
CORRECTNESS CRITERIA FOR PROCESS

AN EXTENDED ABSTRACT

'_] u

/! _ _.. /_/ , - /

,.- / /

MIG RA'I [ON

/ .V:_,

I!C

ChinLu and J.W.S. Liu

1304 W. Springfield Avenue

Department of Computer Science

University of Illinois

Urbana, Illinois 61801

Contact Person: Chin Lu

Address: same as above

Phone: (217)-333-8741
Net Address: chine_bcs.uiucdcs.edu

vi

"'1

I

:'-'.> m

-<

{NASA-Ca-182939)

PBOCESS MIGRATION

CORBECTNESS CRITEhIA tO.

{Illinois Univ.) 11 p

CSCL 09_

N88-26823

Unclas

G_/61 0146703

This work was partially supported by the NASA Contract No. NAG 1-613 and a sra :t from AT & T L -

formation Systems.

s

[':_!

=

= £

_ 7

r _

z N

-:Ni

_ =_--2_

= __

L _

q

@

=

m _

https://ntrs.nasa.gov/search.jsp?R=19880017439 2020-03-20T05:30:30+00:00ZCORE Metadata, citation and similar papers at core.ac.uk

Provided by NASA Technical Reports Server

https://core.ac.uk/display/42831798?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

CORRECTNESS CRITERIA FOR PROCESS MIGRATI_ _N

AN EXTENDED ABSTRACT

INTRODUCTION

A process is a program in execution. Process migration is the relocation)f a process fron

the host (the source host) on which it is executing to another host (the de: ination host) [11

Process migration has been proposed as a way to improve response time [1- I and availabilit_

[1,3,6,7] in distributed systems. DEMO/MP [1], System V [2], and ACCENT _] are well-know,

systems that support process migration. Process suspension and resumption p .ckages have beer

implemented to support process migration in UNIX'- environments [8,9].

In a homogeneous distributed system containing hosts that have i_entical hardwar

features, run functionally identical system software, and provide identica services to use

Z

-

: T

= =_

- N:

2 -

processes, a user process can be migrated freely from one host to another in principle. W_

assume that every user process executes correctly on every host if it is ne_ _,r migrated. Th:

result produced by a process that is never migrated is referred to as its norrna_ result. A proce_q

that is migrated may produce a result different from its normal result. This result ma"

nevertheless be correct according to some adequate criteria, and hence its m ;ration is correci

In general, a migrated process may execute incorrectly or produce an unacce i table result on it_

destination host. For example, a process that accesses host dependent variab es such as time cf

the day or process identification number on a UNIX* host may produce an in orrect result afte_

it is migrated. Simple migration packages described in [8,9] do not handle th_ migration of ho_,:

z

- Z

Z

variable dependent processes correctly.

'- UNIX is a trade mark of AT & T.
T

z

_S

Z

This paper defines a set of correctness criteria. These criteria are chosen to maximize the

12
e_

2

:±

+
types of processes that are allowed to migrate. A process is not allowed to aigrate when its =

migration cannot be done correctly according to them. Means to support eorr, :t migration and _

to identify processes that cannot be migrated (correctly) are discussed briefly. _

MORE ON Tlq'E PROBLEM

Typically, a set of system server processes resides on every host and prov tes basic servicee

to user processes on that host. We refer to these system server process,; as local-serve7

processes [10]. Conceptually, it is more convenient to envision that local-serw : processes never

migrate. When a host fails, local-server processes die. Hereafter, the term p ocess refers to

user process unless stated otherwise. We refer to the local-server process ;hat handles th_

migration of processes on each host as the migration handler on that host.

T ¸

- Z

N

= 7
_ r--

= z

Z

From the stand point of any process, a system consists of two entities: the process itself an_

the environment of the process. The term environment loosely refers to the ._est of the systerT

with respect to that process. There are at least two aspects in the notion f correct proces:

migration. One aspect is concerned with maintaining the internal state of the ligrating process

Another aspect is concerned with the interaction between the process and its en ironment.

It is obvious that when a process is migrated, its internal state must be pr _served. In othe

words, the internal state of the process at resumption time must be the same :_ the state of t h,

process at suspension time. (The internal state information includes the pr_ cess's stack, tex = _:

segment, data segment, register contents, instruction pointer, etc.) We refer _ this criterion a

state consistency criterion. In all process migration implementations [1-3,8,9, this criterion i

satisfied by making the information on the internal state of the migrating pro :ess at suspensio_

time available on the destination host and by having the migration handler • n the destinatio:

2

hostrestorethestateof the processbasedon this information.

It is also obvious that the migration of any process should not leave it: source host in a

inconsistent state. The migration handler on the source host is responsible for this job. Fc _

instance, on a UNIX host, the files that are opened by the migrated process i ust be closed; th_

resources held by the process must be released, including locks for excluslv access of share_

resources and temporary storage, etc.. In addition, during the execution an6 migration of an

process, all consistency constraints of its environment must be satisfied. _'hese consistenc

constraints are both application- and implementation-dependent. Typically di ferent consistenc:

constraints are enforced by different components of the system regardless. We need not b,

concerned with this problem here.

Any knowledge a process has of its environment is obtained via its inter .ctions with som_

local-server processes on its host and with other processes in the system. In p _rticular, throug_

its interaction with the local-server processes on its source host, a proc, 5s inherits some

properties local to that host. If it interacts with the corresponding local-serve processes on th_

destination host after it is migrated, it will inherit some properties local to th_ destination host_

These properties may be inconsistent and the inconsistency may cause the m_$raged process to

execute incorrectly.

readings at the same time on different hosts may be different. Suppose that P

and is resumed at t_ according to host A's local time, and B's local time

For example, suppose that a simulation process P on host A uses explicit ;ime reference to

count the numbers of events during different time periods. Each host has a =ocal clock; time

_suspended at t 1

I

t 2 when P is

t

resumed. Since t 2 is usually not equal to t2, the result obtained by P after _: igration may be

different from the normal result of P. (Whether this different result is acceptab e depends on the

z

_ r

z _

2

£ £

N
7

2 _

_S

g

5 _

?
i £

- 2

= _

£

w

; :2

2 _

z _

=

= =

2

Z

=

= =

T _

=

r

application.} In fact t 2 is not necessarily larger than t r In this case, P sees ar inconsistent viev

of its environment against monotonic constraint of time as a result of it: migration. Thi

example illustrates that the correctness of migration depends the proc ss's view of it

environment. Therefore, another criterion for correct migration should be that a migratini

process sees a consistent view of its environment at all times. In other words the properties 6

its environment that are visible to a process must satisfy a set of consistenc constraints. W

call this property consistency criterion and will return later to define it formall:

Unlike the state consistency criterion, property consistency constraints aJ ; mainly semanti

constraints on certain system properties and hence are typically systen dependent. Th

monotonic property of system dock and the uniqueness of process identifi r are two simpl

examples. In distributed systems where several versions of a file may exist ,n different host_

requiring a migrated process to use the same version (not necessarily the sarr _ copy) is anothe

example. Property consistency constraints can be specified at system level, a particular, the

can be put in the specification of migration handlers as additional invarian_ conditions of th

process environment that must be maintained on the behalf of a migrating pro_ ess.

We say that a process is migrated correctly if both the state consist, acy and propert

consistency criteria are satisfied. One way to ensure correct migration _ a process is t

"encapsulate" its environment; the migrated process interacts with the same _et of local-serve-

processes before and after the migration [I]. The migrated process continues '__ be dependent o i

the source host. (For example, in the DEMOS/MP system, a migrated pro_ :ss depends on ils

source host to forward messages.) This is not a feasible solution in gener- . If migration

carried out for the purpose of increasing host availability, when the host is down local-serw.-

processes on the source host will die making it necessary for a migrated proce: s to rely on a ne ,'

set of local-server processes on the destination host. Problems similar to the ne encountered i l

2 _

±

= =

R _

Y

Z =

? -

2 -

5

L

=

± 2
2 T

: z

5

,2
c _

i2,
- ?--

7 _

Z _

S

=

migrating processes that access location dependent variables will arise under _ fis circumstance.

In past studies on process migration, processes that access location dependent v:_ :iables or rely on

location dependent features are simply not migrated I1-3]. Methods to identify lch processes are

typically not given in these studies. We note that this restriction on the ty_ :s of processes is

often unnecessary. For example, the process P in the previous example ca_ not be migrated

under this restriction. However, P can be migrated correctly either after it r_ _ longer needs tc

access the system clock or before it makes any access to the system clock. A] ernatively, if the

migration handlers can maintain a consistent view of its environment for P by compensating fo_

the difference in system clocks on the two hosts, P can be migrated correctly _t any time. W_

describe later a way to detect inconsistency between properties already inherit d by a migratin_

process from its source host and properties it will inherit from its destir ,tion hosts. Thi_

inconsistency is resolved by the migration handler whenever it is possible to _o so. By makin_

sure that all property consistency constraints are satisfied on the behalf of a ligrating process

the migration handlers can ensure that some specific attributes of system fen ures inherited b'

the process are kept consistent as the process migrates.

FORMAL DEFINITIONS

In order to define state consistency and property consistency constraints igorously, we us

the following formal model (11] to specifx the interactions between a process and it

environment. The former is an object P. The latter consists of a set of obj cts referred to a

environment objects. An object consists of a name, a representation of data s_ :uctures stored i

the object, and a set of operations on the data structures in the object [1 ,131. The proce_

interacts with its environment by invoking the operations of the environment ¢, _jects.

i ±

z

T £

±

! -
=

2

=

- =

= :=

2 2

- 2

_ z

i

An object is modeled as a state machine M [14] represented by a 4-tuple

M = < S, So, O, T>, where S is the state space represented by a set of _ ate variables; S_

denotes the initial state of the state machine; O is a set of transition operati ,ns; and T is th_

transition function. Each operation in O, when executed, causes the object tc change state. It:

effect is expressed by the transition function T: O × S ---* S. More specifics, ly, there are tw_

basic types of functions -- V-functions and O-functions. Each primitive V-fl_ tction returns r.h,

value of a state variable. The values returned by the set of all primitive V- anction calls at

particular moment specify the state of the object at that moment. A V-func_ on that returns

value computed from the values of primitive V-functions is called a derived _ -function. An O

function performs an operation that changes the state of the object. The stat_ transitions calle,

effects are described by assertions relating new values of primitive V-funct ,as to their prio

values. The set O of transition operations of M is the set of O-functions define i for the object.

The interface between an object and its outside world is the set of e ternal operation_

consisting of all its derived V-functions and O-functions. A process lteracts with it;

environment by invoking the external operations of the environment objects.." :ore specifically,

invokes either a derived V-function to examine the state of an environmen object or an O

function to change the state of the environment object. Similarly, the state o[the process obje(

can be changed or examined by an environment object.

Let Sp(t) be the internal state of the process P

references are in terms of a clock external to the system.)

suspension time s and resumption time r, respectively.

that Sp(s) = Sp(r).

at time t. (In thi section, all tirr,_

Sp(s) and S[,(r) art the states of P :t

The state consisten y criterion meat-:

2

L

!-

F

: z

±

z =

Let Ex(P) denotes the set of environment objects with which process P nteracts on host

X. Suppose that there are n environment objects in Ex(P), each of them i denoted by E,

i = 1, 2, .., a. Then Ex(P) = { Et, E2..., E_ _j. The state space of Ex(P), den :ted by $x(P), is

the product of the state spaces of all environment objects in Ex(P). Suppose hat process P is

migrated from host X to host Y. Let Sx(P , s) be the state of Ex(P) at susp, _sion time s and

S_.(P, r) be the state of E_(P) at resumption time r. Clearly, if

Sx(P , s) = S_,(P , r)

the migration is correct.

(1

In a message-based system, the condition in (1) can be satisfied for a mi rating process P

by having Ex(P) = Ey(P) and by allowing no messages between P and its _ Lvironment to b_

exchanged during migration. This in ['act is how correct migrations are done ir the DEMOS/M[

system [1] and in [10]. Sometimes, it will be too expensive or impossible to satisfy the stric

condition (1). (For example, in a procedure-oriented system where a process n_eracts with it:

environment through system calls.) Insisting that (1) is to be satisfied fo_ every migratin_

process will make it impossible for many processes to migrate. Fortuna .'ly, (1) is not

necessary condition for the the property consistency criterion to be satisfied.

To state the property consistency criterion rigorously, we introduce her e the notion of

view in the state machine context. A process P's view Vx(P , t) of its envir_nment Ex(P) o_

host X at time t, is defined as the properties that P has observed about i x(P) in the tim

interval starting from the creation time t o of P to the time t. Vx(P ,t) is par of the knowledg

P has at t about its environment Ez(P) [15]. Since the set of derived "-functions of ai

environment objects defines exactly what a process can observe about its envi: _ament, we defin

Vx(P , t) to be the set of values returned by all the derived V-functions of E (P) invoked by i

=

=

: =

L

=

:. =

=

i:

E:

in the time interval (to, t).

We express all property consistency constraints in terms of assertions rel: _ing the values o

external V-functions before and after the migration. Let t 1 and t 2 be two ti _e instances witt

t 2 :> t 1. When a process migrates from host X to host Y between t 1 and t2, it_ clew Vy(P, t2) 0

E_.(P) on host Y at t_ is said to be consistent with its view Vx(P, tl) of Ex(P on host X at t L i

all the property consistency constraints specified for the system are satisfied. '-Ie say that P ha

seen a consistent view of its environment at t 2 with respect to Vx(P, tl), or sii_ ply the two view

are consistent; we use Vx(P, tl) => Vy(P, t2) to denote this fact. [n other _ ,rds, the prope:t:

consistency constraints serve as invariant conditions that are true for bc h Vx(P , tl) am

Vy(P, tz). Since a process runs correctly on a single host, Vx(P, tl) => _ .(P, tz) is alway

true. The consistency of different views has the transitive property. Hence, ['or different tim:

intervals t 1 < t 2 < t3, if Vx(P , tl) => Vy(P, t2) and Yy(P, t_) =_" Vz(P, t3), the

Vx(P , t,) => Vz(P, ta) also holds.

The property consistency criterion is

Vz(P, s) => Vy(P, r) (:i

where s and r denote suspension time and resumption time, respectively, h ;tead of the stri¢_

condition (1), we only require that (2) be satisfied during the migration c a process. Thi_

criterion simplifies the implementation of migration handlers and allows lore processes t_

migrate since the states of the environment objects on two hosts may be diffc ent so long as th

two views are consistent.

&

i

2

i 2

Finally, the importance of migration transparency has been discusses at mgth in literatu_ :

'1-6 t . Migration tranparency requires that any names related to process i entifiers that a_

passedto userprocesses in the system including the migrated process itself not)e changed when

a process is migrated. We note that migration transparency can be specified a one of the state

and property consistency constraints.

S U MMARY

Two correctness criteria, the state consistency criterion and the pro erty consistenc?

criterion for process migration are discussed in this paper. The state machine ai proach is used tc

model the interactions between a user process and its environment. These crit ria are defined ir

terms of this model. We introduced the idea of environment view to distin_ Jish what a usel

process observes about its environment from what its environment state really _s and argue tha!

a consistent view of the environment must be maintained for every migrating p ocess.

A separate paper [16] discusses the design of migration handlers that ensur __scorrect proces:

migration in procedure-oriented systems. As a local-server process, a migrat on handler neve

migrates. When a process is to be migrated, the migration handler on th; source host (1

suspends the process; (2) identifies if the process can be migrated correctly according to th,

criteria given here; and (3) transfers the internal state of the process an, its view of th

environment to the handler of the destination host for resumption. U I)n receiving th

information sent by the migration handler on the source host, the migrati, _ handler on th

destination host (4) resumes the process and (5) presents the migrated proces_ a consistent viex

of its environment. Ways to specify and implement system calls and to store _istory on proce_

interactions that allow their views be generated and maintained efficiently a e described alon

with examples illustrating the implementation of key components for the UNL__ environment.

REFERENCES

[1} Powell, M. L. and Miller, B. P., "Process Migration in DEMOS/MP", Operating Syste_

Review, Vol. 17, No. 5, 1983.

k

(2]

[3J

14]

(5]

I6}

[71

I8]

19]

[10j

[11]

[12]

113]

_141
L J

115}

:16!

Theimer, M. M., Lantz, K. A., and Cheriton, D. R., "Preemptable _emote Executio_

Facilities for the V-System", ACM Operating Systems Review, Vol. 19, N .:. 5, 1985

Rashid, R. F. and Robertson, G. C., "Accent: A Communication

Operating System Kernel", Proc. of the Eighth Symposium on Operating
December, 1981.

)riented Networ •

ystems Principle

Ni, L. M., Xu, C.-W. and Gendreau, T. B., "Draft Algorithm - A Dynamic Proce_

Migration Protocol", Proceedings of the Fifth International Confere_ :e on Distribute t

Computing Systems, May 13-17, 1985.

Stone, H. S., "Multiprocessor Scheduling with the Aid of Network Flow , lgorithms", [EE.?

Transactions on Software Engineering, SE-3, No. 1, January, 1977.

Rennels, D. A., "Distributed Fault-Tolerant Computer Systems", [EL _ Computer, Vo
13, No. 3, March, 1980.

Solomon, M. H. and Finkel, R. A., "The Roscoe Distributed Oil.rating System'

Proceedings of the Seventh Symposium on Operating Systems Principle 10-12 Decembe
1979.

Cagle, R. P., "Process Suspension and Resumption in UNIX System V C _erating System'

Thesis Report U[UCDCS-R-86-1240 , Department of Computer Sciei =e, University c:'

Illinois at Urbana-Champaign, January 1986

Chen, A. Y.-C., "An UNIX 4.2BSD Implementation of Process Suspension an_

Resumption", Thesis Report U[UCDCS-R-86-1286, Department of (omputer Scienc(

University of Illinois at Urbana-Champaign, June 1986

Lu, C., Chen, A. and Liu, J., "Protocols for Reliable Process Migration" to be appeared i_

[EEE [nfocom '87, Six Annual Joint Conference of the IEEE Computer art Communicatioi

Societies: Global Networks- Concept to realization, March 30-April 2, 19_-7.

Cuttag, J., "Abstract Data Types and the Development of rata Structure '_

Communication ACM, Vol. 20, No. 6, June 1977

Goldberg, A., and Robson, D., "Smalltalk-80 the Language and its implementation"

Addison- Wesley Publishing company, July 1985

Strousptup, B., "Data Abstraction in C", ATST Bell Laboratories Tech ical Journal, Vo[
63, No. 8, Part 2, October 1984

Parnas, D. L., "A Technique for Software Module Specification vith Examples"

Communication ACM, Vol. 15, No. 5, May 1972

Halpern, J. Y. and Moses, Y., "Knowledge and Common Knowledge in a Distribute(

Environment", ACM SIGACT-S[GOPS, Symposium on Principle_ of Distribute¢

Computing, Vancouver, Canada, August 1984

Lu, Chin and J. W. S. Liu, "Correct Process Migration in UNIX Environ nents." paper t(

be submitted to the llth Symposium on Operating System Principle_ ACM SIGOPS

Austin, Texas, 1987

10

L

=

£

- z

DEPARTMENT OF COMPUTER SCIENCE

Request for Copying

REQUESTED BY C___/g /--_-

COPY CENTER ACCOUNT NUMBER

NO. 3- _.",//PHONE

ROOM NO. -_ __-T
,ram

/ P,.:/

DEADLINE, IF ANY I _'_'_ "_ :_"_"_-"_' _ _n,_-_. __c-,_, '

NUMBER COPnES :/

RUN ON ONE SIDE ONLY I--/

RUN ON BOTH SIDES "

ASSEMBLE ONLY

ASSEMBLE/STAPLE
/

ASSEMBLE/BI NO

SPECIAL INSTRUCTIONS AND COMMENTS

