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INTRODUCTION 

The behavior of fiber-reinforced composite materials containing 

wrinkled fibers or wavy patterns in the main load-carrying layers has 

been the subject of considerable interest. Fibers or the main load­

carrying layers may become wavy during manufacturing procedures such as 

filament winding, braiding, and stitching used to achieve through-the­

thickness reinforcing. Furthermore, local geometric imperfections may 

develop as a result of twisted fiber bundles, air pockets, or the 

excess resin in local resin-rich regions. A number of experimental 

investigations[I-6] have shown that laminates with these wrinkled fib­

ers, wavy layers or local geometric imperfections do not develop their 

full strength or stiffness under tensile or compressive loading. While 

geometric imperfections have been the subject of a number of rather 

specific analytical investigations, there does not exist a relatively 

simple micromechanics based model for the design or analysis of a gen­

eral laminate with local curvature under either tension or compression 

loading. The development of a simple mathematical model for predicting 

the effective laminate strength and stiffness and the associated exper­

imental confirmation of the theoretical assumptions and model results 

is the objective of the research described herein. 

A simpl~ mathematical model describing the deformation behavior of 

the n.ain load-carrying layer of a laminated composite is developed 

herein. The main load-carrying layers, or the principal load-carrying 

layc~s. have initial curvature and are modelled as curved beams sup-
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ported by a continuous elastic foundation. The stiffness of the elastic 

foundation represents the constraint on the main load-carrying layer 

provided by the filler material. Model formulations include the geom­

etry where the layers are exactly In-Phase or parallel and where the 

layers are Out-of-Phase. The deformation behavior of the filler mate­

rial for these two extreme cases is different and, therefore, necessi­

tate a different formulation of the elastic foundation "spring" con­

stants. The principle of minimum potential energy is used to develop 

the governing equations and the accuracy of the analytical results are 

examined by a carefully planned experimental program. Finally, the use­

fulness of the mathematical models is examined by several applications 

to "real" composites with in-situ local curvature. Model results are 

compared to available experimental results from the open literature. 

Following the literature survey, the theoretical development is 

presented along with analytical parameter sensitivity studies. The 

experimental program is then described and experimental results are 

compared to the analytical results. The final chapter presents a dis­

cussion of the application of the model to real composites and con­

cludes with a comparison of model predictions to available experimental 

results for real composites. 



'3 

PROBLEM BACKGROUND 

The problem background is discussed by way of the literature review 

presented in this section. The presentation of the literature is 

divided into two topics. The first topic addresses the engineering and 

research studies that have explored the effects of local curvature on 

the stiffness and strength of laminated composites and a metal matrix 

composite[I-6]. This work provides the motivation for the subject 

research. The second topic describes those studies that have developed 

an analytical treatment of the local curvature problem[7-l4]. This 

discussion will establish the state-of-the-art of the design methodol­

ogy when local curvature is present in laminated composites. 

PREVIOUS EXPERIMENTAL STUDIES 

Poe, et al.[l] conducted a test program to determine the residual 

tensile strength of a thick filament-wound solid rocket motor case 

after low-velocity impacts. They reported that the undamaged strength 

of specimens cut from a filament-wound case reinforced by unidirec­

tional layers was 39% less than the expected strength on the basis of 

fiber-lot-acceptance tests. It was observed that the main load-carrying 

layers became wavy during manufacturing. A specimen edge cut from the 

filament wound graphite epoxy cylinder contains many wavy patterns in 

the main load-carrying layers, actually 0 degree layers, as shown in 

Fig. 1. 

An experimental study of stitched composite laminates conducted by 

Dexter and Funk[2] showed a similar result. Their experimental result 

shows that the tensile and compressive strength of stitched laminates 
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was approximately 20-25 % lower than the strength of unstitched lami­

nates. Furthermore, the tensile strength of the stitched laminates 

decreased as the number of stitches increased, while the compressive 

strength increased. 

5 

Kagawa, et al.[3] obtained a larger ultimate tensile strain at 

small expense of the ultimate stress using helical fibers instead of 

straight fibers in a tungsten-copper metal matrix composite. They 

reported that the tensile fracture behavior of the helical fiber com­

posite was not so catastrophic as that of the straight fiber composite, 

and suggested that tougher composite materials could be available using 

helical fibers instead of straight fibers in the metal matrix compos-

ite. In Fig. 2, the helical fibers surrounded by a copper matrix are 

shown with one possible combination of the hybrid wavy pattern, i.e., 

one In-Phase and one Out-of-Phase wavy pattern. 

Makarov and Nikolaev[4] investigated the effect of curvature of the 

reinforcing fibers on the mechanical properties of composites through 

an experimental study using a low modulus matrix and high modulus rein­

forcing fibers. They concluded that the initial curvature of the rein­

forcing fibers must be taken into consideration in calculating the 

effective Young's modulus in the fiber direction. 

Simonds, et al.[S] reported that the tensile strength of the 

AS4-3S0l braided composite material of which the braid angle was 

120 -150 was 30 to 50 % greater than the tensile strength of 150 

angle-ply laminates made of ASl-3S01 graphite/epoxy. In addition the 

Young's modulus measured in the 00 direction was almost the same as 

that of the ISo angle-ply graphite/epoxy laminate. 

Davis(6) presented results of an experimental investigation of the 
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compressive strength of unidirectional boron/epoxy composite materials 

with initially curved fibers. He obtained experimental evidence that 

showed that the shear modulus was related to the axial compressive 

stress. 

7 

It is obvious from these experimental investigations that local ply 

or local fiber curvature can result in significant differences in the 

stiffness and strength of otherwise straight laminated composites. 

Therefore, a proper design of a composite with local curvature in the 

reinforcement would require a mathematical model that accurately pre­

dicts the local and global deformation behavior of the composite. 

PREVIOUS MODELS 

The analysis of compressively loaded laminated composites with 

local fiber or layer curvature has been the subject of a number of 

investigations. In several cases, simple micromechanics based models of 

compressive strength have been formulated. The work of Rosen[7] is con­

sidered to be classical for predicting the compressive strength of a 

composite material with straight fibers as the reinforcement. 

Rosen developed two analytical models for predicting the compres­

sive strength of a fiber reinforced composite[7] by assuming the fibers 

as plates imbedded in a homogeneous matrix material. By applying the 

energy method to two extreme cases of fiber buckling, i.e., the exten­

sion mode and the shear mode, he derived compact analytical solutions 

to the critical stress and strain of straight fibers surrounded by mat­

rix material which was relatively less stiff than the fibers. 

However, mathematical modeling for the tension problem is still in 
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its infancy[8-l3]. There is no counterpart to Rosen's compressive 

strength model for the tensile loading case. The tie-bar/column 

approach of Bert[8] may be the most likely candidate model for solving 

the tension problem of wrinkled fibers or wavy layers. But his govern­

:i ng differential equation is not directly applicable to a laminated 

composite, because it was derived for a rigid fiber imbedded in an 

infinite matrix material. 

Bert[8] reviewed a number of mathematical models and proposed two 

methods: the mean-fiber-angle approach; and the elastically supported 

tie-bar/column approach, to explain the differences in tension and com­

pression behavior of fiber-reinforced composites with locally curved 

fibers. He concluded that a definitive experimental program is required 

to determine which of the two methods is most efficient to predict the 

mechanical behavior of composites containing wavy patterns. Also, he 

emphasized the development of an experimental program to determine the 

role of interfacial adhesion between the fibers and matrix on the 

global behavior of composite materials with wavy patterns. 

Jortner[9] constructed a theoretical model from which all elastic 

constants and thermal coefficients of a composite containing In-Phase 

wrinkled fihers can be estimated. After implementing his method by num­

erically satisfying stress equilibrium and strain compatibility simul­

taneously, he recommended comparing his model predictions to experimen­

tal data or with other finite-element models. 

Akbarov and Guz[lO,ll] developed two mathematical models based on 

the linear elasticity theory and piecewise homogeneity to determine the 

stress-strain state of laminated composites containing wavy layers 

under a remote uniform tensile loading. From their model, the interfa-
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cial stress components between the main load-carrying layers and filler 

layers can be predicted numerically. They calculated two interfacial 

stress components, which are normal and tangential to the interface 

between the matrix material and a curved layer, by satisfying the equa­

tions of equilibrium, Hooke's law, and the Cauchy relationships. In 

ref.[lO], they assumed a very thick matrix layer and neglected the mut­

ual influence between wavy layers. In ref.[ll], they extended the 

approach proposed in ref. [10] including the mutual influence of adja­

cent wavy layers. In both studies, they found that a small-scale curva­

ture gave a significant effect on the stress-strain state in a compos­

ite. However, as Akbarov and Guz mentioned in their papers, it is very 

cumbersome to compare any experimental data to their models because of 

the complexity of the mathematical formulations. 

Ishikawa, et al.[12] also proposed two models, the mosaic and fiber 

undulation models, for predicting the effective elastic moduli of fab­

ric composites. Their experimental results showed that the ratio of ply 

thickness to thread width, i.e. pitch of the wavy pattern, was a very 

important parameter which had a significant effect on the elastic mod­

uli of plain weave composites. 

EI-Senussi and Webber[13] presented a theoretical analysis for the 

crack propagation of a layered strip in compression, in the presence of 

8 blister. They proposed a typical set of design curves which showed 

the influence of blister length, applied strain and resin stiffness on 

loads required for splitting the reinforcing layer from the blister. 

Their approach for determining the deformed shape of the layered strip 

on the blister was exactly the same as the tie-bar/column approach pro­

posed by Bert[S], except for the inclusion of the equivalent spring 
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constant for the elastic constraint due to the blister. 

Shuart[14] investigated the short-wavelength buckling(or the micro­

buckling) and the interlaminar and inplane shear failures of multi­

directional composite laminates under uniaxial compression. He assumed 

the fibers-in the lamina as a plate, and the matrix in the lamina as an 

elastic foundation. After his numerical analysis, he recommended addi­

tional experimental verification of his detailed 3-D analysis. (Refer­

ence 14 also contains a complete literature review of the compression 

loading problem and a genesis of the fiber buckling and compressive 

strength models.) 

All of these theoretical studies have shown that relatively small­

scale wavy patterns or wrinkles produce a noticeable effect on the 

stress-strain behavior of the composite material system. However, dif­

ficulties arise when we try to directly compare the experimental data 

puhlished in the literature with those theories. This is because most 

of the mathematical models mentioned above are too complicated to apply 

directly. Among those mathematical models, the tie-bar/column approach 

proposed by Bert[8] and Rosen's model[7] are relatively simple. How­

ever, Rosen's model requires modification for solving the tension prob­

lem, and Bert's model needs more verification of its governing differ­

ential equation and elastic constraint due to the matrix layer. There­

fore, the author has developed a new and simple deformation based 

mathematical model which includes geometrical parameters as well as 

material parameters for predicting stress-strain behavior of wavy lami­

nates under tension loading. 
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MATHEMATICAL MODEL 

The theoretical development of a mathematical model of the local 

deformation and state of strain of a wavy layer or a wrinkled fiber in 

a laminated composite proceeds from the micromechanics viewpoint. Con-

cepts of strength-of-materials are applied to a representative segment 

of a single wavy layer. The geometry of the model is shown in Fig. 3. 

The In-Phase layer (Fig. 3a) and the Out-of-Phase layer (Fig. 3b) are 

treated as the two extreme cases. A single wavy layer is analyzed as a 

corrugated beam on an elastic foundation(Fig. 3c), where the stiffness 

of the elastic foundation represents the kinematic constraint on the 

wavy layer from the surrounding filler material. 

The tension-compression behavior of the filler material is modeled 

as an array of linear springs, and the shear deformation behavior is 

modeled as an array of torsional springs. Since the curvature of the 

wavy layer is small relative to the length of the segment(pitch) , the 

Euler-Bernoulli beam theory is applied. The governing differential 

equation for the initially curved beam on an elastic foundation is 

developed from the principle of minimum potential energy. Using the 

Cartesiall coordinate system shown in Fig. 3c, the total potential 

nnergy of the beam is given by 

IlL { II--

2 0 
Pf O [

d2Z ]2 
+ EI __ 1 + KL (Zl)2+ 

d x2 
Kr 8m

2 }dx (1) 

- P ( ~ + PL/2hlE ) 
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---~ ;------..--------; ---T 
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Fig. 3 Wavy Layers 

(a) In-Phase 
(b) Out-of-Phase 
(c) General Case 
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where 

EI = flexural rigidity of the wavy layer/unit width 

KT - torsional spring constant of the matrix material/unit width 

KL = linear spring constant of the matrix material/unit width 

Zl transverse displacement of the mid-surface of the wavy layer 

Zo - initial amplitude of the wavy layer 

P - far field axial load on the wavy layer/unit width 

€o = far-field axial strain 

6 = pitch increase due to straightening of the wavy layer 

Om - angular deformation of the matrix 

a dZl/dx 

a a constant calculated from the matrix deformation kinematics 

The horizontal displacement (6) of point R in Fig. 3c, which causes 

pseudo strain can be calculated under the assumption that the neutral 

axis is incompressible, in other words the total length of the neutral 

axis, S, is assumed to remain constant[l8]. Therefore, 

s - J: j 1 + (dZoIdx)2 dx 

J
L+6 

o J 1 + [d(Zl+Zo)/dx]2 dx (2) 

Expanding in a binomial series and neglecting higher order terms, 

the horizontal displacement of point R due to the initial curvature is 

given by 
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1 JL 6 =-- (dZo/dx)2 - [d(Zo+Zl)/dx]2 } dx 
2 0 

(3) 

The axial strain of the neutral axis due to tension is assumed to 

be constant. 

fO - P/2hlE (4) 

The assumed boundary conditions are 

d 2Zl 
Zl = - 0 at 

d x 2 
x = 0 and L (5) 

( Note that fixed end boundary conditions may also be assumed.) 

The equilibrium deformation configuration of the modeled geometry 

corresponds to the stationary values of the total potential energy. 

These values are obtained by setting the variation of rr equal to zero. 

Therefore, the governing equation is obtained as follows: 

6rr - 0, or 

o - !:<EIZl"6Z1"+KLZ16Z1+a2KTZl'6Z1'+P<ZO-Zl)'6Z1')dX (6) 
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where Zl" ~ d2Z1/dx2 

Rnd Zl' = dZ1/dx. 

Integrating eq. (6) by parts and substituting eqs. (3), (4) and 

(5), we obtain the following governing differential equation. 

dKT dZl d4 Z1 
EI --­

d x4 

d 2Z1 
(a2KT+P) - 2 

d x 
- a 2 _ - + KL (x)ZI 

d x d x 

d2Zo 
P-­

d x 2 
(7) 

For a single layer without matrix or an In-Phase wavy layer, the 

solution of this governing equation is easily obtained. Since it is 

very cumhersome to obtain an exact analytical solution for an Out-of-

Phase wavy layer, the Rayleigh-Ritz method is appropriate to calculate 

an approximate solution. Since the general solutions of the transverse 

displacement, Zl, are determined as a function of the applied far-field 

load P, the axial strain at any location of the wavy layer is given by 

P d 2Z1 
(xx - Z 

2Eh1 d x 2 
-h1 :$ Z :$ h1 (8) 

The pseudo-strain, i. e. the apparent strain at an arbitrary point 

along the wavy layer due to the rigid body motion associated with 

straightening the wavy layer, is given by 

l{ [dZo] 2 [d(ZO+Zl)]
2 

} (PS(x) = - - -
2 d x d x 

(9-a) 



The average pseudo-strain along the one representing pitch of the 
wavy patt('rn is given by 

16 

~PS'AVE -
_1 JL{ [dZo]2 _ [d(ZO+Zl)]

2 
} dx (9-b) 

2L 0 d x d x 

The indicated strain, i. e. the observed apparent strain which is 

the sum of the actual strain in the wavy layer and the pseudo-strain, 

can be predicted by 

(IND(x) - (xx + (PS(x) (IO-a) 

(IND,AVE - (0 + tpS,AVE (IO-a) 

A maximum strain failure criterion may then be applied to determine 

the far field strain at which failure of the wavy layer occurs. The 

maximum strain failure criterion can be written as 

(EXX)MA): - [EIND(x) - EpS(X) ] MAX :S EYLD (ll) 

where the tensile yield strain, tYLD' corresponds to the tensile yield 

or ultimate strain of a straight layer of the same material. 

Specialized forms of the governing differential equation and the 

solutions for a single corrugated beam, In-Phase wavy layers, and Out-

of-Phase wavy layers are developed in the following sections. 
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SINGLE CORRUGATED BEAM 

Let the positive direction of the moment due to the axial force, P, 

be counterclockwise in Fig. 4. Then from the moment equilibrium, 

1.11 
d2Zl 

EI-- - PZo - PZl 
d x 2 

RcnrrnnginE gives 

d2Zl 

d x 2 

PZl 

EI 

PZo 

EI 

o 

where the initial curvature is given by 

Zo 
00 

- E "n sin(n~x/L) 
n=l 

(12) 

(13) 

(14) 

If P has the opposite sign, the governing equation becomes that of 

buckling of a beam[19] with initial curvature, i. e. 

d 2Z1 PZl PZo 
-- ! (15) 
d x? 1<:1 EI 

The solution to eq. (13) with boundary conditions given by eq. (5) is 

Zl 
<Xl 

E 
n·~l [ 1 

Hn sin(n.xjL) 1 
(16) 
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TN-PHASE WAVY LAYER 

If tllP effect of the difference in the Poisson's ratio between the 

WllVy layer and the matrix layer is neglected, then the thickness ratio, 

( h2 - hI )/hl, Fig. 5, may be assumed to be constant throughout the 

deformation. Therefore, the In-Phase wavy layer can be assumed to be a 

corrugated beam on an elastic foundation which carries only shear 

forces. The torsional spring constant, KT , is determined by considering 

an arbitrary angular deformation of the matrix material, O. In Fig. 5, 

the shear deformation of the matrix material is illustrated. (It should 

be noted that the small angle assumption is made in the kinematics.) 

I1T/l1x 
KT - 2(h2 -hl) GXZ constant (17) 

e 

From Fig. 5, a h2/(h2-hl) l/(l-vf)' Therefore eq. (7) reduces to 

d4 Zl 
EI-­

d x4 { [ 
h2 ]2}d

2
Z l 

- P+KT -- --
h2- hl d x2 

d2Z o 
P--

d x 2 
(18) 

Using the initial geometry and boundary conditions given by eq. 

(14) and eq. (5), we obtain the vertical displacement of the In-Phase 

wavy layer given by 

Zl 
00 

L: 
n=l [ 1 + 

Hn sin(mrx/L) 

(KT/P) [h2/(h2-h l)]2 + ] (19) 

From e~uations (8), (9) and (10), we easily obtain compact analyti-

cal solutions to the strains for an In-Phase wavy layer where the ini-

tial geometry is given by a one term sine function as follows: 



2(" 

1\1':1'(11<1 1)I'Y()I\~1:\'J' ION 

t 

FIBER 

t = 2h1 

f-':ATRIX 

2(hrhl) 

x 

o 
91= 90 - 90 - 9mb 

9mb 9
0

[2h1/2(h2-h1)] 

90 vf/(l-vf) 

SMALL ANGULAR DEFORMAT JON 

AFTER DEFORHATION 

gm 

8 0 -e f 

82 90
0
-(90 -9f) - 9ma 

8ma (90 -Gf) [ 2h1/2(h2-hl)] 

(80 -Gf) vf/(l-vf) 

SHEAK DEFOI,HATlON OF THE Nl\TIUX NATERIAL 

gm = 82 - gl = Ar/(l-vr) , 9 f = dz1/dx 

I,'j I> '.i Deformation of the Matrix Material Due to Stretching of the 

Itlitial Curvature of the Main Load-Carrying Layers(In-Phase) 

! ~\;c .' 
!IIJII.,,: 

, I, 

II 
!~'~:'.' 
I,:" , .. 



2l 

Let 

20 -Ho sin(1rx/L) (20) 

then 

H (1r/L)2 sin(1rx/L) 0 
f - <0 - 2 xx 

2h22GX2 (1r/L) 2 EI 
(21) 

1 + + 
(h2-h1)P P 

4h2 2GX2 2(1r/L)2 EI 
1 + + 

fpS,AVE = ( 1rHo/2L)2 
(h2-h1)P P 

[ 2h 20 

(22-a) 

1 + 2 XZ + (K/L)2 E1 1 2 

(hrh1)P P 

fpS(X) fpS,AVE [ 1 + cos(21rx/L) ] (22-b) 

These solutions are also valid for a single corrugated beam by setting 

GX2 o. 

For predicting the strain indicated by a standard extensometer 

measurement over one representing pitch, 

fIND,AVE fO + fpS,AVE (23) 

For predicting the strains indicated by a full displacement field 

such as that obtained by moire interferometry, 
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tIND(X) txx + tpS(x) (24) 

along the upper and lower surfaces of each wavy layer, where 

-hI :c:: Z :s hI 

P 2hl E to / unit width 

2 
I - (2h l )3/l2 = -h13 / unit width. 

3 

OUT-OF-PIIASE WAVY LAYER 

(25) 

Since the straight lines AB and CD of the Out-of-Phase segment, 

Fig. 3b, remain straight after deformation, the Out-of Phase wavy layer 

can be assumed to be a corrugated beam on an elastic foundation which 

carries only tension-compression forces in the Z direction. The linear 

spring constant of the elastic foundation, as illustrated in Fig. 6, is 

given as a function of x. The upper and lower matrix layers of the 

representing segment are assumed to be two arrays of linear springs of 

different spring constants. Along the upper surface the length of the 

linear springs is given by 

lu - (h2 - hI ) + Ho sin(wx/L) (26) 
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Along the lower surface, 

11 (h2 - hl ) - Ho sin(1rX/L) (27) 

The equivalent spring constants of the upper and lower matrix material 

are given by 

Ku = ET/lu and (28) 

Kl = ET/ll' (29) 

respectively. 

Therefore, the total contribution of the matrix layer in one represet­

ing segment can be replaced by a linear spring of which the spring con­

stant is given by 

KL = Ku + Kl ' 

or 

2(h2-h l) ET 
KL(x) 

(h2-hl)2 - Ho2sin2(~x/L) 
(30) 

where the initial geometry is given by 

Zo ~ -110 sin(~x/L) . (31) 

Then the governing differential equation, eq. (7), becomes 



d 2Zl d2Z o 
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d4 Zl 
EI -­

d x4 
P-- + KL(x) Zl 

d x 2 
P--

d x2 
(32) 

Since Zl should be symmetric with respect to x = L/2, we may assume 

Zl - L Ci sin(i~x/L), i 
odd 

1,3,5, ... ,2n-1. 

The principle of minimum potential energy may be expressed as 

a IT/B Ci = 0 for all i ~ 1,3,5, ... ,2n-l. 

(33) 

(34) 

Substituting eq. (33) into eq. (1) and then applying eq. (34) yields n 

equations which are solved simultaneously for the unknown constants Ci . 

Table 1 shows that the four-term approximate solution is sufficient for 

the test cases considered herein. 

HESULTS OF TilE PARAMETER STUDY 

Using eqs. (16), (19), (23), and (8-10), the indicated and actual 

strains for the three cases described above can be expressed in terms 

of the far-field strain, f O ' which is the equivalent strain in a 

straight layer under the same loading conditions; thus the ratio 

between the reference strain and the far-field strain is always one. 

The maximum value of actual strain and the indicated(extensometer) 

strain are predicted and illustrated in Figs. 7-9. Three different com-

binations of geometric parameters of a single corrugated beam, an In-

Phase layer, an Out-of-Phase layer are used as input data for three 

different material configurations. Also, the predicted variations of 
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Table 1 Comp<lrison of Constants(Ci) for 

Out-of-Phase Configurations 

I E T Gxz L hl h2 HO Cl C3 C5 C7 

?u 0.5 20 2 8 4 ·1.23E·02 ·1.60E -04 3.01E-06 -1.14E-07 

10 0.5 20 2 8 4 -6.53E-03 ·1.58E·04 2.93E-06 ·1.11 E -07 

'r 0.5 20 2 8 4 -2.06E-03 -1.24E-04 2. 19E -06 -8.17E-OB .J 

HI_', O.4f. 0.163 0.51 0.015 0.050 0.015 -5.47E-06 -2.64E-07 7.72E-10 -7.66E-12 

111. " O.4f, 0.163 0.51 0.015 0.275 0.078 ·2.28E-04 -3.05E-06 8.19E-09 -4.B7E-l1 

10.', OJ,f, 0.163 0.51 0.024 0.100 0.030 -3.84E-05 -8.98E-07 4.25E-09 -4.4SE-11 

1:1 <:1 sin(7Tx/L) + C3sin (37TX/L) + CSsin(S7Tx/L) + C7 sin (7n:/L) 
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the actual strain and observable strain which may be obtained exper­

imentally from moire fringe analysis are plotted along the upper sur­

face of the wavy layer in Figs. 10-12. The combinations of the geomet­

ric and material parameters in Figs. 10-12 are the same as in Figs. 

7-9. 

This parametric study shows the influence of wavy patterns and 

material properties on the indicated strain, or equivalently the effec­

tive Young's modulus. As an example, let's consider two laminated spe­

cimens with different main load-carrying materials. If both specimens 

have the same wavy pattern, the specimen with stiffer main load­

carrying layers will exhibit more stiffness loss in the loading direc­

tion. It is also obvious that the In-Phase wavy layers exhibit larger 

deviations from the response of straight layers than do the Out-of­

Phase wavy layers. 

In Figs. 7-9, the reference strain, fO' the maximum value of the 

f1ctual strain, (fxx)MAX' and the average value of the indicated strain, 

fIND,AVE' are plotted. Of these values, fIND,AVE can be directly 

measured from a specimen where the strain is measured by an extensome­

ter over one pitch length of the wavy pattern. However, the bending 

stain, ({xx-fo)' must be confirmed by a full displacement field 

technique, such as moire interferometry. Also, the main assumptions of 

the model, i.e. the derivation of the spring constants for the matrix 

material surrounding the In-Phase and Out-of-Phase wavy layers, can be 

checked by moire interferometry. 
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EXPERIMENTAL PROGRAM 

An experimental program was conducted to verify the accuracy of the 

proposed mathematical model. Tensile specimens for each model type 

were prepared from aluminum 606l-T6 sheets of 0.76 mm (0.03 in.), 1.20 

mm (0.047 in.), and 1.52 mm (0.06 in.) thicknesses, and room tempera­

ture curing epoxy. These materials were selected because of the neces­

sity to fabricate precise wavy patterns in the main load-carrying 

layers. The dimensions of each specimen and the mechanical properties 

are given in Table. 2 and 3. The effective Young's moduli were measured 

by a one inch extensometer and the bending strains along the wavy alu­

minum layers were calculated from the analysis of the fringe pattern 

obtained from moire interferometry. Further details of the specimen 

preparation and experimental program are given in the following sec­

tion. 

MATERIAL PROPERTIES OF RAW MATERIALS 

Using the average of three to five replicated tension tests con­

ducted on an MTS testing machine and using a one inch extensometer, the 

Young's modulus of straight aluminum specimens was found to be 72.4 CPa 

(10.5 Msi). The Young's modulus and the Poisson's ratio of the epoxy 

were 3.034 CPa (0.44 Msi) and 0.35, respectively. (The elastic con­

stants of the epoxy were measured by an extensometer and a strain gage 

rosette.) The shear modulus of the epoxy was estimated as 1.124 CPa 

(0.163 Msi) from the isotropic relationship given by 

C = E/2(1+v) (35) 



Single Al Layer 

:1a terial 6061-T6 

Thickness 0.76 (0.030) 
mm (in.) 1. 20 ( 0 • 047) 

1.52 (0.060) 

l.Jidth 25.4 (1.0 ) 

:!ax. Rise, Ho 1.93 (0.076) 
mm (in.) 1.98 (0.078) 

Pitch = 2L 
mm (in.) 

Function of 
Wavy Pattern 

Table 2 Spec ir.len Configurations 

In-Phase ~~vy Layer 

6061-T6 Safe-·T-Poxy 

21~0. 76 (0.030) 3.81 (0.150) 
2'~0. 76 (0.030) 9.27 (0.365) 

25.4 (1.0 ) 25.4 (1. 0 ) 

1.98 (0,078) 

I 
25.9 (1.02) 

Zo = Ho sine x/L) 

-- - --- _. -_._--

Out-of-Phase l~vy Layer 

6061-T6 Sa:Oe-T-T'oxy 

3"~0.76 (0.030) 11.3 (0.-'+45) 
3 ,'~ 1. 2 0 ( 0 • 04 7) 7.4 (0.291) 

25.4 (1. 0 ) 2.5.!+ (1.0 ) 

1.98 (0.078) 
0.99 (0.039) 

! 

, 

(,,0 
\J1 
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Tablv J 1'1easlln~d Effective Young's 1'1odulus 

Young's Modulus 
Fig. No. I Far-Field Effective Cpa (~1si ) Cpa (Hsi) 

Single Al Layers 

28-a 2.175 (0.374) 72.4 (10.'50) 

28-b 5.042 (0.731) 69.71 (10.11) 

28-c 5.763 (0.836) 74.40 (10.79) 

In-Phase Specimens 

* 29-a 8.695 (1.261) 21. 95 (3.18 ) 
-;.'; 

7.lJ-h 6.026 (0.874) 13.06 (1.894) 

OUl-of-Phase Specimens 
";~ 

30-<1 9.998 (1.450) 14.70 (2.132) 

* 10-b 23.920 (3./169) 28.437 (4.124) 

,', Obtained from the rule-of-mixture. 
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SPECIMEN PREPARATION FOR TENSION TEST 

To prepare well-defined wavy patterns in aluminum layers, Fig. 13, 

the specially designed roller-press shown in Fig. 13 was used. Aluminum 

coupons of 25.4 rnm (1 in.) width were pressed between the upper and 

lower rollers, equally spaced by one inch, so that the corrugated wavy 

patterns gradually became straight at both ends of the aluminum layer 

as shown in Fig. 14. The corrugated wavy patterns in aluminum layers 

were compared with mathematical sine curves and could be expressed in 

one-term sine functions of different coefficients of pitch and height. 

In Fig. 15, the comparison between a mathematical sine function and a 

corrugated aluminum layer is illustrated. 

An epoxy ingot of Safe-T-Poxy was cured to prepare epoxy specimens. 

The volume ratio of the resin and hardener of the epoxy was seven to 

three. After the resin and hardener were thoroughly mixed, the tempera­

ture of the mixture was increased to 1000 F to remove air bubbles and 

cured at the same temperature for 24 hours. Epoxy coupons were cut from 

the cured epoxy ingot by a band-saw and then machined on a milling 

machine so that the final shapes are the straight coupon and the dogba­

ne-type coupon. Then the specimen surfaces were polished to remove 

scratches and notches caused by cutting and machining. The epoxy ingot 

and two types of epoxy specimens are shown in Fig. 16. 

The In-Phase and Out-of-Phase wavy laminate specimens were fabri­

cated by bonding together the corrugated aluminum layers and the epoxy 

layers. Two different thicknesses of epoxy layer were prepared to mea­

sure the influence of the thickness of epoxy layers on the displace­

ment fields of the In-Phase wavy specimens. Two different thicknesses 

of epoxy layer and aluminum layer were prepared for the Out-of-Phase 
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Fig. 13 Roller Press and Corrugating Procedure of Aluminum Layers 

(a) Before Pressing 
(b) After Pressing 



(a) 

(b) 

Fig. 14 Aluminum Layers of Different Thicknesses 

(a) Straight Layers 
(b) Corrugated Layers 
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SPECIMEN CURVATURE 

,- MATHEMATICAL SINE FUNCTION 

Zo = 0.078 sin(llx/0.'51) 

Fig. l~ Comparison between a Specimen Curvature and a Mathematical 

Sine Function 
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(a) 

(b) 

(c) 

Fig. 16 Epoxy Ingot and Specimens 

(a) Epoxy Ingot 
(b) Straight Coupon 
(c) Dogbone Coupon 
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wavy specimens. The corrugated aluminum layers for both laminates were 

surface-treated before bonding to improve the bond strength and to pre­

vent any delamination during machining and tensile tests. Both surfaces 

of each aluminum layer were coated with acrylic resin. Spacers were 

inserted between coated aluminum layers to obtain gaps between each 

layer so that the Safe-T-Poxy filled up the gap between aluminum 

layers. After curing in an oven for 24 hours at 1000 F, both free 

edges of each laminate were machined and polished to approximately one 

inch width. Some of the fabricated specimens with In-Phase and Out-of­

phase wavy patterns are shown in Fig. 17. 

Each specimen contained two or three aluminum layers with In-Phase 

or Out-of-Phase wavy patterns. Strictly speaking, each specimen does 

not exactly represent the mathematical model which has been developed 

for an infinite number of wavy layers. However, no attempt has been 

made to account for the finite thickness of the specimens. 

TENSION TEST 

All tension tests were conducted at a constant loading rate of 4.5 

Kg/s (10 Ibis) or 9 Kg/s (20 Ibis) on an MTS machine . Strains were 

measured by a one inch extensometer which corresponds to one pitch 

length of the wavy patterns. The knife edges of the extensometer were 

placed in the machined grooves of two aluminum tabs glued on the convex 

points of the wavy patterns. The specimens were held in 51 mm (2 in.) 

wide wedge-action friction grips so that the specimen length between 

grip ends was approximately 125 mm (5 in.). To insure repeatability of 

the results, each specimen was loaded three to five times within its 

elastic limit. The specimen configurations of corrugated aluminum 

layers and In-Phase and Out-of-Phase wavy laminates were previously 
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given in Table 2. Fig. 18 illustrates the extensometer installation for 

a typical specimen. 

Values of the effective Young's modulus of each aluminum layer and 

wavy laminate configuration were obtained from the replicated tests by 

using the least square curve fitting technique to the digital test 

data. The Young's modulus of each specimen was nondimensionalized by 

dividing by the reference Young's modulus, i.e. the equivalent Young's 

modulus of the layer or laminate without corrugated wavy patterns. 

Measured values of the effective Young's modulus of each specimen con­

figuration were previously given in Table 3. 

SPECIMEN PREPARATION FOR MOIRE INTERFEROMETRY 

Moire interferometry is a real time method that gives the in-plane 

displacements of the specimen surface below the moire grating. This 

technique does not require a transparent specimen as the conventional 

photoelasticity technique does. The Moire grating frequency for this 

study is 2400 lines/mm(60,960 lines/inch). Since the technique provides 

contour maps of in-plane displacement fields from a cross grating 

transferred to the specimen surface, it may be used for non-homogeneous 

materials. For more details of moire interferometry and the general 

procedure of specimen preparations, please refer to Post[15]. 

One In-Phase specimen and one Out-of-Phase specimen were prepared 

for moire interferometry. A moire grating supplied by Professor Daniel 

Post at VPI & SU was coated with a thin aluminum layer using a metal 

vaporizing technique and cut into appropriate sizes for the specimens. 

Mirrorized moire gratings were transferred to the specimen surfaces as 

shown in Fig. 19. 

In order to use a hinge joint for applying tension loads to a spe-
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Fig. 20 Specimen Installation to the Fixture 
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cimen without causing global bending, a quarter inch diameter hole was 

drilled at each end of the specimen. Then, one end was connected to 

the load pan and the other end was connected to the upper brackets by 

quarter inch bolts as shown in Fig. 20. Teflon washers were placed 

between the outermost aluminum layers and the inner surfaces of the 

upper brackets to minimize friction forces between the brackets and the 

specimen. The upper brackets are connected to the grooves in the upper 

channels by a 5/16 inch bolt. Then, tension load is applied to the spe­

cimen by putting calibrated weights on the load pan. Fig. 21 shows the 

moire setup with a specimen installed in the test configuration. 

MOIRE TEST 

If the displacement in a specimen is large enough to neglect any 

possible misalignment during loading, then the strain components, EXX 

and EpS can be directly obtained from the loaded fringe patterns. 

However, the increment of the fringes due to tension loading was not so 

significant and the out-of-plane displacement was not negligible when 

compared to the in-plane displacement. Therefore, the mirrors in the 

test setup schematic of Fig. 22 were adjusted to increase the number of 

fringes at the zero loading condition to facilitate the measurement of 

the distance between each fringe and to obtain better contrast between 

the light and dark fringes in both the axial and transverse displace­

ment fields. This initial carrier fringe pattern does not eliminate the 

coupling between the in-plane and out-of-plane displacements, but the 

bending strain component can be calculated from the axial fringe pat­

terns with carrier fringes. 

After the initial fringe patterns with the carrier fringes for the 

axial and transverse displacement fields were photographed from the 
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In-Phase specimen at zero loading condition, a 27 Kg (60 lb) tensile 

load was applied and both fringe patterns were photographed again. This 

procedure was repeated at 36 Kg (80 lb), 54 Kg (120 Ib), and 72 Kg(160 

lb) tensile loads. Then the horizontal and vertical mirrors were 

adjusted to reduce the fringes in both displacement fields so that the 

effect of the epoxy layers on the center aluminum layer could be quali­

tatively observed as illustrated in Fig. 23-c and 23-d. The load was 

removed and the same procedure was repeated with different initial car­

rier fringes in both axial and transverse displacement fields. These 

sets of photographs are shown in Figs. 23 and 24. 

The Out-of-Phase specimen was photographed under zero, 36 Kg (80 

Ib), and 67.5 Kg (150 lb) for the axial displacement field, and under 

zero, 27 Kg (60 lb), 45 Kg (100 lb), and 67.6 Kg (150 lb) for the 

transverse displacement field. The sets of photographs taken from the 

Out-of-Phase specimen with different initial carrier patterns are shown 

in Figs. 25- 27. 
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(a) 

(b) 

Fig. 23 Axial Fringe Patterns from an In-Phase Specimen 

(a) 0 lb(with Carrier Fringes) 
(b) 60 lb 
(c) 120 lb 
(d) 120 lh(with less Carrier Fringes) 

Continued to Next Page 
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Fig. 24 Transverse Fringe Patterns from an In-Phase Specimen 

(a) 0 Ib(with Carrier Fringes) 
(b) 60 Ib(Increasing Load) 
(c) 120 Ib 
(d) 120 Ib(Nulled-Out) 
(e) 60 Ib(Decreasing Load) 

Continued to Next Page 
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(a) 

(b) 

Fig. 25 Axial Fringe Patterns from an Out-of-Phase Specimen 

(a) 0 lb(Nulled-Out) 
(b) 0 Ib(with Carrier Fringes) 
(c) 80 lb 
(d) 150 Ib 

Continued to Next Page 
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(a) 

(b) 

Fig. 26 AXial Fri~. Patterns with ~r. Carrier Fringe. 
(Out-of-Phase) 

(a) 0 1 b 
(b) 80 Ib 
(c) 150 Ib 

Continued to Next Page 
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(<1 ) 

(b) 

Fig. L7 Transverse Fringe Patterns from an Out-of-Phase Specimen 

(a) 150 Ib(Nulled-Out) 
(b) 150 Ib(with Carrier Fringes) 
(c) 100 Ib 

Continued to Next Page 
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RESULTS AND DISCUSSION 

TENSION TEST 

The replicate tension tests for all specimen configurations exhi­

bited fundamentally identical elastic behavior which was remarkably 

linear and reproducible. From the elastic constants obtained from 

straight specimens of aluminum and epoxy, the effective non-dimensional 

Young's modulus was predicted for each specimen configuration. In Fig. 

28, the comparisons between the model predictions and the experimental 

data from the corrugated aluminum specimens are shown for three differ­

ent thicknesses of the aluminum layers. Experimental data from the two 

In-Phase and two Out-of-Phase laminate configurations are compared with 

the model predictions in Fig. 29 and Fig. 30, respectively. The compar­

isons between the model predictions and experimental data are in good 

agreement. 

As expected from the model, the measured strains were always 

greater than the actual strains at the neutral axis of the corrugated 

layers which, in this study, were assumed to be the main load-carrying 

layers. The pseudo strain computed from the model together with the 

average of the actual strain over the wave pattern gave a reasonable 

value to which the measured strain could be directly compared. This is 

explained by the fact that the contribution of bending strain component 

cancels out when the indicated strain is measured by an extensometer over 

one representative pitch of the wavy patterns. 

The measured indicated strains of the Out-of-Phase specimens were 

always slightly greater than the model predictions. One possible expla­

nation for this is that the Out-of-Phase specimen does not exactly 
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match the idealized geometries required by the model. The Out-of-Phase 

specimens tested during this study consist of three aluminum layers 

resulting in indicated In-Phase patterns between the two outer aluminum 

layers. The indicated In-Phase bending due to the limited number of 

aluminum layers may cause additional pseudo strain. However, the In-

Phase specimens always satisfy the idealized geometry for one represen-

tative segment as required by the model. 

The effect of the thickness of the epoxy layer is best illustrated 

in Fig. 29. As the thickness of the epoxy layer in the In-Phase lami-

nate increases, the difference between the maximum value of predicted 

actual strain at X - L/2 (fACT) and the measurable strain (fIND AVE) , 

decreases. The experimental data obtained from two In-Phase wavy lami-

nate configurations showed the same trend as predicted. The model pre-

dictions and measured data from two different Out-of-Phase specimens 

are also illustrated in Fig. 30. The shifting of the experimental data 

from fACT to fIND AVE is primarily attributed to the influence of the , 

stretching of the wavy patterns in the main load-carrying layers. This 

change of the wavy patterns is indicated as if it were real strain due 

to the limitation of the strain gage length. If the strain gage or 

extensometer gage length is much smaller than the pitch of the wavy 

pattern in a laminate, then the actual strain may be directly measur-

able. However, in most composite laminates containing wavy patterns or 

wrinkled fibers in the main load-carrying layers including the speci-

mens of this study, the strain gage length has the same order of magni-

tude as the pitch length of wavy patterns of the layers or wrinkled 

fibers. Thus, the average value of the pseudo strain (fpS) over one 

representative segment derived by the model should be taken into con-
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sideration to predict the effective Young's moduli of composite materi­

als with wavy layers or wrinkled fibers. 

MOIRE TEST 

Moire fringe patterns taken from In-Phase and Out-of-Phase speci­

mens were shown in Fig. 23-27. As previously discussed, the fringe pat­

terns were enhanced by the addition of initial carrier fringe patterns, 

instead of null field fringe patterns. Therefore, only the differences 

in bending strain components between the upper and lower surfaces of 

the aluminum layers were calculated and are compared with the model 

predictions for both In-Phase and Out-of-Phase specimens in Fig. 31-32. 

For more details of the fringe pattern analysis, please refer to the 

Appendix. 

The transverse fringe patterns from In-Phase and Out-of-Phase spe­

cimens confirmed the main assumption of the model. Comparing Figs. 24-d 

and 27-a, it is obvious that the fringe patterns for the two specimen 

configurations are fundamentally different. The rotation of the fringes 

illustrated in Fig. 24-d is characteristic of shear deformation. Fur­

thermore, the number of fringes through the thickness is relatively 

constant. The bull's eye pattern illustrated in Fig. 27-a is character­

istic of tension-compression behavior. Also, the number of fringes 

through the thickness varies along the axial direction of the Out-of­

Phase specimen. This provides qualitative confirmation that the matrix 

layers of the In-Phase specimen is shear dominated while the matrix 

layers of the Out-of-Phase specimen is governed by tension-compression 

behavior. 

The pseudo strain components could not be compared with the model 
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predictions because the rigid body rotations of the hinge mechanism 

used for the specimen installation were coupled to the axial and trans­

verse deformation of the specimens. This coupling effect changed the 

number of fringes in the axial displacement field as well as the trans­

verse displacement field. However, these rigid body rotations due to 

the hinge mechanism may be eliminated by calculating the difference in 

the number of fringes between the upper and lower surfaces of the cen­

ter aluminum layers as illustrated in Figs. 33 and 34. The difference 

in the number of fringes between the upper and lower surfaces are the 

same in both figures. Both figures are taken from one specimen under 

the same loading condition, 67.5kg(150Ib) in tension, but with differ­

ent initial carrier fringe patterns. 

The variation of the pseudo strain along the curvature in the In­

Phase specimen can be qualitatively checked from Fig. 35. Exact numer­

ical data for the pseudo strain and far-field strain could not be 

retrieved from the moire fringe analysis because of the rigid body 

rotation problem. The general trend of the pseudo strain obtained from 

the In-Phase specimen shows a good agreement with that from the model 

prediction as illustrated in Fig. 35 confirming that the pseudo strain 

component is a cosine function of the x. This variation of the pseudo 

strain component along the x axis does not give a practical effect on 

the effective Young's modulus of a wavy specimen. This is because the 

strain measuring device accesses only the average value of the sum of 

the pseudo strain and constant axial strain along the neutral axis of 

the wavy layer when the gage length is equal to or longer than one 

representative pitch of the wavy pattern. 





73 

"~'" :.~ 

-.;.~. 

.. ;;;rs---

o 

---- --

Fig. 34 Moire Pattern with More Carrier Fringes 



0.0005 

0.0004 z 
« 
0::: 0.0003 

(0) ~ 
w 
0::: 0.0002 
0 
2 

0.0001 

... " ... ;-

... " ... " 
... " ... " ... " ... " ... ;-

... " ... " ... .-
... " ... ;-

... " 
... '" ... ... 

..... _--

0.0000 
I 

0.0 0.2 0.4 0.6 0.8 
X/L 

13.0000 

w 
15.0000 0 

z 
~ 
(f) 17.0000 (b) 0 \ 

" \ / ! 19.0000 ~ \ 

" , 
/ 

\ " Q p 
... 

" I 21.0000 ... " ... " 
CD '6' 

23.0000 
I I 

0.0 0.2 0.4 0.6 0.8 
X/L 

CONCAVE SURFACE 
CONVEX SURFACE 

;­

'" " 

1.0 

1.0 

Vj~. 35 Variation of the Total Strain in the In-Phase 

Specimen (Refer to Appendix) 

(a) Model Prediction 
(b) Moire Analysis 

74 



75 

APPLICATIONS OF THE MODEL 

THE MODEL PREDICTIONS AND OTHER EXPERIMENTS 

By applying a maximum strain failure criterion to the wavy layer, 

analytical results from the mathematical models may be used to predict 

the strength of composites with in-situ local curvature in the rein-

forcement. For an In-Phase laminate, eq. (11) and eq. (21) can be 

rewritten as: 

f .2 (Hohl/L2) 1 
fYLD ~ fO 1 + h22 GXZ/E ~2 (36-1) 

fO + + - (hl/L) 2 

\. hl(h2-h l) 3 J 

Neglecting the first term and the last term of the denominator in 

eq. (36-1) and rearranging gives the critical far-field strain: 

{ 
1 } fcr ::S fYLD 

1 + ~2(Hohl/L2)[hl(h2-hl)/h22](E/Gxz) 
(36-2) 

In this section, experimental results reported by other experimen-

talists[1-3] are compared with the model predictions. Those experimen-

tal studies were selected by the author for the following reasons. 

1. The experimental result reported by Poe[l] contains an exact 

numerical value of strength reduction as the result of wavy patterns in 

a specimen configuration. Also, one of Poe's specimens was available to 

measure the geometrical parameters. 

2. The stitched composites studied by Dexter[2] contained repeated 



wavy pattern with accurate pitches. Other geometrical parameters were 

measurable from his paper. 
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3. The geometrical parameters of the helical tungsten fibers for a 

metal matrix composite and the stress-strain curve of the helical fib­

ers were compared with those of straight tungsten fibers in the exper­

imental study conducted by Kagawa[3]. 

In order to compare the model predictions with other experimental 

data, the material properties of the main load-carrying layers and the 

geometrical parameters are required as input data for the model. The 

three experimental studies mentioned above include this information. 

The material properties and geometrical parameters related to these 

experimental studies and comparison with the present model predictions 

are given Table 4 and Fig. 36. The ultimate strength for Poe [I] and 

Dexter[2] were calculated from the ultimate tensile strain under the 

assumption that the specimen will fail if the outermost fiber at the 

concave side of the wavy layer reaches its ultimate strain measured 

from an equivalent straight fiber or layer. The comparison of the model 

prediction with Poe's experiment [1] is not as good as with Dexter[2] as 

shown in Table 4. Also, the In-Phase model gives better results than 

the Out-of-phase model for comparing with both experimental results. 

In Fig. 36, the present model may be used to predict the effective 

young modulus and the local yield point of Kagawa's helical fibers[3]. 

Kagawa's stress-strain curve shows a very interesting change in the 

effective Young's modulus which is almost linear before and after the 

local yield point. One possible explanation is the fact that, under 

certain geometries, the local plastic zone will gradually propagate 

from the concave surface to the convex surface and also from the maxi-



Table 4. Applications to "REAL" Composites 

Reported Strength Analytical Prediction 
Author Ref. Reduction 

Parameters 
In-Phase Out-of-Phase 

i 

Ef fErn = 20 

Poe [1 ] 39 % 
E fG = 40 f f!1 23 /; 5 ;; 

L=20, hl=l 

h2=5, Ho=2 

Ef fErn = 20 

Dexter & Funk [2 ] 25 % Ef fCm = 40 25 % 14 ;~ 

L=20, h1=2 

h2=6, Ho=l 

-..J 
-..J 



2500~--------------------' 

2000 

.......... 

:f 1500 
'--" 

(f) 
(f) 
w 
g: 1000 
(f) 

500 

STRAIGHT FIBER 

HELICAL 
FIBER 

o~~~~~~-.-.-.-.~ 

o 246 8 
STRAIN (51!)) 

PRESENT MODEL 

STRESS-STRAIN CURVE 
o LOCAL YIELD POINT 

10 

Fig. 36 Comparison with Kagawa's Experiment[3] 

78 



79 

mum rising point to the inflection point of the wavy pattern. Then the 

effective Young's modulus will decrease after the local yield point is 

reached and exhibit almost linear elastic behavior until the elastic 

deformation and plastic deformation equilibriate each other. Once this 

equilibrium point is reached, the plastic zone will stop propagating to 

the adjacent material which is within the elastic range. Thereafter, 

increasing the tension load will result in failure of the plastically 

deformed region much like a straight specimen failure after its yield 

point is exceeded. 

COMPARISON WITH OTHER MODELS 

Some of the mathematical models given in the literature [8 and 13] 

are actually special cases of the present model. Also these studies [8 

and 13] do not include the shear term given in eq. (7). The governing 

differential equation of the blister model[l3] is a special case of the 

Out-of-Phase governing differential equation given by eq. (32). Also, 

the equivalent spring constant in ref.[13] is a special case of the 

linear spring constant given by eq. (30). 

d4w2 d2w2 
D-- + Pl-- + kW2 = 0 

d x4 d x 2 
(37) 

where 

k - Er/tr 

The tie-bar/column model[8] assumed an infinite matrix material and 

its governing equation is that of the Out-of-Phase case, but the elas-
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tic constraint due to an infinite matrix material cannot be calculated 

from the present model. 

d4w d 2w 
EfI- - F 

dx4 dx2 

where 

l6'11"Gm 
k -

1+6(1-2vm) 

d2w o 
+ kw - F--

d x2 
(38) 

(39) 

Using the same input data(Table 5) given in Jortner's numerical 

investigation[9], a similar result is obtained by the present model. 

The comparison is shown in Fig. 37. 

Equation (7) is easily modified to the governing differential equa-

tion of the shear mode buckling of a composite without initial curva-

ture in the main load-carrying layers or in the reinforcing fibers. 

d4w d2w 
EI-- + (KM+P)- - 0 

dx4 dx2 
(40) 

Let w - alsin(m'll"x/L). Then, substituting w into eq. (40) gives 

[EI(m'll"/L)4 (KM+p)(m'll"/L)2]alsin(m'll"x/L) - 0 (41) 

-KM ~ a 2KT - [h2/(h2-hl)]2KT = [2h22/(h2-hl)]Gm (42) 



Table 5. Jortner's Ideal Material 

Given in Ref.[9] 

Case Name E a Eb E e vue vae vau Gue Gae Gab 

Base Line 12.0 2.0 12.0 0.0 0.0 0.1 1.0 1.0 1.0 

lIigh Gab 12.0 2.0 12.0 0.0 0.0 0.1 1.0 1.0 2.0 

Low Gab 12 .U 2.0 12.0 0.0 0.0 0.1 1.0 1.0 0.1 

High Eb 12.0 12.0 12.0 0.0 0.0 0.1 1.0 1.0 1.0 

- -- ---
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Then the critical load for buckling is given by 

Pcr - 2hl€oEf = 2hlof 

- Elm2~2/L2 + [(2h22/(h2-hl)]Gm (43) 

Note that 1-2hl3/3, h2/hl - l/vf, and h2/(h2-hl) l/(l-Vf)· 

Then, 

E~2 G 
of _ - (mhl/L) 2 + m (44) 

3 vf(l-vf) 

Assuming that mhl/L«l, then 

Gm 
Of - (45) 

vf{l-Vf) 

The far-field stress is given by 

Ocr - vfof + (l-vf)om ~ vfof (46) 

Therefore, the critical far-field stress for buckling is given by 

Gm 
Ocr (47) 

(l-Vf) 

This result is identical to Rosen's result[7]. 
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If the shear deformation of the fiber reinforcement is taken into 

account, then Rosen's shear mode buckling model becomes the shear 

instability failure model proposed by Hayashi[16] given as 

Gm 
Ocr - (48) 

Gm 
vf- + (l-vf) 

Gf 

Lager and June[17] modified Rosen's model for their experimental 

study by including an influence factor as 

O.63Gm 
Ocr - (49) 

I-Vf 

It is obvious that eq. (47) and eq. (49) cannot be used for predicting 

the critical stress for the shear mode buckling of a composite with a 

high fiber volume fraction. The difference between eq. (47) and eq. 

(48) is caused by the difference in the assumptions for the elastic 

constraint on the reinforcement, i.e., the present model assumes the 

shear strain of the fiber to be neglected, while Hayashi's model 

assumes the shear stress to be constant in the fiber and the matrix. 
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CONCLUSIONS 

A mathematical model based on the Euler-Bernoulli beam theory is 

proposed for predicting the influence of wavy patterns in the main 

load-carrying layers or wrinkled fibers on the laminate behavior under 

tensile loading. The main load-carrying layers or wrinkled fibers were 

assumed to be corrugated beams embedded in elastic foundations of vari­

ous spring constants. The effective Young's moduli of different lami­

nate configurations were experimentally determined and compared to the 

predicted values computed from the model. The bending strains in the 

wavy layers were also predicted by the model and compared with the 

experimental results from moire fringe analysis. 

The model predictions were in close agreement with the present 

experimental results including both extensometer measurements and moire 

interferometry fringe pattern analysis. Furthermore, experimental 

results reported by other researchers were compared with the present 

model showing good agreement. From the comparison between the model 

and experimental results, the following conclusions were obtained: 

1. The model proposed in this study gives an accurate prediction of 

the effective Young's modulus of a laminate containing wavy layers and 

the actual strain in the main load-carrying layer in a wavy laminate of 

different wavy patterns. 

2. The pseudo strain due to the change of the geometry of the wavy 

layers must be taken into consideration for computing the effective 

Young's modulus even for very small amplitude wavy patterns. 

3. The model can be applicable for determining the effective 

Young's moduli and ultimate strengths of in-situ laminated composites 
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containing wavy patterns under tension loading in the direction of the 

wavy patterns. 

The present model has three disadvantages. First, it does not give 

the interfacial stresses between the main load-carrying layers and the 

matrix layers because the stress and deformation of the matrix layers 

are assumed to be constant through the thickness. Therefore, failure 

modes such as delamination cannot be addressed. By combining the pre­

sent model and the approach of Akbarov & Guz [10,111, the interfacial 

stress components in a wavy laminate can be calculated. Second, the 

model is not directly applicable to anisotropic materials containing 

wavy layers. To extend the present model to anisotropic materials, the 

model must be generalized in a way similar to the mathematical model 

proposed by Shuart[14]. Finally, the stress-strain state in the matrix 

material cannot be accurately predicted by the model. This is because 

the deformation behavior of the matrix material was idealized as simple 

uniform shear or tension-compression, which was only qualitatively con­

firmed by the moire analysis. 

In conclusion, the model generated herein gives a reasonable first 

approximation of the effective Young's modulus of composites containing 

local curvature in the reinforcement. Furthermore, while the strength 

issue has not been fully investigated, the model appears to give a rea­

sonable approximation of the failure of the reinforcing layer. 
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APPENDIX (EXAMPLE OF THE MOIRE FRINGE ANALYSIS) 

The displacement and strain relationships to calculate strains from 

a moire fringe pattern can be expressed by the following equations: 

AUx - 8Nx/f 

AUy - ANy/f 

€xx = 8UX/Ax 

€yy - AUy/Ay 

€xy - 8UX/Ay + AUy/Ax 

Where 

ANx - the increment of the number of fringes in the x direction. 

ANy = the increment of the number of fringes in the y direction. 

f frequency of the moire grating for the present study 

2400 lines/mrn (60960 lines/in.) 

To obtain the difference in the bending strain component from Fig. 

38, the number of fringes between two inflection points of the curva­

ture must be counted. In Fig. 38-(a), the initial difference in the 

number of fringes between the upper and lower surfaces of the aluminum 

layer is 0.25. Likewise, in Figs. 38-(b) and (c), the differences are 

-0.25 and -0.75, respectively. Compensating for the initial difference 

at the zero loading condition gives 
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llNx = 0 at the zero loading condition 

llNx = -O.S at 80 lb. tension 

llNx - -1.0 at 160 lb. tension 

Since the distance between the two inflection points is O.Sl in., 

half of the curvature pitch, the average difference in the bending 

strain component between the upper and lower surfaces, fdiff, for each 

loading condition is given by 

fdiff - 0 

fdiff - 0.S+60960+0.Sl - 1.61 E-S at 80 lb. tension, 

and 

Ediff - 1+60960+0.Sl - 3.22 E-S at 160 lb. tension. 

These strain values are compared with the model predictions in Fig. 32. 

To check the total strain variation along the upper and lower sur­

faces of the main load-carrying layer, the moire fringe pattern illus­

trated in Fig. 39 was analyzed for the In-Phase specimen under 160 lb. 

tension. Due to the unknown increment of the fringes caused by rigid 

body rotations of the specimen during loading, the numerical strain 

value cannot be calculated from the fringe pattern. But the general 

trend of the total strain variation along the upper and lower surfaces 

are in good agreement to the model prediction as shown in Fig. 3S. 
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