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Summarx

This paper presents the results of an analy-

tical study aimed at predicting the aeromechani-

cal stability of a helicopter in ground reso-

nance, with the inclusion of aerodynamic forces.

The theoretical results are found to be in good

agreement with the experimental results, avail-

able in the literature, indicating that the

coupled rotor/fuselage system can be represented

by a resonably simple mathematical model.

Nomenclature

= lift curve slope

C(k) = Theodorsen's lift deficiency

function

cdO = profile drag coefficient of
the blade

= hinge offset

8
P

f_R

8o

Slc' Sls

AB k

c

_p

_R

= progressing flap mode (high

frequency) in the figures

only

= regressing flap mode (low

frequency)

= rotor blade equilibrium angle

in flap

= cyclic flap coordinates

= time dependent perturbations

of the k th blade in flap

= order of magnitude used for

ordering various quantities

= progressing lag mode (high

frequency)

= regressing lag mode (low

frequency)

f = rotating natural frequency

h 2 = height of rotor hub above the

gimbal

_ic'_is

o

= cyclic lag coordinates

= rotor blade equilibrium angle

in lag

= rotary inertia of the model

Ixx'Ixy'Iyy'Iyx about the gimbal axes
A_ k

= time dependent perturbations

of the k th blade in lag

Ks,K C

m

R

stiffness of the root springs

of the blade in flap and lag

respectively

mass/unit length of the blade

rotor radius

_nc'_ns

0

0
c

n - cosine, n - sine lag

coordinates

body pitch

collective pitch setting of

the blade

= complex eigenvalue

= time

Snc,_ns = n - cosine, n-sine flap
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(-) = n0ndimensionalized quantity,

with respect to R when involving

length, and with respect to f_

when involving frequency
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I. Introduction

The aeromechanical instability of a helicop-

ter, on the ground and in flight, is caused by

coupling between the rotor and the body degrees

of freedom. This instability is commonly denoted

air resonance when the helicopter is in flight

and ground resonance when the helicopter is

on the ground. The physical phenomenon involved

during this instability is quite complex, the

rotor lead-lag regressing mode usually couples

with the body pitch or roll to cause the insta-

bility. The nature of the coupling which is both

aerodynamic and inertial is introduced in the

rotor due to body or support motion. Development

of a mathematically consistent model capable of

representing the coupled rotor/fuselage dynamic

system is of fundamental importance for the study

of these type of problems. The mathematical model

should be consistent because the geometrically

nonlinear terms associated with moderate blade

deflections are known to have a significant role

in rotary wing aeroelasticity 1. Thus various

terms having the same order of magnitude must be

retained throughout the derivation of the equa-

tions of motion. A consistent mathematical model

has been developed2,3, by the authors, to study

the aeroelastic, structural dynamic and aero-

mechanical effects in multi-rotor systems.

Bousman 4 has obtained excellent experimental

data for aeromechanical stability of a hingeless

rotor on a special gimbaled support simulating

body pitch and roll degrees of freedom. The

availability of this high quality experimental

data provides an opportunity for comparing the

results obtained from the analytical model with

this experimental data. Bousman attributed some

of the discrepancies found between the theoreti-

cal results presented in his paper and experi-

mental results to dynamic inflow. This conclu-

sion was also examined by Johnson 5, in a recent

study, where unsteady aerodynamic effects on the

rotor was represented by a perturbation inflow

model 6. Johnson showed that theoretical results

based on his model 7, with dynamic inflow pro-

vided results which showed better agreement with

the experimental results than the results b_sed

on a quasi-steady aerodynamic model without

dynamic inflow. He concluded from his study

that unsteady aerodynamic effects are repre-

sented quite well by a dynamic inflow model.

Using the mathematical model developed by

the authors2,3, it is shown that the theoretical

results, based on the quasi-steady aerodynamic

model, are for most cases in better agreement

with the experimental results than the agreement

noted by Bousman 4. The agreement with the

experimental data is also comparable to that

obtained by Johnson 5, except that the quasi

steady model is incapable of predictin_ the

"dynamic inflow mode" found by Johnson _, which is

a result of the augmented state due to inflow

dynamics.

The good agreement between the analytical and

experimental results indicates that the relatively

simple analytical model is accurate for this case.

Furthermore it also implies that only part of the

discrepancy between theory and experiment, found

by Bousman, may be attributed to dynamic inflow.

II. A Brief Summary of the Experiment

A clear description of the experimental set

up, used for simulating the fundamental aspects of

the aeromechanical stability of a hingeless rotor

helicopter, is presented in Ref. 4. The rotor

consisted of three blades and five different con-

figurations were tested. The different configura-

tions represent different blade parameters char-

acterized by the nonrotating natural frequencies

of the blade in flap and lag, pitch-lag coupling

and flap-lag coupling. The rotor was designed

such that most of the blade flexibility is con-

centrated at the root by building in root flexures.

The rotor assembly was supported on a gimbal which

had pitch and roll degrees of freedom. In this

paper the analytical results obtained were com-

pared with the experimental results, presented by

Bousman, for rotor configurations 1 and 4, where

the designation of these configurations is con-

sistent with those in Bousman's paper 4.

A brief description of these configurations

is presented for the sake of completeness. Con-

figuration i had different stiffnesses in flap

and lag respectively, the corresponding nonrota-

ting flap frequency was 3.13 Hz and that for

lead-lag was 6.70 Hz. Configuration 4 was a

matched stiffness case where the nonrotating flap

frequency was 6.63 Hz and that for lead-lag was

6.73 Hz. The airfoil cross-section of the blade

was cambered and had a zero lift angle of attack

equal to -1.5 degrees. Thus a substantial part of

the experimental data was obtained for zero pitch

setting, however, due to the presence of camber

the rotor produces a small amount of thrust at

this pitch setting. The rotor blades were rigid

outboard of the flap and lag flexures which were

located at a radial station 0.I05R. There was no

flap-pitch or pitch-lag couplings for these two

configurations (configurations I and 4). Further-

more, the blade was very stiff in torsion. In

the case of the experiments conducted for pitch

angles other than zero, the experimental set up

was so designed as to introduce the changes in

pitch angle outboard of the flexures and hence

there was no flap-lag structural coupling for

these cases. The structural damping in body roll

was very small in comparison with that for body

pitch. The body pitch and roll frequencies were

controlled by cantilever springs on which the

gimbal was mounted. It is stated in Ref. 4 that

the body pitch spring was selected to provide a

dimensionless body pitch frequency of about 0.12

at the nominal rotor speed of 720 R.P.M. and the

roll spring was selected to give a dimensionless
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roll frequency of about 0.28. (The frequencies

are nondimensionalized by dividing by rotor

speed.) Based on these values, the dimensional

frequencies in pitch and roll are 1.44 Hz and

3.36 Hz respectively. It was also mentioned in

Ref. 4 that the dimensional values of the body

pitch and roll frequencies are about 2 Hz and

4 Hz respectively. So the difference, noted

between the two sets of body frequencies, raises

a question as to what are the exact values for

the pitch and roll frequencies. However the

experimental results presented in Ref. 4 showed

that over a wide range of _ (200 ~ i000 R.P.M.)

the pitch and roll frequencies are very close

to 2 Hz and 4 Hz respectively. Hence, for the

present analysis, the pitch and roll frequencies

are selected to be 2 Hz and 4 Hz. The reason

for choosing 2 Hz and 4 Hz for body frequencies

was that at approximately 750 R.P.M., the lead-

lag regressing mode of the rotor was close to

the body roll frequency causing an aeromechanical

instability. The data used in our calculations,

is presented in the Appendix B.

III. Description of the Analytical Model

The analytical model used to study this

aeromechanical stability problem is based on the

equations developed for a multi-rotor system

presented in Ref. 2 and 3. Those equations

represent the dynamics of the coupled rotor/

vehicle system consisting of two rotors inter-

connected by a flexible structure. The various

degrees of freedom considered, in deriving the

equations, are flap, lag, torsion for each blade,

rigid body translation and rotation of the com-

plete vehicle and also the degrees of freedom

representing the normal modes of vibration of

the supporting structure. From this multi-rotor

analytical model, only those degrees of freedom

and the corresponding equations of motion that

are relevant for the present study have been

retained. The most important assumptions upon

which the formulation is based on are: (i) the

rotor consists of 3 or more number of blades,

(2) the rotor is lightly loaded, (3) the rotor

is in uniform inflow, and (4) the rotor blade

is modelled as a rigid blade with orthogonal

springs located at the root of the blade (Fig.

i), where K B and K_ represent the stiffness of

the blade in flap and lag motions.

The aerodynamic model is based on

Greenberg's 8 derivation of unsteady aerodynamic

loads on an oscillating airfoil in a pulsating

flow. This theory is basically a modified form

of Theodorsen's unsteady aerodynamic theory.

By assuming the Theodorsen's lift deficiency

function C(k) = 1 and neglecting the torsional

motion of the blade, the aerodynamic model

becomes a simple quasi-steady model with apparent

mass terms. In the present calculations, only

this quasi-steady aerodynamic model with apparent

mass terms is used. It was found from our cal-

culations that neglecting the apparent mass

terms from the aerodynamic model affects the

results only by 2 ~ 4%.

The inflow ratio %, used in the calculation

of the aerodynamic loads was evaluated from 6

_a [_ 1 24 eeff -I] (i)x =i7 + _-----f--

where _ is the solidity ratio

a is the lift curve slope

and 0ef f is the effective angle of attack of the

blade.

As indicated in Ref. 4, a cambered airfoil was

used in the model rotor tested, thus

@eff = @c - OZL (2)

where
c

blade

is the collective pitch setting of the

@ZL is the zero lift angle of attack.

The zero lift angle of attack, for the airfoil

employed 4 (NACA 23012), was OZL = -1.5 degrees.

As mentioned earlier, the equations of motion

are nonlinear, because geometrical nonlinearities

due to moderate deflection of the blade are

included. Retention of the nonlinear terms is

based upon an ordering schemel,2. The blade

degrees of freedom, representing blade slopes are

assigned an order of magnitude represented by a

symbolic quantity E, and are denoted to be of

order 0(E), where 0.i < g < 0.15. The fuselage

degrees of freedom are assumed to be of a slightly

smaller magnitude 0(g3/2). As indicated in Ref.

i, this assumption is quite important for obtain-

ing equations which are manageable from an alge-

braic point of view. The ordering scheme consists

of neglecting terms of order O(E 2) when compared

to order one, thus 1 + O(c 2) 2 i.

The degrees of freedom considered in this

aeromechanical stability analysis are: the fun-

damental flap and lag modes for each blade and the

pitch and roll degrees of freedom of the body.

In this class of problems, it has been established

that the collective flap and lag modes do not

couple with the body motion and thus, these modes

are not considered. Therefore, the total number

of degrees of freedom governing the aeromechanical

problem are six. These consist of: cyclic flap

(Blc,_is), cyclic lead-lag (_ic,_Is), body pitch

(@) and body roll (9)-

IV. Method of Solution and Discussion

of Results

The method of solution for coupled rotor/

fuselage problem follows essentially the procedure

explained in Ref. 1 and 3. A brief outline of

the procedure is given in the following few

paragraphs.

The equations of motion, for coupled rotor/

fuselage problem, are usually nonlinear
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differential equationswithperiodiccoeffi-
cients. Thesedifferential equationscanbe
eitherordinaryorpartial dependingonthetype
of modelusedfor therepresentationof the
rotorblade. If thebladeis modelledasa
rigid bladewith rootsprings,theresulting
equationswill benonlinearordinarydifferential
equations.Ontheotherhand,if thebladeis
modelledasa flexiblebeam,thefinal equations
will benonlinearpartial differential equations.
In this case,thepartial differential equations
are first transformedintoordinarydifferential
equationsusingGalerkin'smethod.Thereafterthe
methodof solutionis thesameregardlesswhich
of thesetwoblademodelsis used. In the
presentcase,becausethebladeis modelledas
rigid bladewith rootsprings(Fig. I), the
equationsof motionarenonlinearordinary
differential equationswithperiodiccoeffi-
cents. Thestepsinvolved,in solvingthese
equationsto obtainthestability information,
areasfollows.

I. Evaluationof theequilibriumpositionfor
theblade.

2. Linearizationof thenonlinearordinary
differential equationsabouttheequilibrium
position. (Linearizedequationswill have
periodiccoefficients.)

3. Transformationof thelinearizedequations
withperiodiccoefficientsto linearized
equationswithconstantcoefficients,by
applyingmultibladecoordinate
transformation.

4. Evaluationof theeigenvaluesof the
linearizedsystemwithconstantcoefficients
to obtaintheinformationaboutthe
stability.

Forthecaseof hover,theequationswhich
representthestatic equilibriumof theblade
areobtainedbyimposingtherequirementthat
all timederivativesof thebladedegreesof
freedomandthefuselageperturbationsvanishin
theequations.Theresultingequationsarenon-
linearalgebraicequationsandtheyareidentical
for all thebladesin therotor indicatingthat
thestatic equilibriumis samefor all blades.
Thisstatic equilibriumpositionis obtainedby
solvingthenonlinearalgebraicequationsusing
a numbericalmethod,namelytheNewton-Raphson
technique.Thenthebladedegreesof freedom
areexpressedastimevaryingperturbations
aboutthestatic equilibriumposition,60and_0
for flapandlagrespectively.

6k(_) _ 80+A_k(_')

6k(_')= _0+g_k(@)
Substitutingtheseinto thenonlinear

ordinarydifferential equationsof motionand
neglectingtermswhichcontaintheproductof
theperturbationterlas,yieldsthe linearized

equationsof motion.Thelinearizedequationsfor
thek-th bladewill haveperiodiccoefficients,
sincethek-th bladeequationsarewritten in the

blade fixed rotating coordinate system. Trans-

formation of the perturbations equations to a non-

rotating system will result in equations with con-

stant coefficients. This transformation is per-

formed using the multiblade coordinate transforma-

tion 6. During this transformation, the individual

blade degrees of freedom will transform to a new se

of rotor degrees of freedom. In the past, these

rotor degrees of freedom have been referred to as

multiblade coordinates or Coleman coordinates or

Fourier coordinates or rotor-plane coordinates.

These coordinates are basically representative of

the behavior of the rotor as a whole when viewed

from a nonrotating frame. For the sake of com-

pleteness the equations of blade equilibrium, the

linearized perturbational blade equations (in the

multiblade or rotor plane coordinate system) and

the perturbational equations for the pitch and roll

degrees of freedom are presented in Appendix A.

Stability of the linearized system is

determined by performing an eigen-analysis on the

linearized constant coefficient perturbation

equations. The eigen-_alues appear as complex

pairs s = o ± i_. The complex part of the eigen

value (_) refers the modal frequency and the real

part (o) refers the modal damping. The mode is

stable if o is negative and it is unstable if o

is positive.

For the present problem, there are six pairs

of complex eigen-values each one representing one

of the six degrees of freedom, namely, _ic, _is,

_ic, _Is, O and 9. The modes corresponding to

the rotor degrees of freedom (_Ic, _is, $1c, _is)

are referred to either progressing mode or

regressing mode. The designation of progressing

or regressing to a particular mode is based on

the numerical value of the rotating natural fre-

quency of the rotor. Suppose the rotating

natural frequency, say in lead-lag, is f/rev.

Then the two frequencies corresponding to the

cyclic lag modes (_ic, _Is) will be (f+l)/rev

and (f-l)/rev, where f+l is the high frequency

lag mode and f-i is the low frequency lag mode.

If f is greater than i/rev, the high frequency

lag mode (f+l) is a progressing mode and the low

frequency lag mode (f-l) is a regressing mode.

On the other hand, if f is less than i/rev, the

high frequency lag mode is a progressing mode

and the low frequency lag mode is also a progres-

sing mode. These designations are also appli-

cable for the flap modes of the rotor. A clear

description of these is given in Ref. 6. For a

stlff-in-plane rotor, the rotating natural

frequency in lead-lag greater than I/rev. Hence

the high frequency lead-lag mode is a progressing

mode and the low frequency lead-lag mode is a

regressing mode. For a soft inplane rotor since

the rotating natural frequency is less than

i/rev, both high frequency and low frequency lag

modes are progressing modes.
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In thepresentstudy,aimedat theaero-
mechanicalstability of a modelhelicopter,the
behavforof themodelis studiedat various_'s
of therotor. Thusdueto thevariationin _,
a stiff inplanerotorat low_'s will becomea
soft inplanerotor at high_'s. In theexperi-
mentperformedbyBousman4, theflexibility of
thebladein lead-lagis suchthat therotor
becomesa soft inplanerotor beyond_ = 445
R.P.M.Hence,for _ < 445R.P.M.,thelead-lag
modeswill haveoneprogressingmodeandone
regressingmodeandfor _ >445R.P.M.,boththe
lagmodeswill beprogressingmodes.In Refs.
4 and5, evenfor _ >445R.P.M.,the low-
frequencylagmodeis referredss regressing
modeinsteadof progressingmode.Thereason
couldbeto avoidanyconfusionwhilereferring
to variousmodes.So,for thesakeof con-
sistency,duringthediscussionof ourresults,
the lowfrequencylagmodeis alwaysreferred
aslagregressingmode.

Theresultsfor confisuration 1 are pre-

sented in Figs. 2-7, while the results for

configuration 4 are presented in Figs. 8-12.

The variation of the various modal frequencies

with _ are presented in Fig. 2, together with

the experimental data obtained in Ref. 4. The

progressing flap and progressing lead-lag

frequencies increase very rapidly with _. The

lead-lag regressing mode frequency evaluated

from the analytical model is in excellent

agreement with the experimental results. The

body pitch and roll frequencies have slightly

higher values than the experimental results.

The damping in pitch as a function _ is shown

in Fig. 3. The analytical results are in

relatively good agreement with the experimental

data. The variation of the damping in roll as

a function of _ is shown in Fig. 4. It is

evident that for this case the analytical

results yield values which are somewhat higher

than the experimental data. The differences

observed between our analytical results and the

experimental points, for the frequency and damp-

ing in body modes, could be explained as fol-

lows. In our calculations, the numerical values

used for the stiffness and structural damping

in body pitch and roll modes are evaluated

based on pitch frequency equal to 2 Hz and roll

frequency equal to 4 Hz. As pointed out in

Sec. II of this paper, there is some doubt

about the correctness of the body frequencies

(2 and 4 Hz) because in Ref. 4, there are two

different sets of frequencies for pitch and

roll, namely 1.44 and 3.36 Hz, and 2 and 4 Hz

respectively.

Figure 5 represents the variation of damp-

ing in lead-lag regressing mode with _. As

indicated before, Johnson's results 5 show that

the theory with inflow dynamics shows better

agreement with experimental data than the

theory with quasi-steady _erodynamics. However,

even with quasi-steady aerodynamics, the results

of the present analysis show slightly better

agreement than the results obtained in Ref. 5

with inflow dynamics. It is also important to

note that in the region, beyond 800 R.P.M., our

results are in excellent agreement with the

experimental data, while the theory with inflow

dynamics predicts higher values.

Results from the calculations performed

indicated that the progressing and regressing

flap modes are always stable and the damping in

these modes increases monotonically with _ for

configuration 1 as well as for configuration 4.

Since these modes are always stable, the results

are not presented in this paper.

Changes in the damping of the lead-lag

regressing mode as a function of the collective

pitch setting of the blade are presented in Fig.

6. Since Johnson 5 has not presented a corres-

ponding set of results, it was not possible to

compare these results with an analysis based on

the dynamic inflow model. At _ = 650 R.P.M., the

results shown in Fig. 6a indicate that the

theoretical analysis used by Bousman 4 predicts a

much lower value for the damping than the experi-

mental results. The present analysis shows con-

siderably better agreement. It should be noted

however that for larger values of pitch setting

the difference between the predicted results and

the experimental results increases. This dif-

ference could be attributed to the simple quasi-

steady aerodynamic model used in our analysis.

This difference however is much smaller than the

one exhibited by Bousman's results. Even more

interesting are the results presented in Fig. 6b,

corresponding to _=900 R.P.M. For this case exper-

imental results indicate a lead-lag regressing

mode which is always stable, but the theoretical

results shown by Bousman 4 imply an instability

which becomes stronger beyond a collective pitch

setting of 2 degrees. As evident from Fig. 6b,

the results of our analysis predict the correct

trend and the predicted damping levels are much

closer to the experimental results. It should be

noted again that the agreement between the pre-

dicted and experimental results diminishes with

increasing collective pitch setting. An item to

be noted in these figures (6a, 6b) is that the

curve representing our analytical results starts

from an angle O c = -1.5 degrees. Although Fig. 6

contains an experimental data point corresponding

to 0 c = -3 degrees, we have not computed the

results for this pitch setting because for Oc =
-3 degrees, the relation between inflow ratio

and the collective pitch of the blade (Eq. i)

becomes indeterminate.

The variations in pitch damping as a func-

tion of collective pitch setting are shown in

Fig. 7a, and similar variations for roll damping

are shown in Fig. 7b. As evident from 7b, the

damping in roll is predicted quite well. However

the damping in pitch predicted by the present

analysis is much lower than the experimental

results. One can only speculate on the possible

cause for this discrepancy. One possible reason

could be the slight nonlinearity present in the

structural damping in pitch mentioned in Ref. 4.
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At_ = 650R.P.M.,the lead-lagregressingmode
frequencyis closeto thebodypitch frequency
(Fig. 2) andthereforetheamplitudesin pitch
couldbehigher. Thusnonlinearityin structural
dampingin pitchcouldmanifestitself by
increasingthetotal dampingin pitch.

Theresultsfor configuration4 arepre-
sentednext. Thevariationof modalfrequencies
with_areshownin Fig.8. Thelead-lag
regressingmodefrequencyis in excellent
agreementwithouranalyticalpredictions.The
pitchandroll frequenciesarepredictedwell.
Bousman's4 experimentsshowedthepresenceof
a frequencyof about0.8Hzbeyond_ = 350
R.P.M.,whereasthepresentanalysishasnot
predictedanyfrequencycloseto this value.
Notethat theregressingflap modefrequency
is closeto thepitchmodeoverawiderangeof
_(400<f_< i000R.P.M.).Thusit is possible
that thepitchmodecanbeexcitedbythe
proximityof theregressingflapmode.Theexpla-
nationfor thepresenceof the0.8Hzfrequency,
measuredin thetest, poseda problemsincethe
theoreticalresultspresentedbyBousman4aswell
asthoseobtainedbyJohnson5, with thequasi-
steadyaerodynamics,wereincapableof predicting
a 0.8Hzfrequency.It is quiterelevantto
quoteBousmanonthis matter,Ref.4, p. 53.
In Bousman'swords,"Howeverin theexperimental
case,measurementsin thepitchcoordinateshow
twomodesof comparabledampingat rotor speeds
beyond350R.P.M.,onemodeat about0.8Hz
andtheotherat 2.0Hz". Bousmanrefersone
aspitchmode(0.8Hz)andtheotherasflap
regressingmode(2.0Hz). However,in identi-
fyingthesemodesBousmanstates,"Tocall one
modethebodymode,andtheotherflap regres-
singmodeis somewhatarbitrary; therationale
usedhereis thatasthebladepitchangle
increasesonlyoneof thesemodesremains,and
it is assumedto bethebodypitchmode".But
Johnson5, usingthe inflow dynamics model, was

able to predict theoretically a frequency close

to 0.8 Hz and he called it as the inflow mode

and he identified the other frequency (2.0 Hz)

as the pitch mode. Quoting Johnson, Ref. 5,

p. 672, "That it is measurable (i.e., 0.8 Hz

inflow mode) is surprising, since in fact the

inflow variables %x and % do not correspond to

real physical states of t_e system". He pro-

ceeds to interpret this behavior as "the

unsteady aerodynamics introduces behavior of

the system, as observed in either time or

frequency domain, that can be approximated by

an additional oscillatory mode with low or

moderate damping. Approximating the behavior

by an additional mode implies then the exist-

ence of additional states or degrees of free-

dora of the system". Johnson also states that

this behavior is observed only for matched

stiffness case because "the flap regressing

mode will be more coupled with the body motion".

But examination of Fig. 6 in Ref. 5 (the results

based on the theory with inflow dynamics)

reveals that the flap regressing mode fre-

quency is not near the body pitch frequency,

so it is questionable whether coupling could occur

between these two modes. In our analysis, however

the results show that the flap regressing mode is

close to the body pitch mode, as indicated in

Fig. 8. Thus it appears that the interpretation

offered by Johnson for the presence of the 0.8 Hz

frequency mode and its designation as the inflow

mode frequency is possible, albeit speculative.

The variation of lead-lag regressing mode

damping with _ is presented in Fig. 9. Again, the

present analytical results are in closer agreement

with the experimental results than those predicted

by the theory with inflow dynamics. Figure i0

and ii show the variation of damping in roll and

pitch modes with _. The pitch damping is pre-

dicted well. The roll damping is overestimated.

The variation in damping levels of the lead-

lag regressing mode with collective pitch angle,

of the blade are shown in Fig. 12, for two

different values of angular speed. It is evident

from Fig. 12b that for the case of _=i000 R.P.M.,

the theory used by Bousman predicts an unstable

region beyond e c = 3 degrees, however the experi-

ment indicates a stable configuration. The

results of the present analysis are in good agree-

ment with the experimental results. The agreement

noted in Figs. 6 and 12, between the analytical

results of our study and the experimental data,

for nonzero values of collective pitch, seems to

indicate that the discrepancy between theory and

experiment for these cases, evident in Ref. 4,

could be associated with the details of the math-

ematical model and is not related t_ unsteady

aerodynamic effects such as dynamic inflow.

V. Concludin$ Remarks

In this paper, the results of a theoretical

analysis, of the aeromechanical stability of a

hingeless rotor helicopter, are compared with the

experimental results. Using a quasi-steady

aerodynamic model, it was found that the results

of the present analysis compare quite well with

the experimental results. It is interesting to

note that this correlation with experimental data

appears to hold in both the region of zero collec-

tive pitch angles considered by Johnson 5 as well

as in the nonzero range of collective _itch

angles which was considered by Bousman _, but not

by Johnson. Obviously the quasi steady aero-

dynamic model is incapable of predicting the

"dynamic inflow mode" which is caused by the

augmented state of the system, when the dynamic

inflow model is used. In an extension of this

study which will include dynamic inflow, the

physical meaning of the dynamic inflow mode will

be reexamined.

This study also indicates that the dis-

crepancy between the predicted values of regres-

sing mode lag damping and the experimental

measurements, noted in Ref. 4, for configurations

1 and 4, do not seem to be associated with

dynamic inflow and are more likely to be related

to the details of the mathematical model.
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Furthermore the analytical model used in this

study has the capability of simulating the

experiment, with good accuracy, because it is

based on the same blade model which was actually

tested.

Finally, it should be noted that the

analytical model was based on an ordering scheme

where blade slopes were assumed to be of order

E and the fuselage rotations in pitch and roll

were assumed to be of order s 3/2, which leads

to simplification in the equations of motion.

The cases considered in the present study (both

experimental and theoretical) were restricted

so that only the linear first order terms in

fuselage rotations were important. Thus other

classes of problems, in which nonlinear terms

in fuselage rotations are also exercised, have

to be considered to determine the overall reli-

ability of this particular ordering scheme.
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Appendix A: Equations Used in this Study

The equations of blade equilibrium, the

linearized perturbational blade equation in

multiblade coordinates, together with the per-

turbational equations in the pitch and roll

degrees of freedom are given below.

Equilibrium E_uat ions

F1_!_e:

-2 +(g2 L -2 13 i 2B0{WF - WF) sin20c + --3 + T e}

-2 -2 i 4

+ _0 {(w L - WF) sinOc cOSOc + _ _-- Bp}

i4
+ Bo_o{V -%- }

-_ i 2 I4+ Bp{ -_ e} - v{ -_ O 0 +

i3 _2

+ --_ (-X+2ee0) - --_ eX} = 0 (A.I)

Lead-La_

60{_(5 _ -2- WF) sine cose }c c

-2 -2 -2 _2

+ _0{-WL + (w L - w F) sin20 c - -_ e +

[4 i3 _3

+ v(---$ _p80 - -_ 2_$p)} + _0_0{v -_ i}

[4 i3 _3

+ v{- _cd0 (-_ + 2-_ _) - -_ %90 +

[2

+--_ i(I - $00)} = 0 (A.2)

where

-2

w F =--

K6

rm22R 3

-2 K_

WL m_2R3

OAabR

m

e
;e=i;i:1-e

When there is no structural flap-lag coupling, the

terms containing sine o and cos@ c muse be deleted

from the above equations as well as in the

stability equations given below.

O 0 = 0 c - OZL

where O 0 is the effective angle of attack

O is the collective pitch setting of the
c

blade



0ZL is the zero lift angle of attack

Linearized Stabilit_

n-cosine Flap

6ncFnc(1) + BnsFnc (2) + _ncFnc (3) + _nsFnc (4)

F (5) + BnsFne (6)+ _nc nc

+ _ncFnc (7) + 8ncFnc (8)

+ _V (9) +_V (10)
NC NC

+ @Fnc(ll) = 0 (A.3)

where i4

2L -2F (i) = _2F + (_ - w F) sin20 + _ -_ EO
me c

E3
i 3 i 2 - 2 _3 n 2 1 _ cosG 0

+--_ +-_ e - n --_ - _ --_

i 4 I 3

F (2) = n(_ -7 + _ -5 _ + gSF)

nc i4
-2 -2

_ WF)sin@ c cos9 + v (Bp + 80 )Fnc(3) = (w L c -_

i3 14 i 3

Fnc(4 ) = (2 --_ (B 0 + Bp) - 2_ -_ 90 + v -_ % )n

[4 i3 _ _

F (5) = v-_ + v-_ e + gSF
nc

i 3 1 i 3

V (6) = n{2 -_ + 2 _ v --_ b cos@ O }
nc

i3 i 4 i 3

Vnc(7) = 2 -5 (5O + 6p) - 2v -% e0 + _ -5 _

13 I %3

F (s) = -5 + 7 _ _ -5 c°_eo
nc

i 3

F (9) = - --_ 6nc n

i 4

Fnc(10) = -_n _ --_

313 i 3 12

Fnc(ll) = 6n{2 --_" + h2 (2v -5 _0 - v -_- X)}

where _ = 1 when n = 1
n

= 0 n# I

- gS____F ; gSF = damping in flap

gSF = m_R 3

b = semichord

n-Sine F ia___D

_nsFns (I) + _ncFns(2) + _nsFns (3) + _ncFns (4)

+ [nsFns (5) + BncFns (6) + EnsFns (7)

+ 6nsFns(8 ) + _ Fns(9) + _ Fns(lO)

+ 0 F (ii) = 0 (A.4)
ns

where i4
-2 -2 -2 2

F (i) = w F + (_°L - WF)sin 9 c + _ -% _0
ms

_3 i 2 - 2 %3 i %3 2

+-5+-fe-n -5-7"_-f n coseo

_3
(2) n{_ 4 v -_ e - gSF }

Fns = -

i 4

-2 g2F) singcCOSgc + _ -_ (60+_, p)F (3) = (w L -
ns

i3 i 4

Fns(4) = n{-2 -5 (B0+6 p) + 2v -% 80

i 3

i 4 i 3 _ -

Fns(5) = _ --_ + _ -5 e + gSF

i 3 I _3

Fns(6) = n{- 2 --_ - 2 _ _ -5 D cos0 O}

%3 i 4 13

Fns(7) = 2 --_ (BO+ Bp) - 2 _ -% 90 + _ -_ _

_3
i 3 1 _ cos90F (8) =-5+i -5

ns

i 3
Fns(9) = 6 n -5

i4
F (10) = 5 ,---f
ns n

_3 i3 i 2

Fns(II ) = 6n{2 --_ + 2n --_ 90h 2 - h2 v --2 X}

n - Cosine lead-la_

EncLnc (I) + EnsLnc (2) + _ncLnc (3)

+ SnsLnc (4) + EncLnc (5) + EnsLnc (6)

L (7) + (8) + (9)
+ _nc nc Sns Lnc _ncLnc

+ _ncLnc(lO) + # Lnc(ll) + 8 Lnc(12)

(A.5)
+ 0 Lnc(13) = 0

where

-2 -2 -2 2 i 2 -

_ _OF)sin 9 c - eL (i) = - _°L + (_°L --_
ne

+ n2 ,_3 i 4-- -x) -7 6peo

L (2) -n{2_ cdO _4 =3= a 4 + _ _ 00_ + _SL}
nc

Lnc(3) _(i_2L _ _2)sinO cos0= F c c

_ i 13
n 2 _ _ b --_ sin00

73 i4

Lnc(4) = n{2 --_ (60+6 p) - V -% 60

_3
- _ -7 (-2_ + e @o)}
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Lnc (5)

Lnc (6)

Cd0 14 i3

= -2_ -- -- - _ e04 - -a 4 --3 gSL

i3
= -n 2 --

3

13 i4

= 2--_ (B0+Bp) - v-7 °oLnc(7)

13

- _ --_ (-24 + me0)

i 13

Lnc(8) = 2n _ _ b -_ sine 0

i3
Lnc(9) = - --_

i i 3

tnc(10 ) = _ _ b -_ sin00

%3 12

Lnc (II) = 6n{--3 (6p+B0) + h2 --2 }

12
Lnc (12) = 6n h2 --2 _0

14 i3

Lnc(13) = 6n{_--$ 00 - --_ 24_}

where gSL = gSL/r_R3 ; gSL = damping in lag

n-Sine lead-la$

_nsLns(1) + _ncLns(2) + BnsLns(3) + 8ncLns

+ _nsLns(5) + _ncLns(6) + _nsLns(7)

+ BncLns(8) + _nsLns(9) + 8nsLns(10)

+ 0 Lns(ll) + _ Lns(12 ) + ¢ Lns(13 ) = 0

where

-2 -2 -2 i 2

Lns(1) = - _L + (_L- _F )sin29 -

2 _3 14
- e

+n -f v-TBp o

OF i:'O:C_i QU.AL_TY

-v --_ (-2% + eeo)

i 13
Lns(8 ) = -2n _ D b --_ sine 0

_3

ens(9) = _ --_

1 _3

ens(10 ) = _ 'd b --_ sine 0

i 3 i 2

ens(ll) = 6 n --_ (Bp+ $0 ) +--_ h2 }

I2
Lns(12) = -gn h2 -_ _0

i 4 i 3

Lns(13) = 6n{-V -7 Q0 + -_ 24_}

Roll

N m_2R3{81c<V Cd0 %4 i3 _a 4 + v -_ )_0 0 + gSF

_4 %3 %3

+ V -7 + 2_ --_ e + h2(v --_ (8p+80)

i3 i i2
0 r + O b sin00) >+v-_ o% _ -f

%4 i4

+ 81s < -2v --$ gO + v--$ (8p+ 380)00

i i 3 i3 _2 i2
+ 2- V b --3 c°s00+ h2 (2_ --_ 00 - --_ Bp- B 0

(4) i2 i4

+ _ --_ ( -34 + e00) ) >+ _Ic < -_ -7 00

_3 _4

+ h2 v -_ O0(-Bp+ 80) >+ gls < o -7 (0 2(_0

- v --_ ($p+ BO)+ 6pgsL- h2 (_2ro

(A.6) - 2v ed0 %3 %2 i4

a 3 v --2 _'@0 ) >+ 81c < -'_ --$ _0

i 4 i3

+ v -7 (B0+Bp)00 + 2 -_

i 2 - I i 3 - -

+ 2 --_ e + 2 _ _, b --_ cos00 - h2(_280

i3 _2

- v --_ 0 0 - v --_ (-24+e00))>

• i3 i4 i 3
+ Bls < -2 --_ ¢0 - gSF - v --$ - 2v --_ e

%3 1 _2

- h2 (_ -3 ($p+ 80) + 2 _ vb --_ sin00) >

i 4

+ glc < _ -7 K02eo + 8pgsL

- h2(i2_0 - 2 ,o cdO 13 i2a 3 v -_ %00) >

i4 _3 i3

+ ¢Is < 2 v-7 e 0 v--5 _ + 2v--_ ee 0

+ h2 _p --3 2 00 >

•. _3 1 _2

Blc < - --3 _0 - h2 _ wb --_ sin00 >

Lns(2) = n{2_ cd0 i4 %3a 4 + _ --3 4 0 0 + gSL }

-2 -2

Lns(3) = -(_L- _F)sin0cC°S0c

2 1 i 3

- n _ og -_ sinO 0

%3 %4

Lns(4 ) = n{-2 --_ (B0+ _p)+ _ -_ 00

_3

+ v--5 (-2x + goo)}

Cd0 _4 i3

Lns(5) = -2v --a ---_4 -_ % _0 - gSL

i3
Lns(6) = 2n -_

13 i 4

Lns(7) = 2 --_ (gp+_O) -v-7 0 0

261



+

+

+
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+

Pitch

i3 i 2 _
_3 1v_ cos0061s < - --_- _ -_ - -_ e

i2
h2 _p --2>

.. _3 _2

Elc < -_ (Bp+ 60 ) + h2 -_ >

< _3 i2 _2 _2
- --3 --_ _ - h2Bp --2 - h2 --2 ($p+ _0 )

%2 _ _

h2 ( --2 (Bp + 60) + 2 h 2 £) >

i 3 i 3 i 4 i 3

$ < - --_ 2 _0 - _ -_ e - v -_- h26p v -_

i 3 < i 3
_2 60 _-_>+ 0 -51 >

14 i 3 i 2 i 2

< _ --$ (0 - 2 -_ - --_ 2 e - 2 h28p -_

i 3 i 2 i 2

h2 v -_ 0 0 + m --_ 12h 2 + E 2 _ --_ %

i 3

h2 _-_200 > }

I _2 _ + I _20 = 0 (A.7)
xx xy

i 4 i 4

N2 m_2R3{61c < 2 v -_ <0 - _ --4- (6p+ 360) O 0

I i 3

-yv Z--f cose0

[ 3 i 2

- h2 (_ -_ 200 - --2 gp - i260

i2
+ _) --_ (-31 + eO0)) >

Ca0 i 4 i 3 _ i 4

+ 61s < _) --a --4 + _ -3 %00 + gSF + _) --4

i 3 i 3 13

+ 2 _ -_ e + h2(6p_ --_ + 60 _ --_

i 2

i 3 i _)_ sin00) >+ _ --f_oeo + _ --f

_4 _ i4

+ _Ic < - _) --$ _0200 - 6p gSL + v --_ (6p+60)

+ [_2 (12 _0 - 2_ cd0 i3 i2T --_ - v --7 X°o) >

i4 _3
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_ i 4 i 3
• 13 +v + 2 _)
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i 3 i 12
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• _4 i4 i3

+ Dis < -v -_ _0 + v --_- O0(Bp+ _0 ) + 2 -_

i 2 1 i 3

+ 2-_ e + 2 _ v b --_ cos@ 0

i 3 i 2

- h2(1260 - v --_ 00 - v --_ (-21 + eO0)) >

i 4 i 3 i 3

+ _Ic < -2_-_eO + _-_ - v-_g 200

_3

- h2Bp _ --_ 200 >

_4
+ _is < _--$ _0 200 + _p gSL - h2 i2 C0

cdO i 3 12

+ h2 ° T 2 --3 + h2_--2 %00 >

i 3 i i 3 i 2 i 2

+ 61c < --_+ _ _b --_ c°sO 0 +-_ _ + h26p -_ >

i 3 i i 2

+ 61s < - --3 _0 - h2 _ _b --2 sin60 >

i 3 i 2

+ _is < --3 (_0 + 6p) + h2 --_ >

i 3

+ _ < -_0 >

i 4 i 3 i 2 i 2

+ ; < - V'_- _0 + 2 --_ +-_ 2 e + 2 h26p --_

i 3 i 2 13

+ h2 _ --3 @0 - v-_ 2lh 2 + _2 _-_ 2eo

i 2

- h2 V--_ I >

i 3 i 2 i 2

+ 0 < 3 2 _ - h2 -_ (6p + 60 )

12 i2

- h26p -'_ + h2 (- -_ (6p + B 0) - 2% h2) >

i 3 i 4 i 3 i 3

+ 0 < --_ 2_0 - v---$-_-_ e - _-_ 6p h2

i3 • .
- _ -_ 60 h2 > } - I _2_ + I _2; = 0

yy yx

(A.8)

Appendix B: Rotor_ Blade and Body Properties

Rotor Geometry

Number of blades 3

Radius, cm 81.1

Chord, cm 4.19

Hinge offset, cm 8.51

Blade airfoil NACA 23012

Profile drag coefficient 0.0079

Lock number 7.73

Solidity ratio 0.0494

Lift curve slope 2w

Height of rotor hub above

gimbal, cm 24.1
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Blade Mass Properties

Blade mass (to flap

flexure), gm 209

Blade mass centroid (Ref.

flexure centerline), cm 18.6

Blade flap inertia (Ref. 2

flexure centerline), gm m 17.3

Blade Frequency and Dampin_

Nonrotating flap freq. Hz

Nonrotating lead-lag

freq. Hz

Damping in lead-lag (%

critical)

Body Mass Properties

RotarY2inertia in pitch,

gm m

RoLary inertia in roll,

gm m 2

Body Frequency and Damping

Pitch frequency, Hz

Roll frequency, Hz

Damping in roll (%

critical)

Damping in pitch (%

critical)

Conf. i Conf.4

3.13 6.63

6.70 6.73

0.52% 0.53%
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Figure 2. Modal Frequencies as a Function

of _, 0 = 0 (Configuration i).
e

-2.5

-2.0

-1.5

-1.0

-0.5

0
0

OUR ANALYTICAL RESULTS
------ THEORY WITH INFLOW DYNAMICS (Ref. 5)

[] EXPERIMENT (Ref. 4)

i I I I _ I i I i I

200 400 600 800 1000

l_, R.P.M.

Figure 3. Ro_y Pitch Mode Damping as a

Function of _, 0 c = 0 (Configuration i).

Figure i. Equivalent Spring Restrained

Blade Model.
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Figure 4. Body Roll Mode Damping as a

Function of _, e c = 0 (Configuration i).
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Figure 5. Regressing Lag Mode Damping

as a Function of f_, 0 = 0 (Configuration i).
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Figure 6. Lead Lag Regressing Mode Damping

as a Function of e at (a) 650 R.P.M. and
e

(b) 900 R.P.M. (Configuratlon I).

264



-2.5

-2.0

-I.5

-I.0

-0.5

3.5

-3.0

-2.5

-2.0

-1.5

-I.0

-0.5

OUR ANALYTICAL RESULTS

------ THEORY (Ref. 4)

O _ EXPERIMENT (Ref. 4)

_ 8 8
o %) _" _"

o_-e-

0
__ o

0--- i

8

(a)

-4

I I I I [ t I

-2 0 2 4 6 8 10

_c' deg

s

8

0

(b)

-4

I I 1 I [ I I
-2 0 2 4 6 8 10

c, deg

(u, HZ

.=

3'

2

1 [

0
0

OUR ANALYTICAL RESULTS

AO0<) EXPERIMENT (Ref. 4)

Ono [] []

i i ,'N/i-I i I
200 400 600 800 1000

_, R.P.M.

Figure 8. Variation of Modal Frequencies

with _, ec = 0 (Configuration 4).
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