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Abstract

This paper is concerned with a generic class of predictive speech coders that includes

the newly proposed The Self Excited Yocoder (SEV) [5] and the well known Code Excited

Linear Predictive Coder (CELPC) [6]. All members of this class form an excitation sequence

for a linear predictive model filter using the same general model for the excitation signal.

The general excitation model is based on a block coding technique where each sequence is

drawn from an ensemble of sequences. This paper reports on two developments related to

this general model. The first development is a new type of excitation ensemble that can in

general be populated by many different types of sequences. The second development is a

means of populating this new type of ensemble based on a vector quantizer design procedure
using a new distortion measure.

1 Introduction

A general model for the excitation signal in linear predictive speech coders was originally

presented in [5]. Formal subjective tests, summarized in [4], characterized the performance
of selected coders in this general class of predictive speech coders. A Self Excited Vocoder

has been implemented in real time on a single circuit board using the AT&T DSP32 floating

point digital signal processing devices [1]. This implementation will serve as a prototype

vocoder in the NASA sponsored Mobile Satellite Communications Project.

This paper presents a new approach to the excitation modeling problem in self excited

and code excited vocoders. The paper begins by reviewing the general model for the excita-

tion signal in this class of predictive speech coders, and introduces a new type of excitation

ensemble. Then a new procedure for populating the excitation ensemble using a proce-

dure based on an iterative vector quantizer design algorithm is discussed. Finally, the last

section, a new distance measure for the vector quantization procedure is introduced.

2 A New Class of Excitation Ensembles

The general model for the excitation signal in this class of coders is described by the block

diagram in Figure la. The excitation signal, e[n], is a linear combination of component
excitation sequences, ek In], where the kth sequence is chosen from the associated excitation

ensemble, 7k. An excitation ensemble is simply a collection of discrete functions, f._[n],

indexed in sample space by _/ and indexed in time by n. The optimum ensemble index,
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"rk, and gain, ilk, associated with the kth excitation sequence are found by exhaustively

searching through the excitation ensemble, 7k, for that ensemble function that minimizes a

weighted mean squared error [5].
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Figure 1: a) Model of the excitation signal for a generic class of predictive speech
coders, b] Ensemble search interpretation of a single tap long-term predictor.

Examples of some existing predictive coders can be identified if the excitation ensemble

is constrained to contain a particular class of sequences. For example, the well known

CELPC chooses an optimum excitation sequence from a stochastic ensemble, where each

ensemble sequence is populated by Gaussian random varieties [6]. Figure lb shows how a

simple long-term predictor can be interpreted as a time-varying excitation ensemble. In

this case, the ensemble is the memory of a long-term predictor, whose predictor delay can

vary over the expected range of a pitch period in speech. Each ensemble sequence is formed

by sliding an N point rectangular window along the memory of the long-term predictor.

The optimum ensemble sequence corresponds to an N point sequence beginning at sample

-'r in the memory of the long-term predictor. This type of ensemble, referred to here as the

"self excitation" ensemble, forms the basis for the SEV. After a brief period of initialization,

the SEV derives its excitation signal, e[n] = fle[n - "_], solely from this type of ensemble.

The flexibility of the most general model of the excitation signal is derived from the fact

that it poses no structure on the functions contained in the excitation ensemble. From the

model definition, there is no fundamental requirement that an excitation ensemble be homo-

geneous. Thus, a single excitation ensemble can contain more than one class of sequences.

For example, an ensemble can be formed by combining a set of time-varying sequences

chosen from the memory of a long-term predictor with a set of fixed Gaussian random se-

quences. Figure 2a illustrates an interpretation of a simple coder whose excitation is derived

from this type of ensemble. While the figure suggests that a hard classification procedure is

taking place, this is actually not the case. The ensemble search procedure chooses a single

sequence from the entire ensemble, so the determination of which class of sequences is used

is made by choosing the single sequence which results in the least measured distortion. This

type of excitation ensemble will be referred to as a nonhomogeneous ensemble, and can, in

general, contain many different classes of sequences. The particular ensemble illustrated by

the block diagram in Figure 2a is described by the excitation signal, e[n] = 19z._[n], where

{ 1 _<"r < Cz_[n]= e[n-'_] C<'__< F ' (1)

and the fixed sequences, v._[n], may be populated in many different ways.
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Figure 2: a) An interpretation of a simple nonhomo_eneous predictive speech coder, bl
Block diagram illustrating a procedure for determining the fixed ensemble sequences
in a nonhomogeneous excitation ensemble.

3 Populating 1Nonhomogeneous Ensembles

This sectiondescribesa techniquefordeterminingthe fixedsequences,v_[n],in Equation 1

using the vectorquantizerdesign procedureof Linde et al [2].Followingthe reasoningof

Davidson et al,the distancemeasure used forthe vectorquantizationprocedure can be the

same weighted mean squared distanceused forcoding the excitationsignalin thisclassof

coders [7].The followingdiscussiondescribesthe vectorquantizerdesign procedure as it

appliesto populatingthe fixedsequencesofthe nonhomogeneous excitationensemble.

The generalizedLloyd algorithm,originallyintroducedin [2],isan iterativealgorithm

fordesigningan optimum vectorquantizerby a method of successiveapproximation. The

vector quantizerdesign procedure determines the the sequences,v_[n],7 = 1,...,C, of

Equation 1 from the trainingvectors,_i,i= 1,...,n, derivedfrom the originalspeech.At

each iterationofthe algorithmthe trainingvectorsarepartitionedintoclusters,and cluster

centroidsare computed based on the partitioningof the data. The splittingalgorithm of

Linde et alisused here to provide the initialclustercentroids.The clustercentroidsthat

existupon terminationof the algorithmform the resultingexcitationensemble.

Figure 3 isa blockdiagram illustratingthe computation ofthe distortion,d(_7_,_'i),that

isused for the vectorquantizerdata setpartitioningand clusteringprocedures. For each

excitationanalysisframe, i,the coder representsthe residualvector,_i,with an ensemble

vector,_. The coder alsocomputes the short-term predictor,Ai(z),and the excitation

gain,/3_.The Atal LPC based weightingfilter,W_(z) [6],isused to compute the weighted

Euclidean distance.The distancebetween trainingvector,z'i,and ensemble vector,_7_can
be expressed as

= y [n]- l] , (2)
= /=0

where hi[n]isa finitelengthimpulseresponseapproximation to the cascaded synthesisand

errorweightingfiltersinFigure 3. The lengthofthisimpulseresponse isapproximated as L

samples (L _ 10).The distancecalculationin Equation 2 suggeststhe form ofthe training

data required for each excitationframe. To compute thisdistancefor the ith excitation

frame, the weighted speech ]7i, the impulse response lai, and the ensemble gain fli must

all be derived from the input speech. The form of each training vector is then given as

(--)zi = Yi,hi,fli . Therefore, the training data is derived from the original speech using the
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Block diagram illustrating the distortion measure computation for Equa-

predictive speech coder itself. The specification of an initial excitation ensemble for this

coder is necessary for the generation of the training data.

In this research, a nonhomogeneous ensemble was generally divided into self ezcitation

sequences and alternate sequences The procedure for populating the alternate sequences

of the nonhomogeneous ensemble shown in Figure 2a is illustrated by the block diagram

shown in Figure 2b. The procedure begins by generating the training data, z'i, using an

predetermined set of signals for the alternate sequences. In this research, the alternate se-

quences are populated by independent Gaussian random varieties. Once the training data

has been generated, a classification procedure is used to select a subset of the training data

to be used as input to the vector quantizer design procedure. This classification procedure

simply chooses those training vectors where the predictive speech coder provides a poor

representation of the original speech. Finally, the vector quantizer design procedure pro-

duces sequences that are used to populate the alternate sequences in the nonhomogeneous

ensemble. This procedure is described in the next section.

4 A New Vector Quantizer Distortion Measure

This section describes a new distance measure for use in the iterative excitation vector

quantization procedure. The new distance measure follows immediately from Equation 2,

and results in circularly defined excitation ensemble sequences. The discussion is broken

into three parts. First, the centroid Calculation following from the weighted Euclidean

distance measure of Equation 2 is described. Second, the short-comings of this distance

measure when applied to vector quantization of the excitation signal are discussed. Finally,

the new distance measure is introduced.

Determining the centroid for a given cluster of training vectors corresponds to find-

ing that sequence, _, that minimizes an average distortion for the distance measure in

Equation 2. This average distortion represents an average over all of the training vectors

belonging to the cluster. Minimizing the average error for a cluster containing M training

vectors with respect to v_[k], k = 0,..., N - 1, yields the matrix equation

M M

i=1 i=1

The vector c_iisan N length vector where the kth element corresponds to the crosscorre-
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lation between the weighted speech and the impulse response for excitation frame i,

N+L-2

q,[k]= - k], k =0,...,N - 1. (4)
n=0

The matrix 1_ is an N x N toeplitz matrix where the element in the/th row and kth column

is given by the impulse response for excitation frame i,

N-1

R4[l,k] = _ _ hi[n- l]hi[n - k] . (5)
|=0

The matrix order, N, corresponds to the length of the excitation analysis frame, which is

typically about twenty samples. Hence, computing the cluster centroid is not a compu-

tationally expensive procedure, requiring only the solution of a twentieth order Toeplitz
matrix equation.

A major shortcoming of the above algorithm concerns the weighted Euclidean distance

given in Equation 2. By this measure, the distance between two training vectors, where

both vectors represent very similar excitation signals, may actually be very large. This is

due to the fact that the excitation analysis window is placed asynchronously with respect

to any significant events that may occur in the excitation signal. About 24,000 training

vectors derived from isolated words uttered by a single speaker were used as training data

for this algorithm. Ensemble sequences derived from this algorithm were used to code a

short utterance from the same speaker. There was a significant improvement in segmental

signal-to-noise ratio using this new ensemble over that of a Gaussian ensemble. However,

the improvement in subjective performance was not significant when judged by the authors

in informal listening tests. A modification to this procedure is proposed here that reduces

the dependency of the training vectors on the position of the associated excitation analysis
frame. The modification to the design procedure results in a redefinition of the distance

measure and centroid calculation of the vector training algorithm.

The modification is based on simple permutations of the weighted speech that is used to

form the training vector £i. The vector valued permutation xk is a k sample circular right
shift,

_rk(_) = (y[N- k],y[N- k+ 1],...,y[0],y[1],...,y[N - k- 1]) . (6)

By applying one of the permutations, {gk : k = 0,..., N - 1}, to the training data, similar

events occurring in different excitation frames may be aligned in time.

The distance measure and centroid calculation can be modified to exploit this behavior.

First, the kth permutation of the ith training vector is defined as _(£i) = (_ik(_i),)ai,fli).
The weighted Euclidean distance of Equation 2 is restated as

rain d(_(£,),_7_). (7)d( i, = :k=o,...,N-1

The distance between a training vector and a cluster centroid is therefore defined as the

minimum weighted Euclidean distance across all possible permutations of the input data.

Having found the optimum partition by minimizing the average distortion, the centroid

vector, v_, for centroid, q¢, can be determined by solving the matrix equation,

M M

i=l /=1

In this equation, _ is the optimum permutation for training vector i, and M is the total
number of training vectors in the cluster.
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5 Conclusions

This paper has introduced the nonhomogeneous excitation ensemble as a new type of en-

semble used in a generic class of predictive speech coders. An iterative vector quantization

procedure using a newly defined distance measure has been discussed as a means for pop-

ulating the sequences for a specific nonhomogeneous ensemble. In this new procedure, the

optimum choice of ensemble sequence is less dependent on the alignment of the excitation

analysis frame with the original speech waveform. The procedure involves applying a set of

circular permutations to the training data in order to time align similar events in different

training vectors. The ensemble search procedure for this newly defined ensemble involves

an exhaustive search, computing the weighted mean squared coding error for each circular

permutation of each N point ensemble sequence. This is essentially equivalent to increasing

the number of sequences in the ensemble from F sequences to FN sequences. However,

the number of operations required to search this ensemble can be considerably reduced by

using the recursive ensemble search procedure introduced in [3].
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