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Abstract

The induced flow field of a rotor responds in a

dynamic fashion to oscillations in rotor lift.

This has long been known to affect the stability

and control derivatives of the rotor. More

recently, however, it has also been shown that

this dynamic inflow also affects rotor and rotor-

body aeroelastic stability. Thus, both the steady

and unsteady inflow have pronounced effects on air

resonance. Recent theoretical developments have

been made in the model_ing of dynamic inflow, and

these have been verified experimentally. Thus,

there is mow a simple, verified dynamic inflow

model for use in dynamic analyses.

Notation

a = slope of lift curve, per radian

B = tip loss factor

Cdo drag coefficient

Cdo = equivalent drag coefficient

CL roll moment coefficient

CH = pitch moment coefficient

CQ = torque (or power) coefficient

C T = thrust coefficient

= pocket cut-out divided by radius
epc

{F} = vector of loadings

= flat plate drag area over rotor area

k = reduced frequency based on free stream,

K I apparent inertia coefficient

_ = apparent,mass coefficient

[L] = matrix of inflow gains

ILl = normalized L matrix

[M] = inflow apparent mass matrix

p = nondimensional flapping frequency

positive nose down

pitch angle at rotor,

[(X + _)I_)]

y = Lock number

ly = equivalent Lock number

= nondimensional free-stream velocity

u = free-stream velocity at rotor,

u* = _p2 + (X + v) 2

6 = axis of minimum damping

q = inplane damping

0 = total pitch angle

0° = collective pitch

0s,0c = cyclic pitch

X = normal freestream component, % = Dsin_

% total uniform inflow, I = % +
O o

% fore-to-aft steady gradient
C

= advance ratio, _ =_cos_

v = total induced flow

v = uniform induced flow
O

= side-to-side induced flow gradient
S

v = fore-to-aft induced flow gradient
C

= axis along free stream

o = rotor solidity, real part of

eigenvalue
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r = nondimensional distance from rotor

center, 0 < r < 1

R = elastic coupling parameter
e

v = mass flow parameter

= nondimensional free stream

V T = total nondimensional flow at rotor,
Table 3

a = pitch angle, angle of incidence,

* . -i
= = smn
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[_] = matrix of inflow time constants

= inflow angle

_s = side-to-side gradient in inflow angle

w = excitation frequency, imaginary part of

eigenvalue, per rev

w = inplane frequency, per rev

= rotor speed, rpm

( ) = average value

(_) = perturbation value

Introduction

Almost everyone would agree that the induced

flow field of a rotor is an important contri-

butor to the performance and vibrational char-

aeteristics of that rotor. What is less well

known, however, is that the induced flow field

of a rotor is also an important contributor to

the aeromechanical stability of that rotor.

The contribution of induced flow to stability

is manifested in two ways. First, the steady

induced-flow field affects the equilibrium

flapping angles, tile cyclic pitch, and the

inflow angles of the rotor. These, in turn,

impact directly upon aeromechanical stability.

Second, the induced flow field responds (in a

dynamic fashion) to oscillations of the rotor;

and this inflow response can fundamentally

change the damping of the rotor oscillation.

Because of the important influence of unsteady

induced flow, a good deal of effort has gone

into the modeling of dynamic inflow for heli-

copter applications. This paper examines the

history of this modeling effort including the

latest developments and experimental verification.

Steady Inflow

The major contribution of steady inflow to rotor

damping can be understood in terms of the axis

of minimum damping, as shown in Figure i. In

the top figure, we see an airfoil pitched at an

angle 0 with the relative air flow impinging at

an angle @. The vertical direction is flap and

the inplane direction is lead-lag. It turns out

that the least stable direction of motion is at

(0 + _)/2, Reference i. In other words, a

coupled flap-lag 10ode with a principle direction

of motion at (t) + _)/2 will have the least

damping of all modes. Tile physical basis for this

"minimum damping" is illustrated in the lower part

of tile figure. The blade lift is always perpen-

dicular to the direction of air flow. Thus, a

blade motion directed along an axis 6 creates an

increased lift which is opposite to the direction

of motion-damping. However, if _ is larger than

_, then lift is in the same direction as the

motion and can create negative damping.

maximum negative contribution occurs at

= (0 + _)12.

The

Now, it is clear that the induced flow directly

affects the angle _. Thus, induced flow can either

move the axis of minimum damping closer to the

modal axis (which is destabilizing) or further

from the modal axis (which is stabilizing).

The mathematical description of this phenomenon

is given by

2 2 ]2

= +[_ _ Re(W _ - p + i)_ (i)
q qo [2 2

(_ _ p2)

The negative real portion of the inplane elgen-

value is q and is a measure of inplane damping.

Here, we see that there is a contribution to

this damping that is minimum when (8 + _)/2 is

equal to the direction of blade motion. The

modal direction depends upon the elastic coupling

(Re) and upon the difference between the inplane

and flapping stiffnesses 2
(w - p2j._ For a stiff

2 2

inplane rotor, _¢ > p , the worst case is at a

positive O + _. For soft inplane rotors,

p2_l < _2 2
< p (including those with matched-

2 2

stiffness _¢ = p - i), the worst case is for

0 + # negative. This occurs during autorotatJonal

descent and partially accounts for the fact that

autorotation is often the most critical air-

resonance condition.

The effect of induced flow on inplane damping

turns out to be the most powerful effect that

forward flight exerts on inplane damping. To

be more specific, the decrease in induced flow

(that accompanies forward speed) and the tip-

path tilt (that is used for propulsive force)

both combine to significantly change the inflow

as a function of p. Figure 2, taken from

Reference 2, depicts inplane damping as a

function of advance ratio. The figure shows

a sharp drop in damping with _. When the _-

related changes in induced flow are ignored,

however, as shown in the top curve, this loss

of damping is not predicted. Therefore, we

conclude that the major effect of advance ratio

is the drop in _ (and hence the movement of the

axis of minimum damping). In fact, up to _ = .25,

most of the effect of forward flight can be

included by a hover analysis with inflow appropri-

ately changed to account for forward flight.

When propulsive trim is included (the short-dashed

curve), the rotor shaft tilts forward with advance

ratio to overcome fuselage drag. This tends to

increase inflow and, therefore, to cancel the

lower induced flow. Thus, for p >.25 the damping

again increases.
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A similar phenomenon is manifested in wind turbine

(or autorotatinal) damping, as shown in Figure 3,

taken from Reference 3. Here, the wind-speed

ratio directly affects _, which results in minimum

damping at a particular velocity. The same can be

said of wind-turbine damping versus power coeffi-

cient, as seen in Figure 4. At a particular value

of C O , the induced flow is such as to make the

damping a minimum.

Thus far, we have considered only the uniform (or

average) value of induced flow. It is also inter-

esting to investigate the effect of gradients in

the induced flow field. The Figure 5 compares

inplane damping for the case of no gradients

(Z c = 0) with that for the case of a full gradient

(Zc = %o )' which implies zero induced flow at the

leading edge of the rotor disc and maximum induced

flow at the trailing edge. One can see that there

is only a minor variation in damping between the

two cases. Even in hover (for which no gradient

physically exists), the effect is small. Thus,

fore-to-aft gradients are not important in the

context of the effect of steady induced flow on

inplane damping.

In Figure 6, we see the effect of a side-to-side

gradient on inplane damping. A wind turbine is

chosen, for which such gradients occur due to

the earth's boundary layer. Here, there is

some effect on stability at moderate _. The

reason for this is straight-forward. Changes

in _ from fore-to-aft generally cancel in terms

of damping. Side-to-side gradients, on the

other hand, tend not to cancel due to the large

changes in relative free-stream velocity in

forward flight. Thus, induced flow gradients

are more important in the lateral direction than

in the longitudinal; but neither effect is very

large.

_ Work In Dynamic Inflow

In the preceding development, we have seen that

the steady induced-flow field has a significant

effect on blade damping. We now turn our atten-

tion to the effect of unsteady fluctuations in

the flow field (dynamic inflow). To begin, it

might be good to review the past developments

in this area. In 1950, Ken Amer noted that the

pitch-rate damping of a helicopter depends upon

the thrust coefficient in a repeatable, quanti-

tative fashion, Reference 4. In 1952, G. J.

Sissingh successfully showed that this measured

effect is due to a transient behavior of the

induced flow, Reference 5. That is, a roll-rate

of a helicopter causes a side-to-side gradient

in lift which creates roll damping. However,

the formation of this lift gradient also creates

an induced-flow gradient that partially negates

the lift gradient that finally develops. (This

is the effect of dynamic inflow.) Since the

induced flow depends greatly upon the mass flow

through the rotor, there is a strong C T dependence,

as measured by Amer. In related work, Reference 6,

Carpenter and Fridovitch developed experimental

and theoretical results that related to how quickly

induced flow follows a change in lift (i.e._a time

constant). They found that the time delay could

be modeled satisfactorily by the apparent mass

of an impermeable disk, as developed in Reference

7. Therefore, by 1953, researchers had identified

both the effect of transient inflow and the effect

of apparent mass. These two pieces (the induced

flow due to lift perturbations and the related

time constants) form the kernel of all subsequent

work in dynamic inflow.

The early work of these researchers was picked up

by several investigators in the early 1970's.

This later work concentrates on stability and

control derivatives as well as forced response

(both of which are dramatically affected by the

dynamic inflow phenomenon identified by Sissingh).

In 1970, Pat Curtiss and Norm Shupe included the

Sisgingh model in their helicopter flight equations,

References 8-9. (This was a quasi-steady model,

and no time constants were used.) The work of

Curtiss and Shupe points out that the quasi-steady

effect of induced flow in pitch and roll can be

accounted for by a simple reduction in the lift

coefficient (i.e._by an equivalent Lock number).

In other words, changes in lift produce changes

in inflow which lower the expected change in lift.

Thus, we have an equivalently lower lift-curve

slope and lower gamma.

In 1972, Ormiston and Peters took the Sissingh-

Shupe model and extended it to include plunge,

pitch, and roll for combinations of lift, climb,

and forward flight, Reference i0. Calculations

of control derivatives with this model were then

compared with experimental data taken by Dave

Sharpe and Bill Kusczynski with a 7-1/2 ft

diameter model rotor. The results show that

the Sissingh-Shupe dynamic inflow model (based

on momentum theory) gives excellent correlation

in hover but not in forward flight. Alternative

models for forward flight were then suggested,

including an empirical model based on curve

fitting the measured data.

_"By 1974, Peters and Ormiston had extended the

dynamic inflow models to the unsteady condition

(time constants, etc), Reference ii. Sharpe and

Kuczynski had obtained experimental frequency-

response data both in hover and forward flight,

Reference 12; and this data was compared to the

theory in Reference ii. At the same time,

Hohenemser and Crews were obtaining similar

frequency-response data for a very small-scale

rotor, Reference 13; and they also compared with

theory. Both studies showed a dramatic effect

of dynamic inflow. Furthermore, these two inde-

pendent studies revealed a completely consistent

picture of the gains and time constants of dynamic

inflow. In hover, they found that momentum theory

(combined with the apparent mass of an impermeable

disc) captured all of the experimental features.

Thus, when these theoretical gains and time

constants were combined with the theory, amazing

correlation was obtained.
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Figure 7 shows an example of this correlation.

Here we have the roll moment (on the left) and the

pitch moment (on the right) due to an oscillation

in 0 (longitudinal cyclic). Both the amplitude
s

and the phase of the response are given. The

circles are experimental data from the 7-1/2 ft

rotor. The solid line is the normal theory in

which only steady induced flow is taken (no

dynamic inflow). The results are presented for

frequencies of swashplate oscillation from 0 to

1.2 per revolution and for 4 ° of steady collective

pitch. One notices large, qualitative deviations

between the solid, theoretical curve and the

experiment, especially in tile phase of C L and in

the amplitude of C M. The discrepancies are largest

at small values of w and decrease for larger values

of _. Perhaps the most significant aspect of the

comparison (between the solid line and the data)

is the fact that none of our standard analytic

excuses could explain the difference. Collective

pitch is only 4 ° , so there is no stall; and the

analysis includes several elastic modes in

flapping, so that the dynamics are well repre-

sented. Thus, tile only candidate to improve

correlation is dynamic inflow.

The short-dashed curve gives results for a simple,

quasi-steady momentum-theory model of dynamic

inflow. That is, the dynamic inflow is assumed

to follow changes in lift immediately according

to simple momentum theory. The result is dramatic.

Every single detail of the data is matched for

< .4 per rev. At larger w, however, the theory

with quasi-steady theory begins to deviate from

the experimental result. The reason for this is

that inflow actually responds with a time delay.

When this unsteady effect is added, however,

(the long dashed curve) the new analysis agress

at both low and high _. The time constants

used in this amazing correlation are the apparent

mass and inertia of an impermeable disc. This

yields the nondimensional inertia and mass terms

(K I = .1132, K m .8488). This simple theory

leads to the correlation shown in both magnitude

and phase.

It seems impossible that anyone could study these

results and not be convinced that: a) dynamic

inflow is an important, physically-based effect,

and b) it can be modeled in hover by simple mo-

mentum theory with simple apparent mass terms.

in general, one would not always admit that a

theory is good simply because in improves corre-

lation, in many cases, improvement might simply

be luck; because there can be so _ unknown

effects that one error might coincidentally cancel

another. In this case, however, all reasonable

errors havu b_cn accounted for. Furthermore,

the details of the response are so well simulated

that coincidence is out of the question. These

results establish dynamic inflow as a fundamental

cornerstone of rotor analysis.

We now turn from the response of cyclic pitch

oscillations and study the response due to shaft

oscillations, as shown in Figure 8. Here, we

look at the amplitude and phase of roll moment

and pitch moment as a result of pitch oscillations.

Because of the symmetry in hover, roll oscillations

should create responses identical to those due to

pitch (except for a 90 ° phase shift). Thus, both

pitch and roll data are plotted together on this

figure (circles and dots). Where the two sets

of data begin to deviate (_ = .25), a stand

resonance is contaminating the results. Below

w = .25, however, the pitch and roll data are

consistent. The solid curve represents convention-

al theory with no dynamic inflow. One is impressed

with how poorly it models the response. (C L with

is in error by several hundred percent.) When

either quasi-steady or unsteady dynamic inflow is

included, however, the amplitude and the phase are

completely captured. This data correlation leads

one to believe that an air resonance mode could

be very sensitive to dynamic inflow, since such

modes occur from 0.2 to 0.5 per rev.

In forward flight, there is also a large effect

of dynamic inflow; but it is not well modeled by

simple momentum theory. Figure 9 shows response

of the same rotor as that of the previous figures,

but with _ = .51. C L due to all three controls is

given. Momentum theory (shown by the dashed line)

does not at all correlate with the data. The long

dashed curve in the figure is a calculation based

on an empirically identified model. This mode% is

identified at _ = 0 only. The effect of _ is

included by the same apparent mass terms used in

hover. Thus, we see an excellent correlation

which includes the presence of an anti-resonance

(zero amplitude and phase discontinuity) pre-

dicted and measured for the 0 derivative at
s

= .4. Thus, dynamic inflow is important even

at high advance ratios.

The effect of dynamic inflow and the satisfying

correlation shown above are not flukes of one

rotor in one wind tunnel. Figure i0 shows data

taken by Kurt Hohenemser and Sam Crews with a

20-inch diameter rotor at Washington University,

Reference 13. Here, harmonic excitation is

applied in the rotating system by a rotating

eccentric. The magnitude of flapping angle due

to 0 is plotted versus the excitation frequency

in the rotating system, _. The squares are the

test data, the solid curve is the analysis w_th

no dynamic inflow, and the dashed curve is the

analysis including dynamic inflow. The para-

meters L and • are chosen to give the best fit

of the data, and yet they agree with the values

from momentum theory within a few percent. For

example, K I = .113 (momentum), K I = .112

(Reference 13). Therefore, dynamic inflow is

established as an effect independent of rotor

site or wind-tunnel characteristics.
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In summary, the early work in dynamic inflow

concentrates on forced response of rotors. It

shows beyond reasonable doubt that dynamic inflow

is an important effect. In hover, the quasi-

steady inflow is well modeled by momentum theory;

but, in forward flight, momentum theory is com-

pletely inadequate. In both hover and forward

flight, however, the apparent mass of an imper-

meable disc provides the correct time constants.

Effect On Stability

The superb data correlations given thus far were

developed for the forced response of rotors. It

was not long, however, before researchers began

studying the effect that dynamic inflow might

have on the stability and damping of rotor systems.

We now mention a few of the developments in this

area. In 1976, Bob Ormiston studied the effect on

flapping eigenvalues, Reference 14. He discovered

the importance of mode type (collective, progress-

ing, regressing) on the effect of dynamic inflow.

In 1979, Peters and Gaonkar studied the effect on

lead-lag eigenvalues, Reference 15. One of the

more interesting aspects of that paper was the

introduction of an equivalent drag coefficient.

In other words, just as the lowered lift (due to

dynamic inflow) can be modeled by a loss in lift-

curve slope, even so, the corresponding increase

in induced drag (also caused by dynamic inflow)

can be modeled by an equivalent increase in Cdo.

In 1982, Gaonkar and several co-authors extended

this work to include aeromechanical stability,

Reference 16. That same year, Wayne Johnson also

used dynamic inflow theory to correlate Bill

Bousraan's test data, Reference 17. At this point,

it might be good to briefly review the findings of

each of these papers with respect to the stability

and damping of rotors.

First we look, in Figure ii, at the calculation

from Reference 14 of the negative real part of

the flapping eigenvalue as a function of col-

lective pitch for p = 1.02 and 1.15. With no

dynamic inflow, there is a constant value of

damping equal to 7/16, independent of 8 When
o"

dynamic inflow is included in the analysis,

however, one finds two distinct damping values

depending upon the mode, progressing or regressing

(collective is not included). The difference in

damping of the two modes is attributed to the fact

that each mode has a different frequency and

therefore affects the inflow in a different way.

The quasi-steady approximation (shown by the

dashed curve) is closer to the regressing mode

because that mode is of lower frequency. The

results show clearly the large effect of dynamic

inflow. The effect is most pronounced for the

regressing mode at low collective pitch. Such

a plot indicates that one cannot count on flap

damping to stabilize ground resonance at low 0 .
o

Another interesting aspect is that even the

progressing mode, with a relatively high fre-

quency, is affected by dynamic inflow.

Figure 12 shows the real part of the i_lane

eigenvalue as a function of advance ratio,

Reference 15. The solid curve is the theory

without dynamic inflow, and the broken curves

are the modes with dynamic inflow. We notice

that the higher-frequency progressing and

collective modes are only moderately affected.

The lower-frequency, regressing mode, however,

shows a substantial alteration due to dynamic

inflow. Thus, we conclude that dynamic inflow

has a potentially large effect on inplane damping,

and thus on rotor-body damping.

Next we look at calculations of coupled rotor-body

modes from Reference 16, as shown in Figure 13.

Here we have body roll-mode damping both for an

RPM sweep and for a collective-pitch sweep. The

dashed-dot curves are quasi-steady theory; and

the dashed-only curves are conventional, unsteady

theory. The rotor is matched stiffness. The

figure on the left shows a fairly uniform effect

of dynamic inflow within the RPM range of interest.

This effect is about 30%. The right-hand figure

gives a collective sweep. As might be expected,

the effect of dynamic inflow increases with de-

creased lift. Again, the theoretical predictions

are that dynamic inflow should play a major role

in rotor-body damping; and this effect comes from

equivalent changes in both flap damping and inplane

damping, as we understand from Reference 16.

It fell to Wayne Johnson to finally compare these

predictions with experimental data, as shown in

Figure 14. This figure presents the real part

of the eigenvalue for the pitch-mode damping. The

dashed curve is the theory without inflow dynamics,

and the solid curve is the theory with inflow

dynamics. Dynamic inflow successfully predicts

the peak in damping at low _ and the 25-30% loss

of damping at higher values of _. Figure 15 shows

a similar comparison for roll. Again, the

dynamic inflow provides a substantial improve-

ment in correlation.

The previous two figures show that the NASA ana-

lytic model does reasonably well in correlation

and that dynamic inflow is an important part of

that correlation. Therefore, an analysis with-

out dynamic inflow, but that correlated with

experimental data, would be suspect, since

dynamic inflow is well-documented and damping

analyses are not, and since we know that

dynamic inflow has an important effect.

For those who might still be skeptical, we

present Figure 16, also from Reference 17. This

figure compares measured and calculated frequen-

cies as a function of RPM. The astounding part

of the comparison is that one of the branches,

labeled k, is the frequency of a mode that is

predominantly dynamic inflow. This branch does

not even exist when dynamic inflow is not included.

With dynamic inflow, however, the branch appears

and matches the experimental data nearly perfectly.

Thus, we are looking not just at the effect of

dynamic inflow on some mode; we are looking at

185



the measured dynamic-inflow mode, itself, as seen

for the first time.

A final comparison with data is given in Figure

17, which represents two of the correlation

studies presented at this workshop. One is

Wayne Johnson's correlation with the NASA pro-

gram, and the other is Sheng Yin's correlation

with the Bell Helicopter program. In either

case, dynamic inflow represents a significant

contribution and improves the correlation of

the analysis.

Before leaving the stability correlation, we need

to make an important point about the role of these

correlations in verifying dynamic inflow theories.

The point is this. The validity of a particular

dynamic inflow theory (or of dynamic inflow as a

_henomenon) cannot present__ be made on the basis

of comparisons with inplane damping or rotor-body

stability data. The reason for this is clear.

Stability calculations are not yet accurate enough

to uniquely distinguish dynamic inflow from other

effects. The role of dynamic inflow in such cal-

culations is, however, important. The reason for

this is straightforward. First, we know from

flapping response that dynamic inflow exists as

a phenomenon and that it is important. The

accuracy of any dynamic inflow theory can be

determined by comparisons with low-lift flapping

response data, which is accurate and relatively

unhindered by unknown structural or aerodynamic

effects. It is this exact same theory that is

applied to inplane stability analyses. (There

is not one "flapping" dynamic inflow and one

"inplane" dynamic inflow.) Therefore, the com-

parison with stability data does not test the

inflow theory. Instead, the dynamic inflow theory

is included in the analysis in order to see the

effect of dynamic inflow and to verify the

analysis package. This is why we said earlier

that a theory that correlates without dynamic

inflow would be suspect. Such a theory must have

two errors that are cancelling. One error is the

omission of dynamic inflow, and the other error

is the unknown omission that is somehow cancelling

the inflow effect.

Homentum-Theory Formulation

In the early portions of this paper, we briefly

reviewed the early work in dynamic inflow; but

we did not _o into detail as to the exact mathem-

atical formulations used. In this section, we

consider these formulations in more detail. The

vast majority of the work in this area has been

based on simple momentum theory. In hover, this

implies that each elemental section of rotor area

is treated independently. Then, for each section,

the thrust Js set equal to the product of the mass

flow through the element and the total change in

velocity in the associated stream tube. The next

step in the analysis (and this is crucial to the

theory) is to average the loads and induced flow

over the rotor disc. In other words, the theory

of dynamic inflow does not concern itself with

details of either load distribution or induced

flow distribution. It concerns itself, rather,

with global averages. This further implies that

the induced flow is treated more as a large mass

of air rather than as individual vortices.

As a simple example, we consider the average

induced flow v due to the total thrust coefficient,

C T

CT = 2v 2 (2)

Equation (2) is nonlinear in _. Usually, however,

we consider perturbations about a steady condition

(CT' ])" Thus, we have for the quasi-steady case

CT = CT + _T (3a)

= _ + v (3b)
o

CT = 272 (4a)

_T = 4_v ° (4b)

Equation (4b) is the typical perturbation relation

between charges in thrust, C T, and charges in

uniform inflow, _ . In a more general formulation,
o

we may add cyclic variations in lift (i.e. roll and

pitch moments) and cyclic variations in induced flow

= 7 + T (5a)

= _ + v rsin_ + v rcos_ (5b)
o s c

where v and v are induced flow gradients.
s c

Simple momentum theory gives

_T = 4_Vo (6a)

_e
= -vv (6b)

s

CM = -\,Vc (6c)

Equations (6a-c) represent the momentum theory model

in hover used in References 5, 8, 9, i0, ii, 14,

15, and 16.

Although equation (6) works well for hover, it is

natural to try to extend the formulation to com-

binations of thrust, climb, and forward flight.

To do this, _ in equations (6a-c) is replaced by

v/2 where v is a mass-flow parameter. In climb,

186

O:_I_A_'_L PAGE IS

OF POOR QUALITY



v is given by

v= _+2_ = X
o

ORrG_'$4T" mi_
OF POoR ,_,_.

+ v (7)

where % is the inflow due to climb, and % is the
o

total inflow, Reference 8. In forward flight

with perfectly edgewise flow and no lift, we have

v =_ (8)

as given in Reference 9 and i0, (although forward

flight certainly stretches the assumptions of

momentum theory to the extreme).

Most investigators agree on the formulations of

equations (7) and (8), but a more difficult pro-

blem is the transition from hover to edgewise

flow. If we consider a freestream velocity u and

a rotor incidence _, then the relative flow is

given by

= u cos _ (9a)

= u sin _ (9b)

u = £2 + %2 (9c)

If we then add the induced flow, we obtain for the

flow at the rotor disc

= usin_ + v = % + v (10a)
o

u = + (k + = (10b)

_+5 ko

_* = tan -I ( _ ) = tan -I ( -_ )

(10c)

The real problem is to relate v to N, I, and _.

In References 9 and 18, this is accomplished by

the following ad hoc formula

v = u + 2_ sin _ =
2 + 2 + 2_

(ii)

Equation (ii) gives the correct value of v in

hover (_ = 0, v = I + 2_); but for edgewise flow,

equation (ii) gives an inconsistent result (% = 0,

v = _). Now, v = _ is correct for edgewise flow

with no lift; but the inconsistency is that, for

X= 0, equation (Ii) gives no effect of thrust

(i.e. of v) in the formula. Thus, in the limit

as (1 = 0,_ _ 0) we obtain a different value of

v than we do for (_ = 0, I + 0). There is a

discontinuity in the function at (_ = 0, i = 0),

and this is unacceptable.

A more reasonable formulation of v is given in

Reference ii from basic principles

2
* - * _ + (_+ 5)(x+ 2_).

V = U + _ sin _ = -

_p2 + (X + ])2

(12)

where u and _ are the total flow and angle at

the rotor including induced flow. Equation (12)

is derived from momentum principles (not on an ad

hoc basis) and provides a much more reasonable

formulation of the transition between hover and

forward flight. W1_en v is represented by equation

(12), it is always positive (with no singularities)

except at the vortex-ring boundary, where v = 0,

Reference 19.

In more recent work by Johnson, Reference 20,

equation (12) is obtained for the C T relation,

equation (6a); but a different formulation is

derived for the C L and C M relations, equations

(6b) and (6c). In particular, Reference 20 uses

for C L and C M

,Jv = u = 2 + (_+ =,_j2 (13)

This is in direct contrast to equation (12).

Furthermore, in Reference (20), the v for the

C T relation is altered by use of an "approxima-

tion" of equation (12)

v = u + vsin_ = u + % + v =

_2 + (.X + _)2 + (X + T>)
(14)

It is not at all clear why the approximation in

equation (14) should be valid. Although Reference

(20) states that it is valid "for low inflow

ratio," this claim is actually not correct.
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Table 1 provides a comparison of equations (Ii)-

(14) at critical flight conditions. There are

several interesting comparisons in the table.

First, in the hover results, we note the Johnson

model for roll and pitch differs by a factor of

2 from all previous work (including Sissingh,

Curtiss, Shupe, Ormiston, Peters, and Azuma),

even in hover. Since these previous results show

such an excellent correlation with flapping data,

there can he little doubt that Reference 20 is in

error. The source of the error can be quickly

traced to a failure to include _ and _ in the
s n

mass flow term of each generic element. Along

this same line, Reference 20 mentions agreement

with the results of Loewy, Reference 21, as

confirmation of the accuracy of the formulation.

Reference 21, however, is for a zero-lift climb

(no wake contraction). The second row of Table 1

shows that for a climb, equation (13) is accep-

table for roll and pitch, giving the correct

answer v = %. With lift, however, the formu-

lation is incorrect.

The second row of Table i also reveals an error in

the C T formulation of Reference 20. _ereas all

other formulations (including Reference 21) result

in v = %, the approximation of equation (14) (from

Reference 20) gives v = 24. Here, the error lies

in tile approximation and not in the original for-

mulation. _len the conditions of climb and lift

are co_abined, the third row of Table I, the error

in the formulation of Reference 20 is more clear.

The correct value, k + 2v, is the flow speed

downstream from the rotor. The two incorrect

formulas (4 + _) and 2(% + _) do not provide

any effect of wake contraction, for they treat

thrust and climb equally.

Going on with Table i, we see that all formulations

give the same value, v = ;=, for zero lift edgewise

flow; but when lift is added, row 5, there is a

wide range of answers. Only the results of

Reference ii and Reference 20 (CT) are consistent

in the sense that they reduce both to D as _ ÷ 0

and to 2_ as D _ 0. _len we further consider the

case of zero lift but with incidence, row 6, the

results of Reference 20 (CT) also fail, which

leaves the result of Reference ii as the only

viable choice. (For no lift, only _+ %2 makes

physical sense.) Finally, the last row of Table 1

gives results for zero normal flow, which can

occur in a descent. Here, another failure of

Reference 8 ks noticed. Thus, the v parameter

from Reference ii is the most logical choice of

transition between hover and forward flight in

momentum theory. To summarize, its attributes

ar_:

i) Correct limiting behavior in climb, hover, and

edgewise flow

2) No singularities

3) Foundation in momentum theory

4) Prediction of vortex-ring boundary

The above discussion has considered only the quasi-

steady effect of inflow. (Induced flow is assumed

to follow immediately any change in loads.) The

concept of momentum theory can also be extended,

however, to include the time lag between lift and

induced flow. In general, equations (6a-c) can

be extended as follows.

KM _o + 2VVo = _T (15a)

KI _s + v/2 v s = -_L (15b)

KI ¢ + v/2 _ _ (15c)c c = -CM

Here _ and K I are time constants associated with

the rotor air mass. These can be taken as com-

pletely general and identified experimentally,

as in References 6 and 13. On the other hand,

they can be obtained from first principles by

potential flow theory. KM is developed (in

Reference 7) and K I is found (in Reference ii)

in this way.

8

KM 3_r .8488 (16a)

16

KI 45_ .1132 (16b)

In each case, the parameters are based on the

apparent mass (or inertia) of an impermeable disc.

Equations (15) and (16) form a complete unsteady

dynamic inflow theory. With _ = K I = 0, we

recover quasi-steady theory.

One of the most valuable results of momentum-theory

inflow dynamics has been the discovery that the

quasi-steady theory is tantamount to the use of an

equivalent Lock number and drag coefficient, Refer-

ences 9 and 15. The formulation is as follows

* (17a)
7

oa
l+--

8v

(_ %0 )* Ic (o - _)2]--a- Y d___oo + 1 + 8v/oaJ

(17b)

188

_lrORIGINAL PAGE I_

OF POOR QUALITY



( Cd° )* Cd° (1 + oa )T = -7- 8-7-

oa
+ -_v (e - ¢)2 (17c)

Vo -i

[M] u s + [L] = _L

_c _M

Although equation (17a) was originally derived

for rigid flapping only, Reference 22 shows that

the formulation is quite general. Therefore, a

simplified estimate of the effect of dynamic

inflow can be obtained from a simple change of

y and Cdo in any analysis package.

Another interesting aspect of the y approximation

is that it can also be used in unsteady, harmonic

response analyses, Reference ii and 13. In par-

ticular,

Y 1

-- = i - (1Ba)

Y 16KIi_
i + 8v+__

aa _a

The crucial parameter may be rewritten as

. v6r 98--Kv + = -- +- (18b)
Ja oa oa

Equation (iBb) shows that there is a reduced

frequency, k = u/v, associated with dynamic

inflow. Therefore, the effect of mass flow,

v, can be very complicated since it changes

both gain and reduced frequency.

More Advanced Formulations

The formulation of equations (15a-c), while being

excellent in hover, has proven very poor in for-

ward flight. (For example, it does not allow for

a fore-to-aft gradient due to CT. ) For this

reason, several attempts have been made to extend

the theory. Up to now, all such attempts have

been based on a matrix formulation of equation

(15).

v O V 0

[T] s + s = ILl E L

(19a)

[M] {_} + [L]-l{v} = {F}

(19b)

(19c)

If we look at equation (19a) and temporarily ignore

the "dot" term, we see a quasi-steady inflow law.

The various harmonics of inflow (described by a

vector, {v}) are assumed to be linearly proportion-

al to the aerodynamic loads on the blade (such as

thrust, roll moment, and pitch moment). These

loads are represented by the vector, F. The matrix

L is the dynamic inflow matrix and expresses the

coupling relationships between inflow and loads.

Generally, we consider {v} and {F} in this equation

to be perturbation quantities about some steady

inflow and loading distributions.

The term, IT]{_}, then represents time constants

of the system. These imply that the induced

flow does not instantaneously follow perturbations

to the loads. The T-terms imply "unsteady" as

opposed to "quasi-steady" inflow theory. In

an equivalent form of the general theory, given

by the second matrix equation, the system is

premultiplied by L-inverse. In this alternative

version_the L-IT matrix takes on the roll of

apparent mass terms, [M]. The crux of all dyna-

mic inflow theories is to find the elements of L

and [M]. In the early momentum theory (Sissingh,

Curtis, Shupe, and Peters), the M-matrix and the

L-matrix were diagonal, 3 x 3 matrices, as given

by equation (15). In later work, Reference i0,

other [L] matrices were considered based on empir-

ical considerations. These were very successful,

but lacked physical foundation. Thus, a need was

recognized to find [L] and [M] from more basic

theories.

In principle, any induced flow theory that keeps

track of the three-dimensional, unsteady vorticity

automatically includes dynamic inflow, %g.} Refer-

ence 21. In practice, however, few present-day

programs provide a transient rotor wake analysis.

Furthem_ore, even the steady wake programs are

much too cumbersome for use in a dynamics analysis,

Reference 23. What is needed, therefore, is some

analysis that can be used to obtain [M] and [L] in

a simple, usable form. The prime candidate for

this analysis is actuator-disc theory. In Refer-

ence 24, the first attempt was made to extract

dynamic inflow data from an actuator-disc theory.

It should be pointed out that many people had used

actuator-disc theories to obtain induced flow, but

no one had exercised them in the context of obtain-

ing dynamic-inflow derivatives.
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AlthoughReference23camea longwaytowardthe
desiredanswer,theanalysisbecamesoinvolved
thatnodefinitiveresultscouldbeobtained.The
problemis illustratedbyFigure18. Thedynamic
inflowtheoryis just onepartof anoverallrotor
analysis. However,if onetries to identify the
inflowlawin thepresenceof bladedynamicsand
airfoil theories,theproblembecomestoocompli-
catedfor a fundamentalsolution. _lat is needed
is a lookat theopen-looptransferfunctionof
dynamicinflowwithoutthecomplicationsof blade
theory.

Theidealtheoryfor attemptingsucha derivation
is theactuator-disctheoryof ManglerandSquire,
asappliedbyJoglekarandLoewyin Reference25.
Thistheoryis basedontheKinnerclosed-form
pressurepotentialsfor anactuatordisc. Figure
19givesa schematicof sucha disc in anellip-
soidalcoordinatesystem(_,q,_). Thefree-stream
entersat anangle_, andpositivelift is taken
in thenegativeZdirection. Kinnerwasableto
obtaina closed-formpotentialfunctionto describe
anarbitrarypressurediscontinuityacrossthe
disc. Thisfunctionis expressedin termsof
Legendrefunctionsandcanbeusedto find the
induced-flowfield for anygivenloading.Although
thetheoryis successfullyapplied(in Reference
25)to givea specificinflowdistribution, it is
notusedto find thedynamicinflowmatrices.
In Reference27,DalePitt extendstheKinner
theoryto includeunsteadyeffectsanduses
it to find theelementsof [L] and[M]. Two
different radiallift distributionsareused
to verify that thematricesarenotsensitive
to thedetailsof bladeloading. Table2 pro-
videsthefinal formsof thematricesas
suggestedin Reference26,where[L] takes
theform

1
ILl = v [L] (20)

The[L] matrixis syn_etricwithelementsthat
dependonlyupontheangleof incidence,_.
Theentirematrixis dividedbythefree-stream
velocity, v. Forforwardflight withlift, v
becomesthemassflowparameterof equation(12)
and_ becomesthelocal angle,_ , equation(lOc).
In axial flow (_= _ = 90°),the_L]matrix
reducesto thatof momentumtheory,avery
satisfyingresultof thetheory. Similarly,
theM-matrixalsoagreeswithmomentumtheory
for theroll andpitch inertias,althoughthe
apparentmassfor thrust is different thanthat
of momentumtheorywhentheloadingis zeroat
therotor center.

In Reference27,theformulationof Table2 has
beenverified bytwoindependentmeans.First,
for thequasi-steadyterms,the[L] matrixhas
beencheckedagainsta free-vortexwakeanalysis
writtenbyLandgrebe.Theprescribedwakemodel
of Landgrebeis exercisedin numericalexperiments
in whichchangesin cyclicandcollectivepitch
createchangesin inducedflowpatterns,and
theseare interpretedin termsof thewakecoup-
ling matrix,L. Figure20presentsthefirst
columnof L, inflowdueto thrust. Thehorizon-

tal line is thetheoreticalvalueof LII = 1/2
that relatesthrustto uniforminflow; it is
completelyindependentof lift distribution.
Theopentrianglesareresultsfromthewake
programandagreewithin10%.Thelong-dashed
anddash-dotlines providetheL31term,which
is zeroin hover(_= 90°) andmaximumat _ = 0°.

Two different loading distributions are used,

labelled "corrected" and "uncorrected." The

results from Landgrebe's program are given by

squares. (Solid squares indicate convergence

problems.) The corrected curve, which enforces

zero lift at the center, is very close to the

Landgrebe results, and is the formulation used

in Table 2. The two solid squares are suspect

because no data has ever shown the fore-to-aft

gradient decreasing as incidence goes to zero.

The L21 term is zero for both the theory and

the Landgrebe model.

Figure 21 provides a comparison of the second

column of L, induced flow due to roll moment.

In theory, the only term should be L22, given

by the two curves and the triangles. One can

see that there is little difference in L22 for

the two possible lift distributions. Furthermore,

the prescribed-wake results agree to within a

few percent for _ > 30 ° . Therefore, the simpler

uncorrected curve is used in Table 2. L32 on

the other hand (fore-to-aft inflow due to roll

moment, shown by squares) is theoretically zero

but exhibits a non-zero value from the prescribed

wake. The explanation of this is the wake rota-

tion (which is not included in the actuator-disc

theory). Fortunately, the effect is not large.

LI2 is zero for both theory and numerical

experiment.

When we look at the third column of L, Figure 22,

we again see the wake rotation effect L23 = -L32 =

.2, ideally zero from actuator-disc theory. The

L33 term, shown as diamonds, displays an excellent

correlation between actuator-disc and vortex

models, as does the LI3 term, shown in triangles.

Again, the corrected versus uncorrected pressure

distributions do not show an appreciable effect

on L, and uncorrected is used in Table 2.

Reference 27 also provides a verification of the

unsteady part of dynamic inflow, the M-matrix.

In particular, an exact solution of the unsteady,

potential flow equations is compared to the simpler

approach of a direct superposition of [L]-I{_} and

[M]{_} terms. The result is given in Figure 23

for L22 = L33 (_ = 90 ° ) as a function of reduced

frequency, k = m/v. For both magnitude and phase,

the simple model of equation (19) gives excellent

agreement with a more rigorous, Theodersen-type,

unsteady theory.

It should also be mentioned here that References 26

and 27 discuss the possibility of using additional

radial and azimuthal degrees of freedom in the

inflow model, and an expanded 5 x 5 model is expli-

citly given. In Reference 28, this 5 x 5 model is

compared to the 3 x 3 model with respect to its

effect on inplane damping. The results show two
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things. First of all, the 5 x 5 model gives

extraneous answers for rotors with less than 5

blades (as a result of a mathematical indetermi-

nancy). Second, for rotors with 5 or more blades

(or for constant-coefficient analyses), the 5 x 5

results are essentially the same as the 3 x 3

results. Therefore, Reference 28 concludes that

the 3 x 3 model is adequate and is probably the

most sophisticated model that is possible for

dynamic inflow in matrix formulation.

With dynamic inflow verified by both experimental

and computational data, it is presently ready to

be used in dynamics analyses. The theory as it

now stands is a perturbation theory and thus

applicable to linearized analysis packages. It

is easily extended, however, to a nonlinear ver-

sion for use in time history solutions. Table 3

shows the nonlinear version of L. Here,
o

represents the total uniform induced flow (steady

plus perturbation). You may recall that the

linear version of L is divided by v, the mass-flow

parameter, equation (20). In the nonlinear ver-

sion, the first column of L is divided instead by

the total mass flow V T. The mass flow parameter

v is simply related to V T through a derivative as

shown. Consequently, the nonlinear L-matrix has

perturbation equations identical to those of the

linearized dynamic-inflow theory.

Summar_x

The following statements summarize our present

understanding of the importance of inflow to rotor

and rotor-body damping.

1. Steady inflow (mostly uniform) is important

for inplane damping in that it changes the

axis of minimum damping.

2. The largest effect of advance ratio on inplane

damping is the associate change in inflow.

3. Dynamic inflow is an important effect on

rotor damping, and its importance has been

physically verified many times.

4. The effect of dynamic inflow is largest for

the low-frequency, regressing rotor-body

modes.

5.
Presently, the best dynamic-inflow theory is

a 3 x 3 closed-form model based on actuator-

disc theory. It's accuracy has been verified

by comparisons with more sophisticated models.
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Figure 14.
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=.05, _ =8.4, Hover.

197



-4

-3

I

_-2
=-

-1

I

0

/ / 03oo $Oo
_0_/. ¢_DYNAMIC INFLOW

I I i I I t l I I

NA

DYNAMIC

INFLOW

, _o

I •

| I i I I I I I I /

0 200 400 600 800 1000

f_, rpm

iN FLOW _=

CONllqOLS_ ANGLF OF ATTACK _ CIRCULATION..ANDLO&OS

Figure 18. Block Diagram of Inflow Dynamics.

Figure 17. Comparison of Roll Mode Damping_
Bell and NASA Ames Models.

Figure 19.

Ellipsoidal Coordinates.

,_'_,,_,_., _ 1/= !.0

_/'_ Z/=0.8 Z/=0.8

_'°-° -7-,, Y-'°'__._.o_ _°'_ _.o
Z/=-0.4 _ Z/=0.4

- \/
Z/=-0.8 Z/= -0.8

ROTOR DISC Z

198



........ L(1,1) A L(1,1) WAKE

........ L(3,1) UNCORR.

1.S

1 .e-_'""-...

-,%

-e.5

,_.= __

.____=-_:e..__.;._-:..,....... _,=......... _=

' I ' I ' I ' I '
2e 4e 6e 8e 1N

Figure 20. Verification of First Column of L.

........ L(2,2) CORR.

............ L(2,2) UNCORR.
A L(2,2) WAKE
0 L(3o2) WAKE

'_ [] 0 0 0

ORIC_N.AL PAGE IS

OF POOR QUALITy

........ REAL

........ IflAGINARY

............ SUPERPOSITIOM OF PRESSURES
0 OSUPERPOSITXON OF VELOCITIES

./a f"

I_. CflPLX Llrh)(_,2) & LINU(3,3)

UMCORRECTE_

le" _/"

...... ,,.__.=.-_;;:. .....................
!

-1 s"

te ' ' ''J"tl ' ' ''""I ' ' '''"'1 ' ' ''""l
le "1 1 te lea le 3

-2"

-4-

-6

.,_s

°" ol

/

' I ' I ' I ' I '
e 2e 40 60 8e lee

Figure 21. Verification of Second Column of L.

............ L(I,3) CORR.

........ L(3,3] CORR.

.... L(1°3) UNCORR.

........ L(3°3) UNCORR.

2

6...,... °...

,i 1t':_'_-_ ....

e },

,.,,,,

0

, . , , ,_- .
e ae 4e 6e De

DISC ANGLE OF ATTACK - DEG

A L(1,3) WAKE
0 L(2,3) UAKE
O L(3,3) UnKE

lee

............ SUPERPO$ITION OF PRESSURES
A A SUPERPOSITZON OF UELOCZTIES

le"

6e"

4e-

lee
Pt_SK _NGLK CIqPLX LIItU(2,8) & LINU(3,3)

UNCORRECTED

........... X:" .......

/ A

g

/

o.

20- ,,,/

',;_-' ........ 1 ........ '
le

REDUCED FREOUEMCY - K

I =rz_er] _ T tll;=t

le := 1l_ 3

Figure 23.
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Figure 22. Verification of Third Column of L.
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Table i. Comparison of Mass Flow Parameters

Condition

Hover, _ - )` - 0

Zero lift, climb

- 0, _ - 0

Climb, _ =

Zero lift, edgewise

- O, )` - 0

Lifting, edgewise

)`- 0

Zero lift

_m0

No normal flow,

)` m _v (descent)

u + _ sina

Ref. ii

2v

)`+2_

2
2

V + 2_

2v

)`+25

u + )` + ,3

Ref. 20, CT

2_

2)`

2) +̀ 2;

U

Ref. 20, C L and C M

22+_

2 _ X2

/V2 +)`2 + )`
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,I[L] =;

[M] =

I

2

0

0

--4

I + sina
0

15_,_ 0 -4sina
64 V I + sina I + sir_

128
0 0

75_r

-16

45v
0 0

-16
457r0 0

Table 2. Analytic Forms of L-matrix and M-matrix

EL-]: [4 _o
o'v

= )Z 2 dV T _(X'_oo ,_ V = a"_o (uoV T)

V= [_)k.+Uo ) ()k + 2u o) +/u..23/V T

Table 3. Nonlinear Version of _y'na.ratc Inflow Theory
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