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Abstract

An articulated flexible manipulator carried on a translational cart is

maneuvered by an active controller to perform certain position control tasks.

The nonlinear dynamics of the articulated flexible manipulator are derived and a

transformation matrix is formulated to localize the nonlinearities within the

inertia matrix. Then a feedback linearization scheme is introduced to linearize

the dynamic equations for controller design. Through a pole placement

.technique, a robust controller design is obtained by properly assigning a set of

closed-loop desired eigenvalues to meet performance requirements. Numerical

simulations for the articulated flexible manipulators are given to demonstrate

the feasibility and effectiveness of the proposed position control algorithms.

Introduction

Research and experiments on control of large flexible manipulators have

gained much attention in the past decade. The merits of flexible manipulators

over rigid ones are light weight and small power consumption. However, the

trade-off is in developing a feasible control scheme not only to effectively

accomplish the assigned task, but also to minimize the flexible vibrations.

Several investigators have studied the dynamics and control of the flexible

manipulators [1-6]. Most flexible manipulators are composed of one or, at most,

two flexible beam-like arms rotated by the actuators in planar motion. The

nonlinear characteristics of the dynamic models are either linearized or

eliminated due to their relatively small contributions. Nevertheless, the

behavior due to dynamic nonlinearities becomes significant under quick maneuvers

or large motions. Investigation into dynamic nonlinearities provides a very

useful way for the feasible control design of the large flexible manipulators.

In this paper, an articulated flexible manipulator is studied. The system

consists of a rigid translational cart with one flexible beam-like arm attached

on a motor at one end, and an equivalent arm hinged on the.tip at the other end.

Two motors are concatenated axially upon the cart. The additional motor



transmits the torque to the elbow joint through a wire to manipulate the

forearm. This appendage expands the workspace wherein which the ti •> of the

articulated manipulator can reach. It also develops another degree :>f freedom

associated with the rigid body. Two kinds of interactions of kine: r_ic

nonlinearities appear significantly [7]. One is introduced througi che coupling

of the rigid cart and the flexible arms. The other takes place due to the

interaction of the two articulated flexible arms.

The dynamics equations are derived using Lagrange's equations of motion

along with classical vibration theory [8-10]. Actuator dynamics are briefly

described and are included in the system equations to complete the dynamic model

of the system [11] . Nonlinearities in the inertia matrix are localized using an

appropriate transformation matrix and are linearized using a feedback

linearization scheme [7,12,13]. A robust pole placement method [14] is then

applied to obtain a well-conditioned output feedback controller so that closed-

loop eigenvalues are insensitive to system uncertainties or perturbations.

Several simulations are given to illustrate the feasibility and effectiveness of

active position control schemes in performing translational and slewing tasks

while suppressing flexural vibrations of each flexible arm.

System Dynamics

For the sake of clarity and simplicity, this section begins with the

derivation of one-arm manipulator dynamics, then is followed by the dynamic

model formulation for the articulated manipulators.

a. One-ana Manipulator Dynamics:

In Fig. 1, the single planar flexible arm is clamped on the axial shaft of

the motor by a hinge. This motor is mounted on a translational cart which is

driven along a linear track by another motor. The beam-like flexible arm is

modeled as a cantilever beam with the fixed end at the motor and the free end at

the tip XI=L. Only the bending vibration is allowed during the motion of the

arm. The x-y axes are the fixed inertial coordinate, whereas, the xi~y-i axes

represent the moving relative coordinate. Lagrange's equation of motion, in

conduction with the modal expansion to discretize the deflection of the flexible

manipulators, is applied to derive the dynamic equations of motion. Denote El

the bending rigidity, p the mass density of the arm per unit length, L the

length of the flexible arm, and M the total mass of the cart and the arm driver.

Let the state 'vector be defined by

£ = ( y> Q}/ q^ )T ; q^ = ( ql:L/ q12' '
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where y is the translational displacement of the cart, 9., the root angle of the

flexible arm, and q1. (i=l,...,n ) the general coordinates corresponding to the

shape functions \|/_. (i=l, . . ., n., ) for discretization of the bending deflection of

the flexible arm. The control torques introduced by the two motors can be

expressed by the vector

(2)

where TQ and 1, represent the applied torques for the cart and the flexible arm

respectively.

The equations of motion including actuator dynamics can then be written by

** •

in which the inertia matrix reads

M

m + pL

PI/C9.J/2

-h1c91

Symmetric

1

-P, PL I,

(4)

where the superscript T in ( ) means the transpose of the matrix ( ), I. is an

n-Xn.j identity matrix, and C0.. = cos (9,) . The constant vectors h. and P- are

defined in the appendix which also shows the detailed derivation of equation

(3) . The constant stiffness matrix shows

K = Diag [ 0, 0, = Diag (5)

where CO.. (i=l,...,n.) are the frequencies associated with the shape functions

vy-.tXj), which are used to discretize the deflection of the flexible arm. The

nonlinear force yields

s9lhlqly

-s91h161y

where s91 = sin(9.) .

(6)
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The actuator dynamics and sensor characteristics play major roles in the

controller design. The two actuators for the feedback, control are dc electric

motors. The electric motor can be regarded as a standard armature circuit.

Denote the armature resistance by R , the back-EMF (Electro-Motive-Force)a

constant by K. , the motor torque constant by K , the gear train viscous drag

coefficient by C , the motor inertia by I , and the overall gear ratio by N .

Then the torque T produced by the actuator provides [11]

T = ( NgKt/Ra )ea - ( KtKb/Ra + GV )Ng6 - 10 (7)

where e is the applied voltage into the armature and 9 is the output shaft
3.

angle 6, . Note that 6 in equation (7) is identical to the root angle of the

flexible arm. For the case of the translational cart, it is equivalent to the

linear displacement y divided by the transmission pulley radius r. Apparently,

the passive damping of the whole system results from the second term in equation

(7) .

Referring to the sensors, the rotational angles are measured by the 10-turn

rotary potentiometers, whereas, the angular velocities are calibrated by the

tachometers. Strain gages are used to sense the bending moments along the

flexible arm. Denote c the conversion factor between the output shaft angle

and the output voltage e of the potentiometer, c. the conversion factor between

the output angular velocity and the output voltage e , c the conversion factorc s

between the strain and the strain output voltage e . Suppose two strain gages

are placed along the flexible arm respectively at x^ and x2 as shown in Fig. 2a.

An output measurement equation can be written in the following matrix form

e = [ e , e , e , e , e (x ), e (x2)]
T = C [y, 9 , £T]T (8)

0 1 P0 pl

= Diagfc /r, c , c IT, c , C ] [y, Q.r y, 61 , q:F]T

tQ T^ pQ p1 t i j. i

where

ce = csh

\£* l f / « / "i-_.fc
x=x.



q., = [q-j,.../- qln ] and h is the half-thickness of the flexible arm. Equation

f\

(8) relates the output voltage e to the state variables y, 61 and £ through the

coefficients of the matrix Cf.

Substituting equation (7) into equation (3) provides

BE (9)

in which/

M = M + Diag {I N 2/r, I N 2, 0, 0]
mO gO ml gl

C = Diag [ (K K /R +C )N 2/r, (K K. /R +C )N 2 0, 0 ]to bo ao vo go fci °i ai vi gi

B =

N^ K. r/R=go fco ao
0 N

0

0

0

K /I
gl 1

0

0

al

and E (t)=(e ,e ) with e_ and e being the applied voltages for the motors
a aO al aO al

of the cart and the flexible arm respectively.

b. Articulated Manipulator Dynamics:

In order to expand the workable region of the flexible manipulators, one

beam-like flexible arm is articulated on the tip of the previous arm as shown in

Fig. 3. This additional arm is also treated as a fixed-free cantilever beam.

This system has three (one translational and two rotational) degrees of freedom

attributed to rigid body motion. One more actuator is required, which

concatenated axially with the former one on the rigid cart. The forearm is

manipulated by this additional motor through a wire. In Fig. 3, the mass M

includes the mass of the new motor for the forearm. Denote Q. the root angle of

the first flexible arm and 9~ the root angle of the forearm measured relative

to the previous local coordinates, i.e., xi~vi axes.

The state vector similar to equation (1) becomes



T T,T
"qln1

) and q2=(q21"--"q2n. (10)

where y is the translations! displacement of the cart and q, • (i=l,...,n,) the

general coordinates corresponding to the shape functions Y. . (i=l,...,n.) for

discretization of the bending deflection of the first flexible arm. The

quantities q-^ and \y2. are defined similarly for the forearm. The input vector

for the articulated flexible arms is

T = (TQ,T1/t2,0, .,0) (11)

where Tg represents the applied torque for the cart, and T. and T- for the two

flexible arms.

Application of Lagrange's equations of motion in terms of state variables

yields a set of equations in matrix form as equation (3). The symmetry inertia
matrix becomes

"m+2pL

M

Symmetric

pL2c

hlc9l

/2 pLc92/2

-PL ZV1<L)c92/2

+PLI.

-h2c(91+92) -Lh2c92 -P,

where cos , c92 = cos(92> and 0(9.̂ +92) = cos(91+92). Here

PLI2 _,

(12)
s\ A

I- and I

are n.Xn, and n2xn2 identity matrices respectively with n., and n2 being the

numbers of the mode shapes respectively for discretization of bending

deflections of the two beam-like flexible arms. Moreover, the stiffness matrix

becomes

K=Diag[0,0,0,pLco^,pLb2J ;(01=Diag[co11, and (13)

and the nonlinear force vector is



,$) =<f0'
fl'f2'f3'f4)

where

(14)

- s(61+e2)

(h2q2)y - pL
2s

y + pLs9292 /2 -

pLs(91+92)y91/2

(L)

(D

f4 = -h2s'

where s9., = sin (9.,), 382 = sin(92), and s(91+92) = sin

Similar to equation (8), the output measurement equation is

[efc ,et ,e ,e ,e ,e ,e
C0 1 r2 P0 pl P2

, x,,
°2 x °2

(15)

where

C-= Diag[c /r, c , c , c /r, c , c , C , C ]t t t t p ?. p E e

= csh for i = 1, 2

Similar to equation (9), the dynamic equations can be developed yielding

M = M + Diag[ I N2 /r, I N2 I N2 , 0, 0, 0, 0 ]
mO gO g

(16)

,0,0/0,0]

- 7 -



and E , ( t )

N K r/Rgo fco ao
0 N

g]

0

0

0

0

0

= (e ,e ,e )T

0 1 a2

0

L
K

t;L
/Ra

0

0

0

0

0

0

0

N K /R
gl fcl al

0

0

0

0

Feedback Linearization

•To convert the equation of motion, equation (9), to the standard first-

order state equations, the inertia matrix M must be inverted. In view of

equations (9) and (16) , it is seen that the matrix M is highly nonlinear and

time variant, particularly for the articulated flexible manipulator. Direct

inversion of the matrix M is impractical. An alternative approach is to seek a

state variable transformation to localize the nonlinear terms to minimize the

participation of the nonlinear terms in the matrix. Thus a state variable

transformation is developed and written as

(17)

where the transformation matrix L for one-arm manipulator is:

1 0

0 1

0

h,

0 0 pITI.̂
•

and for the articulated manipulator is

l 0 0

0 1 0

0 0 1 0

0 0 0 . 3pL2[h12-pL\l/12(L) / 2 ] / 2

0 0 0 -3pL2(h11-pL\)/11(L)/2]/2

0 0 0 0

0 0

3pL[h11\t/12(L)-h12\(r11(L)]/2 0

0 h2

-3pL2[h1 2-pL\|/1 2(L)/2]/2 0

3pL2[h11-pL\|/11(L)/2]/2 0

0 pL2I2/2

- 8 -



in which only two mode shapes for each flexible arm are considered. Inserting

**T
equation (17) into equation (9) and premultiplying by L yields

LTBE LTf (18)

where

M = LTML =

M00(Ti,n) MOI

_ SJl fill_

also,

C = LTCL

K = LTKL

After transformation, the nonlinear terms in the inertia matrix M are localized

and confined in the left-upper block M_Q which is associated with the motion of

the rigid body only.

Now partition equation (18) into two equations. One equation corresponds

to the rigid body motions with nonlinear terms in the inertia matrix whereas the

other equation represents flexural vibrations in which the nonlinear terms

appear in the right hand side of the equation and are treated as nonlinear

forces. The partitioned equations provide

00 (19)

(20)

where Yg represents the rigid body state vector with the appropriate dimension,

•y. is the remaining flexible generalized coordinate, fL and f, denote the

^ m • • • * « * * *

vectors of L f (11,11), and M. ., C. ., K. ., L. . and B. (i = 0, 1 & j = 0,1) are

submatrices of. M, C, K, L and B respectively. Again recall that M.Q is the only

submatrix containing the nonlinear functions associated with the state

variables.

- 9 -



Now, a feedback linearization approach [7J is used to linearize the

nonlinear terms in M-- of equation (19), which is shown in the sequel.

Replacing Yi in equation (19) with the one derived in equation (20) yields

V

An appropriate input is introduced to force equation (21) into the form of

B0U <22>

where U is a modified input vector with an appropriate dimension for feedback
A,

linearization process, MQO

terms being eliminated, and

A, «, «» •••—I —i1
linearization process, MQO is equivalent to (

 MOO~MQIMI IMOI ) with the nonlinear

Si - ceoi-fioifineii]

K00

Equation (21) is identical to equation (22), if

Ea(t)

(23)

^ ^ «. __ ~
where M = ( MQ- - MQ1 11M01 ^ = M00 + Me w^tn the ^atrix M containing the

nonlinear terms associated with the state variables. Arranging equation (23)

produces that ,

(24)

- 10 -



which relates the modified input for feedback linearization process with the

actual input. Substituting equation (24) for E (t) into equation (20) yields

where

f
N

Equations (22) and (25) can be combined to yield a standard second-order time

invariant linear system by which a conventional first order equation in state

space form is obtained.

Output Feedback Gains

Robust eigensystem placement [14] is used to provide two robust output

feedback gains for the above flexible manipulators. Referring to the open-loop

eigenvalues of the system and the desired system responses, the frequencies

associated with the modes and the damping ratio are assigned as shown in Table 1

for the one-arm case and Table 2 for the articulated case. Note that the

closed-loop modal frequencies are maintained as the open-loop ones. In order to

quickly suppress the vibrations, the damping ratio of the first mode is

specified around 15%. The damping ratio of the second mode is slightly changed

to 0.5%. The real eigenvalues associated with rigid bodies are located between

-1 and -4 to minimize response time with suitable control torques.

The output feedback gain matrices for the two manipulators are shown in

Table 3. Because the gains for the modal velocity feedback are comparably

small, they are deleted for practical implementation of the future experiment.

Those gains are applied in equation (9) such that

E,(t) = -G ?a (26)

Discussion of Results

Several numerical simulations are performed to demonstrate the feasibility

of the above active control algorithms. The model parameters are listed in

Table 4 including material properties of the cart and flexible arms, and the

conversion factors of the actuators and sensors.

- 11 -



The one-arm manipulator dynamics is represented by two rigid body modes and

two flexible modes. The first two modes represent the cart linear position and

the rotational angle of the flexible arm relative to the coordinate system

attached on the cart. The latter two modes represent the first two bending

modes of a fixed-free cantilever beam. Two rotary potentiometers are used to

measure the first two modes, whereas two strain gages are used to measure the

strains as shown in Fig. 2a.

For the articulated manipulator, one more rigid body mode is introduced &o-<

describe the rotary angle of the forearm, which is measured relative to the

local coordinate of the previous arm. Also, two flexible modes are used for the

forearm and two strain gages are used to sense the strains along the forearm

(Fig. 2b). Because of the hardware limitations, velocity feedbacks of the

flexible modes are not available and their gains should be eliminated as shown

in Table 3.

Based upon the linear portion of the equations (22) and (25), the feedback-

linearized equations are applied to perform the control schemes. In equation

(24), the actual inputs to the motors E (t) are evaluated to remove thea

nonlinear inertia term on' the left-hand side of equation (9). The full state

feedback is required in this process of linearization.

For the case of one-arm flexible manipulator, one task is to move the cart

from positive 1.5 meters to a reference origin while simultaneously rotating the

arm from 60 degrees to zero degree. Figure 4 shows the cart displacement, the

relative root angle of the arm, the root strain, the relative displacement of

the tip and the required torques of control inputs for this desired task.

Generally speaking, it takes about 4 sec for this controller to complete the

task. For the case of articulated flexible manipulator, two tasks are

specified which are shown in Fig. 5. The controller finishes both tasks within

8 seconds. The required control torques of each simulation are feasible for the

actuators in the future experiment.

Concluding Remarks

The active control of the articulated flexible manipulator carried by a

translational cart in the planar motion has been investigated. The nonlinear

dynamic equations for the manipulator are derived. The time-variant inertia

matrix is linearized without approximation by using a suitable feedback

linearization .approach. The first-order state equations are then generated for

controller design.

To design a controller to move the manipulator in an attainable workspace

while suppressing the bending vibration of the flexible arms simultaneously, a

robust pole placement approach is employed. It leads to two reliable output

feedback gains which not only meet the need of the position control strategy but

- 12 -



also provide the system robustness. Several computer simulations for the

flexible manipulator are conducted to demonstrate the feasibility of the

controller design. Experimental tests are suggested in order to verify the

numerical results disscussed herein.
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Table 1: Frequency (Hz) and damping ratio for the one-arm manipulator

Open-loop

(0°

0.0
0.0

9.0656

33.7940

4.4287

27.8106

Table 2 : Frequency

c°

13.2867 %

1.9230 %

Closed-loop

CO

1.5782

1.5782

2.3333

2.3333

4.3277

26.8212

C

15.0 %

0.5 %

(Hz) and damping ratio for the articulated manipulator

Open-loop

co°

0.0

0.0

0.0

6.8068

33.7053

34.1371

1.8509

6.3521

21.3261

35.3678

c°

24.0858 %

5.2401 %

2.2987 %

0.4767 %

Closed-loop

CO

2.0613

2.0613

2.1332

2.1332

3.1701

3.1701

1.8299

6.3581

20.6098

35.1438

C

17.0 %

17.0 %

0.5 %

0.5 %
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Table 3: Output feedback gains

(1) Gain for the one-arm manipulator:

G =

-6.5560 -1.0032 -9.0686 -5.7710 6.3015 -1.3067 0 0

-0.8985 -0.9722 -1.8692 -0.0205 -1.0264 2.4745 0 0

(2) Gain for the two-arm articulated manipulator:

-13.7232 -2.1394 0.5658 3.3502 91.3450 -27.7692

- 3.1973 -3.9846 -0.7586 -0.3899 38.3708 - 7.8262

- 0.8363 -1.1753 -1.3848 2.2190 55.2495 - 7.1356

-170.2792 0.0711 -3.9826 -1.0462 0 0 0 0

- 31.8523 -3.6552 -0.5281 -1.1671 0 0 0 0

3.0059 -0 .9948 -1.2351 2.1654 0 0 0 0

- 16 -



Table 4: Model parameters

Motors :

(1) Cart motor:

K = 0.0346 N.m/amp
0

K, = 0.0342 Volt-sec/rad
0

R =4 ohmao
I = 4.7X10"6 Kg-m2m0

N = 210

Steel beam:

L = 1.0 m

El = 0.71 N-m

p = 0.47916 Kg/m

h = 0.041X10"2 m

(2) Arm motor:

K = 9.3X10"3 N.m/amp
1

K = 9.2X10"3 N.m/amp
Dl

R, =1.1 ohm
al

I P 2.3xlO~6 Kg-m2
ml

N = 210

m1 =0.92 Kg

Rigid cart:

0.588 Kg

- 17 -



Appendix

For the one-arm flexible manipulator shown in Fig. 1, the kinetic energy T
and the potential energy V for small bending amplitude can be expressed as

2T = my2 + J p[ y + xx - y ].[ y + xji. - y ] dx (Al)

2V " EI{ iXx dxl <A2>

where x- is a vector tangent to the longitudinal axis of the base of flexible

arm.

Moreover, the distributed coordinates are expanded in an orthogonal basis

of assumed mode shapes as

y1(x1,t) = vj(x1) q1(t) •
>Vi-(Vii/--"Vln > and q^=(qn, . . . , qln ) (A3)

where \y. (x, ) is a vector of assumed mode shapes relative to a spatial

coordinates derived from the fixed-free cantilever beam's boundary condition
problem, q, (t) are generalized coordinates [8-10], and n. is an appropriate

number of assumed modes.

Inserting equation (A3) into equations (Al) and (A2) yields

2T = my2 + l* + pLy2 +

2V = ill j

where

2/J px dx1

J0
- 18 -



dxl for i' 3-1/2, ..... n

To simplify the state variables in the above equations, denote z,Q=y, 4i=^i'

=q1;L, for i=l,2, . . . .,nlf Q0
=T
0'

 Q1=T1' Qlfi=0' for i=1/ 2' ' ' ' ' ' l l ' Via the

Lagrange's equation of motion [10], ve obtain

d[ dT/ai ]/dt - ST/3^ + Sv/3^ = Q.Ĵ  1=0,1, ---- ,n1

This leads to the equations of motion as shown in equations (3) -(6) .

Similarly, for the articulated manipulator shown in Fig. 3, the kinetic

energy and the potential energy can be derived as

2T = my2 + JQ p( y + S.,̂  - yl )( y + l̂ xx̂  - y± ) dx^

+ Jj P( y + ^lx£ + 2̂X 2̂ ~ ̂ 1<L) ~ ̂2 )

( y + XL + 5Xx - y (L) - y ) dx (A6)

,ll
 y2,x2x2

} dx2 (A7)

Expanding equations (A6) and (A7) provides

nl nl
2T = my2 + 41^ + I29

2 + 2pLy2 +±51 .^ m̂ .q̂ q̂

n2 n2 nl n2

j - 2i5l

. .
- 2C(61+e2)ii1h2iq2iy

nl nl

nl . . . nl

nl n2

n.

where

- 19 -

(AS)

2 V = i ^ ^ + S K (A9)



I2 = px dx2

m2ij = J0

J0 P^iVutXi)

P2i

h2i

K2ij = JC

where n. and n_ are the numbers of the -shape functions for the first arm and the

forearm respectively.

- 20 -



CART

MOTOR

(TOP VIEW)
-> X-axis

Figure 1: The coordinate system and notations of the cart and the flexible arm

for the one-arm manipulator.



(a) STRAIN GAGES

Figure 2a: Locations of the strain gages for the one-arm manipulator.

STRAIN GAGES

(SIDE VIEW)

Figure 2b: Locations of the strain gages for the articulated manipulator.



CART \ MOTOR #1
\ ff* VfnTnT?MOTOR #2

(TOP VIEW)

,iOtf& *-

X

Figure 3: The coordinate system and notations of the cart and two arms for the

articulated manipulator.
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Figure 4: Numerical simulation of the one-arm manipulator; 1.5 m cart

displacement and 60 manipulation.
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Figiare 5a: Numerical simulation of the articulated manipulator; 1.5 m cart
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displacement, + 60° for the first arm and - 60 for the forearm
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