
O

of elements in Clusters 3 through 5 which are ipso facto in Q but not in Q .

We consider therewith Q ' as the union of elements in Clusters 1 and 2

only, and define T ' and T ' accordingly by replacing Q by Q ' in Eqs. (10a,b).

The corresponding Y' = 0.71 is much larger than the previous value of Y = 0.57,

substantiating our designation of Clusters 1 and 2 as stationary, or persistent,

while the other clusters are justifiably termed transient.

Figure 5 shows the correlation R. and R_ between the time series of

anomaly maps <J»(x,t), projected onto the first ten EOFs, and the centers c, , k
** K.

= 1,2 of Clusters 1 and 2, respectively. The index Q(t), also shown, equals 1

if the map is either in fuzzy Cluster 1 or in fuzzy Cluster 2, and 0 otherwise.
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It is clear by inspection of this figure that all major QS events, and most

minor ones, are either in Cluster \ or in Cluster 2.

[Fig. 5 near here, please]

We can conclude our intercomparison between the PCM and cluster analysis

with the following two remarks:

1) Cluster analysis can identify both QS events and nonpersistent, but fre-

quently recurring patterns. PCM, as used up to now, can only do the former.

2) PCM can take into account slowly moving features better than cluster analy-

sis. This is especially true for a few QS events which involve gradual transi-

tion from one cluster to another, or exit and reentry into the same cluster

during one QS event.

Transitions between Clusters

In Mo and Ghil [1987], we introduced the concept of a Markov chain of tran-

sitions between planetary flow regimes, whose flow patterns were defined there

by the PCM (see also Figure 25 in Ghil, [1987]). It turns out that a much better

description and understanding of such a Markov chain obtains when basing

multiple flow regimes on cluster analysis.

Table 5 gives the number of transitions from one cluster to another for

the six fuzzy clusters of Table 4. Clearly each flow sequence, or trajectory in

phase space, passes through the diffuse, nonrecurring cluster. This is neither

significant nor interesting and yet another reason to ignore the trivial cluster.

Notice that the total number of transitions, 1030, is much smaller than the

total number of elements in the six clusters, #(Q7>= 4315, since we do not count

two successive maps within the same cluster as a reentry. The ratio of these

two numbers is simply T, = 4.19t for Q_ (see Table 4).
Q £

[Table 5 near here, please]
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The transition matrix in the table is not symmetric, and not diagonally

dominant. Except for Cluster 4, the largest entries in either row or column

occur off the diagonal, indicating that reentry is much less likely than

transition to another cluster.

In spite of the considerable dominance of Clusters 1 and 2, their diagonal

entries are among the smallest. Even more strikingly, there are no direct

transitions between the zonal-flow Cluster 1 and the blocking Cluster 2. To

go from a zonal-flow pattern to a blocking pattern, or vice-versa, the flow has

to pass through at least one, though more typically two transient, but recurring

patterns. This is shown in the "flow diagram" of Figure 6.

[Fig. 6 near here, please]

In this graphic representation of our Markov chain, only those arrows have

been drawn which correspond to a number of transitions larger than that given

by equal probabilities, plus one standard deviation. Thus for instance there

are 113 transitions out of Cluster 1, to one of six clusters, for an equal

probability of 113/6 - 19 transitions. Hence only the reentry arrow, with 31

transitions, and the arrow to the wave-train Cluster 4, with 42 transitions, are

shown. The figure emphasizes that transitions both to and from Cluster 2 are

likely only through Clusters 5 and 6, and that wave-train patterns with opposite

phases account for transitions to and from Cluster 1, respectively.

Bimodality

As explained in Section 3, bimodality with respect to one variable is the

simplest form that inhomogeneity of a pdf in phase space can take. Bistable

solutions to simple models of planetary flow over topography were obtained by

Charney and DeVore [1979], Hart [19791 and Pedlosky [1981]. The relevance of

bistability to low-frequency atmospheric variability was often interpreted to
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stand or fall by the discovery of such bimodality in NH winter data. This is

the approach taken in particular by R. Benzi, A. R. Hansen, P. Malguzzi, A.

Speranza and A. Sutera in a number of recent publications [e.g., Benzi et al.,

1986; Hansen, 1986; Speranza, 1986; and references therein].

The picture of multiple planetary flow regimes which emerges from this

section and the following one is considerably more complex, and potentially

more applicable to LRF, than simple bimodality. But it appears interesting to

verify the existence and sources of bimodality in both our model and in our NH

data set.

Figure 7 exhibits the approximate pdf obtained for the first and second PC

of our data, by using the algorithm NDMPLE explained in Section 3. The smooth-

ness parameter in Eq. (la), obtained by applying the K-S test to yield a

confidence level of 95%, was a = 0.1.

[Fig. 7 near here, please]

The pdf of PC 1 (Figure 7a) is clearly non-Gaussian with the largest peak,

or mode, near the mean and smaller modes at approximately +1 and -2 standard

deviations. The position of these smaller peaks corresponds roughly to the

projection onto EOF 1 of c« and c., the centers of the blocking and the zonal-
Lt 1

flow clusters, respectively (compare Figure 4). The pdf of PC 2 (Figure 7b>

is significantly skewed towards positive values, but is unimodal.

The same is true of the pdf for PC 3 (not shown). This is due to the fact

that Clusters 1 and 2 have small components along EOFs 2 and 3, while Clusters

3 through 6 are smaller and their distributions project without significant

discontinuities onto these EOFs.

A more complete picture of the situation is given in the two-dimensional

histogram of Figure 8. The points in our time series, projected onto EOFs 1

and 2, with the axes standardized as in Figure 7, were counted in boxes of
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0.2x0.2 standard deviations. Two peaks on either side of the EOF 2 axis are

clearly associated with Clusters 1 and 2, respectively. The peak near the

origin is due mostly to the small-anomaly Cluster 6.

[Fig. 8 near here, please]

Bimodality thus results from the existence of two dominant, stationary

clusters, associated with particularly persistent flow sequences. The

presence of additional, more transient clusters, detectable by other means,

will tend to blur this simple way of looking at multiple regimes. Still,

these additional clusters, if statistically significant, can contribute to

understanding, as well as predicting low-frequency atmospheric variability:

they establish road posts along the preferred routes of transition between the

most obvious and persistent flow patterns, such as blocked and zonal flow.

5. NORTHERN HEMISPHERE 500 MB HEIGHTS

Bimodality for Low-Pass Filtered Data

Bimodality was first illustrated in a data set of NH 500 mb data for the

winter of 1981-1982 by Benzi et al. [1986] and for the four winters 1980-1984

in other publications of the same group [Hansen, 1986; Sutera, 1986]. They

applied the NDMPLE algorithm to the univariate pdf obtained from their data

set with respect to the nonlinear functional given by the sum of squares of

the amplitudes of zonal wavenumbers two, three and four resulting from an

average of the heights over latitudes 1SN to 75N.

We start the detailed analysis of our data set of 20 NH winters (1963-1982)

by obtaining smooth approximations of univariate pdfs with respect to (linear)

projections onto EOFs 1, 2 and 3 of the low-pass filtered data (Figure 9).

The sources of bimodality in PC 1 (Figure 9a> and of considerable skewness in
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PCs 2 and 3 (Figures 9b,c) will then be further investigated by cluster analysis.

[Fig. 9 near here, please]

The three leading PCs were each standardized and gridded as in Sections 3

and 4. The respective values of the smoothness parameter a given by the 357.

confidence level of the K-S test are all three equal to 10. The light lines in

Figures 9a-c indicate the results for the full set of low-passed data. While

all three PCs show some measure of skewness, none is bimodal with any degree of

significance.

For the simple model, bimodality of the first PC resulted from the persis-

tent sequences in the dominant Clusters 1 and 2. We are thus led to consider

the distribution of QS events in NH winter data. These were studied already

from a slightly different point of view by Dole and Gordon [19831 and by Horel

[1985a,b]. In our data set, 522 days out of a total of 2400 daily maps fall

within QS events, defined as in Sections 2 and 4. The approximated pdfs for

this restricted data set are shown as heavy lines in Figure 9, in terms of the

original leading EOFs.

EOF 1 (Figure 9a) is now clearly bimodal, with excellent separation and a

highly significant magnitude of the two peaks. Values of a both much larger

and much smaller than the optimal one selected by the K-S test give the same

bimodal picture. EOFs 2 and 3 (Figures 9b,c) are strongly skewed, but not sig-

nificantly bimodal, as for the model (Figure 7).

We thus conclude that persistent anomalies of NH winter flow have preferred

locations in phase space. The total pdf of hemispheric flows is blurred, how-

ever, by the more uniform distribution of transient sequences of maps connecting

these locations. The total number of maps available did not permit us to

obtain statistically significant multi-dimensional histograms, and we turn

therewith to cluster analysis in order to clarify the situation further.
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Clustering in the Low-Pass Filtered Data

Our low-passed data set was projected onto the seven leading EOFs, which

together represent 50% of its variance (see Table 1). Cluster analysis was

carried out in this seven-dimensional space, using r = 0.82 and r9 = 0.34 for
i. &

the hard clusters. Eight nonexceptional clusters were obtained and they are

listed in Table 6 in decreasing order of the number of elements, with the

position of their centers.

[Table 6 near here, please!

These clusters were enlarged by using r_ = 0.65, while keeping their
O

centers fixed. The persistence properties given in the table refer to these

enlarged, fuzzy clusters. The ninth, small-anomaly cluster, obtained by

criterion (8), was not enlarged and its properties are also given for complete-

ness.

Clustering calculations were repeated using nine EOFs, which account for

about 60% of the variance of the time series. Parameters were varied in the

ranges 0.8 < r $ 0.83 and 0.34 < r_ ( 0.38 for the hard clusters. Clusters 1
J- - «

through 6 were all reproducible, with 7 and 8 being less stable.

Given larger data sets, techniques for objective estimation of clustering

parameters from the data can be formulated, as for the univariate DMPLE pro-

cedure. For the limited set at hand, the verification of the results lies

mostly in the dynamical and climatological interpretation of the flow patterns

obtained by cluster analysis and their relationship to NH patterns obtained by

other methods.

The flow patterns associated with fuzzy Clusters 1-6 are shown in Figures

lOa-f, respectively. For each cluster, the figure shows the 500 mb height

field obtained by averaging the filtered anomaly maps over all elements in the
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t
cluster. The plot thus shows the true centr of the fuzzy cluster, as opposed

to that of the hard cluster used initially.

[Fig. 10 near here, please]

To assess the statistical significance of the features in the figure, we

calculated the standard deviation of the time series of anomalous heights at

each grid point, ff(x). The number N of independent samples for each cluster

was estimated, rather conservatively, by the total number of days spent in

that cluster, divided by 10 days. The latter is considerably longer than the

mean duration of each sequence in any cluster, T. (see Table 6), so that we are

looking essentially at N independent passages through each cluster. Assuming a

normal distribution of anomalies at each grid point, we used cr(x) and N to

determine the points at which the mean anomaly value was different from zero at

the 95% level of significance. Areas for which this statistical significance

criterion is satisfied are shaded in Figures lOa-f.

Cluster 1: wavenumber-three pattern (Figure lOa). This cluster is the

largest as a hard cluster (130 maps) and second largest as a fuzzy cluster

(301 maps). It has a clear zonal wavenumbei—three pattern. The anomaly map

resembles in the Pacific sector very closely the one-point correlation map for

the base point (55N, 115W), called the Pacific/North American (PNA) pattern by

Wallace and Gutzler [19813. In the complementary 180 degrees of longitude it

resembles the wave train called the Eurasian teleconnection pattern by the

same authors.

The average residence time in this cluster is T, = 6.5 days, and the

wandering time once the flow leaves this cluster and enters another one is T

- 8 days. There are 13 persistent sequences in this cluster, with an average

duration of T =10 days, and they are rather evenly distributed throughout

the data set. But the hard part of the cluster was much better represented
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during the latter ten winters of the time series.

Cluster 2: reverse wavenumber-three pattern (Figure lOb). This cluster

is second largest according to hard criteria (114 maps) and third largest

according to the fuzzy criterion (278 maps). Zonal wavenumber three is as

prominent as for Cluster 1. Each anomalous high of Cluster 1 is matched by a

low of Cluster 2, and vice-versa. But the features are not merely of opposite

sign: they are all slightly displaced and distorted.

The North Pacific high in Cluster 2 is much more elongated and flatter

than the Aleutian low in Cluster 1. The Western Canadian low is much smaller

and weaker in Cluster 2 than the central high of the PNA pattern in Cluster 1.

Finally, the North European high in Cluster 2 is much larger and stronger than

the Scandinavian low in Cluster 1.

Clearly the dominant climatological effect associated with Cluster 1 is

the extensively studied Pacific influence on North America. The dominant

regional feature associated with Cluster 2 is the wave train teleconnecting

the Eastern United States over Greenland to Northern Europe CDickson and Namias,

19763.

Table 6 shows that the centers c, and c_ of the two clusters have the

largest components, of opposite sign, along EOF 1. The situation is thus

quite similar to Clusters 1 and 2 in the model (Section 4) and to the quasi-

stationary regimes found by the PCM for the Southern Hemisphere by Mo and Ghil

C1987].

There are 12 persistent sequences in this cluster, with an average duration

of T =8.5 days, and they are evenly distributed throughout the time series.

The hard part of the cluster is quite reproducible using first one half of the

data set, then the other.
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Cluster 3: wavenumber-two pattern (Figure lOc). This cluster is third

largest as a hard cluster, but largest as a fuzzy cluster (323 maps). Zonal

wavenumber two is dominant. Positive anomalies cover Canada and most of the

North Atlantic north of 30N. A small low is centered over the Western

Mediterranean and a large high is centered on the Ural Mountains. This

feature is reminiscent of the regional anomaly pattern centered on the Northern

Soviet Union (NSU) studied by Dole [19861. Finally, a moderately large Aleutian

low lies above a small high in the Central North Pacific, indicating zonal flow

in the Pacific sector [White and Clark, 19753.

There are 12 persistent sequences in this cluster, with an average duration

/>•*
. /w^

Cluster 3 appears to contain most of the interannual variability of the NH

wintertime circulation. Instead of defining the seasonal cycle as in Section

2, we took out separately for each year in the data the mean of that year, as

well as the annual and the semi-annual component (365 days and 182.5 days) of a

Fourier expansion for that year, at each grid point. The clustering computa-

tions were then repeated for the anomaly maps so defined.

The composite anomaly map for Cluster 3 obtained in this way is given in

Figure 11. All the features are much weaker, and hardly any of them are

statistically significant, when compared with Figure lOc. Similar comparisons

for the other clusters show only insignificant differences.

[Fig. 11 near here, please]

Cluster 4: double blocking (Figure lOd). This cluster is fourth largest

as a hard, and fifth as a fuzzy cluster. Like Cluster 3, it is dominated by

zonal wavenumber two, with a general aspect of phase opposition to the previous

cluster. This is related to the two clusters having large components of

opposite sign along EOF 2 (see Table 6). Thus EOF 2 is largely determined by
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the presence of Clusters 3 and 4, in the same way that EOF 1 is determined by

Clusters 1 and 2.

Cluster 4 shows strong north-south oscillations in both the Pacific and

the Atlantic sectors. In fact, their concomittant appearance might be related

to the zonally-symmetric seesaw in sea-level pressures first noticed by Lorenz

[19511 and discussed in the context of the North Atlantic oscillation (NAO)

and the North Pacific one by Wallace and Gutzler [19813.

The features in the Atlantic sector resemble strikingly the Greenland -

Northern Europe seesaw of van Loon and Rogers [19763. In the Pacific sector,

there is a dominant Kigh centered on the northeastern tip of Siberia,

accompanied by deep lows over both the Okhotsk Sea and the Central North

Pacific. The former is associated with the Western Pacific teleconnection

pattern of Wallace and Gutzler [19813. Some of these patterns, especially NAO,

have also been put in evidence by the rotated EOFs of Barnston and Livezey

[1987], Indeed, rotated EOFs have greater liberty to point at clusters in

phase space, being less inhibited by orthogonality constraints. Oblique, or

target rotation, should point even more accurately at clusters, orthogonality

being replaced by statistical independence.

Cluster 4 is also reproducible in both halves of the data set. There are

eight persistent sequences, with an average duration of T - 9.5 days. In

fact, 75 days, out of a total of 86.5 days spent in the cluster, belong to per-

sistent sequences, the largest fraction of any cluster.

All eight persistent sequences have pronounced ridges in both the Pacific

and the Atlantic Oceans. Many intense, high-latitude double-blocking cases,

such as those in the winters of 1963, 1968, 1977 and 1980, belong to this

cluster.



-34-

Cluster 5: wave train (Figure lOe). This cluster is fifth by hard

criteria (76 maps) and fourth by the fuzzy criterion (261 maps). It shows a

strong high in the Gulf of Alaska, with flow parallel to the Rocky Mountains,

as discussed by Wallace and Blackmon C1983, Figure 3.16].

The rest of the anomaly map is taken up by one huge wave train of

alternating positive and negative anomalies, extending from off the south-

eastern coast of the United States across Eurasia, to Eastern Siberia. The

strongest feature in the wave train is the Icelandic low, with the second

strongest being another low over the Ural Mountains. The dipole over the

Western Atlantic resembles the pattern given that name by Wallace and Gutzler

[19811, and the entire wave train resembles their difference of composites for

the positive and negative phases of the Western Atlantic teleconnection [their

Figure 21c]..

The center c_ of this cluster has largest components along EOFs 1 and 3,o

with signs opposite to those of Cluster 3. This is reflected in the dominant

spatial features, south of Alaska, south of Greenland and over the Urals,

having opposite signs for Clusters 3 and 5. But we saw that Cluster 3 has

still mainly a wavenumbei—two pattern, while wavenumber four is dominant here

and for Cluster 6.

There are nine persistent sequences in this cluster, with T = 8 days. Of

these, three are in the first half of the data set, and six in the second half.

Cluster 6: PNA pattern (Figure lOf). This is the last statistically

'significant cluster. It has a striking PNA pattern in its negative phase, as

defined by Wallace and Gutzler [1981, Figure 171. There are six persistent

sequences, with T = 10 days, and five of them correspond to blocking in the

central Pacific, as described by White and Clark [1975]. This cluster is also

reproducible in both halves of the data set.
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The features in the sector from 60W to 120E are weak and not statistically

significant. This contrasts with Cluster 5, where features in this sector are

very prominent. Large components of cc and cf with opposite signs along EOF 3o fa

show that this pair of clusters contributes decisively to this EOF. The

partial localization of spatial features for this pair is analogous to that

observed for Clusters ± and 2, determining EOF 1, and to that for Clusters 3

and 4, determining EOF 2.

The features in the Pacific sector resemble very well the positive

composite of locally-defined height anomalies for Pacific (PAC) reference

points of Dole [1986, Figure la]. We shall return to the complementarity of

the different ways of viewing persistent anomalies, spatially, spectrally,

through EOFs and through teleconnection patterns, in our concluding remarks.

Transitions between Low-Pass Clusters

From Table 6, it is clear that the relative fraction of maps in all

clusters, 41 % , is much less than for the simple, low-resolution model of

Section 4 (see Tables 2 and 3). As a consequence, the average time spent by

the atmosphere between clusters, of T = 9.5 days, is almost twice as long as

the time spent in the clusters, of T. - 5.5 days. This is essentially due to

the much larger number of degrees of freedom for the atmosphere's low-frequency

variability. In fact, it is both surprising and encouraging that the ratio

T /T is not any larger than obtained here.

Figure 12 shows each of the correlations RMt) between the time series of
K

NH 500 mb anomaly maps, filtered in time and space as indicated, and the

cluster centers c. , k = 1,2,...,8. Also plotted is the indicator function
K

Q(t) of the set Q. of QS events, i.e., Q<t) = 1 if <|>(x, t) is part of a QS
1 ~

event, and Q(t) = 0 otherwise. Visual inspection of the figure clearly
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indicates that all major QS events are associated with passage through a

cluster.

CFig. 12 near here, please]

Following Section 4, we calculated from the obvious counterpart of Eqs.

(10, 11) Y = #(T )/#(!_) = 0.42. As expected from atmospheric behavior's
i. £j

being more complex than that of a simple model, Y here is lower than the value

of 0.57 for the model. On the whole, this still indicates good agreement

between the PCM and cluster analysis in identifying preferred flow regimes.

The discrepancy results on the one hand from QS events not being entirely con-

fined to clusters, although at least some of the successive maps of a QS event

typically belong to a cluster. On the other hand, considerable numbers of

points in each cluster do not belong to any QS event.

For the model, many long persistences are associated with particularly

close passages of the trajectory by an unstable equilibrium. To determine

whether this is actually the case for large-scale atmospheric flow, models

with much higher spatial resolution and greater physical realism than that of

Legras and Ghil [19851 need to be analyzed with the same degree of care and

detail. This is entirely possible on existing supercomputers and we expect to

carry out such analyses in the near future.

Table 7 gives the transition matrix for the modified Markov chain of NH

low-pass filtered variability, as sampled from our data set of 20 winters of

120 days each. Comparison of Tables 5 and 7 here with Tables 5 and 8 in Mo

and Ghil [1987] shows an important advantage of cluster analysis over the PCM

method of identifying preferred regimes: the number of transitions here is

considerably higher, providing a much larger, although still insufficient

sample for a stable estimate of the true transition probabilities between

regimes. As explained in GhiJ [1987] and Wo and GhiJ [1987], the only way that
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stable, reliable estimates of such a transition matrix can be obtained in the

near future is by careful and extended experimentation with general circula-

tion models.

[Table 7 near here, please]

Thus Table 7 cannot be used for specific LRF predictions as yet. But it

can be used for general guidance as to how LRF might proceed in the not-too-

distant future.

As in Table 5, we notice that diagonal elements are generally small, i.e.,

reentry into the same cluster is rather unlikely. This confirms in a sense

that our fuzzy definition of the clusters is quite appropriate: smaller

clusters would show more reentries, and so would much larger clusters.

The matrix is far from symmetric: preferred paths are in evidence.

These are illustrated in Figure 13. As in Figure 6, only those arrows are

drawn which correspond to a probability of transition significantly higher

than given by equal chances.

CFig. 13 near here, please]

The small-anomaly Cluster 9 plays a role of crossroads even more important

than for the model. Trajectories exiting from Clusters 1, 2, 3 and 5 have a

relatively high likelihood of passing through Cluster 9 before continuing to

Clusters 1, 2, 3 or 7(7). As explained in our previous publications, this

does not indicate that the clusters represent certain linear instabilities of

the time-mean flow, but rather that the time mean happens to lie close to the

point where the boundaries of several attractor basins touch, permitting slow

transitions between dominant clusters CGrebogj et al., 1983; Ghil and Childress,

1987, Sections 6.4 and 6.6].

In the atmosphere, certain highei—frequency phenomena, not represented in

the equivalent-barotropic model of Section 4, also play a role in the
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transitions between relatively stable, stationary clusters. To begin undei—

standing this role, we turn to the band-pass window of variability.

Band-Pass Clusters

We used six EOFs, r = 0.82 and r9 = 0.36 to perform cluster analysis on
1 £*

the band-passed anomaly maps. Six EOFs provide only 24.2% of the variance in

this window. But there is an obvious discontinuity at this level in the

variance spectrum, from 37, to 2.5%, which is statistically significant by the

rule of thumb of North et al. [1982] (see Section 2). Calculations were

repeated with eight and nine EOFs and with different values of r and r0. The
1 Lt

results below were essentially unchanged.

There are seven distinct clusters, including one of small anomalies. The

number of elements in the hard clusters varies from 65 to 94 maps. Using a

fuzziness criterion of r,, = 0.65, the augmented clusters range from 221 to 360
O

elements. The size of the clusters varies much less than in the low-passed

data, so we arrange them by flow patterns, rather than size.

Figure 14 shows the mean anomaly maps of the six nonexceptional band-pass

clusters, as for the low-pass window (Figure 10). In agreement with the results

of Blackmon et al. C1984a, b], all clusters in this window (called in the latter

articles "short time scales", as opposed to "intermediate time scales" of 10 to

30 days, and "long time scales" of more than 30 days) show essentially wave

trains elongated in the meridional direction, propagating zonally with a wave-

number of seven or eight.

[Fig. 14 near here, please]

Clusters 1 and 2 (Figures 14a, b) have a well-defined wave-train structure

in the jet exit region over the Eastern United States and the Western Atlantic.

The two clusters are distinguished from each other by their wave trains being
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roughly in quadrature.

Clusters 3 and 4 (Figures 14c, d) have the most pronounced features of

their wave train over the Western Pacific. The same quadrature of phase

obtains as for the Atlantic clusters. Clusters 5 and 6 (Figures 14e, f) have

a well developed wave train over both oceans, being only weaker over Eurasia,

but the wave activity is still strongest in the Atlantic jet exit region.

The spatial localization of baroclinic wave activity is a topic of

considerable recent interest CBrevdo, 1987; Herkine, 1977; Pierrehumbert,

1986]. Our clustering procedure detects this localization and avoids

yielding arbitrarily close successive phases of the synoptic-scale waves by

the separation criterion of p(c, , c.) < r0 = 0.36 between centers of clusters.K JC ^

The role of band-pass clusters in transitions between low-pass clusters is

obviously important, and will form the object of a subsequent paper. We

expect them to serve as way stations on preferred transition paths within what

appears merely as a diffuse, thin cloud of points in the low-pass, mostly

barotropic window of variability.

6. CONCLUDING REMARKS

An Approach to Long-Range Forecasting, and a Simple Model

Our study of low-frequency atmospheric variability is guided by the

practical concerns of long-range forecasting (LRF). Due to the well-known

limits on detailed, pointwise predictability, one cannot expect to predict

'local weather with useful accuracy beyond 10 days, say, in a manner uniformly

valid over all atmospheric states.

The best hope therewith for LRF is that certain large-scale atmospheric

flow patterns are more persistent than others, that these patterns fall into a

few identifiable classes, or flow regimes, and that these regimes exhibit well
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defined transition probabilities from the one to the other. The theoretical

question is then to find how atmospheric dynamics generates these regimes, and

their preferred transition patterns. The practical question is to extract

from existing data and models the quantitative information on regime identifica-

tion, expected duration and most likely successor. In the present section, we

summarize our results in this perspective and sketch some promising directions

for necessary research.

The first step on the proposed road to LRF is identification of multiple

regimes. We prefer the term planetary flow regime to the earlier "weather

regime" of Reinhold and Pierrehumbert [19821, since weather is precisely what

does not persist and cannot be predicted. It clearly plays a role in maintain-

ing the large-scale, low-frequency flow patterns, but what this role might be is

one of the more difficult questions of the whole field of LRF [Wallace and

Blackmon, 1983, pp. 89-90].

To identify these regimes, we developed a modification of standard cluster

analysis methods. This modification takes into account well-known features of

low-frequency atmospheric variability, not present in other applications of

cluster analysis, and enhances the convergence of classical algorithms. We

chose a hard clustering algorithm, based on pattern correlations as a measure

of distance between points in phase space. The modification introduced allows

for a thin cloud of non-classified points in which the clusters are embedded,

and for a special cluster of small anomalies, based on Euclidean, or root-mean-

square, distance between each point and the grand mean of all points in the data

set. Our modification further enlarges the nonexceptional hard clusters so

obtained by a fuzziness criterion, admitting points with a preset correlation,

lower than that used in hard clustering, to the fixed centers of the hard
\

clusters. Reasonable changes in the values of the clustering parameters did not
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change our results in any substantial way.

This clustering algorithm was first applied to the time series of stream-

function fields produced by an equivalent-barotropic quasi-geostrophic model

with simplified Northern Hemisphere (NH) topography, zonal jet forcing and

Ekman dissipation CLegras and Ghil, 1985]. The fields were spatially filtered

from 25 spherical harmonics to ten empirical orthogonal functions (EOFs). This

model time series is 65 years long, providing much higher statistical signifi-

cance than available atmospheric data sets, and has the further advantage that

the sources of low-frequency variability are well understood.

Six stable clusters were obtained, including that of small anomalies.

They make up 62% of the data, leaving 48% for the diffuse, trivial cluster.

Clusters 1 and 2, in order of size, resemble the model's unstable equilibria

termed Zonal 1 and Blocking. They contain the most persistent sequences, due to

close passages near these equilibria. The first EOF is very nearly parallel to

the straight line segment passing through the centers c. and c_ of these two

clusters.

Clusters 3 and 4 resemble opposite phases of the wave-train pattern also

detected by the pattern correlation method (PCM) for quasi-stationary (QS)

events in Mo and Ghil C1987]. They are less persistent and determine, subject

to the usual orthogonality constraint, the direction of EOF 2. Cluster 5 in

size is also the least persistent, and resembles yet another unstable equilib-

rium of the model, Zonal 2. EOF 3 points in the direction of this cluster, with-

in the subspace orthogonal to EOFs 1 and 2.

The projection of the sample probability density function (pdf) of this

model solution onto EOF 1 gives a univariate pdf which is clearly bimodal.

The two modes are produced by the persistent sequences in Clusters 1 and 2.

Univariate pdfs along EOFs 2 and 3 are strongly skewed, but unimodal.
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We computed the transition matrix for the modified Markov chain whose states

are defined by the six nontrivial clusters, ignoring the diffuse one. This

matrix shows few reentries into any cluster. Transitions between the two domi-

nant clusters occur preferentially through Clusters 4 and 5, in one direction,

and through Clusters 5 and 3, in the other. The small-anomaly cluster is close

to the boundary of the attractor basins of Clusters 1 and 2, and is also on one

preferred path from Cluster 2 to 1, via Cluster 5 and a wave train.

The second and third steps in defining our LRF procedure are determining

the expected residence time in each regime, and the most likely successor to

each regime. These two steps have been taken above for the model. The fourth

and fifth are a dynamical explanation of the results for the first three steps,

and a practical verification.

/" /rFor the model, we under/stand the dynamic origin of Clusters 1, 2 and 5, as /A
\S /«-''

related to close passages of the time-dependent solution by unstable equilibria

with many directions of stability and few directions of instability. The size

and mean residence time for these clusters are determined by the relative

stability of the respective equilibria.

Cluster 6 is given by the slowing down of trajectories close to a compli-

cated basin boundary, and this also explains its role in transitions between

Clusters 1 and 2. The nature of Clusters 3 and 4, and their role in transitions

between the dominant clusters, is more speculative. Their wave-train nature

suggests a phenomenology similar to certain standing or slowly-moving Rossby

waves in the atmosphere. But the phase-space structures associated with these

waves require further elucidation, and we expect to do this in a more detailed

and realistic model.



-43-

Clusters of Low-Frequenc^ Atmospheric Variability
A

The fifth point in our LRF procedure, actual verification, only makes sense

for the atmosphere itself. We have carried out therefore steps one though three

of the proposed LRF procedure for a data set of 500 mb geopotential heights from

20 NH winters, January 1963-December 1982. In the atmosphere, relatively low-

frequency, mostly barotropic flow structures coexist with intermediate-frequency,

largely baroclinic waves. This data set was hence separated into a low-pass and

a band-pass window by suitable filters CBlackmon, 19761 .

The low-pass variability, of ten days and longer, was spatially filtered by

projection onto seven EOFs, and the band-pass data by projection onto six EOFs.

The low-pass data exhibit seven stable clusters, including that of small anoma-

lies. The clusters make up only 41% of the data, compared to 627 for the

model's clusters. This percentage of recognizable clustering is clearly lower

in the atmosphere due to the additional degrees of freedom, but is still quite

encouraging, and suggests that we might be on a promising road to LRF indeed.

Clusters 1 and 2 have a wavenumber-three pattern, with nearly opposite

phases. They determine together the direction of the first EOF. Cluster 1

shows the extensively studied Pacific influence on North America, Cluster 2 a

similar influence of the Atlantic on Northern Europe.

Clusters 3 and 4 are dominated by zonal wavenumber two. Subject to the

well-known orthogonality constraint of classical EOFs, they determine together

the second EOF. Cluster 3 represents most of the interannual variability in

the data, has zonal flow over the Pacific, and a blocking high over the North-

ern Soviet Union. Cluster 4 exhibits a marked blocking pattern over both the

Atlantic and the Pacific ocean.

Clusters 5 and 6 contain a more complicated distribution of waves, and have

largest projections of opposite signs onto EOF 3. Cluster 5 has a Western
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Atlantic dipole and a wave train over Eurasia, Cluster 6 a very pronounced

Pacific/North American (PNA) pattern.

The result most unexpected by, and therefore most interesting to us, is

the localization of features exhibited by these six clusters. While all

patterns are hemispheric, there is a clear tendency for each cluster within a

pair to show larger and more significant features in one of two quadrants.

These quadrants, which could be called eastern and western, or Atlantic and

Pacific, are separated by the polar great circle composed of, roughly

speaking, the 60W and 120E meridians.

The PNA pattern in Cluster 1 is much stronger than the Eurasian wave train,

while in Cluster 2 the Western Atlantic - Greenland - Northern Europe tele-

connection dominates. In Cluster 3 the most important feature is the positive

anomaly over the Urals, while in Cluster 4 it is the one over the Bering Sea.

Finally, and most strikingly, the PNA pattern in Cluster 6 is clearly

complementary to the wave train trailing off the Western Atlantic dipole in

Cluster 5.

The regional, rather than hemispheric character of many persistent anomalies

is subjectively well known to classical, synoptic-statistical practitioners of

LRF. It provided the basis for the local definition of anomalies in the work of

Dole [19863 and for the teleconnection approach of Wallace and Gutzler [1981].

The interest of the present result is that we did not build this regionality

into our search for preferred patterns, but obtained it objectively and quite

•independently of the search procedure. It follows that partial regionality,

with weaker hemispheric concomitants, is indeed a fact of large-scale atmos-

pheric life.

The reasons for this sectorial confinement of low-frequency variability

have been studied by Held [1983], among others. Essentially, the propagation
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speed of atmospheric features has to compete with the dissipation of their

energy. Taking a heuristic 10 ms for the order of magnitude of the zonal

propagation velocity of the energy through a stationary or slowly-moving wave

train, and 10 days for the order of magnitude of the dissipation time, one

obtains about 100 degrees of longitude for the spread of a locally-generated

low-frequency disturbance. The limits of the sectors indicated above strongly

imply that the two jet exit regions over the western part of the NH oceans are

a major localized source of energy for low-frequency variability, in agreement

with the suggestions of Green [1977], Kalnay-Rlvas and Merkine [19813, and

Shutts [1983]. It is both difficult and necessary to reconcile this point of

view with the spatially global one of resonant reinforcement between the flow

in two sectors, i.e., what wags the jet whose exit wags a wave train?

Hence our localization result raises more theoretical questions than it

answers. But from the point of view of describing, rather than explaining low-

frequency variability, it is rather gratifying: the success of the local

approaches of Dole and Gordon [1983] and Wallace and Gutzler [1981] appears to

be less surprising, and not at all at odds with a global view of atmospheric

dynamics. It also helps explain the fact that varimax orthogonal rotation of

EOFs, which favors a priori regional patterns [Horel, 1981; Barnston and

Livezey, 1987], tends to produce patterns similar to those of the clusters

here. Rotated EOFs are simply less inhibited by orthogonality from pointing at

the natural clusters of low-frequency variability, and obliquely rotated EOFs

would essentially point straight at them, with all their intrinsic regionality.

Bimodality and Transitions between Regimes

Univariate pdfs in the first three principal components (PCs) of the low-

passed NH winter data are noticeably skewed, but unimodal. Model results
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showed that bimodality in the first PC is induced by the highly persistent

flow sequences associated with Clusters 1 and 2, respectively. Restricting

the NH atmospheric data to persistent sequences only shows strong bimodality

of the first PC, with very high statistical significance.

The bimodality in this case is produced by sequences in Clusters .... for

the "Pacific" phase of EOF 1 and by sequences in Clusters ... for the "Atlantic"

phase. We notice that separate sequences with large components of zonal wave-

number two, three and four play a role in producing both maxima of the

univariate pdf with respect to the first PC. This result provides a view of

bimodality in low-frequency atmospheric variability which is complementary to,

and somewhat more complex than that of Benzi et al. [1986].

Our view of multiple planetary flow regimes via more than two clusters is

possibly closer to synoptic experience, and hence richer in its promise for

LRF. The transition matrix for the Markov chain of seven clusters, including

that of small anomalies, provides useful qualitative information. The small

number of reentries supports our choice of cluster size, and shows the clusters

to be well separated.

Preferred paths between clusters are in evidence. The small-anomaly cluster

plays an important role on some of these, indicating its position on the

boundary between attractor basins of several clusters.

Additional transitions between low-pass clusters are likely to be associated

with preferred patterns in the band-pass window, of 2.5 days to 6 days, roughly

speaking. There are six nonexceptional clusters in this window, all showing

meridionally-elongated wave trains with zonal wavenumbers of seven or eight.

One pair of clusters is associated with an obviously baroclinic wave train of

this type in the Atlantic jet exit region, the second pair has its strongest

features in and downstream of the Pacific jet exit, the last pair has signifi-
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cant features in both these regions. The wave train of one cluster within a

pair is in phase quadrature with the other.

These findings appear to be interesting enough to warrant further explora-

tion of the proposed road to LRF. The basic questions that need to be

answered are both quantitative and qualitative. Quantitatively, one needs

stable statistics of regime persistence and of transition probabilities.

These can be obtained at present only by careful and extended experimentation

with general circulation models (GCMs).

First, one needs to verify that a GCM produces essentially the same

clusters as found in the data, and that the persistences and transition proba-

bilities are equal to within sampling error to those in the data. Secondly,

the GCM can be run for a sufficiently long period to obtain stable statistics.

Third, one has to find how these statistics change when boundary data, such as

sea-surface temperatures, are changed. Finally, the statistics obtained from

the GCM have to be tested in a predictive mode.

Qualitatively, one would like to know what generates the multiple regimes,

and connects them by preferred paths. For instance, is it really true that

particularly persistent sequences are generated by close passages near an

unstable equilibrium, as the simple model here suggests? Are some of the

preferred paths initiated by instabilities of such equilibria? What is the

relative importance of barotropic and baroclinic instabilities in the "break"

of a persistent flow pattern? We hope to find some of the answers to these

questions in future work, observational, numerical and theoretical.

APPENDIX A. CLUSTERING ALGORITHM

This is the convergent version, proposed by Anderberg C1973, pp. 162-163],

of MacQueen's C1967] k-means algorithm. It has the advantage of being rela-
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tively inexpensive computationally, while still producing a partition close, at

least locally in configuration space, to an optimum. Unfortunately, both conver-

gence and optiraality proofs are only available when Euclidean distance, rather

than angle, are used for membership and separation criteria. We preferred to

use, cf. Section 3, a modification of this algorithm tailored to synoptic expe-

rience with the NH data set, rather than rely on theoretical results which might

not provide the most 'significant clusters from a dynamic point of view. The

proof of the pudding is in the eating, as we saw.

The algorithm proceeds in two stages: (i) finding seed points for the k

clusters, and (ii) iterating to optimize the partition. The first stage is

essentially MacQueen's original algorithm, the second is essentially Anderberg's

variant.

(i) Seed points

Step Al. Take any map in the time series as point 1.

Step A2. Proceed through the sequence, calculating the correlations p(<}>, c, )
K

between any given map <|>(x, t) and existing centers of cluster c. ,.. , c . If

p<4>, c. ) > r., then 4> is assigned to cluster C, and c, is recomputed. If, on

the other hand, p(<J>, c. ) * r^ for all c,, k = 1,..., m, then $ is allowed to
R Z K

form a new cluster, $ = c ... If the exclusion criterion (7) is satisfied, then
m+l

<(> is assigned to the special, diffuse cluster.

Step A3. Keep centers fixed, and make one pass through the data, assigning

points <{> to existing clusters if p(<|>, c, ) * r. for some k, and to the diffuse
K 1

cluster otherwise.

<ii) Iteration

Step El. Recompute the centers of clusters using current membership.

Step B2. Compute the pattern correlations between pairs of centers. If
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p(c., c. ) $ r for all pairs, the algorithm terminates. If, on the other hand,
J K Z

p(c , c, )> r_ for a given pair, reassign all elements in the smaller cluster,
Jo Ko ^

according to step A2.

Step B3. Repeat steps A3 through B2 until no more than N points get reas-

signed in the last step, and no clusters smaller than L elements exist.

N was taken equal to L , the small cluster criterion (see end of Sectiono o

4). The number of iterations necessary was ... for the model and ... for the

NH data.
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TABLE 1. Percentage of Variance Associated with each EOF,and its
Empirical Uncertainty

EOF Low Pass Band Pass (7,)

Total>

1
2
3
4
5
6
7
8
9

10
11
12
13
14

u*» & —

10.7 ± 1.1
8.8 ± 0.9
7.4 ± 0.8
6.7 ± 0.7
6.1 ± 0.6
5.3 ± 0.5
S.I ± 0.5
4.4 ± 0.4 (S0.1Z)
3.9 ± 0.4
3.4 ± 0.3 (58.5%)
3.3 ± 0.3
2.9 ± 0.3
2.5 ± 0.2
2.3 ± 0.2
2.1 ± 0.2

5.0A± 0.35
4.85 ± 0.34
4.26 ± 0.30
4.09 ± 0.28
3.00 ± 0.21
3.00 ± 0.21
2.49 ± 0.17
2.42 ± 0.17
2.29 ± 0.16
2.13 ± 0.15
2.10 ± 0.15
1.87 ± 0.13
1.81 ± 0.13
1.73 ± 0.12
1.69 ± 0.11

(24.27.)

(31.47.)

74.9% 42.79

Partial totals of variance are given for subsets of EOFs used in
clustering computations.
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TABLE 2. Clusters in Model Phase Space: Number of Elements and Persistence

Cluster Number 7. of Total Number of Events .
of Points Data of Given Duration (r)

1 2 3 4 5 6 7 8 9

Average Persistence
Times (T)

10

1

2

3

4

S

Total/Ave.

772

768

142

121

88

1891

11

11

2

1.7

1.2

27

7

15

25

66

82

195

7

24

36

21

3

91

1 3

1-7 11

11 3

0 2

0 -

29 19

2

9

0

1

-

11

1 6 0 0

11 15 4 2

0 - - -

0 - - -

- - -

12 21 4 2

9

20

0

0

0

29

d

21.

6.

1.

1.

1.

6.

I P

4 40.8

01 10.0

89 0

35 S

04 0

34 10.2

m

14

16

9

10

12

12.2

,'4,
The ̂ bho Vfrmaty persistence times are average duration T, of all events in each

cluster, the average duration T of all events lasting 5-c or longer, and thep £ />£
average time T between the trajectory leaving a given cluster and reaching /'S /A

A

another cluster.

/ b Jeuttu &r

*7 f&ts
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. TABLE 3. Nearest Distance between the Points of a Flow Sequence in a Given
C.~ff Cluster, and ̂ he Center of that Cluster
'

Cluster

1 Persistence (t) 170 148 111 91 76 20 17 7 6 5 Y J ' & 2-

0.45 0.48 0.50 0.90 0.68 1.15 1.84 1.50 1.78 1.94 /.fj £ £

Persistence (t) 34 33 23 19 18 17 16 14 12 9

Ov d . 0.82 0.70 0.87 1.05 1.06 1.04 0.89 1.20 1.18 1.23min

1 (/ont'dXX

/
7

I.ft3^.20 21.35

8 7 6 5 4 3 2

2 (cont'd) 1.17 1.32 1.40 1.41 1.58 1.60 1.72

Values of d . are nondimensional <see Legras and Ghil [1985], eqs. (1-4) and / ( ID)min



TABLE 4. Fuzzy Clusters in Model Phase Space, Including Small-Anomally Cluster

Cluster Number % of Number of Events Average Persistence
of Points Data of Given Duration (x) Times (t)

1

2

3

4

5

6

1222

1384

462

530

384

333

18

20

6.6

7.5

5.4

4.8

1

31

41

40

83

86

62

2

20

17

50

113

130

42

3

11

13

40

47

5

21

4 5 6

7

7

25

9

3

16

9

7

18

3

2

3

7

6

0

2

2

0

3

8

1

1

0

0

-

1

9 >10

8 5 16

3 1 18

- - 0

1 1 0

- - 0

0 0 1

Td

10.7

10.9

2.6

2.1

1.7

2.2

T
P

24.2

35.3

5.1

6.3

0

6.6

Tw

4.9

4.6

3.7

3.0

3.5

3.4

Total/Ave. 4315 62 343 372 137 67 42 13 3 12 7 35 5.03 12.9 3.85

See Table 2 and text for definition of T., T and
d p

Y.c. *



TABLE 5. Transition between Pairs of Clusters
A

To
From Sum Average ± Std. Deviation

1 31 0

2 0 20

3 54 10
•"•*-

4 5 18

5 2 45

6 22 IS

18 42 16

4 14 47

11 27 4

40 137 48

91 38 30

11 1 80

6

23

69
~*~
11

20

20

113

108

175

259

226

149

19 ± 1.33

18 ± 1.53

2fV /
3 . 9 i 1 . 83 ' / i

A /

43.1 ± 2.78

37.6 ± 1.92

24.8 ± 3/7

iyf Mo

The numbers which are significantly larger than those given by equal

X~"\probabilities are indicated by fcoldfaca. Significant is taken as average number

of transitions, plus one standard deviation, e.g., 20.3 for transitions from

Cluster 1, or 19.5 from Cluster 2.

/



TABLE &. Statistics of Clusters in Lou-Pass Filtered Data

/ft fa.

A.tl

r

lit

ster No. of jelements (days)
and percentages (7.)

Average. Persistence
Times (Davs) vCluster

Hard
No. 7.

65
57
54
40. S
38
36
36
27
66

2.68
2.35
2.23
1.67
1.57
1.48
1.48
1.11
2.72

Fuzzy
No. 7.

ISO.
139
161.
86.

130.
86.

116.
68
66

S

S
5
S
5
S

6.2
5.7
6.6
3.6
5.3
3.6
4.8
2.8
2.7

Projection along EOF axis

1 2 3 4 5 6 7

-8.9
7.4

-6.6
-6.3

6.7
4.3
2.1
1.6

0

-1.0 2.9 -3.3 -2.6 -2.7 2.9
3.2-6.0-1.2-0.3 0.8-0.5
4.4 -5.4 -2.4 2.1 2.6 1.6

-7.9 -0.2 7.4 -1.3 -3.4 -3.6
-4.7 6.6 -2.4 2.2 0 -1.0
l.S -3.6 7.2 2.7 -8.1 1.3
5.4 7.9 l.S 1.4 -5.0 0.9
0.9 2.4 -3.1 3.9 -0.2 4.6
0 0 0 0 0 0

Td

6.3
6.3
8.1
7.0
5.2
5.2
5.1
3.8
2.4

T
P

9.9
8.6

11.3
9.3
7.9
9.8
8.9
7.7
(tfi
\«*>

Tw

7.9
11.6

7.7
12.3
9.5
14.0
9.5
6.4

J 6.4

No.

130
95

136
75
71
59
54
23
18

%

KY
//J

/fJ2.
K-7fUltjii.i-*if'Ltjj.J
27-3

:al 4195 17.3 1005 41.3 Ave 5.49 8.71 9.48 661

i number of elements is listed in days, and 0.5 indicates that only one map out of two for a
ven day is in the cluster. Last two columns give the number of days of QS events within each
uster, and the corresponding percentage.



ORIGINAL; PAGE IS
01 EOOR QUALITY



1
r

f

, . vL
' % <%/00 &* Ĵ* oC^^
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