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Abstract

The equilibrium and stability of the coupled elastic

lead/lag, flap, and torsion motion of a cantilever rotor blade

in hover are addressed, and the influence of several higher-

order terms in the equations of motion of the blade is deter-

mined for a range of values of collective pitch. The blade

is assumed to be untwisted and to have uniform proper-

ties along its span. In addition, chordwise offsets between

its elastic, tension, mass, and aerodynamic centers are as-

sumed to be negligible for simplicity. The aerodynamic

forces acting on the blade are modeled using a quasi-steady,

strip-theory approximation.

1. Introduction

An important problem in helicopter dynamics is the

determination of the dynamic response and aeroelastic sta-

bility associated with the rotor blades. Considerable atten-

tion has been directed to rotary-wing aeroelasticity prob-

lems, and it is now widely recognized that such problems

are inherently nonlinear. Hodges and Dowell 1 developed

a comprehensive set of differential equations of motion,

with quadratic nonlinearities, describing the flap-lead/lag-

torsional dynamics of slender, rotating extensional rotor

blades undergoing moderately large elastic deformations.

An ordering scheme based on a small parameter e was in-

troduced in Ref. 1 to systematically neglect higher-order

terms in the equations. Some important linear terms of

order e3 were kept in the equations such as aerodynamic

damping terms in the lead/lag and torsional differential

equations and inertia terms in the torsional differential

equation. Nonlinear terms of O(e 3) were systematically ne-

glected. The equations of motion developed in Ref. 1 were

used in Ref. 2 to investigate the stability of the elastic mo-

tion of a uniform cantilever rotor blade in _he hover flight
condition.

A set of O(e 3) nonlinear differential equations describ-

ing the flexural-fiexural-torsional motion of inextensional

beams undergoing moderately large deformations was de-

rived by Crespo da Silva and Glynn and used by the same

authors to analyze the response of the system 3. They have

considered nonrotating beams, and determined the effect of
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these nonlinearities on the response of the system for the

cases in which the torsional frequencies of the beam are

much larger than its bending frequencies. For such cases,

the nonlinearities present in the differential equations of

motion are O(e 3) rather than O(e2).

The question that immediately arises for the rotating

rotor-blade problem is whether cubic nonlinearities can also

play a significant role in the equilibrium and stability of the

elastic motion of the blade. To address this question, the

differential equations, and their boundary conditions, de-

scribing the flap-lead/lag-torsional elastic motion of a rotor

blade were derived in Ref. 4 with the objective of retaining

in the equations all the nonlinear terms up to O(e a) in a

small parameter e. The equations developed in Ref. 4 ex-

tend those developed in Ref. 1 to include not only all linear

O(e 3) terms but all nonlinear terms to this same order.

In this paper, the O(e 3) differential equations devel-

oped in Ref. 4 are used to investigate the influence of these

higher-order terms in the elastic response and stability of

a rotor blade in the hover flight condition. First, a brief

review of the derivation of the equations is given. A small

arbitrary ordering-parameter E is then introduced and the

equations are simplified by expanding their nonlinearities

into a power series in e. The resulting equations are more

amenable to analysis, and Galerkin's method is applied to

them. After the equilibrium solution to the equations is de-

termined, the blade's elastic deflections are then perturbed

about their equilibrium to yield a set of variational equa-

tions that are linearized and used to determine the eigen-

values associated with the perturbed motion. The influence

of a number of O(e 3) terms on the blade's response is de-

termined for a range of values of collective pitch.

2. Equations of Motion

2.1 Basic Assumptions and Outline of Derivation

Consider an initially straight rotor blade of closed cross

section. Its maximum cross-sectional dimension is assumed

to be much smaller than its undeformed length R, so that

it may be approximated as a beam. A blade segment, both

in its undeformed and deformed states, is shown in Fig. 1.

The (r/, G _) axes shown in the figure, with unit vectors

indicated by a hat as O, are the principal axes of the cross

section at the shear center Ce of the deformed blade cross

section. It is assumed that the cross section is symmetric

about the r/-axis. The _-axis is tangent at all times to the

elastic axis of the blade. When the blade is undeformed, the
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Fig. 1 Undeformed and deformed blade segment with co-

ordinate systems and unit vectors.

principal (r/, f) axes make an angle 8c-the collective pitch

angle-with the y-axis. The (x, y, z) axes, with unit vectors

also indicated by a hat, are a set of rotating reference axes

as shown in Fig. 2. The x-axis is coincident with the elastic

axis of the blade when it is undeformed. These axes are

assumed to rotate in space with constant angular velocity

fl about the vertical, which is taken to be perpendicular

to the rotor hub. The (X, Y, Z) axes shown in Fig. 2 are

a set of inertial axes. The absolute orientation of (x,y,z)

may be described by first aligning (x, y, z) with (X, Y, Z)

and then performing two successive rotations. The first

rotation r = f_t, where t denotes dimensional time, about Z

brings the (x, y, z) triad to its new orientation (Xz, Y1, Z1 =

Z); a second rotation _--the blade's pre-cone angle--about

the negative I"1 direction brings (XI, YI, Zz) to its "final"

orientation (x, y, z). For simplicity, the blade-root offset ez

shown in Fig. 2 is assumed to be zero.

Because of the elastic deformations, point C_ in

Fig. 1 moves from location (Rx, y=O, z=O) to [Rx +

Ru(x,r),Rv(x,r),Rw(x,r)] relative to the (x,y,z) rotat-

=Z1
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Fig. 2 Nonrotating and rotating coordinate systems with

unit vectors.

ing axes shown in Figs. 1 and 2. Here, (u,v,w) are the

components of the elastic displacement vector for C_, nor-

malized by R. They are functions of the nondimensional

variable x-the distance along the x-direction, normalized

by R-and of the nondimensional time 7. The orientation

of the cross-sectional principal axes (r/, _', _) centered at Ce

may be described by a sequence of three-axes Euler angles

(0, = arctan v'/(1 + u'), 0y -- arcsin w'OxlOr, Oz), as de-

scribed in Refs. 1-4. Here, primes are used to denote partial

differentiation with respect to x, and

Ox u,)2 + w,2]-_0_- = [(1+ +v '2 (2.1)

The elastic angle of twist of the blade, ¢(x,r), is ob-

tained by integrating the torsion of the blade and is related

to the Euler angle Oz(x,r) asz-4

z
¢ = Oz -t- OIz sin Oy dx (2.2)

To obtain the differential equations of motion, and

their boundary conditions, use is made of Hamilton's ex-

tended principle s. These equations were developed in Ref. 4

in terms of the elastic deformations u(x,r), v(x,r), and

w(x,r),and of the angle O_(x,r). If the blade's mass cen-

troid offset from its elastic axis is neglected, for simplicity,

the equations associated with the virtual displacements 6u,

6v, and _w are of the form

Gtu(x,7) : _. - 2 vCOS_ -t- w(sin2/3)/2

-(x + ,_) cos 2Z - Q.
(2.3)

GIv(x,r) =_A-2 ¢.tcos_--2esin_--v--Qu (2.4)

G_(x,r) =ti) + 2 _) sin/3 + (x + u)(sin2fl)/2

- wsin 2/3 - Q,_

with the cantilever boundary conditions

(2.5)

_(0,_) = ,(0,7) = _(0,_)
= 0_(0,7) = ,'(0,_) = _'(0,_) = 0

(2.6)

a_(1,,) = a_(1,7) = aw(1,,) = ¢'(_,7) = 0 (2._)

In the above equations, dots denote differentiation with

respect to 7. The G_, Go, Gw and Go, terms are nonlin-

ear functions of the elastic deformations and of their spa-

tial and temporal derivatives 4. The Qu, Qv, Qto terms

are the distributed forces (normalized by mRfl 2, where

m is the blade's mass per unit length, which is assumed

to be constant) associated with the virtual displacements

R_u, R6v, and R6w, respectively; and Qo, is the dis-

tributed moment, normalized by mR2fl 2, associated with
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the virtual rotation 6Oz. The normalized virtual work

due to these generalized forces is expressed in the form

Q,, 6u + Q_ 6v + Qw 6w + Qo= 6Oz. The boundary condi-

tions G,(1,T) = Gw(1,r ) = 0 imply v"(1,r) = w"(1,r) =
v"'(1, r) = w'"(1, r) = 0.

For compactness, the fourth differential equation ob-

tained from Hamilton's principle, namely, the equation as-

sociated with the virtual rotation 60_, is presented in the

next section in its simplified expanded form only. For its

complete form, the reader is referred to Ref. 4.

The aerodynamic forces and moments acting on the

blade are modeled using quasi-steady strip theory based

on Greenberg's extension of Theodorsen's theory in which

only the (r/, C) components of the blade's elastic axis ve-

locity relative to the air are assumed to affect the aero-

dynamic loading 2'4,6-s. These components, normalized by

the blade's tip speed fiR, are given as 4

U, = T22 [ fi+ (x+u) cos/9-wsin_] (2.8)
+T2s [ tb + vsin/9 + Acos_]

U¢ =7"32 [fi+(x+u) cos /9 - w sin S]

+T3s [ tb + vsin/9 + Acos/9] (2.9)

where,

T22 = cos 0_ cos 0z - sin 0x sin 0_ sin 0z (2.10 - a)

T23 = sin 0_ cos 0_ (2.10 - b)

Ts2 = -(sin 0_ cos 0_ + cos 0z sin 0y sin 0z) (2.10 - c)

T33 = cos @z cos 0y (2.10 - d)

and ). is the induced inflow velocity normalized by fiR.

As shown in Ref. 4, the generalized forces Qu, Q,, Q_,

and Qo= due to the aerodynamic loading are determined as

Qu = T21F, + T31F; - Qo=w 'c30_ Ox' (2.11 - a)
Ou' Or

,00_ Ox'
Q, = T2_F, + Ts2F¢ - Qo=w Ou---;Or

Q_ = T_sF, + T33F_

(2.11 - b)

(2.11 - c)

oF n = _ --_U_co_ --Cd_°u, (2.12 --c)

F_= -_ - u, u_ + u,_¢ - _ (I_+ -i_ _

2_r _ v " _ J

(2.12 - d)

In the above equations, c denotes the blade's chord,

normalized by R, _/ is the Lock number, cd0 is the airfoil

profile drag coefficient, and w_ is the _ component of the ab-

solute angular velocity of the principal axis system (r/, _', _).

It is given as

w_= 8_+(t_+cos_)sin0_+sinf/cos0ycos0, (2.13)

In order to compare results with those obtained via

the equations developed in Ref. 2, the normalized induced

inflow A is modeled as being uniform along the blade radius

and is given as

bc

A = sgn [8c + ¢e(0.75)1 _-

1 + _ I0_ + ¢,(0.75) 1 - 1

(2.14)

where b is the number of blades, and ¢e(0.75) is the equi-
librium value of the elastic angle of twist at x = 0.75.

2.2 Ordering Scheme and Expansion of the Equa-
tions to O(e s)

Because of the complexity of the differential equations

presented in the previous section, they will now be re-

stricted to moderately large deflections by expanding their

nonlinear terms in a Taylor series in a small ordering pa-

rameter e, and truncating the result to O(e3). Our ob-

jective here is to evaluate the influence of these higher-

order terms on the motion of the system. We then let

v(x,r) = O(e), w(x,r) = O(e) and O_(x,r) = O(e). In

addition, u(x,r) = O(e 2) . As an example, the expanded

form of 8u = arcsin w'cOx/Or is

1
(2.11 - d)

with,

T21:-(cosSzsinSz +sinO=sinOycosSz) (2.12 - a)

O, = w'(1 - u' - v'2/2) - w'3/3 + OCe s) (2.15)

By making use of the boundary condition Gu(1, r) = 0,

Eq. (2.3) may be integrated over x to obtain an expression

for u' in terms of the remaining variables. With u(0, r) = 0,

the following expression is obtained for u(x,r) (Ref. 4)

T31 = (sin0zsin0z --cos0zsin0ycos0z) (2.12-b)
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u(x,r) =-- 2J01fz[v,2_l_w,2_ _1 (1-x2)cos 2 _]dx

1pp
E-AJo J_ [2 _cos _ + Q_] d_ d_+ oct 4)

1 _ o(_2)
EA

(2.16)

where E is the Young's modulus of the material, normalized

by mr22, and A is the blade's cross sectional area, normal-

ized by R 2. Both of these quantities are assumed here to

be constant.

With u as given by Eq. (2.16), the O(e 3) expansions for

the quantities G_(z, r) and Gw(x, r) in the 6v and 6w equa-

tions, Eqs. (2.4) and (2.5), respectively, are now in integro-

differential form. Furthermore, since G v (1, r) = G w (1, r) =

0, it is convenient to reduce these equations further by in-

tegrating them inx from x = 1 to x = x and applying

the Galerkin procedure to the latter equations. For sim-

plicity, it is also assumed that sin/3 = O(e) (with eosfl left

as an O(1) quantity in the equations), and that c = O(c),

A = O(e), and edo = O(e 2) in the generalized aerodynamic

forces.

The expanded O(e 3) form of the fourth differential

equation obtained from Hamilton's principle namely, the

equation associated with the virtual rotation 60x, becomes,

after some higher-order cross-sectional integrals are ne-

glected, as is commonly done in the literature (e.g., Refs. 1-

4),

3¢ _/_z + tb' cosfl) + (3_ - 3,){_)'sin(20c) -
/ \

lb' cos(20c)

+ [0z cos(20o) + sin 0ocos 0oI cos _} cos

- { D_ [Oz' + v"w' - Oz' _(1- z2)]

c°s2/_"i- x2)} '+ EI_O_' _-_-(
9.

- v"w"cos2(0¢+ 0_)]

+ -_- [z 2 0_ + w' cos fl + cos _ cos 0o

+_sin0c - _cos0¢] + O(e 4) = 0

(2.17)

All quantitiesin the above equation are nondimen-
sional. The blade'sdistributedmass moments of inertia

(3,,3_,3_)are determined in terms of itsmaterial density

p(_,_)as

m:.=R ffp¢ d,Td¢ (2.18- a)

(2.18- b)

(2.18-- c)

The blade's normalized area moment, I_, is

I,=ff(,7_+_)dnd¢ (2.18 - d)

and (Dn, D_, D_) are the blade's flexural and torsional nor-
malized stiffnesses determined as

D,=Eff_d,,dc (2.18 - d)

D_=Eff,7_d,d¢ (2.18 - e)

where G is the normalized shear modulus of the blade's

material and ¢(r/,f) is the warp function (normalized by

R 2) for the blade's cross section. It is assumed that ¢ is

anti-symmetric in (r/, ¢).

For compactness in presentation, two terms in

sin2(0_ + 0_) and cos2(8_ + 0_) are shown in Eq. (2.17),

but they were actually approximated by their respective ex-

pansions to O(e s) about Oz = 0 by writing sin 2(0c + 0_) :

sin28c + 28z cos (28c)+ 0(, 2) and cos2(0c+ Oz) = cos20c -

28z sin (20c) + O(e2). The nonlinear O(e s) terms associated

with these expansions, namely, the terms in v"20z , w"20x

and v"w"Oz, will henceforth be referred to as the ijkl terms

in the 6Oz equation in the next figures. The O(e s) terms

underlined in Eq. (2.17) are not included in the equations

developed in Ref. 2. The single underlined terms are lin-

ear pitch-flap and pitch-lead/lag coupling terms, and the

remaining underlined terms are O(e s) linear terms in the

aerodynamic pitch moment that are kept for consistency

in the formulation. Until a better understanding and more

accurate modeling of aerodynamic phenomena is achieved,

the validity of terms such as these may be questionable.

The 1/(EA), O(eS), terms in Eq. (2.17) were also neglected

in Ref. 2. Again, these terms are kept here for mathemati-

cal consistency. For values of EA greater than about 200,

we found that the influence of these terms in the results pre-

sented later is so small that they may actually be neglected

in practice.

2.3 Application of Galerkin's Method

We approximate the solution to Eq. (2.17) and to the
integrated form of Eqs. (2.4) and (2.5) as a series of the

form
N

v(z,r) = E vii(r)fi(x) (2.19- a)

./=I

N

w(x,T) = EwtJ(r)fj(x) (2.19- b)
1=1

N

o_(_,_)= _ O_jCr)9;(_) (2.19 - c)
j=l

208



and then reduce the integro-differential equations to or-
dinary differential equations by making use of Galerkin's

method Ref. 5. The functions fj(x) and g/(x) are cho-

sen here as the orthogonal eigenfunctions for a nonrotating

clamped/free beam,

h" (x) = cosh (B/x) - cos (_ix)

- % [sinh (Bjx) - sin (Bjx)]
(2.20 -- a)

gi(x) = v_sin [r(j- _)x] (2.20 -- b)

where

cos/_i + cosh fli (2.20 - c)
ai = sin/_ i + sinh fit

and/Sj is the jth (j = 1,2, ...,N) root of the characteristic
equation

1 + (cosh _/j)cos _j = 0 (2.20-d)

All the Galerkin coefficients obtained by the proce-

dure described above were evaluated numerically, stored

in a computer file, and then used to generate the results

presented in Sections 3 and 4. The ordinary differential

equation obtained by applying Galerkin's method to the

5Oz equation is obtained as

¢2

_(0_ - 3n)Q_(sin 20c) cos _ fl + _c- (sin 2B)(cos Oc S_192" " )=

+ _( [3jt_' + (3,- 3,)Otj(cos 20°) cos _ a]_,;
./=1 -

- [3, too' + (3, - 3n)(6tt sin 20c - thti cos 20c)1 Ls.il cos/J

- [D,(P/i + 2c°sZ/_N"_ q) - -E_NiiEI' cos'/_] 0, i

+ _{ (cos,)(cos0o)['20,,M,,

÷( ,tsinOo- ,tcosOo)O,t,})
N N

+ E E { D,asdikVtjWtk

t=l k=l"

1

+ (D, - D,)[ _(vtivt_ - wtjwte) sin 20,

- vtiwtk cos 20_] Kiik }

N N N

$'=1 k=l l=l

+ 2 vtiwtk sin 20c]Ot_Bs,iil_

+ O(t _) = 0 (i = 1,2,...,N)

(2.21)

where

1Si = x ei dx (2.22 - a)

Rii = fo 1 xgi ft' dx (2.22 - b)

LsM : - fot fi'gj dz (2.22 - c)

04,it = jo 1 fi 9t dx (2.22 - d)

Bs,qkt = fo 1 fi"gigkf/' dx (2.22 - e)

The terms that are underlined in Eq. (2.21) correspond

to those similarly underlined in Eq. (2.17). The La,ii, 04,ii,

and Ba,iikl Galerkin coefficients also appear in the $v and

in the Sw equations, with the Ls,ii coefficient in the form

of a 0t1 term. The S_ and Rq coefficients appear only in

Eq. (2.21).

3. Equilibrium Solution

3.1 Numerical Method

The differential equations outlined in Section 2 admit

the equilibrium solution vtj(r) = constant = vet, wtt(r) =

constant = wet, and Oti(r) = constant = 0,i. The 3N quan-

tities vet, wej and 0e/, j = 1, 2, ..., N, were determined nu-

merically by solving the algebraic equations obtained from

the differential equations in Section 2 using a minimization

program 9.

The equilibrium solutions were obtained for a four-

bladed rotor with c = Ir/40, and using a Lock number q = 5,
a profile drag coefficient ca0 = 0.01, and EA = 200. The

equilibrium deformations at the blade tip, ve(x = 1),wc(z =

1) and ¢e(x = 1) are plotted in Figs. 3 and 4 versus 0e for

/_ = 0. The quantities w_, w_, and w$ shown in these and in
the subsequent figures denote, respectively, the first rotat-

ing uncoupled blade natural frequencies normalized by fl

as obtained in Ref. 10. The results shown in these figures

were obtained by using N = 5 nonrotating beam normal

modes in the Galerkin procedure. Greater values of N did

not significantly affect the results obtained. The dashed

lines shown in Figs. 3 and 4 and in subsequent figures rep-

resent the results obtained using the equations in Ref. 2,

while the solid lines represent the results obtained when

the additional O(e s) terms presented here are included in

the differential equations of motion. These lines are marked

a, b, c and d and they represent the following cases:

a the full O(, 3) equations;

b the O(e s) equations, but with Bs,iikl = 0;

c the O(c s) equations, but with all the OaM, Rij and

Ls,q terms removed, and Bs,iikz = 0;

d the O(e 3) equations, with all the 04,q and Rit terms

removed.
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Fig. 3 Chordwise deflection (Ve), flapwise deflection (We) , and angle of twist (¢e) at x = 1 versus collective

pitch (Oc) for _O_v = 1.06,/3 = 0, t_t_ = 2.5, (N = 5).
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3.2 Discussion of Results

Figs. 3 and 4 illustrate the importance of the O(_ s)

terms of the type underlined in Eq. (2.21) in the equilib-

rium solution of the blade. Their effect is particularly re-

flected in the equilibrium value of the blade's angle of twist,

Ce(x = 1), especially for the lower value of the uncoupled

flap frequency w_, = 1.06. Several of the nonlinear terms

may have only a minor influence on the blade's equilib-

rium deflections. For soft in-plane blades with w_ -- 0.7,

for example, it is seen that the equilibrium curves a and

b are nearly identical; the same is true of curves c and d.

This indicates that for such blades, the additional aerody-

namic O(e 3) terms of the type indicated in Eq. (2.21) are

essentially responsible for the difference between curve a

and the remaining curves. For these blades, the nonlin-

ear Bs,i/kl terms in Eq. (2.21) could have been neglected

without causing any significant change in the blade's equi-
librium deflections. For high values of collective pitch, how-

ever, those terms exert a significant influence on the blade's

equilibrium, affecting especially its elastic angle of twist.

Another characteristic of the full O(e 3) equations is

disclosed by examining the equilibrium response of a stiff

in-plane blade with w_ = 1.06. The numerical determina-

tion of the equilibrium deflections based on the equations

developed in Ref. 2 fails to converge when 0c is about 0.4.

This singularity is shifted to a higher value of 0¢ when ad-

ditional O(e 3) terms are included in the equations. For the

full O (e s) nonlinear equations, no singularity is exhibited in

the range of 0¢ shown in Figs. 3 and 4. If the aerodynamic

04,ij and Rij terms and the B3,ijk! terms are neglected,
but if all other additional terms in the equations are kept,

the singularity now appears near 0c = 0.5.

It was verified that the O(e 3) ijkl terms in the _v and

6w equations, did not contribute significantly to the deter-

mination of the blade's equilibrium response and, therefore,

could have been neglected for practical purposes.

4. Stability Analysis

4.1 Numerical Method

To analyze the stability of the motion about the equi-

librium determined in Section 3, we let

vti(v) --- vej + vi(r) (4.1 - a)

wt_'(r) --- wej -t- wi(r ) (4.1 - b)

Otj(r) :- Oej _- 0j(r) (4.1 -- c)

and then linearize the 3N differential equations of motion

in the variables vj(r), wj(r), and 0j(r) to obtain a matrix
equation of the form

M_ + C q_"÷ K_q ----0 (4.2)

where _q is a 3N × 1 column vector whose components are

,,_(,).... , v_(,-), ,,.,,(,-),... , _(,-), o_(,-),... , o_(,-).
The matrix M is symmetric, and the matrices K and C

are non-symmetric.

The stability of the perturbed motion q(r) is deter-
mined by the eigenvalues associated with Eq. (4.2). To

determine such eigenvalues, Eq. (4.2) is first rewritten in a

first-order form. After introduction of a column vector z_

with components _qand __, Eq. (4.2) may be written as

B _h-- Az (4.3)

with B11 -- I, a 3N x 3N identity matrix; B12 = B21 --- [0];
a 3N x 3N null matrix; B22 = M; All = [0]; A12 = I;

A21 = -K; and A22 ---- -G. The eigenvalues associated

with the 6N × 6N matrix in Eq. (4.3) were determined

numerically by making use of the IMSL routine EIGZF _.

The real and imaginary parts of the first lead/lag (av

and w_), first flap (a_ and ww), and first torsion (a¢ and

we) eigenvalues determined as indicated above are plotted

versus collective pitch (0c) in Figs. 5 to 10 using the same
parameter values and labeling convention indicated in Sec-
tion 3.1.

4.2 Discussion of Results

Figs. 5 and 6 show the first lead/lag eigenvalue asso-

ciated with Eq. (4.3) for the rotating blade as a function
of the pitch angle 0c. It is seen that for a soft in-plane

blade with uncoupled rotating natural frequency wv* = 0.7
the nonlinear O(E s) Bs,iikl term that appear in Eq. (2.21)

has no substantial influence on either av or wr. For such

blades, the influence of the remaining higher-order terms

underlined in Eq. (2.21) is reflected in the difference be-

tween curve d (i.e., with the aerodynamic terms 04,iy and

Rii removed from the equations) and that obtained with
the full O(e 3) equations (curve a), and curves a and c (i.e.,

with the Ls,ii torsion-bending coupling terms, and the 04,ij

and R_j aerodynamic terms removed from the full O(E s)

equations). The additional O(e s) terms included in the Sv

and $w equations account for the difference between the re-

sults obtained by using the equations developed in Ref. 2--

represented by the dashed line---and those represented by

curves a in Figs. 5 and 6.

As w_ is increased, however, the situation described

above changes. For a stiff in-plane blade with w_* = 1.5, the

nonlinear Bs,iikt term that appears in Eq. (2.21) now exerts
a mQor influence on the real part or of the first rotating

lead/lag eigenvalue, whereas the terms in the underlined

coefficients in Eq. (2.21) do not. The effect of the O(c s)

nonlinearities that appear in the 6v and 5w equations is

seen by comparing curve c with the dashed curve obtained

by using the equations in Ref. 2. For values of 0¢ as high

as about 0.4, the latter equations yield, for this stiff in-

plane blade, practically the same values for wv as the full

O(e s) equations used in this paper. At about 0¢ = 0.4,

the numerical calculation of the eigenvalues based on the

equations in Ref. 2 fail to converge.

The first flap eigenvalue obtained from Eq. (4.3) is

shown in Figs. 7 and 8. Again, the effect of Bs,iykz on

both aw and w_ is negligible for a soft in-plane blade with

w* = 0.7, but significant for a stiff in-plane blade with

w_ = 1.5 for higher values of collective pitch. The effect

of the apparent inertia, 04,ii, and of the Rii aerodynamic
terms, generally neglected in the literature, is reflected in
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the eigenvalue (aw,w_o) even for 8c -- 0. It was verified

numerically that the L3,_i torsion-bending coupling term

that appears in Eq. (2.21)--and also in the 6v and 6w vari-

ational equations as a 0:. term--has no practical influence

on w_o. Its influence on aw was found to be negligible for

w; = 1.5, but significant when w; = 0.7. As indicated by

Figs. 7 and 8, the damping for the perturbed flap motion

for a soft in-plane blade can be significantly affected by the

additional O(e 3) terms included in the equations used here.

Figs. 9 and 10 show the real and imaginary parts of the

first rotating torsion eigenvalues of Eq. (4.3). The values

of the torsional frequency we are relatively large, and, as

seen from these figures, there is little difference between

the results obtained here and those obtained by using the

equations in Ref. 2 for small values of 8c. For larger values

of collective pitch 8c, however, the full O(e 8) equations used

here and those in Ref. 2 predict a different trend for w_ as

8c is increased further. However, this trend difference is
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exhibited at such high values of 0c that it may not be of

practical significance.

The torsion damping is significantly affected by the

O(e 3) terms included in the equations used in this paper.

Particularly noticeable in Figs. 9 and 10 is the opposing tor-

sion damping trends for a soft in-plane blade with w_ = 0.7

for increasing values of 0¢. This is observed by comparing

the results given by curve a, obtained with the full O(e 3)

equations, and by the dashed curve obtained by using the

equations in Ref. 2.

It is worth mentioning that all the results shown in

Figs. 3 to 10 were essentially unaffected by the O(e 3) ijkl

terms in the _v and 6w equations. These are terms in

vtjwtkOth vtj(vkOtl, etc.

5. Concluding Remarks

Numerical results obtained from nonlinear rotor blade

equations for the hovering flight condition, with terms re-

tained up through O(e3), are presented and compared with

results from a simpler O(e 2) model obtained by previous

investigators 2. In order to facilitate an understanding of

which terms are important in the present model that were

absent in the previous, simpler model, the present model

was exercised with several different classes of terms sys-

tematically omitted. Present results, a subset of all the

results obtained, indicate that both linear and nonlinear

terms of O(e 3) can significantly affect results for both non-

linear static equilibrium and linear aeroelastic stability. For

the results presented here, the most significant cubic non-

linear terms are those associated with structural geometric

nonlinearity in the torsion equation. It would appear that

such terms should be present in any general-purpose rotor

dynamics analysis. The corresponding terms in the equa-

tions for bending, although not practically significant in the

present results, do make the structural terms in the equa-

tions symmetric. The most significant linear terms in the

present model but absent in Ref. 2 are associated with an

approximate aerodynamics model, the accuracy of which

has not been rigorously ascertained. For completeness, it is

recommended that a similar investigation be undertaken for

the forward flight condition to determine if similar trends
hold.
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