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Ahsn;lcf T sampling window time interval 

A prototype multi-channel laser Doppler anernometry (LDA) 
processor was assembled using a wide-band transient recorder and a 
tl~icrocomputer with an array processor for fast Fourier transfonn 
(FIT) coniputlltions. The prototype instrument was used to acquire, 
process, and record signals from a three-component wind tunnel 
LDA system subject to various conditions of noise and flow turbu- 
lence. The recorded data was used to evaluate the effectiveness of 
burst acceptance criteria, processing algorithms, and selection of 
processing pdrameters such as record length. The recorded signals 
were also used to obtain comparative estimates of signal-to-noise 
ratio between time-domain and frequency-domain signal detection 
schemes. These comparisons indicate that the FFT processing 
sclten~e allows accurate processing of signals for which the signal- 
to-noise ratio is 10 to 15 dB less than practical with counter 
processors. 
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Laser Doppler anernometry (LDA) offers an indispensable 
method of obtaining nonintrusive, quantitative measurements of 
mean and turbulent velocity characteristics of a broad range of 
flows. An imponant measure of the performance of the optical and 
detection systems of the LDA is the signal-to-noise ratio (SM) of the 
photodetector output. This signal must be analyzed to obtain an 
accurate estinute of the burst frequency. Time-domain LDA signal 
counter-processors provide accurate Doppler burst frequency mea- 
surements at high data rates when the S/N exceeds a threshold of 
approximately 10-15 dB. This S/N is often difficult to achieve with 
long focus. backscatter optical configurations, and other factors 
such as surface glare and seeding density variations (due to 
centrifugal flows. for example) compound the difficulty. Since the 
level associated with the white-noise component of the photo-detec- 
tor increases with processor bandwidth, the SM can be maximized 
by narrow-band filtrring, but this may limit the velocity range and 
introduce biasing in flows with severe mean velocity gradients and 
turbulence intensities.' Another problem associated with counter- 
processors is discretization or quantization error which masks tur- 
bulence intensities below about 0.5%. depending on the optical and 
electronic set-up. 

Proposals for new processor designs which overcome the 
limitations of countertype processors have been recently made. 
Meyersl has proposed a frequency-domain processor which deter- 
mines the burst frequency by interpolating the output of a bank of 
five digital filters. Meyers reports that the processor, which will 
sample at rates of up to I Gllz, can process bursts with as few as 
150 photonsbunt and has a "residual" turbulence level of 0.2% for 
signals for which the bttrst frequency deviates from the mean by 
20% or less. 

It is also possible to digitize the signal at a high fixed rate 
and execute a discrete Fourier trutsforn~ to determine the burst fre- 
quency. This approach has been applied by several gro~ps,2.3.4.~ 
and offers several bellefits reletive to counter-type processors, which 
include insensitivity of SM to processor bandwidth and greater 
noise immunity. Modarress and Tan4 found that data acceptance 
rates using DFT processing improved by two orders of magnitude 
over counter processors. 'Ihe method takes advantage of commer- 
cially available transient recorders with sampling rates of up to 



within the upper 40 dB of the 76 dB dynamic range. A block dia- 
gram of the instrumentation is shown in Fig. 2. The front-end 
detectors of the counter-processors were used to provide the logic 
signals required to initiate digitimtion of the signal. 

JV. Pmcessine Software 

Test software included modules for acquisition. FFT card 
control, frequency data acceptancefrejection, and velocity component 
computation. A sutnmary of module functions is included in the 
Appendix. In addition to programs for evaluating ensemble aver- 
ages of the flow characteristics, test programs were written to 
evaluate burst S M  ratios for both time domain (counter-processor) 
and frequency-domain (FFT) processing, and to determine the effect 
of sample length on the accuracy of burst frequency measurement. 
This program was run with experimental data to evaluate the effec- 
tiveness of polynomial interpolation of the burst spectra to improve 
estin~ates of burst frequency. 

A processing rate goal of 25 sarnples/sec was determined to 
be consistent with minimum wind tunnel sampling periods of 1 min. 
allowing 1500 samplesAocation. Initial versions of the program 
achieved five accepted sample pairs/sec. Current efforts to optimize 
the code are expected to achieve the sample rate goal without incor- 
porating available hardware accrleraton. 

Fast Fourier transform records for each burst, similar to 
Fig. I b, were used to compare time-domain and frequency-domain 
detection schemes. A value for the time-donlain S/N (as seen by 
the counter-processors) was estimated by calculating 10 times the 
cottlmon logarithm of the ratio of the sum of burst spectral compo- 
nents to the sum of the nonburst spectral components. The corre- 
sponding frequency-domain S/N value is 10 times the logarithm of 
the ratio of the peak burst spectral component to the peak nonburst 
component. This parameter characterizes the requirement of a soft- 
ware detector to extract the peak spectral component correctly from 
tl~e array of spectral component values. 

Figure 3 shows plots of frequency domain S/N V.S. time- 
domain SM for two channels with differing noise levels. Typi- 
cally, time-domain S / N  values of 0 dB and 10 dB correspond io 
frequency-domain SM values of 10 dB and 20 dB respectively. 
These values are somewhat lower than predicted in the previous 
analysis since the noise was integrated over the entire sample length. 
rather than the burst duration. For successful time-domain detec- 
tion. a minimum detectable S/N value of 10-15 dB is required. For 
frequency-domain detection, a con~parable difference between the 
peak burst level and the highest noise component is needed. T h i s  
suggests that bursts can be correctly processed in the frequency 
domain which are 10-15 dB lower than accuritely measurable with 
cottnter processors. Temporary storage of the digitized burst wave- 
forms also pennits more rigorous acceptance criteria than those 
employcd with the couttter processor, allowing greater confidence in 
the acccptd data. 

Fast Fourier uansform conlputa~ion time is proportional to N 
log(N). where N is the number of transform points. Efficient son- 
ini-aid validation algorithms are comparably scaled. Thus higher 
throughput may be obtained at the expense of frequency resolution. 
The burst data was prwessed with Fm sizes of 1024, 512. 256, 
128. 64. 32. and 16 points to detennine the effect of record length 
on processor accuracy. In addition. the data was also processed 
after setting the first and last 25% of the samples of each burst 
record to zero, simulating the process of padding a shorter time 
series with zeros prior to executing the FFT. 

The peak component of the FFT is an estimate of the actual 
frequency, which may be assumed to be uniformly distributed 
within an interval centered on the measured peak and equal to the 
frequency intervul separating the components of the FFT. For this 
assunlption, the standard deviation of the estimate is 0.289 times the 
frequency interval, a value which was confirmed by experiment. It 
is possible to improve this estimate by fitting a parabola to the three 
highest spectral levels, and then calculating the peak of the fitted 
parabola. The process is illustrated in Fig. 4, which shows the 
results of a 1024-point FFT and a 16-point FFT with a fitted 
parabola. In each case, the burst envelope was computed and the 
data was extracted from the burst center. The frequency error of 
reduced length estin~ates was taken as the difference between the 
reduced length estimate and the peak of the 1024-point FIT. The 
effect of sample size and SIN on this error is discussed below and in 
Figs. 5 and 6. 

Figure 5 shows the locus of 50 sample pairs for the 32- 
sample FFT in coordinates of frequency-domain SIN and standard 
deviation of frequency estimate, in which the symbols 1 and 2 rep- 
resent samples from the first and second velocity channels, respec- 
tively. The scatter of the samples in Fig. 5 suggests that frequency 
resolution is more dependent on record length than SIN for the 
selected sample populiion. A further examinition of [he results for 
the various record length FFTs showed that neither the simple peak- 
component estinlate or the parabolic curve-fit estimate approached 
the high-resolution frequency estimate monotonically with record 
length, ruling out any successive approximation scheme. Other 
frequency es!imation schemes, such as the maximum entropy 
rnethod.9 may offer better results but were not considered in this 
study. 

Figure 6 depicts the dependence of ;he standard deviation of 
reduced length estimates on record length. The three curves corre- 
spond to unpadded peak component estimates, and for parabolic 
interpolations of padded and unpadded records. As can be seen 
from Fig. 6, parabolic interpolation improves the resolution by 
50%: Replacing the first and last 25% of the data samples with 
zeros had no significant effect on the frequency estimate. This sug- 
gests that burst-length velocity biasing, as described in the back- 
ground section, may be alleviated by zeroing a fixed number of 
samples outside the burst center without adversely affecting fre- 
quency resolution. 

Velocity profiles of a 1.5-in.-diam axisymmemc jet with an 
nozzle speed of 32 d s e c  were obtained to test the measurement and 
survey programs, and to detect serious biasing or defects in the 
hardware and software. A copy of a typical data sheet, with his- 
tograms for one location is presented in Fig. 7. Measurements of 
the mean velocity at a station foir jet diameters downstream of the 
nozzle exit are presented in Fig. 8, with measurements from a hot- 
wire anemometer and LDA counter-processor for comparison. 
Similar comparisons of the normal and shear stresses for the axial 
and radial components are shown in Fig. 9. These results show 
generally good agreement between the two methods. Improved 
sampling rates will pernlit larger sample populations and greater 
cot~fidence in the estinlation and acceptance algorithms. 

The present study demonstrated the feasibility of a micro- 
computer-based nlultichannel LDA signal processor using transient 
recorders and FfT. The throughput of this prototype processor is 
sufficient for most low-speed wind tunnel applications and the per- 
formance is superior to counter-processors for signals with S/N less 
than 10 dB. Preliminary evaluations of several processing algo- 
rithms were based on Doppler burst waveforms obtained from a 
multicomponent I.DA. Results of these evaluations suggest that 
zeroing a fixed number waveform sanlples away from the burst 
center may nlininlize burst duration velocity biasing without 
adversely affecting frequency resolution, and that parabolic interpo- 
lation of the spectral components may improve'the frequency reso- 
lution by about 50% relative to simply choosing the peak compo- 
nent. Continued trends of increasing computational and cost per- 
formance of microcon~puter-based instrumentation should inlprove 
the availability of this npproach as a cost-effective alternative to 
dedicated, nonprogntnmable LDA signal processors. 
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A. Initialization 

DETECTOR 

1. Initialize transient recorder and array processor 
(Set-up3, init-fftsys) 

2. lnput test parameters: digitizing rate, signal bandwidth 
mix frequency, number of sanlples 
acceptance criteria 

3. Initialize graphics display (graph-init, text-init) 
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B. Acquisition Loop 

1. Transfer data from uansient recorder to computer 
upon receiving event pulse. (TransZk) 

2. Conven and scale data to Ibbit  integer format (Trans2k) 
3. Exccute FFT and PSD (real-fft-psd) 
4. Son frequency data for largest element (sortl.son2) 
5. Acccpt/reject on basis of relative magnitude and location 

of next highest elements (reject if non-adjacent) (son1,sorO) 
6. Update statisitical qwrntilies and graphics display (update) 
7. Repeat for each channel until sample number requirement 

is fulfilled 

1. Compute turbulence quantities (avg) 
2. Update graphical displays (print-avg) 
3. Store data and move to next traverse location (copy) 

20 
TIME, ptec 

Figure 3. Typical variation of (S/N)F vs (SMh.. 
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Figure 4. Parabolic interpolation of 16-point and comparison 
with 1024-point FIT. 
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Figure I .  (la) LDA single burst waveform. (Ib) Single burst PSD. Figure 5. Typical distribution of interpolated Frequency error. 
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Figure 6. Effect of sample size on interpolated frquency error. 
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Figure 7. Typical o u t p u t  p a g e  for two-channe l  set-up. 
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Figure 8. Mean velocity measurements of axisymmetric jet. 
Ue = 32 rn/sec. D = 3.81 cm. x D  = 4.0. 
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Figure 9. T u r b u l e n c e  measurements of a x i s y m m e t r i c  jet. 

Ue = 32 mlscc, D,= 3.8 1 cm.  x/D = 4.0. 
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