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ABSTRACT

This report describes the building blocks of a computer algorithm

developed for the time-accurate flow analysis of rotating machines. The

flow model is a finite volume method utilizing a high resolution approx-
*

imate Riemann solver for interface flux definitions. This block LU

implicit numerical scheme possesses apparent unconditional stability.
- *~ *r

Multi-block composite gridding is used to orderly partition the field

into a specified arrangement. Block interfaces, including dynamic in-

terfaces, are treated such as to mimic interior block communication.

Special attention is given to the reduction of in-core memory require-

ments by placing the burden on secondary storage media. Broad applica-

bility is implied, although the results presented are restricted to that

of an even blade count configuration. Several other configurations are

presently under investigation, the results of which will appear in sub-

sequent publications.



INTRODUCTION

Current interest in the design of highly efficient turbomachinery

has spurred the development of computer algorithms capable of accurately

analyzing the flowfields of rotating geometries. These new algorithms

can be used to complement the present-day algorithms which are based

primarily on empiricism. In addition, the design process can be accel-

erated with the help of computational fluid dynamics (CFD) as a prelimi-

nary geometry analyzer. CFD is progressing to the stage where routine

initial geometry flow analysis of relatively complex rotating machines

will be performed to reduce the overall cost of project analysis. This

is being accomplished by the recent, significant improvements in both

computer hardware and software. This report is concerned with the soft-

ware aspect of computational analysis.

At present, there exists a need for a robust computational algo-

rithm to accurately simulate the fluid flow within a three-dimensional

rotating geometrical environment. Of key interest will be computational

efficiency, solution accuracy, and logical simplicity. Previously, the

focus of this project was on the computational efficiency of the algo-

rithm. This was primarily due to a realization that the flowfield in

question would be so computationally exhaustive that even state-of-the-

art computational resources would require excessive turn-around time.

Although algorithm efficiency is still a premier issue, it was evident

at the onset of the continuation of this project that the present level

of efficiency must be accepted for the time being. The time had come to

take the numerical algorithm and incorporate it into a code whose frame-

work centered around turbomachinery.



This report outlines the mathematical background material and the

fundamental code logic necessary for the development of a three-dimen-

sional computer code suitable for the time-accurate analysis of turbo-

2
machinery. A detailed report on this subject matter is currently in

preparation and not available at the time of this printing.

In the next section a brief description is given of the mathemati-

cal equations (tools) used in this effort to develop a flowfield model.

The third section outlines the procedure to build a coherent mathemati-

cal model within which each equation is exploited for its beneficial

attributes. The third section also contains a description of the numer-

ical scheme developed to solve these modeling equations. The fourth

section presents the logical approach developed for simulating a dynamic

cylindrical environment in addition to outlining specific routines de-

veloped to optimize (tailor) the computer code for use on a vector proc-

essor, namely a Cray X-MP. The results of a complex rotating

configuration are presented in section five, demonstrating the utility

of the turbomachinery computer algorithm. The final section is reserved

for the conclusions of this entire endeavor along with future plans to

enhance the generality and solution accuracy of the code.



MODELING MATHEMATICS

Conservative Integral Model

The most fundamental form of mathematical model describing the be-

havior of a continuum fluid can be derived using a control volume

approach in an Eulerian reference frame. For computational brevity an

assumption of a nonconducting, inviscid, perfect gas with no body forces

will be made here, yielding

|r pdV = - pV • ndS, (1a)
9t JV JS.

|r pVdV = - (pV • ndS)V - pndS, (1b)
3t JV JS JS

-p(e + n )dV = - p(i + )v • ndS - pV • ndS,
V S S

2 i^i 2 C
e= P( + ) =. , y = , . (id)

where V is a control volume bounded by surface S.

Using divergence theory and additional vector notation, Eqs. (1)

can be cast in the following condensed form.

|r. i QdV + V • fdV = 0, (2)
3t Jv

 JV

where in a Cartesian reference frame
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For use within the context of this report (non-constant V), the time

differentiation appearing in Eq. (2) must be performed with the aid of

Leibnitz's Rule. With the aforementioned assumptions, Eq. (2) is com-

monly referred to as the Euler equations.

Conservative Differential Form

Equation (2) holds for an arbitrary fixed control volume V, conse-

quently the integrand satisfies

+ vat o. (3)

This equation, referred to as the differential conservation law form of

the Euler equations, will prove to be very beneficial in matching the

numerics with the physics being modeled.

For generality it is desirable to transform the equations from a

Cartesian reference-frame to a body fitted curvilinear reference frame.

The general curvilinear axes are defined as follows

£ = 5(x,y,z,t),

n = n(x,y,z,t),

C = c(x,y,z,t),

T = t.

(1)



Note, the obvious implication that a body fitted reference frame for a

dynamic geometry is inherently time dependent.

The details of the transformation are readily available, '^' hence

they are not repeated here. Transforming the Cartesian equations to the

more general set of curvilinear equations (dropping vector symbols)

yields •

where

3Q 3F 3G 3H

G = J

(5)
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with the contravariant velocities

v =

W

the Jacobian of the inverse transformation, i.e.



f t

" znV ' We " znV + We " ynV'

and the metric quantities

J"1(Vc

T~1 , ^n = J (x_z - z_x ), n, = -x n ~ y n - z n ,y C £ 5 C . t t x JT y T z'

y XTIZ£ ZT1XC ' ?t XT?X yt^y zt?z*

Quasilinear Form

A mathematical analysis of the differential form can yield signifi-

cant insight into the physics of the flowfield in question. Guided by

this insight, specific numerical techniques can be employed to more ac-

curately model the flowfield. This analysis begins with the derivation
9

of yet another form of the equations. The final form necessary in the

development of this mathematical model is derived from the differential

form.

Consider differentiating the vector-valued flux functions F, G, and

H (homogeneous functions of degree one in Q) appearing in Eq. (5) with

respect to the dependent variable vector Q. The resulting flux Jaco-

bians A, B, and C, are written



, 9F 8G 3H
A = 9Q' B = 9Q« C = 9Q '

Substituting these expressions in Eq. (5) yields the quasilinear form of

the Euler equations. It should be noted that the quasilinear form,

given below, is not in conservation law form.

A §
35

(6)

Riemann Problem

Essential to the investigation of compressible transonic fluids is

the study of discontinuous solutions. To complete the development of

the mathematical model, it is necessary to introduce the concept of a

particular type of initial-value problem for a hyperbolic system of con-

servation laws. To begin the discussion, a digression to one-dimension

is in order. Consider for example, the one-dimensional hyperbolic sys-

tem

3u * 3f n r-7\
9t +^ = °' (7)

where the initial data are

u(x,0) =

R

for -<*> < x

for 0 £ x < «

and u(x,t) is an m component column vector and f(u) is an m component

vector-valued flux function. The preceding example of the simplest kind

of discontinuous data (two semi-infinite regions of constant value, sepa-

rated by a point of discontinuity) poses what is referred to as a



Riemann problem. Riemann problems present themselves in varying degrees

of difficulty, depending on their linearity or lack thereof and on the

degrees-of-freedom (m) they represent. For a detailed study of the

Riemann problem and the mathematical theory of shocks (discontinuities)

the reader is referred to [5].



NUMERICAL FORMULAS

Dlscretized Integral Form

The ultimate goal in computational fluids is to minimize the ap-

proximations to the most fundamental modeling equations, presumably to

salvage most of the physics, while attaining modest execution times on

the available equipment. Hence the approach used here is founded on the

discretization of the integral conservation law form of the Euler equa-

tions, Eq. (3). This formulation, commonly referred to as a finite vol-

ume method, yields the following discretized integral expression for a

three-dimensional computational space with finite volume (cell) centers

denoted i,j,k:

5 F 6 G 6 H
il2 + JL. + JL- + _2_ = o, (8)
AT AC An A£ ' v '

where

. 6( )(0 = (0( M/2 - (0( }-M2 •

In this expression the components of the dependent variable vec-

tors, Q.- ̂  ,. represent average cell values. It is therefore evident1»J » K

that some method must be devised to accurately represent the vector-val-

ued flux functions F, G, and H on the bounding surfaces (faces) of the

cell. One of the methods used in this study is based on a one-dimen-

sional analysis of the Riemann problem local to each interface, estab-

lished by the discontinuous nature of the dependent variable vector Q in

a finite volume field. To facilitate the introduction of this method, a

return to a one-dimensional Cartesian space is in order.



F^irst Order Flux Formula

The discretized integral form of the Euler equations written for

one spatial dimension appears as

At Ax

Godunov proposed a procedure to obtain a global solution to Eq. (9) by

solving the set of Riemann problems presented by the interface disconti-

nuities. The Riemann problem local to each interface is costly to solve

exactly, due to the necessary iteration. Many investigators'^' °>"»10

have made attempts to lessen this computational expense by approximating

the solution of the Riemann problem. In essence these methods yield an

approximate solution to the exact equation, and are referred to as ap-

proximate Riemann solvers.

In [11], Philip Roe suggests an alternate procedural choice. Roe

proposed to obtain the exact solution to an approximate equation. The

cleverness of Roe is evidenced by his choice of approximate equation.

Consider the quasilinear form of Eq. (9)'s parent conservation law.

where ACq^.qp) = 3f/3q is a constant matrix representative of local in-

terface conditions. Matrix A is chosen to have the following specific

list of properties, which Roe "christened Property U (since it is in-

tended to ensure uniform validity across discontinuities)":

10



(i) It constitutes a linear mapping from the vector space q to the
vector space f.

(ii) As qL -»• qR -*• q, A(qL,qR) -» A(q), where A = j-.

(iii) For any qL, qR, A(qL,qR) • (qR - qL) = fR - fL-

(iv) The eigenvectors of A are linearly independent.

Restricting A to the satisfaction of Property U results in a spe-

cial averaging process for the dependent variables from which A is con-

structed. Referred to as "Roe averaged", the dependent variables are

given by the following expressions:

1/2 + 1/2
L L R n
- —2 - -

PL + PR

1/2U 1/2Up H + p H
H -H -

PL + PR

where the total enthalpy, H, is defined

H = - (e + p). (11d)
P

The flux difference can be expressed as

df = f - f = A • (q_ - q. ) - A • dq (12)
n L K L

where A is constructed with "Roe averaged" variables. Armed with the

eigensystem of A and the knowledge that the interface differential dq is

a proportional to the right eigenvectors of A, the interface flux dif-

ference can be written relative to the right eigenvector basis as

11



df - I a.A(J)r(J) = r«.A(j)r(j) «• r«.A(J)r(J) - df+ + df~ (13)
J O . J

Physically, the flux difference is shown to be the composition of a col-

lection of waves. In this equation r^' is a right eigenvector of A; ai
vJ

is the strength of the jth wave (the jump in the characteristic variable

across it); \^' is an eigenvalue of A (the speed of the jth wave), and

Z~ and Z+ denote summation over the negative and positive wave speeds,

respectively.

The interface flux, see Fig. (1), can be computed from either of

the -following formula:

fi +1/2=
fL +

This first-order interface flux formula developed for the one dimen-

sional equations can be used in a multidimensional space provided the

assumption that all waves travel normal to the interfaces is made.

Higher Order (TVD) Flux Formulas

In order to provide solutions of higher spatial accuracy, a family

1 ?of schemes can be represented by the addition of a corrective flux to

the first order flux, Eq.(T4), produced by the preceding analysis:

(15)

12



The principle part of the truncation error for this flux formula is

found to be

TE = - <* "
 1/3) (Ax)2 l f(q) (16)

The details (common names, order of accuracy, etc.) of the members of

this family can be found in [IStl'O. Two members, third-order (c|> = 1/3)

and fully upwind second order (<}> = -1) were, by choice, exclusively used

in this project.

The... discussion of a higher order scheme inherently involves a

method used to control spurious oscillations, i.e. dispersive errors.

The method, actually methods, used in this project concern limiting com-

ponents of the interface flux to produce total variation diminishing

(TVD) schemes, i.e. non-oscillatory schemes. The following formulas

have theoretical development as TVD schemes only in scalar nonlinear

equations and systems of linear equations in one-dimension. One of the

"limiters" used here, referred to as a minmod limiter, yields the fol-

lowing expressions for the corrective flux terms:

dfI+1/2 = ̂
Lj(l'-1)

(17)
,U)
i+1/2'

where

minmod(o^/2, B o ) , (18)

with o^J', a parameter proportional to the change in characteristic

variables across nearby interfaces, defined by

13



where SJ' is a left eigenvector of A. The minmod limiter is then de-

fined

minmod[x,y] = sign(x) max{0, min[|x|, y sign(x)]} (20a)

and the parameter 6 is a "compression" parameter given by

1 < B ^ f^ (20b)1-<}>

For this project the maximum B was used in all cases.

Another limiter used here, this one credited to Roe , is called

Superbee. It is defined

L.U.n) = cmplimCa^], a(J)), (21)J i+±, i+£
2 2

where

craplim[x,y] = sign(x) max{0, m in [ | x | , 3y sign(x)] , m i n [ B | x | , y s ign(x)]}
(22)

and the compression parameter 6, not defined by Eq.(I8b), is taken here

to be 2.

Approximately Factored Implicit Scheme

Up to this point no mention has been made as to what time level the

numerical interface fluxes appearing in Eq. (8) are evaluated. The un-

derlying theory of the approximate Riemann solver presented thus far is

based on explicit concepts which result in an unattractive, rather

14



stringent time-step restriction. Equation (8) can be written in a

linearized discrete- integral delta form to cover a broad class of im-

plicit schemes :

Some of the time differencing schemes represented are (8=1, \J>=1/2) three

point backward, (6=1, ij»=0) backward Euler, and (0=1/2, i|>=0) trapezoidal.

Formally, all terms appearing in this equation should result from. a

single theory. Superior results have been obtained, though, by evaluat-

ing the residual term Rn with flux difference split theory, and the

left-hand-side (LHS) operator with flux vector split theory, see [17].

The rationale behind this is unclear and needs further investigation.

Hence the following expressions complete Eq.(23) for this hybrid scheme.

M" = 6. A* + 6.A~ + 6.B* + 5.B^ + 5 C- + 5 C~ (2*1)
1 1 J J K K

with

and

15



Rn = 6.F + 6 .0 + 6 H, (25)
1 J • K

where, F, G, and H result from flux difference split theory.

The LHS of Eq. (23) tends to be cumbersome and difficult to invert,

not to mention very costly. In light of this, the LHS was approximately

factored into the product of two operators, each of which involve the

passage of selected information. Here a forward and a backward operator

are used as in [1] (block LU factorization), yielding the following two

step (LU) scheme:

(26)

or

[l + y^ (6^' + 5.B" + 6 k C ~ ) ] A Q n = AQ (2?b)

Qn+1 = QH.+ AQ" (270

Although factoring has been shown to degrade the unconditional sta-

bility of Eq. (23), the (LU) scheme apparently retains this touted at-

tribute. Equations (27) are in the final form of the mathematical model

developed for the time-accurate analysis of turbomachinery.

Since the approximate Riemann solver is a characteristic based

scheme, the characteristic variable boundary conditions developed in [3]

relative to a three-dimensional time-dependent body-fitted reference

frame for inflow, outflow, and impermeable boundaries are employed where

applicable. As in [3] phantom cells are utilized to implement these

16



boundary conditions. The change in dependent variables, AQn, is set to

zero in the phantom cells for inflow, outflow, and impermeable bounda-

ries.

17



LOGICAL APPROACH WITH COMPUTATIONAL OPTIMIZATION

Selected Similarity Multi-Block

As mentioned in the introduction, the scope of the field of turbo-

machinery can encompass extremely complex flowfields. In order to ade-

quately resolve these, a vast number of computational cells must be

used. Several reasons can be cited for the segmentation of one virtu-

ally insurmountable flow environment into several smaller more manage-

able flow environments. This is commonly referred to as compositely

gridding the. ..field. There exist three basic methods of compositely

gridding a field: overlaid, patched, and blocked. The approach taken

here, a blocked grid method, is similar to that taken by Belk . Belk

has investigated many of the pitfalls encountered when constructing a

code of a general multi-block nature. The emphasis in [M] was on devel-

oping a computer algorithm to handle a completely arbitrary block ar-

rangement, unfortunately this added to the complexity of the code.

For the case of turbomachinery, the nature of the geometry suggests

possible block arrangement and characteristic restrictions which can

yield significantly simpler algorithm logic. The block structure pro-

posed here for the specific case of dynamic cylindrical geometries (gen-

erally,bladed or finned bodies of revolution) is referred to as

selected similarity multi-block.

Selected similarity multi-block is a method by which the benefits

of a composite environment are attained while maintaining a reasonably

simple, general algorithm. This is accomplished by requiring a fixed-

map block arrangement with selectively-similar block characteristics.

Hence by establishing prearranged, selectively-similar blocks with a

18



predefined solution path, algorithm logic can be simplified, thus en-

hancing code readability. In short, an attempt is being made to walk

the fine line separating code generality from code simplicity. The fun-

damental restrictions applied in this approach deal with block arrange-

ment and characteristics.

A natural arrangement presents itself when dealing with cylindrical

frames. Consider partitioning the macro-block (with accompanying global

curvilinear axes) into partial cylinder blocks, see Fig. 2. Further

considerations into the particular eccentricities of rotating geometries

indicate a desire for additional partitioning in the axial direction, as

shown in Fig. 3- Each partition in the axial, 5, direction will hence-

forth be referred to as a blade row, although it is not necessary for

each axial partition to contain blades. Each blade row is granted lim-

ited rotational freedom about the E, axis relative to the adjacent blade

rows. With partitioning completed, a block referencing scheme must be

installed. An obvious and simple choice is one which keys off the

(global) curvilinear axes, also shown in Fig. 3.

With an arrangement selected, the second fundamental restriction,

selectively-similar block characteristics, can be addressed. To begin,

the local block axes are assumed to follow the global axes relative to

orientation and direction, i.e. there exists global similarity (see Fig.

(4)). The block £,n,C (i,j,k) index limits (NI.NJ.NK) are restricted

such that for all blocks within a blade row NI, NJ, and NK remain con-

stant. In addition, NJ must remain constant between blade rows. NI and

NK are allowed to vary between blade rows, although the blade row cir-

cumferential cell count (BRCCC) must match.

19



For example consider Fig. (5), a three blade row configuration con-

taining four partitions in the first blade row, i.e. four blade row

blocks. Each of these inter-blade row blocks contain NIjXNJ^xNK.j cells,

where the subscript indicates the blade row. From the aforementioned

restrictions on NJ, it is immediately established that NJo=NJ2-NJ1. The

BRCCC for blade row 1 is the product of NK1 and the number of blade row

1 blocks. Hence the BRCCC matching restriction implies that NK2 and the

number of blade row 2 blocks are limited to being factors of the BRCCC.

In addition their product must equal the BRCCC. A similar condition

exists for NK, and the number of blade row 3 blocks. Summarizing these

restrictions in tabular form

Block Characteristic Restrictions

INDEX SIMILARITY LIMITATION

£ or I intei—blade row none

n or J global ' none

5 or K inter-blade row BRCCC matching

Memory Management

Those.researchers with access to the genuine state-of-the art Cray

2 with-its 256M words of internal memory might not concern themselves

with in-core requirements. The vast majority of research though, is

performed on equipment with lesser in-core capabilities. Also, it is

understood that even Cray 2 users could find geometries that would push

in-core requirements to the limits and beyond. Whence came an impetus

20



to manage the use of secondary memory, whether it is Cray's rapid access

Solid State Storage Device or any sequential storage medium for that

matter.

The use of computational blocks of differing cell count, and conse-

quently differing memory requirement, necessitates the development of

some special techniques to optimize memory utilization. A method re-

ferred to as ribbon vector dynamic memory management is used here. As

pointed out in [4], the principle of ribbon vector storage is frequently

used to compress in-core storage to avoid wasting memory cells. The idea

is to store the entire field on secondary memory with the exception of

the block currently under execution. Ribbon vector dynamic memory man-

agement allows the adjustment of the in-core field length to accommodate

each block, regardless of size (limited, of course, by the total in-core

capability), without excess memory cells. A version similar to that

proposed by Belk has been integrated into this computer algorithm.

Related to the topic of efficient memory use is the optimization of

the processing of the memory. The time spent manipulating memory in-

volves two general classes referred to as 10 wait time and CPU execution

time. An effort to minimize both involves maximizing the efficient use

of the hardware capability of the available equipment, as the ultimate

limiting factor is the equipment itself.

In the interest of minimizing 10 wait time, the use of unblocked

data transmission to and from secondary memory, namely SSD, made signif-

icant reductions. Essentially, all data contained within the ribbon

vector is transferred between in-core and secondary memory via unblocked

standard FORTRAN 10 statements. Some padding is required to maintain

21



proper unblocked data length (multiples of 512 words). Regarding CPU

execution time, efforts are made to utilize vector hardware to its full-

est, including a procedure to vectorize a backward or forward substitu-

tion.

The (LU) scheme involves point simultaneous solutions and backward

(or forward) substitutions. The substitution portion poses quite a

problem when attempting to utilize vector hardware. The difficulty is

1 8referred to as a vector dependency or recursion problem. A method has

been developed in order to circumvent this problem in a multi-dimen-

?sional space. The procedure in a three-dimensional space is to "si-

multaneously" process those cells lying on a special diagonal plane in

computational space. Cells whose indices satisfy the equation of this

diagonal plane,

i + j + k = K . (28)

where K is a constant designating the plane level, are computationally

independent. Hence with the aid of indirect addressing, diagonal plane

processing is used to facilitate the vectorization of a backward or for-

ward substitution.

Interface Control

Advancing a flowfield simulation in time requires solving the sys-

tem model, Eqs. (27), at each computational cell within the global do-

main for the new time level dependent variable vector Q. The solution

path advocated here requires two sweeps through the global domain, one

forward and one backward. The global path indicating the order in which

the blocks are swept to insure analogous single block solution advance-

22



ment is shown in Fig. (6). All blocks are forward swept then all are

backward swept. The forward sweep within each block consists of operat-

ing on (applying Eq. (2?a) to) each cell on a diagonal plane, beginning

with the lowest level interior plane and advancing (forward) to higher

level planes. The forward sweep is complete when the highest level in-

terior plane has been updated. The backward sweep is similar although

the planes are traversed in decreasing (backward) order, and Eqs.

(27b,c) is the applied operator.

Basic to the concept of multi-block is the requirement of continu-

ous grid lines between blocks. This provides a relatively simple means

of communication between blocks with stationary interfaces in computa-

tional space. Values from within the domain of one block can be ex-

tracted and then injected as phantom values in an adjacent block. As

previously mentioned, each blade row can rotate relative to the adjacent

blade rows. This rotation is presently governed by requiring continuous

grid lines across the shearing block interface at all time levels. This

is accomplished by maintaining equidistant circumferential cell spacing

on the blade row boundaries. A shearing block interface in physical

space yields a dynamic interface in computational space, i.e., the

blocks continue to change communication partners. This complicates the

simple communication procedure prescribed by a multi-block technique,

but with appropriate index bookkeeping the extract ion-injection proce-

dure is still valid. .

When dealing with multi-block techniques, an issue of the accuracy

necessary for the communication between blocks arises. Ultimately, the

best communication possible is that analogous to a singly gridded field.

The approach taken here with regard to internal block boundary communi-

23



cation is to mimic the cell communication within the blocks, thereby

incurring no boundary induced error. Hence internal block boundaries

are maintained with up to third-order spatial accuracy. For the case of

re-entrant block boundary communication, periodicity and previous AQ or

zero AQ are satisfactory. Block boundaries involving the far field or

impermeable surfaces are maintained as mentioned in the third section

dealing with boundary conditions.

24



RESULTS

Even Blade Count (GE UDF 8-8)

The computer algorithm resulting from the procedures outlined in

the previous sections has application in the simulation of even or une-

ven blade count, single rotating, counter-rotating, or rotor-stator,

axi-symmetric or non-symmetric, multi-stage, at angle of attack geome-

tries. To support this claim several configurations are presently being

analyzed, the results of which shall appear in subsequent publications.

A configuration previously studied using a similar algorithm ^ will be

examined here. Since in [19] the interface fluxes were given by flux

vector split theory and the block interfaces were only maintained to

first order, it will be of interest to compare the two algorithms.

The configuration is that of a counter-rotating unducted fan (UDF)

emersed in an oncoming M=.?2 axial flow, see Fig. 7. The configuration

has two fan rows with eight blades per row. The highly swept, tapered,

twisted, thin blades are designed to reduce the axial Mach number

through the blading to alleviate compressibility losses. The forward

row rotates clockwise and the aft row counter-clockwise. Both blades

rotate with an advance ratio of 2.8.

The solution appearing herein was obtained using only two blocks

(benefitting from solution symmetry). Although only two blocks were

used, axial interblock communication was implemented with a full buffer

disk (temporary storage area for injected or extracted data). The pro-

cedure involves extracting data, imaging the data to form a full 360

degree communication buffer disk, then allowing the appropriate data to

25



be injected based on the positional relationship between the blocks and

the buffer disk. The mesh was H-type in all directions and each block

contained 56x21x10 (i,j,k) cells.

The solution (scalar quantities) of the UDF are periodic with re-

spect to blade passages, i.e. the solution repeats .each time the blades

are re-aligned. Although this is the case, the velocity vector compo-

nents in a Cartesian reference frame are only periodic with respect to

blade position. The periodic behavior of scalar quantities gives a good

measure of the "convergence" of such geometries. The convergence his-

tory of the . change in density, chosen to be defined as

Log.| Q( (Ap )"ms/(Ap )rms], is shown in Fig. 8. The transients associated

with the arbitrary initial condition of uniform flow have diminished

considerably after 3 complete revolutions of each blade row (480 time-

steps), yet the results presented herein still retain some of the more

stubborn transients.

There exists evidence of the inherent unsteady behavior of the

flow, though it is not prominent. Figures 9 and 10 support the comments

in [19] regarding the lack of variation in the blade surface relative

Mach number for both forward and aft blade rows. Though little varia-

tion is shown overall, there is more variation in the aft blade row, as

expected. Note, the previous comments regarding equidistant circumfer-

ential cell spacing result in ten timesteps per blade passage. Hence

each blade passage can be marked accordingly, with Step 1 representing

an axial alignment of the blades (or as close to an alignment as one can

get with highly swept, tapered, and twisted blades). Thus the suction
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surface and pressure surface variations in Figs. 9 and 10 represent the

respective maxima, and the steps indicated.are those from which these

maxima were computed.

Typical performance parameters are presented for comparison in

Figs. 11. At first glance, one can see in Fig. 11a that the power coef-

ficient (Power In) for the FDS scheme falls closer to experiment. The

question arises whether this is the expected behavior. Consider the

following plausible explanation. The FDS scheme is touted for less dis-

sipation relative to the FVS scheme. Hence a reduction in numerical

dissipation would tend to make for a 'more inviscid' flow, resulting in

stronger, crisper shocks. This in-turn could yield pressure distribu-

tions which produce lower torque coefficient values, hence lowering the

power coefficient from that of the FVS scheme. Figures 12 and 13, indi-

cating the blade surface relative Mach numbers for the two numerical

algorithms, do not necessarily support this claim. It is believed the

evidence needed to support this claim lies between the root and the mid-

span plots, although since these did not appear in [19] a comparison

cannot be made here.

The reduced efficiency relative to the FVS scheme plotted in Fig.

11b could also come from altered pressure distributions due to stronger

Shockwaves. In addition, the ratio of the blade torques given in Fig.

11c indicate an increase relative to the FVS. It is difficult to access

the cause of this increase, due in part to the influence on pertinent

parameters such as flow velocity and flow angle relative to aft blade

produced by the upstream blade row. Without benefit of a detailed flow-

field snapshot between blade rows for both the FVS and the FDS schemes,

no plausible arguments can be proposed. The conclusions drawn here re-
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suit from a limited source of comparable data, further investigation is

warranted.
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CONCLUSIONS

A computer program has been developed whose framework centers

around the analysis of general rotating machinery. This general appli-

cability has not been at the expense of algorithm simplicity. Painstak-

ing thought has yielded an algorithm capable of simulating even or

uneven blade count, single rotating, counter-rotating or rotor-stator,

axi-symmetric or non-symmetric, multi-stage, at angle-of-attack geom-

etries. The code presently stands at under 2000 lines, most of which

are the numerics. A version of the numerical routine is resident on the

NASA Marshall EADS Computer System.

Future emphasis will focus on the development of simple axial in-

terface control allowing non-uniform circumferential cell spacing. This

could relax (or remove) the inherent dependency of the time-step on the

dynamic interfaces. Parametric studies of the effect of time-step on

solution accuracy, evaluating the compatibility of characteristic vari-

able boundary conditions with an approximate Riemann solver, and devel-

opment of better grids for the simulated flowfields are in order.
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Figure 1. Interface Flux



Figure 2. Macro-Block Circumferential Partitioning



Figure 3. Macro-Block Axial Partitioning with Indexing



Figure 4. Block Coordinate System Orientation and Direction
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Figure ,Z. UDF Configuration
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