@ https://ntrs.nasa.gov/search.jsp?R=19880016070 2020-03-20T06:40:41+00:00Z

TN 05
/57537
DOT/FAA/DS-88/2 "Zero/Zero" Rotorcraft A
DOT/FAA/PS-88/8 N g : | .
NASA CR 177483 Certification Issues
-Adv_anced System Volumell
o . 20591 Plenary Session Presentations

» (KASRA-CR-1774€3-Vcl-2) ZERC/ZEEC. EOTORCRAPT
CEBTIFICATION ISSUES.. VCLUME Z:: ELENARY
'SESSICN FBESENTATICKS. Final Fepcrt - (Systeams
Ccntrel Technclcgy) - 84-p CSCL:01C "Unclas
- " G3/05 - 015:1337

N88-25454

Richard J. Adams

Systems Control Technology, Inc.
1611 N. Kent Street, Suite 310
Arlington, VA 22209

July 1988

Final Report

This Document is available to the public
through the National Technical information
Service; Springfield, Virginia 22161.

U.S. Department of Transportation National Aeronautics and

Space Admiinistration

Federal Aviation Administration Ames Research Center
Moffett Field, California 94035

nw s




This document is disseminated under the sponsorship of the

U.S. Department of Transportation in the interest of
information exchange. The United States Government assumes

no liability for its contents or use thereof.



Technlcal Report Documentation Page

1. Report No. NASA CR 177483, Vol.ll | 2. Government Accessian No. 3. Recipient's Catalog No.
DOT/FAA/PS-88/8, Volll
DOT/FAADS-8872, Vol Il
4. Title and Subtitle 5. Report Date
*Zero/Zero™ Rotorcraft Certification Issues ‘ July 1988
Volume 1  Executive Summary - r—
Volume Il Plaenary Session Prasentations 6. Performing Organization Code
Volume lllWorking Group Results - —
7. Author (s) 8. Performing Organization Report No.
Richard J. Adams _
9. Performing Organization Name and Address 10. Work Unit No. (TRAIS)
Systems Control Technology, Inc. '
1611 North Kent Street, Suite 910 ' | 1. Contract or Grant No.
Arlington, Virginia 22209 , NAS2-12478 o
12. Sponsoring Agency Name and Address _ 13. Type Report and Period Covered
U.S. Department of Transportation ~ Final Report
Federal Aviation Administration :
800 Independence Avenue, S.W. 14. Sponsoring Agency Code
Washington, D.C. 20591 ' ADS-220

15. Supplementary Notes
In a recent reorganization the FAA Rotorcraft R&D Program BRANCH, APS 450, has become the
Rotorcraft Technology Branch, ADS-220

16. Abstract

_ This report analyzes the “Zero/Zero" Rotorcratft Certification Issues from the perspectives of manufacturers,
operators, researchers and the FAA. The basic premise behind this analysis is that "zero/zero", or at least
extremely low visibility, rotorcraft operations are feasable today from both a technological and an operational
standpoint. The questions and issues that need to be resolved are: What certification requirements do we
need to ensure safety? Can we develop procedures which capitalize on the performance and maneuvering
capabilities unique to rotorcraft? Will extremely low visibility operations be economically feasable?

~ Volume | of this report provides an overview of the Certification Issues Forum held in Phoenix, Arizona in
August of 1987. It presents a consensus of 48 experts from the government, manufacturer, and research
communities on 50 specific Certification Issues. The topics of Operational Requirements, Procedures, Air-
worthiness and Engineering Capabilities are discussed.

Volume Il presents the operator perspectives (system needs), applicable technology and "zero/zero” con-
cepts developed in the first 12 months of research of this project.

Volume Il provides the issue-by-issue deliberations of the exberls involved in the Working Groups assigned
to deal with them in the Issues Forum.

17. Key Words 18. Distribution Statement ,
Rotorcraft Advanced Approaches This document is available to the U.S. public
Helicopter Steep Approaches through the National Technical Information
Low Visibility Approaches Heliports Service, Springfield, Virginia 22161
Low Speed Approaches :

19. Security Classif. (of this report) 20. Security Classit. {of this page) 21. No. of Pages 22, Price

Unclassified Unclassified 90

Form DOT F 1700.7 (8-72) Reproduction of this document Is authorized




1.0

2.0

3.0

4.0

5.0

6.0

TABLE OF CONTENTS

Page

"Zero/Zero" System Requirements —— An Operator's Perspective........-l

Technoldgy "In-Hand"” for a Zero/Zero IFR Capability....;............ 7

Certification of Helicopter "Zero/Zero" Operation —— Concepts and

Research ReSUltS..cceescestsscnsccssssconsscsosscssncssossvsscsnscssselld
3.1 Introduction and Weather AnalySiS..cecieeiceeccnccsencsvssnanceasld
3.2 Project Summary & DefinitionS...ceceececereoncccscencsccncnnnasl?

3.3 Extreme Low Visibility Approach ConceptS..ceicecesescescassasesdl

Electronic Enhancements to Accomplish Zero/Zero........ . &
4.1 Obstruction Detection and AvoidanCe....eeeeeeeerecaccssosenneasdd
4.,1.1 Low Light Level Television (LLLTV)..uveecececosceoneseasdd

"4,1.2 Forward-Looking Infra-Red (FLIR)....vicecesccccnscccassadb
4,1.3 LASER Detection.ceececeeessssactocessososscsscaseasssccnesdd

4.1.4 Millimeter Radar....... - 1

_ 4,1.5 Evaluation of AlternativeS.ceereceesssoenessess ceeerenes 56
4.2 Navigation and Guidance....cceeececeererscrccasrsccccccscenncee 57
: 4.2.1 Inertial Navigation Systems..... evetessascecsssannae eeeesd8
4,2,2 Loran=C..veeecesvrecsvnesescoasnsocscsssonssnscasces ceeesesd9

4,2,3 Navstar GPS...... cesesecesssos vesessesscssesssscsassessesd9

4,2.4 Other Navigation MethodS....ceeeececnceccsccans P 12

4.2,5 Evaluation of Alternatlves.............. .......... R 1¢)

4.3 Landing SyStemS..vecssesecsssocccsscnse ceesccecsssessren cecssee 61
4.3.1  Locally-Sited Approach and Landing Systems..ececcsscessabl
4,3.2 Area Coverage Approach and Landing SystemS...ececececcses 62

4.3.3 Independently-Derived Approach and Landing SystemS......63

New Concepts, Status, Unresolved Problems....cceeececcecennccce seasssb5
Bibliography.eseeeseesscocessnecss crecssssssesssnasa cecseancss cvvenesll
6.1 TFAA Performed or Sponsored DocumentS...seecsececees secasesscssacedd
6.2 NASA Performed or Sponsored DocumentS....eeeeecsceccccessscessslb

6.3 Military Agency Research...... PP - X |




This page intentionally left blank.

ii



"ZERO/ZERO" SYSTEM REQUIREMENTS

- AN OPERATOR’S PERSPECTIVE -

- BY
MR. FRANK L. JENSEN, JR.
PFRESIDENT o
HELICOPTEﬁ ASSOCIATION INTERNATIONAL | |

AUGUST 1987



1.0 "ZERO/ZERO" SYSTEM REQUIREMENTS —~ AN OPERATOR'S PERSPECTIVE

HAT represents the operational component of the civil helicopter industry.
Our regular membership comprises three kinds of operators:

e Commercial - primarily Part 135 "fly for hire"
e Corporate — primarily Part 91 corporate or personal use
. ® Public Service - government operations at federal, state or local
level

HAI has about 450 operating companies among our regular memBers,.and
together they operate about 3,500 helicopters.

What use is made of these helicopters, and how much priority is placed by
operators on: 1) Instrument flying in general, and 2) a true zero/zero
capability? ' '

Before I attempt to follow up on those rhetorical questions, I would like to
ask for a show of hands: How many hellcopter pllots do we have in the
room? Please raise your hands..

Thank you. I count about 30, out of a total of about 50.

Now, how many of the helicopter pilots present are reasonably current on
instruments? Again, please raise your hands. Thanks again, about 15 of us
in the room are more or less safe on the gauges.

Certainly each person in the room views the helicopter from a different
perspective - based on what exposure he or she has had with helicopters. -

To help establish a common frame of reference, I'll show you a matrix which
lists the major types of helicopter operations as shown in the Helicopter
Annual - I'11l read them for those who can't see the small print.

Agriculture

Air Carrier - Part 127

Air Taxi - Charter Part 135
Bank Paper Transfer
Commuter Air Carrier/Schedule
Construction

Corporate —~ Part 91
Electronic News Gathering
EMS/Air Ambulance
Executive Transport
Exploration

External Cargo

Fire Control/Support

Government Contracting Agency

Government Agency

Herding Stock & Wildlife

Law Enforcement

Logging

Offshore

Patrol/Power, Plpellne, Buried
Cable

Photography

Pollution detection/monitoring

Private Owner

Sightseeing

Skiing

Traffic Watch
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I hope that its obvious that I am leading up to a point - most helicopter
operations are conducted VFR. Most helicopter operators could not care less
about IFR operation, and zero/zero could go into the category of “pie in the
sky."” ' : :

However, for those operations which require reliability of scheduling, or
which must be flown in rain or shine we must make our best effort for IFR.

Some Examples:

~ Anywhere there is a need for higher priority movement of parts and
‘people by helicopter off shore, for maintenance. When the operator
misses a crew change, two things happen - both bad:
1) morale goes down, and 2) costs go up. -

= High-density metro areas with a heliport complex (hub and spoke) as
these become operational.

- Future helicopters/tilt-rotor/advanced technology with true CAT A
performance, in metro areas, or in limited remote sites, without
airports, but in need of air transport.

- Also, just about every pilot, from time to time, finds himself in a
situation where a full panel — plus some nav or approach aids - plus
the knowledge .and skill to use them - would be most welcome. We've
all been there.

What are some of the current roadblocks to more productive helicopter IFR
operations? Not necessarily in order of priority:

- Lack of helicopter routes on IFR charts, and lack of published IFR
approaches to serve existing helicopter IFR operations.

~ Lack of IFR let—down to VFR - for use in remote areas during marginal
VFR - for EMS, SAR and executive travel - using RNAV, LORAN C and
maybe GPS. '

. = Lack of cost-benefit analyses showing the efficiency of full IFR
capabilities for helicopters.

- Lack of adequate IFR training regimens including wider use of
helicopter simulators to sharpen skills,

- Lack of public helicopter IFR routes.
- Lack of properly 1ocatéd, public-use heliports.

To use the popular phrase — we need a full-blown helicopter IFR
infrastructure.

Let's face it — there isn't any point in helicopters flying just airport to
airport - whether VFR or zero/zero. We just cannot compete with fixed wing
on a cost—per—seat-mile basis. :



We all have a tendency to focus on the exotic - and I'm not saying that is
all bad. Beneath the T-shirt of every low-time single-engine VFR helicopter
pilot, there beats the heart of a hopeful future captain of a tilt-rotor or
an EH101l - a Walter Mitty making a fantasized curved MLS approach, with a 45

degree slope, touching down at zero/zero in the heart of Manhattan or
London. (In the case of Cessna 172 pilots, its VFR into Red Square).

But none of us - regulators or operators - engineers or air traffic
controllers ~— can assume away the nitty gritty basic needs which I have
outlined.

Remember the famous quotation of the bag lady on l4th and Pennsylvania: "The
only thing that kept me from graduating from college was high school”.

In summary, zero/zero IFR capability — as a part of a total system — could
help us to attain the full potential of the helicopter/future rotorcraft,
but not without public heliports, public helicopter routes, and published
hellcopter approaches. In short, we must get a system into place from which
to build. Believe me, HAI wants zero/zero.

Meanwhile, lets not forget the task which he11copters do best -
Helicopters...Above All... Save Lives!



TECHNOLOGY "IN-HAND" FOR A

ZERO/ZERO IFR CAPABILITY

BY
MR. JOHN ZUGSCHWERT |
EXECUTIVE DIRECTOR
* AMERIGAN HELICOPTER SOCIETY

AUGUST 1987

PRECEDING PAGE BLANK NOT FILMZD

7




2.0 TECHNOLOGY "IN-HAND" FOR A ZERO/ZERO IFR CAPABILITY

The FAA has recently recognized the low airspeed control capabilities of
helicopters. Because of this, helicopters are normally granted weather
approach minimums below those of fixed wing aircraft. Few fixed wing
aircraft can fly at airspeeds below sixty knots. The FAA has certified
Sikorsky S-76 helicopter approaches to forty knots. While this is a step in
the right direction, it still keeps the helicopters in a fixed wing
environment where forward speed is mandated to keep the aircraft in the
air. A helicopter can hover, remaining in the air at zero airspeed. This
is one of its greatest capabilities, and was the advantage over the autogyro
which could land and take off on a few feet but could not sustain zero
airspeed flight. What difference does this make? It is the determinant for
the size of the landing sites (airport runway, helipad, etc.) and the
distance criterion from obstacles such as buildings along the flight path
- and adjacent to the landing site. Slowing airspeed approach and aircraft

control to a hover will determine whether downtown heliports can become a
reality under all weather conditions. : ‘

As in the past, military specifications and designs have set the stage
for the next generation civil helicopter. The power requirements for third
and fourth generation helicopters have increased. They must demostrate the
ability to climb at 500 feet per minute at .95 percent rated power at 4 ,000
foot density altitude and 95 degrees Fahrenheit.

Operationally, these helicopters were required to spend a large
percentage of flight time at a hover, doing "pop and bob” (up and down)
maneuvers in a hover at 50 to 100 feet. Precision hover devices such as the
High Energy Rotor system were developed, allowing safe autorotation from the
above and higher altitudes while in the "dead man's curve” at a hover at
zero airspeeds.

With the ability to safely execute an autorotation in a high hover
(especially with multi-engined aircraft) and possessing excess power, the
"dead man's curve" disappears. The ability for full zero/zero helicopter
IFR operations became a reality.

Many may challenge that the "dead man's curve” has not disappeared. 1In
fact, it has not in many first (reciprocating engine powered) and second
generation helicopters operating with full or excessive loads. But it has
disappeared for the third and fourth generation aircraft such as the Black
Hawk, Apache, CH-47D and AHIP. Even many second generation aircraft spend
many hours at high hover (several hundred feet on many occasions) such as
the sonar dipping anti-submarine warfare helicopters and CH-53, CH-54,
BV-107 and CH-7 helicopters which operate in logging operations,
installation of power lines, and in construction.

I can recall, while in the MI-17 and MI-26 at the 1979 Paris Air Show,
being introduced to a precision hover device. On the instrument panel,
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both aircraft had a round instrument with two needles, one hinged from the
left side and the other from the top (much 1ike the normal OMNI indicator)
which allowed one to hover over a spot on the terrain at altitude by keeping
the needles centered. :

Because of the advances being made today and those which will be made
tomorrow, we are safely executing the maneuvers which make the zero/zero
capability a reality.

The ability to automatically hover at altitude exists in the Apache and
AHIP. The computer can automatically move the aircraft from a 500 foot
hover to a 50 foot hover over the same spot. The US and the USSR have been
doing this manually for years. I do not believe there is an ‘
electronic/avionics company which will not be able to install the automatic
hover/approach and departure system in third and fourth generation
aircraft. They can also install emergency procedures for autorotation at
various altitudes/conditions on a pre—programmed basis, perhaps better than
pilots. This is not for all aircraft. Many smaller and older helicopters
could never qualify for these capabilities. But it is not correct to
penalize those capable now. Certainly this capability would be a "must" for
taking full advantage of the abilities of the tilt rotor and X-wing aircraft.

So, why is someone not correcting this situation? The FAA is the
regulatory agency which will approve or disapprove this system. Their
position has been to show them what you have and they will tell you if it is
acceptable. _ .

In this era of streamllned budgets, it 1s difficult to find anyone
interested in investing the funds necessary on the probabllity it will take
years of qualifications and modifications for approval through the
bureaucracy and the competitive scene which follows. (Remember the PLASI,
LASSI, CLASSI situation when industry followed this route.)

What the industry would like is for the regulatory agency to write
specifications for a system and competively fund its development. One can
be sure there would be many anxious bidders and an excellent product could
be developed at minimal risk.

The FAA has a charter for the development and advancement of civil air
capabilities. The FAA, I imagine, has to question where it will get the
funds to support a program of this nature. The answer is to fight for the
funds in the budget cycle. I am sure one would find industry willing to
support and help in the fight.

Perhaps there may be a middle ground where the FAA could establish a
jointly agreed criterion with funding shared between government and
industry. This would keep less sincere bidders out of the program.

I believe it is safe to say the helicopters of today can execute
zero/zero all weather approaches and departures from relatively small
downtown heliports safely and efficiently. 1 believe it is also safe to
say, within the FAA and the industry, there exists the capability to write
the specifications for executing this program. This was evident by the
enthusiastic support and objective, non—confrontational participation in the
Zero/Zero Forum. :

10




The arrival of the tilt rotor in the early 1990s will demand a system of
this type to maximize its capabilities. We have agency responsibility and
industry interest. We have the likelihood for successful funding with
support from government and industry.

What are we waiting for?

11
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The following definitions are provided to assist in describing the

'zero/zero

CDhP -
AVC -~
SVR -
vCp -
CVR -

Flare
flare

operational approach concept:

Critical Decision Point: Minimum speed, aircraft certified for
zero/zero.

Augmented Visual Contact: All equipmeﬁt is operable and obstacle
clearance and navigation to the landing site are assured via
unaided eye or augmented visual means.

Slant Visual Range of the unaided eye or augmented visual contact.

Visual Contact Point: Criteria for visual (contact) landing are
met, or missed approach is initiated.

Contact Visual Range: Visual range of the unaided eye.

Line — at the Flare Line the pilot will initiate a deceleration.

to arrive at a ground speed of 0 to 10 knots.

Basically a precision approach can be flown to a 200 foot ceiling and
2200' foot slant range depending on glideslope anlge. Generally, it is
assumed that to achieve lower minima at a heliport the helicopter must
decelerate to range rates below 40 knots. Additionally, the heliport must
be aquired visually (either aided or unaided) to continue the approach
beyond the visual contact point minimums. If visual contact is not achieved
a missed approach is initiated. :

Two "classes” of operators are envisioned:

Category Hl Operators — These operators must meet requirements

established for the AVC. - The CDP is about 2200
feet from touchdown point for an approach speed
of 40 knots.

Category H2 Operators — These operators will fly an established speed

schedule (not to exceed values) with at least
the following slant visual range "gates™:

2200 Feet 40 Knots

1200 Feet 30 Knots
800 Feet ' 20 Knots
400 Feet 0-10 Knots

If visual or electronically aided visual contact is not made at the AVC
point, a missed approach is initiated. Similarily, if visual references
suitable for landing are not established at the VCP point, a missed approach
is performed.
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8. MISSED APPROACH PRECISION
¥ 00, GLIDESLOPE

LIMITS OF CVR

oy
Ll

FLARE
LINE

Figure 1 Zero/Zero Approach Concept

The precise location of the AVC and VCP require additional analysis for
various helicopter and electro-optical system combinations. Ultimately, TERPs
flight tests are required to establish precise minima, practical airspace
‘requirements and minimum equipment for the operation. ’
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4.0 Electronic Enhancements to Accomplish Zero/Zero

There have been significant developments in many different technologies
over the past several years which bear directly on the Extremely Low
Visibility Instrument Rotorcraft Approach (ELVIRA) problem. These
developments have been driven to some extent by national defense efforts.
However, in general, they are the result of developments in many unrelated
areas, both within and outside of the aerospace industry. In this section
these technologies are examined in a manner organized by basic functional
requirements (i.e. Obstruction Detection and Avoidance, Navigation and
Guidance, Approach and Landing Systems).

14.1 Obstruction Detection and Avoidance

In relation to the ELVIRA problem, the obstructions of primary interestv
are:

e Terrain features and man—-made obstacles
® Wires and cables
e Other aircraft

These various features exhibit different forms and characteristics which
respond to the technologies available in different ways. The suitability of
the technologies is also strongly influenced by the low-visibility

" environment, which is the result of one or more of the following factors:

e Darkness
e Fog
® Precipitation

The technology development areas reviewed below are examined from the
viewpoint of the obstruction types which must be sensed, and the factors
limiting visibility.

4,1.1 Low Light Level Television (LLLTV)

The LLLTV concept is based on image intensification technology
(photomultiplier tubes) which detect and amplify extremely faint light
sources. These have been developed primarily for military objectives and are
designed to operate in the deep visible red or near infra-red spectrum. This
matches the spectrum of star light, which peaks primarily in the near
infra-red, and also attempts to avoid contamination from on-board light
sources. This technology, exemplified in the Honeywell Integrated Night
Vision System and the McDonnell Douglas Mast Mounted Site, is highly
successful in providing TV-like imagery at night in good visibility with
available starlight. 1Its usefulness diminishes as cloud cover, fog or
precipitation is encountered. Its usefulness is strongly influenced by the
size and reflectivity of an object. Thus some terrain features and small
objects like wires may be obscured. Buildings, vehicles and aircraft would be
visible, :
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4.1.2 Forward-Looking Infra—Red (FLIR)

The FLIR concept utilizes the ability of a cryogenic detector to
sense radiation in the infrared spectrum. Fabricated with rotating
mirrors, it produces an image analogous to television, but with quite
different characteristics. The resulting image is basically a "heat
picture” which is useful under day or night conditions, and in the
presence of some fog cover and moderate precipitation. It is extremely
useful in law enforcement and search and rescue applications, since it
can display a warm object against a cool background even in underbrush.
Because it is based on the latent heat emitted by an object, it will only
reveal certain terrain features (in particular roads and man-made
objects), vehicles and other aircraft. It is essentially useless against

support cables and telephone wires, but brightly displays high-power
wires. ) .

4.1.3  LASER Detection

LASER-based systems are widely used in the military for purposes of
range measurement and for target designation. They are based upon a
steerable laser to be pointed at the region of interest, and optics
and/or detectors to perform the range-finding function or to track the
designated target. Without cooperative equipment at the landing site
(reflectors, etc), they are not very useful to the ELVIRA environment.
Also, they rapidly lose their usefulness in fog and precipitation.

4.1.4 Millimeter Radar

Millimeter radar systems are true radars which typically operate in
the two (2) to four (4) millimeter band. The usage of such short
wavelengths enables high resolution detection of small targets without
.~ requiring large antennas. The major disadvantages of such high
frequencies are the relatively high attenuation rates of the atmosphere,
fog and rain, and the relatively high expense of transmitting, receiving
and processing these signals. Operation at these frequencies (75 GHz to
115 GHz) avoids a significant atmospheric attenuation peak at 60 GHz,
while minimizing the attenuation due to fog and, to some extent, rain.
The resulting systems are useful in most weather conditions over a
limited range (1000 m), and provide identification of terrain features,
many wires and cables, buildings, ships, rigs and masts. Resolutions on
the order of 5m (range) and 1 degree (azimuth and elevation) may be
attained. The resulting display can be two-dimensional plan—view with
range depicted by grey scale or color graduations, as opposed to ordinary -
radars which display a map view (azimuth by range) of terrain without
elevation information.

4.1.5 Evaluation of Alternatives

Two primary functions are neccesary to serve the needs of rotorcraft
instrument approaches: prevention of collision with terrain and other
objects, and guidance (laterally and vertically) through conduct of the
instrument approach. The collision prevention function is needed even in
clear day and night time conditions (many wire strikes occur in clear
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weather). The guidance function is needed mostly at night and in low
visibility conditions. Since each of the above—mentioned sensors has
limitations, some may not provide enough benefit to be useful in the

ELVIRA environment, while others must be used in comblnatlons to achieve
operational success.

The ability of LLLTV to be useful for ELVIRA approaches is quite
limited, since it is non-functional in fog, and has limited functionality
in rain and overcast conditions, since it depends largely on starlight
for illumination. It is very useful in clear night conditions for
approach guidance and obstruction avoidance, although it gives no
specific obstruction range/elevation descrimination other than that which
may be interpreted from relative motion on the television-like display.

FLIR overcomes some of the problems inherent in LLLTV, but introduces
a new set of limitations. FLIR is unaffected by overcast, or even the

~ degree of light or darkness. The image, however, totally depends on the

heat emitted by various objects in view, which means that non-power
carrying wires and cables may be nearly invisible (while power lines
show—-up brightly). FLIR is less effected by intervening fog an
precipitation, but still has a limited reliable range in low visibility
conditions. Display resolution is also lower than LLLTV. The display is
television—like, which requires interpretation to discriminate the

range/elevation of objects in view.

Laser detectors, with suitable optics, can be useful to target and
find range to specific fixed objects, but are generally not useful for
terrain avoidance. Their usefulness is also very limited by low
visibility atmospheric conditions.

The millimeter wave radar concept is much better suited to terrain
avoidance and approach guidance, than the other techniques mentioned. It
has good resolution, operates day or night, has a useful range even in
low visibility conditions, and can provide direct elevation and range
information on the display. It may be somewhat difficult to use as an
approach guidance display since range is displayed as grey scales or
color differences which results in sort of a “"contour map” presentation
of the real world. Millimeter radar could of course be configured in the
standard terrain mapping mode (range versus azimuth) for guidance '
purposes, but this would be at the expense of its unique ability to
display obstruction elevation for avoidance purposes. The range of
millimeter radar is limited under low visibility conditions. This would
require that it be used with a good transition NAVAID in order to
initiate an instrument approach. Perhaps its best use will be as an
approach path monitor during instrument approaches using area coverage
navigation aids. '

4.2 Navigation and Guidance

Rotorcraft operators are faced with navigation and guidance needs

‘similar to fixed wing operators, except that they operate in regions and

at landing sites which are out of the realm of the fixed wing operator.
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Specific differences are: operations en route at very low altitudes, in
rough terrain and in remote or offshore areas; and approaches and
departures at heliports and unimproved sites in urban, rural and remote
area. These differences put new requirements on navigation and guidance
.Systems. For example, navigation coverage down to ground level must be
available, and navigation service must be highly accurate. Instrument
approach procedures must be implementable economically at low-density
heliports and landing pads in urban, rural and remote area. And finally,
the capability to define and fly safe instrument approach procedures on
an ad hoc basis to support a variety of emergency and commercial
Operations is needed. The ELVIRA requirement takes this capability well
beyond the common practice of establishing a point—in-space approach at
or near MOCA. In this context approaches to low altitudes in the
Presence of obstacles and terrain would be conducted, resulting in

- Stringent requirements on the navigation and guidance systems.

4.2,1 1Inertial Navigation Systems

Traditional inertial platforms using electromechanical gyroscopes
offer the advantage of operating totally independent of external
reference information, providing navigation information anywhere at any
altitude, regardless of coverage available from conventional NAVAIDS.
Inertial platforms are capable of precise autonomous alignment with
geographic North when at rest prior to departure. However, in flight
they accumulate drift as time passes, resulting in growing errors in
position estimation. While these errors would become unacceptably large
at the destination for transport aircraft without use of some form of
. updating from radio-navigation systems, they do not become nearly as
large for the short, low speed operation typical of rotorcraft. However, -
they would still be too large (or unpredictable) for the requirements of
terminal navigation and instrument approach.

Inertial systems are most successfully used in combination with other
sources of navigation data, such as DME, Loran—-C or GPS. 1If position
updates are available continuously, the inertial data provides invaluable
assistance when used to filter the random errors from those updates. If
update are available only occasionally, or only at the higher operating
altitudes, the inertial system can fill in between navigation updates,
and can even be used for terminal navigation and instrument approach
where a precise update is available prior to conduct of the approach.

The technological developments that have recently occurred in the
field of INS systems which are of greatest interest to rotorcraft
operators mainly concern laser inertial sensors. These sensors are -
entirely solid state (involving no rotating components). They sense
angular rotation by means of the doppler principal as applied to inherent
laser light beams which traverse a closed course. Two counter-rotating
beams form an interference pattern whose changes directly correspond to
angular rotation in the plane of light path, and whose changes are easily
instrumented to provide useful information. Three such sensors mounted
orthogonally, in combination with three precision linear accelerometers
mounted in like manner, form the ba31s of a useful inertial navigatlon
System, :
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Due to the elimination of the high precision mechanical gyroscopes,
and the fact that the laser sensors may be mounted in a "strap-down"
configuration, rather than on a precision gimbaled platform, considerable
cost savings and reliability improvements result. Development efforts by
manufacturers have brought the accuracies of these systems up to nearly
match their gyroscope—-based predecessors. Drift rates of 0.8 nmi per.
hour are commonly advertised for laser inertial systems. Furthermore,
-laser sensors are much better suited to the higher shock, vibration and
maneuver—severe environment of helicopter operations than are
gyroscope—-based systems.

4.2.2 Loran-C

Loran—-C has long been considered a potential solution to the
navigation requirements of helicopter operators. This is based upon the
intrinsic characteristics of the Loran—C concept: relative stability of
the navigation information provided, and coverage down to ground level
anywhere within the coverage zone of a triad of Loran-C stationms.
Coverage over much of the United States has also been available for a
long time. While the characteristics and technology of the Loran-C
ground system have been relatively static (with the exception of
replacement of tube-type transmitters with solid-state equipment, and
improvements to inter-station time correlation control), the technology
of the airborne equipment has evolved rapidly over the past ten years.-
The Loran—C signals themselves are very suitable for digital signal
processing. The coordinate conversion problem requires digital computer
implementation. The recent downward spiral in the cost of digital
computing power has resulted in excess computational capability at
reasonable cost. This excess capability has been harnessed to refine the
quality of the navigation information through application of propagation
correction factors, and ease the usage of the system through permanent
storage of large quantities of navigation aid and fix coordinates,
airport coordinates, etc.

In order to be useful as a terminal navigation and instrument
approach aid, the FAA is implementing a program of local Loran—C monitor
‘installations which will be used to assure the quality of the data
utilized in instrument approach operations. Also, coverage—gap-filling
station chains are being built in the central U.S.

4.2.3 Navstar GPS

The Global Positioning System being sponsored by the Department of
Defense is based on a constellation of active satellite stations
positioned around the world, several of which would be in view at any
given time. Ranging information derived from each satellite is used to
calculate position, velocity and precise time. Signals are available at
any altitude, except as limited by obstructions and the horizon. _
Potential accuracy is very high (a few meters), while actual accuracy is
controllable/limited by the military (absolute accuracies and
repeatabilities on the order of 100m.). Actual accuracy in derived
position is further limited by the users geometry relative to the
available satellites. ’
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GPS will undoubtedly be very useful for en route and terminal
navigation. The potential as a highly accurate non—precision approach
aid is high if accuracy and signal monitoring factors can be resolved.
Also, signal coverage to ground level may be limited in adverse terrain
by line of sight limitations. Otherwise, the adaptability of GPS to
remote areas, non—instrumented and ad hoc landing zones should be quite
high.

Both military efforts and civil avionics manufacturers have been
developing the receiver technology necessary to utilize GPS. - The
receiver cost/performance tradeoff is an issue regarding helicopter
operators, but shows promise for solution as the cost of electronics
systems drops. '

4.2.4 Other Navigation Methods

Besides the conventional aircraft navigation systems such as VOR and
NDB, which have very significant coverage and accuracy limitations, other
possibilities include VLF/Omega and scene matching. VLF and Omega are
Very Low Frequency systems that have long been used for air navigation,
since uninterrupted coverage is available world wide at all altitudes.
Both systems offer very low accuracy and so are not suited to the en
route, terminal and approach system requirements of helicopters.

Advanced techniques such as scene matching, which has been widely used by
the military (particularly for missile guidance), could be applied to
helicopter operations. The advantages are that the sensor required
(optical, IR, radar or laser—illumination) is totally self-contained,
requiring no cooperation ground elements. Accuracy is only limited by
the resolution of the sensor used. Coverage and availability is limited - |
by atmospheric absorption in the frequency bands used (therefore leaving
radar as the primary candidate for helicopter IFR applications). The
major operational limitation of scene matching is the fact that
calibrated images of any and all routes and destinations flown must be
. available on—-board. This very seriously impacts cost and limits the
operational flexibility available. :

4,2.5 Evaluation of Alternatives

In this section the relative merits of Inertial, Loran—-C and GPS will
be discussed relative to their role as en route and terminal navigation
aids and approach transition aids. - Their potential usage as precision
approach systems will be covered in Section 4.3.3. .

All three systems have much in common relative to the operational
needs of rotorcraft in IFR conditions. All three provide useful coverage
throughout CONUS and offshore areas (when the Loran—-C Mid-Continent chain
is operational and when the GPS constellation is in place). All three
allow autonomous navigation in that no cooperative stations need be
implemented to support a given route or destination. All three should
provide coverage or availability down to any reasonable en route or
terminal altitude. While inertial systems require periodic updating,
crosschecking against conventional NAVAIDS is good procedure when using
any area coverage system such as Loran-C or GPS. Monitor stations are
being implemented for Loran—-C. A monitoring scheme must also be
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_ implemented for GPS for civil use. However, the importance of these
monitors regards the use of these systems for instrument approaches, not
en route/terminal navigation.

In the en route and terminal environments, the major system tradeoff
1s cost. Laser Imertial systems with their precision mechanical
manufacturing processes, and GPS receivers with highly complex receiving
and tracking hardware, cannot compete on a cost, weight and ease-of-use
basis with the much simpler Loran—-C systenm.

4.3, Landing Systems

The problem of providing safe and reliable rotorcraft landing
guidance during IFR conditions at helipads, remote sites and unprepared
landing sites is one of the greatest challenges in the ELVIRA problenm.
The alternative technologies available to potentially solve this problem
are presented here, categorized by their basic mode of operation
(Locally-sited systems, area—coverage systems, and independently-derived
systems).

4.3.1 Locally-Sited Approach and Landing Systems

These are the systems which require usage of some cooperative piece
of equipment sited at, or near, the desired landing site. While that
equipment is most commonly permanently sited, it would not necessarily be
permanent. Nor does it need to be powered or electrically active (as in
passive radar reflectors). The conventional Instrument Landing System
(full ILS and Localizer only), the Microwave Landing Systems (MLS),
Non-directional Beacons (NDB), and VHF Omnidirectional Range (VOR) all
fit in this category, Airborne Radar Approach (ARA) fits in this catégory
if ground beacons or reflectors are used. Beacon Landing System (BLS)
and Portable Approach Guidance (PTAG) also use cooperative ground
equipment. Each of these systems has potential application to helipads
and remote, fixed landing sites. The possibility of using any of these
systems at ad hoc landing sites is limited by the requirement for ease of
portability and setup and siting at the desired location. Tactical MLS
and PTAG may be the only system with such potential. '

The Microwave Landing System is the first Federally sponsored
precision landing system with the technology needed for potential
application to helicopter landing sites. Due to the high frequencies and
scanning technique utilized, the equipment can be installed at or near
heliports and helipads. The availability of up to + 60 degree scan at
airports (in azimuth) means that instrument approaches to many helipads
and landing zones may be implemented. This contrasts with the older VLF
technology of ILS, which requires extensive site preparation over large
areas (inappropriate to heliport application), and which provide
centerline guidance only.

The remaining systems (VOR, NDB, ARA, BLS, and PTAG) offer varying
levels of suitability to helicopter operations. Only PTAG offers full
precision (glide path and azimuth) guidance. It is lightweight, easy to
install and site, requires little prepared terrain, and has a cost
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range which falls between the cost of MLS and low cost methods, such as
NDB and ARA beacons. It can be set up quickly and so has some potential
application in the area of emergency and some other ad hoc landing
requirements.

Airborne Radar Approach (ARA) has proven in operation to be very
useful for conducting approaches to offshore oil platforms. Due to the
difficulty in discerning desired targets from surrounding terrain, ARA
has not proven useful in the onshore remote environment. Methods to aid
target identification are required, such as reflectors and beacons.
Standard corner reflectors do provide strong returns, but are still
difficult to discriminate from surrounding terrain. Tests, under NASA -
sponsorship, of an advanced dihedral reflector concept (which requires
modified radar receiver processing) showed promising results in that
reflectors could be discriminated from the surrounding terrain. 1In any
case, reflectors present set up and maintenance problems even though they
required no power for operation. They tend to be large, must be very
securely mounted, and their effectiveness can be temporarily defeated by
snow and ice.

Another means of enhancing target identification is through the use
of transponder beacons: They are remarkably inexpensive and easily sited
in comparison to other electronic approach aids. Power, limited
maintenance and protection from the elements are required, although many
small, durable, battery—powered beacons are in successful use. The
beacon identification function is now a readily available option on many
weather radar models. Enhancements to the beacon concept, such as the
Beacon Landing System (BLS), utilize electronically-linked sets of
beacons surveyed onto a landing area. Through pulse time coordination,
these beacons can provide approach guidance command information when
processed by a specially modified weather radar system.

VOR is widely used as a non—precision approach aid. However, cost
and site preparation requirements eliminate it as a potential landing aid
for general use in remote areas and offshore. Non-directional Beacons
(NDB), on the other hand, are useful for approach guidance are low in
cost and are easily sited (although they require power, maintenance and
protection from the elements). Private (non—-federal) NDBs have become a
popular NAVAID in the offshore environment. Their widespread usage
however presents frequency protection problems which are as yet
unresolved.

A problem common the the presently-implemented techniques (including
ARA, ARA with beacon, VOR and NDB) is that none provide for precision
approach guidance. In fact, of these only VOR provides position course
guidance. The resulting approach procedures are better than none at all,
but are very limited in that high approach minimums are required. Of all
the localy-sited systems reviewed, the only real candidates for
application to the ELVIRA problem are the Federally-sponsored MLS and the
privately—developed PTAG system.

4.3.2 Area Coverage Approach and Landing Systems

In general, area coverage landing systems are simply extensions of
existing (or planned) area coverage navigation systems. In extending
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these system to approach aid status, new requirements (which may not have
“"been part of the original system design) must be met. Potential area
coverage systems include VOR/DME RNAV, Loran-C and GPS. Another
potential system, VLF/OMEGA, is much too inaccurate to support approaches
in a variable terrain environment.

VOR/DME RNAV offers promise as an approach aid in many areas,
typically high density areas where NAVAIDS abound. Due, however, to
line~of-site limitations, and guidance errors which grow with distance
from the VORTAC station, usage of VOR/DME RNAV is severely limited
outside of high density areas, and is prohibitive in most terrain and
remote/offshore environments. Due to a lack of general availability, it
is not suitable as an area coverage instrument approach aid.

Both Loran—C and GPS have been undergoing a period of technical
innovation over the last decade. Regarding Loran-C, the innovation has
been primarily in receiver technology rather than in ground chain
technology. GPS, being a new system, is an expression of advanced
technology on all fronts: ground control system, satellite system, and
receiver system. Improved signal processing and propagation modeling,
along with a Federal program to implement regional monitoring networks,
are aimed at demonstrating that Loran—C has the accuracy, reliability and
availability necessary to be widely used as an approach and landing aid
in all regions of helicopter operations. While structured as a
two—-dimensional navigation system (and therefore non-precision landing
aid), FAA tests have demonstrated the performance of Loran—-C coupled with
altimetry to provide computed glide path guidance on approach, opening up
the additional potential of Loran-C vertical navigation (VNAV), a
non—-precision enhancement, implimentable without requlring additional
ground equipment.

Given the capabilities of Loran—-C and GPS for making nearly universal
availability of a quality signal in space, instrument approaches cannot
be implemented under present criteria without an extensive site analysis -
and procedure design process. Though the FAA has developed extensive
procedure design automation tools, the process requires a significant
amount of labor and lead time. If area coverage system performance has
already been verified in a given region, this process essentially amounts
to an analysis of terrain and obstructions, and development of relevant
approach plate information. A flight check is also required before
commissioning the procedure. The objective of implementing instrument
approach procedures on an as—needed basis to ad hoc landing points is not
possible with area coverage approach aids alone. :

4.3.3 Independently-Derived Approach and Landing Systems

These are instrument approach techniques that either utilize
navigation 1nformat10n from a self-contained reference or information
derived from on-board terrain and obstruction sensors. The self-
contained references include INS and radar scene mapping. As
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previously discussed, both have limitations regarding instrument approach
procedures. INS accumulates significant errors unless currently updated,
and thus serves only as an extension or filter technique to radio
navigation aids. Scene matching requires development of an extremely
extensive data base which must be accessable when needed, and does not
apply to the ad hoc landing point problem.

On-board terrain and obstruction sensors were discussed earlier, and
include IR sensors, Low Light Level TV, standard radar and millimeter
radar. IR and LLLTV sensors do not apply in the low visibility
situations of interest here. Standard radar provides only a ground
rapping function, and does not warn of obstructions when no elevation.
information is available. It has the potential, however, of being a very
useful tool for verifying proper execution of an area coverage system
instrument approach procedure. In this application standard radar
imagery at a predetermined point on the approach could be printed as a
part of the chart, for use by the pilot as an independent verification of
system performance.

Millimeter radar systems, when configured to display azimuth, )
elevation and (by grey scale or color gradations) range, can be extremely |
useful tools during an instrument approach. However, it is difficult to
imagine that they could be utilized alone as an approach aid, since it is
difficult to identify the landing zone on the image, and because of their
very limited range (1 km) under precipitation and fog conditions.
Millimeter radar could, however, serve two critical operational functions
which could significantly enhance implementation of ELVIRA procedures:.

e Verification of system performance during area coverage landing
aid approach procedures, and prevention of inadvertent deviations
into areas of terrain or obstructions.

e As the primary terrain and obstruction separation system during
area coverage approaches to ad hoc landing sites.

Naturally, eventual utilization of millimeter wave radar in either of
these roles would first require extensive testing and standards
development. However, the combination of a precise area coverage
navigation system with millimeter wave radar for separation assurance
could provide a very real solution to virtually all of the ELVIRA
procedural objectives.
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