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THEORETICAL/NUMERICAL STUDY OF FEASIBILITY OF USE OF 
WINGLETS ON LOW ASPECT RATIO WINGS AT SUBSONIC AND TRANSONIC 

MACH NUMBERS TO REDUCE DRAG 

SUMMARY 

A numerical design study has been conducted to assess the drag 

reduction potential of wing lets installed on a series of low aspect ratio wings 

at a high subsonic Mach number cruise design point of M = 0.8, CL ~ 0.3. 

Wing-winglet and wing-alone design geometries have been obtained for wings 

of aspect ratios between 1.75 and 2.67, having a taper ratio of 0.2 and leading 

edge sweep angles ranging from 45° to 60·. Winglet length has been fixed at 

15% of the wing semis pan. 

To assess the relative performance between wing-winglet and wing-alone 

configurations at the selected design point, the PPW nonlinear extended small 

disturbance potential flow analysis code has been utilized. This numerical 

model has proven in the present study to yield plausible transonic flow field 

simulations for the series of low aspect ratio wing and wing-winglet 

configurations selected. Predicted decreases in pressure drag coefficients for 

the wing-winglet configurations relative to the corresponding wing-alone 

planform are about 15% at the design point of M = 0.8, CL ~ 0.3. Predicted 

decreases in wing-winglet total drag coefficients are about 12%, relative to the 

corresponding wing-alone design. Wing-winglet root bending moment 

coefficients are increased 5-7% relative to wing-alone cases. Longer winglets 

(25% of the wing semispan) yielded decreases in the pressure drag of up to 



22% and total drag of up to 16.4%. 

The predicted drag coefficient reductions in percent are comparable to 

reductions already demonstrated by actual winglet designs installed on higher 

aspect ratio transport type aircraft. Since low aspect ratio configurations 

have much lower lift-to-drag ratios, the overall drag force reduction for a low 

aspect ratio wing at fixed lift should be significantly larger than at higher 

aspect ratio. If realized, these reductions would significantly improve range 

or payload capability of a low aspect ratio configuration fitted with properly 

designed w"inglets. Also, the wing-winglet designs may be advantageous for 

supersonic flight, relative to a higher aspect ratio wing, since the winslet can 

be oriented to remain behind the Mach cone, and because the wing-winglet 

wing designs have less twist than the wing-alone configurations. 
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SYMBOLS 

chordwise loading shape function parameter 

aspect ratio, b2/S 

wing span 

local chord 

mean geometric chord 

section lift coefficient 

wing root bending moment coefficient 

drag coefficient 

friction drag coefficient 

induced drag coefficient 

pressure drag coefficient 

total drag coefficient 

lift coefficient 

pitching moment coefficient 

pressure coefficient 

drag force 
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induced drag force 

induced drag efficiency factor 

lift force 

winglet length 

dynamic pressure 

wing area 

chordwise coordinate 

spanwise coordinate 

vertical coordinate 

angle of attack 

local geometric incidence angle 

taper ratio 

wing leading edge sweep angle 

fractional spanwise distance on winglet 

velocity potential, or wing trailing edge sweep angle 

INTRODUCTION 

The winglet concept originally developed by Whitcomb! has proven to be 

an effective means of reducing aircraft induced drag through use of a 

nonplanar lifting system. The wing-tip mounted, nearly vertical winglet 

develops a normal force which alters the configuration spanload to diffuse the 

total circulation in the rolled up wing tip vortex and reduce the total energy 

of the vortex2. Also, toe out of the winglet allows the winglet normal force to 

develop a thrust component to reduce drag. Asai3 has also shown the 

importance of the relatively short chord of the winglet to minimize the 

increased wetted area and resulting skin· friction penalty. 

The winglet concept has, to date, primarily been applied to relatively high 

aspect ratio, transport-type configurations (e.g., refs. 1,2,4). However, an 

early numerical study by Cary5 indicated that larger reductions in induced 

drag force were obtainable at fixed lift for a given winglet as the aspect ratio 
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of the wing on which it was installed was reduced. In addition, increased 

wing sweep resulted in' larger predicted reductions in induced drag. Another 

theoretical parametric study' by Heyson, et al.,6 found that winglet benefits, 

relative to a wing tip extension having the same bending moment increase, 

increased as the wing aspect ratio decreased for a series of straight and 

swept, tapered and untapered wings. That is, the induced drag efficiency 

factor was increased as aspect ratio decreased, while holding the percent 

increase in bending moment fixed. . These early numerical results indicate that 

there should be a greater potential for induced drag force reduction and 

improvements in the cruise performance for the low aspect ratio, high-sweep 

wings typical of fighter aircraft than for the transport-type wings which have 

been emphasized previously. The present work has been undertaken based on 

the premise that the drag reduction capability of winglets which has been 

proven at high aspect ratio should logically carryover to wing lets designed 

for wings of lower aspect ratio. 

One existing wing-winglet design for a relatively low aspect ratio wing is 

that of the HiMAT research aircraft7• This configuration has· an aspect ratio 

3.85 wing fitted with wing tip fins, or winglets, which are 23 percent of the 

wing semispan in length. The winglet root chord is equal to wing tip chord. 

These winglets were found to reduce induced drag, but not by the amount 

predicted by the design method employed, which was based upon linear 

theory •. Also, performance was degraded at the high lift, transonic maneuver 

design point, apparently due to extensive flow separation on the winglets. 

This is at least partially the result of the linear design methods which were 

utilized in the winglet design 7. More recent nonlinear analyses8 using the 

PPW code9- 11 for the HiMAT configuration have matched actual flight test data 
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quite well. Also, Hackett12 has recently presented results of a preliminary 

study wherein a simple untwisted, vertical vane was used to reduce drag of a 

low aspect ratio delta wing. Thus, there appear to be very few previous 

instances where winglets have been utilized on low aspect ratio wings. 

The present effort is a preliminary design study to further assess the 

potential for winglets to reduce drag of low aspect ratio, high sweep 

fighter-type wings at a high subsonic Mach number. The nonlinear transonic 

potential flow analysis code PPW, developed by Boppe9,lO,1l, has been utilized 

to predict transonic performance for several wing-winglet and wing-alone 

planforms at a Mach number of 0.8 and lift coefficient of 0.3. Initial 

wing-winglet and wing-alone design geometries have been generated for 

attached flow using two existing linearized theory aerodynamic design 

codes13- 15. Winglet and wing tip geometries have then been altered to reduce 

wing tip incidence and increase winglet toe out in an effort to improve the 

predicted performance by weakening shocks on the wing let and wing tip. To 

date no assessment has been made of performance of these configurations at 

supersonic Mach numbers, or of the effects of winglets on configuration 

stability or agility. Also, the present work has investigated only a relatively 

small number of variations of winglet planform, over relatively limited ranges 

of Mach number and lift coefficient. For example, performance of a 

downward-pointing winglet has not been studied due to concerns about 

ground clearance. Pylons have not been studied because they have 

significantly less potential to reduce induced drag. 
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DESIGN APPROACH 

General Philosophy 

The present work has been conducted as an initial step to better 

determine the potential for winglets to reduce the drag of low aspect ratio 

fighter type wings at a high subsonic Mach number. The basic philosophy of 

the work was to use as simple a set of configuration geometries and analysis 

tools as were practical to still allow meaningful conclusions to be drawn. 

At the simplest level, consider the induced drag efficiency factor, k, 

defined as the ratio of induced drag coefficient for an elliptically loaded 

planar wing to the induced drag coefficient of the optimal nonplanar 

wing-winglet configuration having an equal projected . span at equal lift 

coefficient. The induced drag. efficiency may be calculated for a planar wing 

fitted with a vertical winglet or endplate using a Trefftz plane model, as 

shown in Fig. 1a., These results have been taken from refs. 16 and 13, and 

are identical to results of another numerical model by Lundry and Lissaman17• 

The Trefftz plane model predicts the efficiency factor increases linearly with 

winglet height, t. To a good approximation, k-1 is equal to the ratio of 

wing let length to semispan. Thus, for typical winglet lengths of 10-20% of the 

wing semispan, the potential percentage reduction in induced drag coefficient, 

I-11k, is 9-17%. In Fig. la, k has been calculated assuming that the 

non planar configuration has the same projected span as the planar wing; 

hence the nonplanar configuration will have a longer actual length. For 

results of the present study comparisons between wing-alone and wing-winglet 

performance have instead been made by holding the wing. area fb::ed, and 

allowing the wing-winglet projected span to increase slightly (3.9%). The 

Trefftz plane model predicts k to be independent of both CL and wing aspect 



ratio. 

Assuming then that wing-winglet geometries could be designed to develop 

the required spanload independent of wing aspect ratio, the following simple 

discussion demonstrates why a winglet would have a larger impact for a low 

aspect ratio wing. The optimum induced drag coefficient, including nonplanar 

effects, is given by 

( 1 ) 

Thus, ignoring the dependence of lift curve slope on A, and holding CL fixed, 

it is seen that CDi will vary inversely with Ak. Applying the far field results 

of Fig. la, where k is predicted to be independent of wing aspect ratio, it is 

seen that the percent reduction in induced drag coefficient for a fixed value 

of c/(b/2) should not vary with wing aspect ratio. This leads to the 

conclusion that the actual reduction in induced drag force at fixed lift would 

be significantly larger for a winglet installed on a low aspect ratio wing, since 

the lift-to-drag ratio would be smaller. 

Equation (1) may also be written in dimensional form as 

D. = (L/b)2 / (n qk) 
1 

(2 ) 

where q is dynamic pressure. Thus it is seen that the induced drag is 

dependent on the square of the ratio of lift-to-span. This equation may be 

interpreted as indicating that the induced drag is independent of aspect ratio. 

However, additional structural considerations would indicate that a lower 

aspect ratio wing of equal structural weight could safely develop a higher 

wing loading than a high aspect ratio wing. Even ignoring this structural 

advantage, and simply requiring a constant wing loading, it is seen that for a 
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given configuration weight, as aspect ratio is decreased, span must decrease, 

thereby increasing induced drag by the span ratio squared at fLxed lift (equn. 

(2)). 

In Fig. 1b, these simple arguments have been carried one step further, 

where the potential effect of winglets on the drag polar has been estimated 

for a fighter configuration18. Wing aspect ratio is 2.2, and the configuration 

drag data are for H = 1.6; these drag data have been used for illustration 

purposes. The actual configuration drag data have been approximated by 

0.028 + 0.3 (CL)2 in Figure lb. Also shown in Fig. 1b are three estimated 

drag polars for winglets which reduce the induced drag by 10, 20, and 30%, 

corresponding approximately to '/(b/2) = 0.11, 0.25, and 0.43, respectively. 

Percent total drag reductions at CL = 0.2 are approximately 3, 6, and 9% for 

the three different winglet lengths. These percent drag reductions increase 

to 6, 13, and 19% at CL = 0.4 and 9, 18, and 27% at CL = 1.0. 

It should be noted that the potential drag reductions predicted in this 

example are expected to be optimistic, especially at high lift, since no 

additional drag penalties were included for the added wetted area or added 

wave drag due to any shocks on the winglets or adverse mutual interference 

between wing and winglet. In addition, it is expected that any fixed winglet" 

geometry would be unable to develop the required loading at a configuration 

lift coefficient of 1.0, but would instead experience separated flow. Further, 

winglet~ must also require a stiffer wing structure. However, this application 

of a simple far field minimum induced drag calculation highlights the very 

significant potential of properly designed winglets to reduce drag. In 

particular, the potential percentage reduction in total configuration drag 

coefficient at high lift coefficients approaches the percentage reduction in 
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induced drag coefficient (Fig. lb), which is directly proportional to winglet 

length (Fig. lal. 

In light of this very large potential for drag reduction, for the present 

preliminary study, existing linear theory design methods13- 15 have been 

selected as being adequate for a preliminary study. These initial linear 

designs have then been modified as required in areas of high loading. Similar 

methods were used previously in the design of a high aspect ratio transport 

wing-winglet wind tunnel modeI19- 20• 

Planform Choices 

Choices of both wing and winglet planform in the present study have 'been 

influenced by four basic considerations. First, an effort has been made to 

study a range of wing-winglet planforms that might be representative of 

typical wing aspect ratio and 

generation fighter aircraft21- 23 

leading edge sweep values for present 

and next generation fighter aircraft24- 27. 

Second, concerns over the ability of the linear design methodology utilized to 

generate wing-winglet geometries which developed realistic enough wing and 

winglet loadings to permit converged, essentially attached flow' solutions to be 

obtained from the PPW code at the selected high subsonic Mach number cruise 

design point also influenced the range of wing and winglet planforms selected. 

Third, difficulties encountered in obtaining converged transonic flow solutions 

with an early version of the PPW code for a wing of aspect ratio three23 

influenced early wing planform choices. It has since been learned that this 

early problem has been alleviated by implementation of a different crude grid 

developed by Waggoner28. Related to this issue, limitations of the PPW code 

have influenced the range of winglet geometries studied. Finally, it has also 

been possible to investigate trends in the predicted induced drag reduction 
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versus wing aspect ratio or leading edge sweep. 

Based on these considerations, an initial series of design studies have 

focused on the series of 8 trapezoidal wing planforms defined in Table 1. 

These wings have aspect ratios ranging from 1.75 to 2.67, leading edge sweep 

angles between 45·-60·, and a constant value of taper ratio of 0.2. These 

wins planform values were believed to bracket current and next-generation 

fighter configurations21- 27 . Also, the range of wing aspect ratios selected 

was believed to be adequate to judge trends in the predicted drag coefficient 

levels. 

Table 1. Wing Planform Configurations 

A fI + A 

A 2.S3 50· 10- 0.2 
B 2.S7 45- 0- 0.2 

C 1. 75 50- -lS.4- 0.2 
D 1. 75 55- - 5.5- 0.2 
E 1. 75 so- 1l.S- 0.2 

F 2.20 45· -12.0- 0.2 
G 2.20 50- - 1. 2- 0.2 
H 2.20 55- 12.2- 0.2 

For this initial study, a trapezoidal winglet planform was selected for each 

wing, where winglet length, cant, taper ratio, and leading edge sweep were 

the same for all configurations. Wing let trailing edge sweep was varied as 

required to maintain a constant ratio of winslet area to wing area. Winglet 

length was fixed at 15% of the wing semispan, so that the far field drag 

analysis predicts each configuration should have the potential to achieve 

nominally a 13% reduction in induced drag when configuration projected span 
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is held fixed. Winglet leading edge sweep was fixed at 50-; wing leading edge 

sweep angles bracket this value. All winglets so defined have total areas 

equal to 2.25% of the basic wing area. These chosen winglet length and area 

values are consistent with those used in previous winglet applications 1,3,4,7 ,21. 

Other winglet planform details have been selected primarily based upon 

Whitcomb's original recommendations1, aimed at reducing adverse mutual 

interference effects. Thus, winglets have been located in an aft position, 

behind the wing tip airfoil shoulder. Since all wing and winglet 

configurations have utilized an NACA 64A006 thickness distribution, winglet 

root chord was fixed at 60% of the wing tip chord. Cant was fixed at 15 - and 

has not been varied in the present study because the version of PPW used 

. utilizes a rectangular intermediate grid and a vertical winglet computational 

orientation. Winglet taper ratio has been fixed at 0.5 in the current work due 

to concerns about inadequate grid resolution in the PPW code for smaller 

winglet tip chords. (Essentially, a minimum of 2 or 3 crude grid points must 

fall on each computational airfoil station for accurate interpolation between the 

different embedded grids.) 

Design Point 

Actual fighter aircraft designs are the result of tradeoffs between a 

number of competing design points or mission requirements29 , which have not 

been addressed in the present study. Instead, for the present work, a cruise 

condition at a high subsonic Mach number has been selected for all designs, 

based on the belief that existing fighter aircraft typically cruise at as high a 

Mach number as possible without a significant drag-rise penalty (i.e., 0.7 , M 

~ .9 at cruise). Thus, a single value of M = 0.8 has been selected as the 

design Mach number value. Also, based on typical and maximum wing loadings 
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and wing areas for existing lightweight fighters21 , typical configuration lift 

coefficients at M = 0.8 at an altitude of 30,000 feet range from about 0.2 for a 

lightly loaded, "clean" configuration, to about 0.4 for a very heavily loaded 

configuration. Thus, a single design value of lift coefficient of CL = 0.3 has 

been selected for the present study since it falls in the appropriate range, 

but is also high enough so that a significant potential for total drag reduction 

exists (an order of magnitude of 10% including the fuselage, estimated from 

Fig. 1b). 

Design Methodology 

An overview of the numerical design process and design tools utilized in 

the present work will now be given. Additional details may be found in the 

thesis by Liaw30• First, for each configuration of interest the wing planform, 

design point, and winglet orientation and planform are fixed as described 

above. Then, a linear aerodynamic design code is utilized to generate Initial 

attached flow theory wing and winglet geometry input for the more 

sophisticated nonlinear transonic analysis code. Also, cylindrical fuselage 

definition is added at this point, where fuselage diameter is 25% of the wing 

semispan. Fuselage length is 10.5 times the wing semispan, to approximate an 

infinite cylinder. The PPW analysis code9- 11 , which includes modeling 

capability of body, thickness, viscous, and weak shock effects, is then utilized 

to analyze configuration performance at the transonic design point. The 

original.linear theory winglet design geometry is also modified to improve the 

configuration performance as predicted by the PPW analysis code. In 

particular, wing tip and winglet root incidence values have been altered to 

weaken shocks predicted by the nonlinear analysis code, to reduce wave drag. 

One of the linear design codes13,14 utilizes a vortex lattice near field 
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model and a high order panel wake model to obtain the wing-winglet camber 

surface for minimum induced drag at the chosen design point ~ach number 

and lift coefficient. Wing and winglet planforms, as well as wingiet cant are 

specified, as is an assumed chordwise loading shape function. For 

preliminary designs presented herein, a rectangular chord loading has been 

assumed. The formulation utilized in this program requires a continuous 

spanwise chord distribution; hence, a high-sweep panel is required on the 

winglet near the root. Otherwise the resulting camber surface is not smooth. 

The second design code15 yields twist distributions for up to ten 

symmetrical or asymmetrical planforms for minimum total drag at the chosen 

design point. This code uses a vortex lattice model (ref. 31), and experimental 

profile drag data at appropriate Reynolds numbers for the chosen wing and 

winglet airfoils, along with sweep theory. The assumed linearly lofted 

geometries are simpler and more representative of actual wing fabrication 

techniques than those generated by the first design code. Also, this code 

permits design of geometries which have discontinuous changes in chord, such 

as would be of interest at a wing-winglet juncture. 

Both design programs have been modified to generate output files of 

linear theory optimum wing and wing let upper and lower surface coordinates 

in the format required for the PPW nonlinear analysis code. A second file in 

Hess format is also generated for interactive plotting of the resulting 

geometry32. For most of the results of the present study, the first design 

code13,14 has been utilized. 

The PPW nonlinear transonic analysis codeS- ll solves a finite difference 

representation of an extended small disturbance form of the nonlinear full 

potential equation, by a relaxation method. The extensions to the classical 
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transonic small disturbance potential flow equation are nonlinear terms which 

. appear in the full potential equation, which improve the ability to capture 

swept shocks on the wing arid winglet. 

A unique feature of the code is the utilization of multiple, nested, 

rectangular grids with fine resolution in regions of large flow gradients. A 

crude global grid is utilized along with finer individual grid systems 

surrounding each aircraft component (wing, winglet, fuselage, pod, or pylon). 

All fine grid systems are rectangular and evenly spaced, and overlap several 

grid points in the crude global grid. The crude grid is rectangular, but is 

stretched to infinity. Variation in flow field potential is communicated from 

one grid system to another by interpolation. Use of these multiple, nested 

grids allows good resolution of. the flow field details around a wing let without 

requiring a very fine grid away from the winglet. In addition, no complex 

grid generation is required, so that configuration components can very easily 

be added or removed to study interference effect trends. 

The small disturbance formulation has also been used to simplify boundary 

conditions, which are applied at the nearest neighboring computational grid 

points. Boundary conditions are corrected by small disturbance theory for 

variation due to differences in location of the physical boundary and the 

computational boundary. 

A two-dimensional, compressible Bradshaw strip boundary layer calculation 

may be. performed on the wing surfaces using simple sweep theory, and 

interacted with the outer potential flow. The boundary layer displacement 

thickness is calculated, and is used to modify the wing surface slope 

boundary conditions. No boundary layer calculations are performed on the 

fuselage, winglet, pods, or pylons. An empirical curve fit is used to estimate 
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displacement thickness in the cove region of a supercritical airfoil. 

Configuration forces and moments and spanload distributions are 

calculated by direct numerical integration of the pressure coefficient 

distributions. Viscous effects are estimated for the fuselage and winglet using 

a flat plate skin friction correlation corrected for compressibility effects. 

RESULTS 

Results of the present preliminary design study will be presented by first 

describing the linear theory design geometries, and required modifications to 

these geometries to obtain successfully converged nonlinear transonic flow 

results at the chosen design point. Then the transonic flow results will be 

presented; first convergence will be discussed, followed by comparisons of the 

predicted performance levels, both at the design point, and at off-design 

conditions. 

Linear Theory Designs 

The majority of results obtained in the present work have used the first 

design code13,14 to define minimum induced drag wing-alone and wing-winglet 

camber surfaces for each of the eight wing planforms listed in Table 1 at the 

selected design point. Seven of the resulting incidence distributions for the 

optimum wing-alone geometries are shown in Fig. 2a, while similar incidence 

plots for the wing-winglet configurations are shown in Fig. 2b. Optimum wing 

incidence is characterized by a -gradual washout, except in the vicinity of the 

wing root and wing tip where much more rapid washout is observed. In 

contrast, wing-winglet incidence follows the wing-alone distribution inboard 

but shows a dramatic increase in wing tip incidence, while most of the winglet 

is toed out (negative incidence 'in Fig. 2b). Also note that the winglet root 

airfoil is toed in somewhat. This is accompanied by a rather large amount of 
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camber. These unexpected kinks in wing tip and winglet root incidence were 

found not to be a result of any poor paneling choices in the linear theory 

design code. Also, such incidence kinks were not observed in designs 

obtained for the higher aspect ratio wing-winglet configuration of refs. 19 and 

20. These linear theory wing-winglet designs have been modified by removing 

the highly cambered, high-sweep panel at the winglet root, as well as the 

increase in incidence at the wing tip. The resulting modified incidence 

distributions are shown in Fig. 2c, while the original and modified winglet 

geometries are shown in Fig. 3 for case G. Typical wing-alone design 

geometries are shown in Fig. 4, while examples of the resulting wing-winglet 

geometries for two of the fI = 50- wings are shown in Fig. 5. Similar geometry 

definition has been given for the remaining wing-wing let configurations and 

typical wing-alone configurations in ref. 30. 

PPW Analysis Code Convergence Results 

As an initial step in utilizing the PPW nonlinear transonic code to analyze 

performance of low aspect ratio wing-winglet configurations, the convergence 

capabilities of this program were studied at the design point, for the eight 

trapezoidal wing planforms described in Table 1. This was done partially 

because of concern over convergence difficulties encountered previously by 

others at low aspect ratio23• A second purpose of this study was to establish 

the viability of using the simple linear theory design methods described above 

to define the initial low aspect ratio wing-alone and wing-winglet design 

geometries. 

All eight of the wing-alone configurations designed by the linear theory 

design code were found to yield successfully converged, realistic flowfield 

solutions at M = 0.8, ex = 0.5- using the PPW code, without any alteration of 
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geometry, when no interaction of the viscous boundary layer was used for 160 

iterations (100 crude grid, followed by 60 crude-fine grid iterations 1. Here 

the term "realistic" is used to indicate a PPW solution without any significant 

oscillations in the surface pressure coefficient distributions. Angle of attack 

has been increased by 0.5' because this often has been found to provide 

better agreement with experimental lift values ll. Maximum changes in the flow 

field potential ranged from 1. 7 x 10-5 to 6.5 x 10-5, as shown in Table 2. 

When wing viscous boundary layer interaction was included, convergence 

difficulties were observed at the lowest aspect ratio for the higher wing 

sweep angles. Wing E (A = 1.75, fI = 60· 1 would not converge, while the PPW 

solution for wing D (A = 1.75, 1\ = 55·) at ex = .5' also diverged, but converged 

at ex = 0·. Maximum changes in solution potential with the interacted boundary 

layer using 300 iterations (100 crude grid and 200 crude-fine grid iterations) 

ranged from 5.7 x 10-6 to 6.6 x 10-5 for the seven wing-alone configurations. 

Table 2. PPW Code Convergence at M = 0.8, CL !II .3 for Wing-Alone 
Configurations 

160 iterations, 300 iterations, 
Wing no BL with BL 

Config. A fI ~+max ~+max 

A 2.63 50· 5.53 x 10-5 1.07 x 10-5 
B 2.67 45· 5.18 x 10-5 1. 32 x 10-5 
C 1. 75 50· 6.29 x 10-5 6.64 x 10-5 
D 1. 75 55· 5.81 x 10-5* 5.72 x 10-6* 
E 1. 75 60· 1. 87 x 10-5 -------
F 2.20 45· 6.51 x 10-5 1. 46 x 10-5 
G 2.20 50' 1. 72 x 10-5 1. 39 x 10-5 
H 2.20 55· 5.53 x 10-5 6.98 x 10-6 

* ex = 0·; all other cases at ex = 0.5· 
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Thus, it has been found that converged, realistic transonic flow field solutions 

may be obtained from the PPW code at M = .8, CL ;! .3 for a series of 

trapezoidal low aspect ratio wings of 1.75 ( A ~ 2.67, 45' ~ 1I , 55', with A = 

0.2, where wing camber and twist has been defined by linear theory. 

However, much greater difficulty was encountered in obtaining realistic, 

converged nonlinear PPW solutions for the eight wing-winglet configurations. 

No converged solutions were obtained for any of these geometries when used 

exactly as specified by the linear design code. However, converged, realistic 

solutions were obtained for all but two wing-winglet configurations when the 

original geometries were modified to reduce loading at the wing tip and 

winglet root, by omitting the wing-tip incidence kink and the highly swept, 

highly cambered, toed in winglet root airfoils. Instead, the wing tip and 

winglet root airfoils were defined using the airfoils inboard on the wing or 

upward on the wing let. More details of these geometry modifications have 

been given in ref. 30. The resulting maximum changes in velocity potential 

for the modified wing-winglet geometries are given in Table 3. The levels of 

convergence for the higher and intermediate aspect ratio wing-winglet 

configurations are comparable to those observed for the corresponding 

wing-alone configuration. It is noted that convergence, as judged by 

reductions in the change in velocity potential, is a relatively slow process in 

the PPW code. Even greater difficulty was experienced in obtaining converged 

PPW solutions for the A = 1.75 wing....:winglet configurations than for the 

wing-alone cases. This is believed to most likely be due to inadequacy of the 

linear design methodology at the lower aspect ratios rather than to any 

inherent limitation to the PPW code itself. This is based upon further results 
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Table 3. PPW Code Convergence at M = 0.8, CL " .3 for Wing-Winglet 
Configurations 

160 iterations, 300 iterations, 
Wing no BL with BL 

Config. A II u max U max 

A 2.63 50- 5.37 x 10-5 1.04 x 10-5 
B 2.67 45- 5.95 x 10-5 1. 07 x 10-5 
C 1. 75 50- -------- --------
D 1. 75 55- 1.09 x 10-4* --------
E 1. 75 60· -------- --------
F 2.20 45- 6.70 x 10-5 1. 57 x 10-5 
G 2.20 50- 7.07 x 10-5 1. 39 x 10-5 . 
H 2.20 55- 5.87 x 10-5 --------

* a = 0-; all other cases at a = 0.5-

presented in ref. 30, where the winglet for wing C (A = 1.75, fI. = 50·) was 

toed out somewhat near the wing root, and convergence was obtained. 

PPW Analysis Code Performance Comparisons at Design Point 

The potential for winglets to reduce drag for low aspect ratio wings at a 

transonic cruise design point has been assessed by comparing the lift-to-drag 

ratios computed by the PPW code for each wing-wing let configuration with the 

calculated LID for the corresponding optimum wing-alone configuration at 

essentially the same lift at the design point of M = .8, CL " 0.3, as shown in 

Table 4. The percentage differences between calculated wing-alone and 

wing-wing let lift coefficients have also been shown. Lift coefficients have 

generally been matched to within approximately :t 1%. All lift and drag 

coefficients in this comparison have omitted the fuselage force coefficients, so 

comparisons have been made between the wing plus winglet force coefficients 

and the wing forces for the corresponding wing-alone conftguration. All lift 

and drag force coefficients have been calculated using the configuration wing 
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area as· the reference area. Thus force coefficient ratios are directly 

interpreted as ratios of forces. Note that, as previously mentioned, the 

wing-winglet configurations· have slightly larger areas (2.25%) and projected 

spans (3.88%) than the corresponding wing-alone geometries. Thus, the far 

field theory predicts a potential for a 16.9% reduction in induced drag when 

the projected span is allowed to vary and the wing area is used as the 

wing-winglet reference area. If projected span is held fixed, then the 

predicted reduction in induced drag is 13%. 

Predicted increases in lift-to-pressure drag (induced drag plus wave 

drag) are between 13.1 and 16.7% for runs without any boundary layer 

interaction for 160 iterations. No clear trend in predicted percentage LID 

increases is observed as wing aspect ratio or leading edge sweep angle is 

varied. When the wing boundary layer interaction is included and 300 

iterations are used, calculated wing-winglet lift-to-pressure drag is 14.6 to 

15.8% higher than for the corresponding wing-alone configuration at 

essentially the same lift. For these four configurations, calculated 

wing-winglet lift-to-total drag is 11.5 to 13.3% higher than calculated wing 

lift-to-total drag at the same lift. Again there is no apparent variation of the 

predicted percentage LID increases with wing aspect ratio or wing leading 

edge sweep. 

The PPW code was modified to use the calculated wing and winglet 

spanloads to calculate a bending moment coefficient about the wing root to 

allow some comparisons of the structural penalty due to the winglet. For the 

four configurations for which 300 iterations, interacted boundary layer 

solutions have been obtained, this calculated bending moment coefficient at the 

design point was increased 5-7% for the wing-winglet case relative to the 
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corresponding wing-alone case30• These percentage increases in bending 

moment are of the same order as those calculated by Heyson, et al.6 for 

winglets on wings of similar aspect ratio. 

Typical calculated upper surface wing-alone pressure coefficient 

distributions are shown in Fig. 6 for the A = 2.63 and A = 2.20, l\ = 50· 

configurations using 160 iterations without boundary layer interaction. 

Results for the other wing-alone configurations all look quite similar30. 

The corresponding wing upper surface pressure coefficient distributions 

for the A = 2.63 and A = 2.20, l\ = 50· wing-winglet configurations, again 

for 160 iterations and no boundary layer interaction, are shown in Fig. -7. 

They are nearly identical to the wing-alone results except near the aft end 

of the wing tip in the vicinity of the wing let. Here the presence of the 

winglet results in larger velocities and more negative pressure coefficient 

values. Wing pressure distributions for all other wing-winglet 

configurations appear quite similar30. Examples of the calculated winglet 

pressure coefficients at ~ = 0.163, 0.488, 0.650, and 0.975, where ~ is the 

fractional distance from the wing let root to the winglet tip, are shown for 

the same two wing-winglet solutions in Figs. 8 and 9. Similar results have 

been obtained for all other winglets. 30. Smooth, nearly rectangular winglet 

pressure distributions are obtained at A = 2.63, but a shock is observed 

near mid chord over the lower 50% of the winglet at A = 2.20. In addition, 

a suction peak is observed on the inboard surface at the winglet leading 

edge near the winglet root, indicating that this wing let should be toed out 

more. For the assumed a = 1.0 rectangular chord loading there also 

appears to be a trailing edge shock everywhere along the winglet (Cp * ~ 
-.4 at M = .8). Winglet pressure coefficients have been shown in Figs. 
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Table 4. PPW Code Predicted Lift-to-Drag Increases Due to 0.15(b/2) 
Winglets at M = 0.8, CL a 0.3 

160. iterations, 300 iterations, 
no BL with BL 

Wing CL/CDp 4CL CL/CDp CL/CDtot 4CL 
Config. A tI Increase Increase Increase 

A 2.63 45- 13.1% 0.9% 14.9% 11. 5% -0.8% 

B 2.67 50- 14.4% -1. 87% 15.0% 11.8% -1. 2% 

D 1. 75 55- 16.4%* -.02%* 

F 2.20 45- 16.5% -.99% 15.8% 13.3% -0.9% 

G 2.20 50- 16.7% .05% 14.6% 12.1% 0.7% 

H 2.20 55- 15.7% -1.23% 

C 1. 75 50- 14.9% -.20% 

* ex = 0·; all·other case~ at ex = 0.5-

8 and 9 for both the 160 iterations, no boundary layer solutions and the 

better-converged, more realistic solutions for 300 iterations with the 

interacted boundary layer. Very little difference is observed at A = 2.63. 

However, mid-chord shocks are weakened and moved slightly aft, and 

trailing edge shocks are weakened slightly, for the solution including the 

interacted boundary layer for the more heavily loaded winglet on the A = 

2.20 wing. Similar trends have been seen for the effect of including the 

boundary layer on shock location for transport wing configurations in ref. 

28. 

Designs using a = 0.8 and a = 0.9 chord loadings were successful in 

reducing the severity of the observed trailing edge pressure recovery. 

However, mid-chord winglet shocks were strengthened so that overall 

predicted drag levels were not greatly different than those computed using 
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the rectangular chord loading. This is seen in Fig. 10, where the 

predicted drag polars and (L/D) versus CL at M = 0.8 are shown for six 

different design geometries using wing planform F (A = 2.20, l\ = 45-). 

Results are shown for three wing-alone designs using a = 1.0, 0.9, and 0.8 

chord loadings, and three corresponding wing-wing let designs, again using 

a = 1.0, 0.9, and 0.8. Calculated pressure distributions are shown in Fig. 

11 for the three wing-winglet designs at ex = 0-, CL II 0.27. Pressure 

recovery on the upper surface is most gradual for the a = 0.8 design 

geometry. For this geometry the Bradshaw strip boundary layer calculation 

in PPW predicts no boundary layer separation on the wing upper surface. 

For a = 1.0 or 0.9 boundary layer separation is predicted near the wing tip 

at (x/c) = 0.98-0.99. 

Insight into the quality of the linear theory wing designs at the 

selected design point, as well as into the effects of the wing-wing let 

geometry modifications, has been gained through inspection of the 

predicted spanload distributions. Here, spanload has been presented as 

CCc/(CavCL)' As shown in Fig. 12, the linear theory wing-alone designs 

analyzed in the PPW code . yield essentially an elliptical spanload for the 

isolated wing case; calculated span efficiency factors are very close to the 

optimum value of 1.0 (e = 0.999 for all isolated wings). The linear theory 

design code spanload was also elliptical. Addition of the fuselage shifts the 

loading outboard. This is seen in Fig. 13 to be due to the lift loss due to 

the fuselage. Typical calculated span efficiency factors for these 

wing-body spanloads are e II 0.97 to 0.98. 

Corresponding wing-body-winglet spanloads at M = 0.8, ex = 0.5- are 

shown in Fig. 14. Again, spanload is reduced due to the fuselage, and the 
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resulting loading is shifted outboard relative to the isolated wing case. 

However, there are also indentations in the calculated spanload 

distributions at the wing tip and at the winglet root which are the result 

of the geometry modifications in these regions. Essentially, these geometry 

modifications were required to unload the wing tips and winglet root below 

the levels required by the linear theory design methodology. This had the 

effect of maintaining a flow field in the wing-winglet juncture which was 

only slightly supersonic, so that any shocks which resulted were weakened. 

Further examples of calculated pressure coefficient distributions 

obtained for a longer winglet of length equal to 0.25( b/2) on wing planform 

H (A = 2.20, !\ = 55·) have been presented in Fig. 15. This configuration 

has a potential for a 25.4% reduction in induced drag coefficient relative to 

the shorter span wing-alone configuration, based on the far field theory of 

refs. 17 and 13. Winglet leading edge sweep is 45·, taper ratio equals 0.5, 

and cant is 15·. The design process and resulting geometry both were 

quite similar to those for the shorter 0.15 (b/2) winglet configurations, with 

the exception that winglet twist had to be altered by trial-and-error to 

obtain converged, smooth pressure coefficient solutions30. Winglet airfoils 

were toed out more at the winglet root, but toed in more near the winglet 

tip, and wing tip incidence was reduced while wing root incidence was 

increased relative to the linear theory design values (~~wing root = 0.5·, 

~Ewing tip = -0.5·, ~~winglet = - 1.6·, -0.6", 2.7·, 4.6· )30. This solution is 

at M = 0.8, IX = 0.5· for 300 iterations with the interacted boundary layer. 

For this run, u max = 3.43 x 10-5 , and wing-wing let lift coefficient is 0.2% 

low relative to the wing...;alone results30. The calculated lift-to-pressure 

drag ratio is increased 19.4% relative to the wing-alone case, while 

24 



calculated wing-winglet lift-to-total drag ratio is increased 15.4% compared 

to the wing-alone case30. Much smaller drag reductions at equal lift, of 

14.9% in CDp and 11.9% in CDtot have been computed for a lower sweep 

(30·), long winglet; this is due to the occurrence of strong shocks on the 

inboard winglet surface (Fig. 16) which results from a larger interference 

effect for the lower sweep wing let. Thus, it appears that winglet leading 

edge sweep angle should not be significantly lower than the leading edge 

sweep angle of the wing, consistent with Whitcomb's original findings for 

higher aspect ratio wings1. 

PPW Predicted Performance - Off Design 

The calculated performance benefits of approximately a 15% increase in 

wing-wing let lift-to-pressure drag and a 12% increase in wing-winglet 

lift-to-total drag for all configurations, at the design point of M = 0.8, CL 91 

0.3, is very significant. However, it is also of interest to be able to 

quantify the wing-winglet performance benefits at off-design conditions. 

Such performance predictions versus angle of attack at M = 0.8 have been 

obtained in the current study for all wing-alone and wing-winglet 

configurations for which converged wing-winglet solutions were obtained 

(wings A, B, F, and G). In addition, predicted performance variation 

versus Mach number has been studied for the A = 2.63, fI. = 50· 

wing-winglet configuration (wing A). 

Predicted performance of wing-alone and wing-winglet configurations 

A, B, F, and G at M = 0.8 versus angle of attack is summarized in Figs. 

17-20, respectively. Shown are the lift, pitching moment, and wing root 

bending moment coefficients v:ersus angle of attack, as well as the drag 

polar and LID versus CL' All calculated PPW force and moment coefficients 
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presented in these figures have been presented in tabular form in the 

Appendix. Generally, performance results for all four configurations look 

similar, except of course, that the drag coefficients are higher and LID is 

lower for the lower aspect ratio configurations (A = 2.20; cases F and G). 

Figure 21 summarizes the predicted performance at M = 0.8 for the long, 

45- sweep winglet installed on wing· H (A = 2.20, l\ = 55-). 

For all ten configurations (five wing-alone and five wing-winglet 

geometries) the lift coefficient, pitching moment coefficient and wing root 

bending moment coefficients vary essentially linearly with angle of attack. 

Lift coefficients for wing-winglet configurations are typically slightly lower 

(order of 1%) than for the corresponding wing-alone configuration at the 

same angle of attack. This may be the result of the geometry modifications 

at the wing tip and winglet root which were required to limit the shock 

strengths in the juncture regions of all wing-winglet configurations. Lift 

curve slopes are typically slightly greater for wing-winglet configurations 

than for the corresponding wing-alone case. Converged PPW solutions 

could not be obtained for any of the wing-winglet configurations at higher 

angles of attack than are shown in the figures or Appendix. Generally, 

this inability to obtain converged wing-winglet solutions occurred at CL 

only slightly larger than 0.3 (ex II 1 - ). Note that the results shown at 

higher CL values in Fig. 17 for wing-winglet configuration A were only 

obtained after a trial-and-error alteration of the wing tip and winglet root 

geometry as shown in the Appendix to further unload these regions at the 

higher overall lift levels. 

Pitching moment coefficients calculated about the wing apex are not 

altered greatly by the winglets, but are slightly more negative. Wing root 
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bending moment coefficient, on the other hand, is significantly increased by 

the addition of the wing lets. Wing root bending moment coefficients have 

been calculated by integrating the PPW spanloads, as explained in ref. 30. 

Generally, at the design point, wing-winglet configurations A-G have from 

5.5 to 6.7% larger values of CB than for the corresponding wing-alone 

geometry, while the longer winglets (0.25 (b/2)) result in a 10-11% increase 

in wing root bending moment coefficient. Similar percent increases are 

observed in Figs. 17-21 at other lift levels. The predicted drag polars of 

all wing-:winglet configurations are shifted to lower drag relative to the 

corresponding wing-alone case, with a resultant increase in LID at the 

same CL' 

The effect of incidence on the normalized spanload, c,c/(cavCL), is 

shown in Fig. 22 at M = 0.8 for wing-winglet configuration A (wing A = 

2.63, fI = 50·). Generally as ex is increased the loading is increased in~oard 

and decreases outboard both on the wing and on the winglet. The 

pressure coefficient distributions on the wing and wing let of configuration 

A at M = 0.8 for varying ex are summarized in Fig. 23. As ex is increased a 

suction peak develops near the leading edge of the winglet near the 

winglet root. 

Off design performance at varying Mach number has been assessed 

only for wing-alone and wing-winglet configurations A (wing A = 2.63, fI = 

50·). Detailed performance predictions versus angle of attack for this 

configuration are presented in Figs. 24 and 25 at M = 0.7 and 0.75 

respectively. Comparing Figs. 17, 24 and 25, as Mach number is increased, 

eL, Cm' and CB are all increased between 0.7 ( M .. 0.8. Also, predicted 

drag coefficient actually decreases between M = .7 and .8, so that (LID) 
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increases as Mach number is increased in this range. 

Off design performance for these configurations at Mach numbers 

above the design Mach number has also been addressed, as summarized in 

Figs. 26-28. Typical wing upper surface pressure distributions for the 

wing-winglet configuration are shown in Fig. 26 at IX = -1· or -1.5· for 

Mach numbers up to 0.95, while typical winglet pressure coefficient 

distributions are shown in Fig. 27 for the same range of Mach numbers. 

For these results, CL !i5 0.2; solutions at higher lift levels could not be 

obtained at the highest Mach number. As would be expected, winglet shock 

strength is increased as Mach number is increased, while at the same time 

a shock also develops on the wing upper surface. An interesting double 

shock pattern is predicted at M = 0.95 near the mid-span of the winglet 

(Fig. 27). The effect of this increased shock strength on calculated drag 

at a constant lift coefficient is shown in Fig. 28. Both wing-alone and 

wing-winglet predicted drag coefficients are shown for varying Mach 

number at fixed values of lift coefficient of CL = 0.3, 0.25, and 0.2. These 

curyes have been obtained by first generating drag polars at each Mach 

number, and then cross-plotting these results. It was not found to be 

possible to obtain successfully converged solutions for the wing-alone 

geometry above M = 0.825, and the maximum lift coefficient levels for which 

converged results could be obtained for the wing-winglet configuration 

were· found to gradually decrease as Mach number was increased. It is not 

known whether these convergence problems were a rough indication that 

the actual flow field would likely experience shock-induced flow separation, 

or whether they were instead due to the PPW finite difference formulation. 

In spite of these difficulties, at CL = 0.2 and 0.25 there is a clear 
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indication of drag rise for the wing-winglet configuration at about M = 0.9. 

However, it is expected that actual drag increments above M = 0.9 are 

underpredicted, since the wing boundary layer calculation predicts that 

separation will occur just aft of the shocks for this geometry. 

DISCUSSION 

All of the present PPW nonlinear performance predictions support ~he 

much simpler trends discussed under Design Philosophy above, using a far 

field drag model. The predicted percentage drag coefficient reductions of 

the wing-winglet designs at the design point are largely independent of 

wing planform (aspect ratio and leading edge sweep), and tend to scale 

directly proportional to the ratio of winglet length divided by wing 

semispan. Both of these trends are predicted by the simple far field 

theory. Of course, these conclusions will remain valid only so long as 

smooth, attached flow can be maintained on both the wing and wing let. 

Some limited efforts to obtain PPW solutions at higher lift coefficient for 

the configurations discussed in the present study have usually led to 

diverging, unstable solutions. This indicates in some general sense that 

the actual flow field would be too highly loaded on the winglet inboard 

surface or near the wing tip, so that shock-induced flow separation would 

be expected in these regions at higher lift coefficients. This could negate 

any drag reductions due to the winglet at high lift. However, it does 

appear possible to increase wing let toe out and unload the wing tip by 

reducing tip incidence, as has been done for wing-winglet A (Fig. 17) 

above 0: = 1.5-, as CL is increased, thereby maintaining attached flow over 

a wider range of lift coefficients. Thus it may be necessary to utilize 
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variable wing tip and/or winglet geometry to maintain attached flow 

conditions over a range of lift coefficients. 

Analysis of the predicted performance versus angle of attack presented 

in Figs. 17-21, 24 and 25 yields the predicted percentage increases in L/D 

shown in Table 5. Predicted percentage increases in L/D due to a winglet 

generally increase somewhat as CL is decreased. The longer winglet again 

is seen to yield a larger increase in L/D. Finally, even with the reduced 

loading at the wing tip and winglet root for configuration A at higher lift 

coefficient values of 0.35 and 0.4, there is still a significant increase 

(8-10%) in L/D due to a winglet .. These results show there appears to be 

significant drag reduction potential for winglets installed on low aspect 

ratio wings even up to CL 91 .42 at M = .8. 

While the present results are very encouraging there is some concern 

over the level of accuracy of the drag levels computed by integration of 

the pressure distributions in the PPW code (ref. 11, p. 139) or that this 

accuracy might be significantly reduced at low aspect ratio, or for 

nonplanar configurations. For example, there is no complete treatment of 

the three dimensional boundary layers which form in the wing-winglet and 

wing-body junctures. Also, the flow fields on the body and on the 

winglets are not interacted with any viscous boundary layer calculation. 

To date no complete assessment of these concerns has been made. 

However, it is noted that the predicted pressure drag reductions at the 

design point (Table 4) are in all instances somewhat less than the maximum 

achievable reduction in induced drag as predicted by the far field drag 

model. 
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Table 5. PPW Predicted Percentage Lift-to-Total Drag Increases 
Due to Wing lets at Various Lift Levels 

Config. '/(b/2) M CL =.2 CL = .25 CL =.3 CL = .35* CL = .4* 

A 

B 

F 

G 

L45 

A 

A 

0.15 0.8 

0.15 0.8 

0.15 0.8 

0.15 0.8 

0.25 0.8 

0.15 0.75 

0.15 0.70 

15.7% 

16.7% 

19.1% 

16.8% 

14.7% 

14.7% 

14.2% 

16.3% 

15.9% 

19.2% 

13.8% 

13.5% 

11. 5% 9.8% 

11.8% 

13.3% 

12.1% 

19.4% 

11. 2% 

11.3% 

* Wing tip incidence reduced and winglet root toe out increased; 
see Appendix. 

8.2% 

Some insight into accuracy of the PPW code calculated drag has been 

obtained by plotting the calculated PPW pressure drag coefficient in drag 

counts versus Mach number for an uncambered, untwisted wing as shown 

in Fig. 29. For these results, the wing has a taper ratio of 0.2, an aspect 

ratio of 2.5, a wing leading edge sweep of 44·, and an NACA 64A006 

thickness distribution. Calculated pressure drag is essentially zero (less 

than one count) for the wing-alone for 0.1 ~ M ~ 0.9. Above M = 0.9 there 

is a very steep increase in CDp, indicating the onset of drag rise. Also 

shown in Fig. 29 are similar pressure drag results for the same wing with 

a short winglet (' = 0.15(b/2), II = 45"). Here, due to interference effects, 

the wing tip and winglet root incidences had to be reduced by 

trial-and-error until a wing-pIus-wing let lift coefficient of zero was 

obtained. For these slightly twisted, uncambered wing-winglet geometries 

(wing tip and winglet root incidence varied slightly ...... ith Mach number), the 

calculated pressure drag is essentially identical to that of the wing-alone 
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at CL = O. Thus, there is no evidence of any difference in the accuracy of 

the PPW drag coefficient calculation by pressure integration for the 

wing-winglet or wing-alone configurations, at least for these thickness 

dominated flows. The small CDp values shown in Fig. 29 at M = 0.8 are less 

than 1% of the calculated drag coefficient levels for configurations A, B, F, 

and G at the selected design point of M = 0.8, CL ~ 0.3. Hence, these 

errors are not believed to significantly affect the basic conclusions of the 

present study. 

CONCL USIONS 

A preliminary numerical design study has been performed to assess the 

potential for drag reduction at a transonic cruise design point for winglets 

installed on low aspect ratio wings. All initial design geometries have been 

generated using linearized 'potential flow theory. These initial geometries 

have been modified as required to overcome linear flow limitations, and 

then performance has been analyzed using the PPW numerical nonlinear 

potential flow model. For wings of aspect ratios ranging from 2.67 to 1.75 

and leading edge sweep angles from 45 to 60·, realistic converged flow 

predictions have been obtained using the nonlinear analysis code at M = 

0.8, CL El 0.3 without modification to the linear-theory designs. Realistic 

converged flow solutions were also obtained from the nonlinear analysis 

code for wing-winglet designs generated for a 50· leading edge sweep 

winglet of length equal to 15% of the wing semispan, installed on the 

higher aspect ratio wing planforms. Here converged transonic flow 

solutions were only obtained when winglet root toe out and wing tip 

incidence were systematically altered to reduce the winglet and wing tip 

loading levels relative to those required by the linear theory design 
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methods. Converged solutions were not obtained for the A = 1.75 

wing-winglet configurations, and difficulty was often experienced in 

obtaining convergence at lift levels above CL 6l 0.3. 

For the 0.15(b/2), 50" leading edge sweep winglets, the predicted 

pressure drag coefficient reductions at the design point were about 15% 

while total drag coefficient reductions were about 12%, relative to the 

wing-alone design at the same lift. These predicted percentage reductions 

were largely independent of the basic wing aspect ratio and wing leading 

edge sweep. For the 0.25(b/2), 45" leading edge sweep winglet a pressure 

drag coefficient reduction of 19% and a total drag coefficient reduction of 

15% were predicted. Thus, it has been concluded that, at least for winglet 

lengths below 25% of the wing semispan, the fractional pressure drag 

reduction due to a winglet approaches the induced drag reduction 

predicted by a simple far field induced drag model. This drag model 

predicts the fractional induced drag coefficient reduction, 1-1/k, is simply 

... 
related to the ratio of winglet length to wing semis pan, in that k = 1 + 

e/(b/2). 

These percent reductions in drag coefficient due to a winglet were 

found to be maintained as Mach number was varied from 0.7 to 0.9 for one 

of the wing geometries studied, for a wing of A = 2.63, !I =. 50·. However, 

as Mach number is increased above about 0.9 the onset of drag rise is 

predicted for this wing-winglet configuration at 0.2 ~ CL ~ 0.25. 

For this same wing-winglet configuration it was also possible to obtain 

total drag coefficient reductions of 8-10% at M = 0.8 at higher lift 

coefficients (up to CL = 0.42). This was achieved by further unloading of 

the wing-winglet juncture region by simply reducing the wing tip incidence 
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and increasing winglet root toe out as required. 

Thus, the simple basic premise which motivated the present study 

appears to be valid. Winglets appear to have the potential to achieve 

significantly larger drag force reductions when applied to low aspect ratio 

wings rather than at higher aspect ratio. This is because the percentage 

drag coefficient reduction at equal lift is relatively independent of wing 

aspect ratio, while the lift-to-drag ratio increases with aspect ratio. Thus, 

the lower aspect ratio configuration develops a much larger drag force at 

equal lift and wing loading. 
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Wing Fitted with 0.15(b/2), A = 0.5, A = 50· Winglet 
Without Winglet Twist Alteration 

Configuration A 
M = 0.8 

ex 

1.0· 
0.5· 
O· 
-1.0· 
-1. 5· 

(Wing) 
CL CDp CDf CM CRJ3M 

.30272 .01624 .00241 -.33660 .16172 

.27934 .01337 .002'42 -.31443 .15089 

.25573 .01079 .00244 -.29195 .13695 

.20604 .00628 .002~8 -.24400 .11115 

.18239 .00474 .00250 -.22203 .09850 

Wing Fitted with 0.15(b/2), A = 0.5, A = 
With Wing And Winglet Twist Alteration 

Configuration. A 
~I = 0.8 

(Wing) 

CL CDp 

.00403 -.00221 

.00388 -.00200 

.00373 -.00181 

.00338 -.00141 

.00313 -.00118 

50· Winglet 

(Winglet) 
CDf ~ 

.00014 -.00582 

.00014 -.00561 

.00014 -.00540 

.00014 -.00492 

.00014 -.00459 

(Winglet) 
.:x CL CDp CDf ~ ~""I CL CDp Cof ct.1 

CRBM DELTA PHI MAX 

.00503 

.00499 

.00463 

.00418 

.00386 

9.71x10- 6 (crude) 
1.04x10-S (crude) 
1. 35x lO- s (crude) 
1.43x10-s (crude) 
7.29x10- 6 (crude) 

~ DELTA PHI ~X 

3.5· .41350 .03364 .00241 -.44215 .21757 .00430 -.00301 .00014 -.00619 .00542 1.95x10-S (crude) 
(twing=-.7·, -.7·, -2.5; twlet= -2·, -1.1·,0·, 0·) 
3· .38784 .02903 .00240 -.41640 .20432 .00416 -.00273 .00014 -.00600 .00524 6.46x10- S (tag) 
(twing=-.7·, -.7·, -2.4·; t wl et=-1.9·, -1·,0·,0·) 
2.5· .36552 .02527 .00240 -.39515 .19263 .00411 -.00255 .00014 -.00592 .00515 1.51x10-S (crude) 
(twing= -.6·, -.6·, -2.3·; twlet= -1.6·, -.8·, 0·, 0·) 
2· .34813 .02268 .00240 -.37989 .18472 .00412 -.00248 .00014 -.00594 .00516 1.25x10-S (crude) 
(tw-tip= -1.6·; twlet= -1·, -.5·, 0'·, 0·) 
1.5· .32627 .01953 .00240 -.35945 .17367 .00405 -.00235 .00014 -.00584 .00507 1.31x10-4 (tag) 
(tw-tip= -.5·; twlet= -1·, -.5·, 0·, 0·) 
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Wing-Alone A: A = 0.2, ~ = 50- , AR = 2.63 
M = 0.8 

ex CL Cop CDf CM CR.BM 

3.5- .42688 .03556 .00241 -.45020 .21861 
3- .40517 .03150 .00239 -.43036 .20763 
2.5- .38164 .02739 .00239 -.40806 .19568 
2- .35812 .02351 .00239 -.38568 .18393 
1.5- .33432 .01992 .00239 -.36302 .17195 
1- .30944 .01646 .00239 -.33885 .15948 
0.47- .28548 .01346 .00241 -.31650 .14712 
-. 5- .23973 .00878 .00244 -.27368 .12377 
-1. 5- .19131 .00495 .00248 -.22800 .09903 

DELTA PHI MAX e 

2 .12x 10-4 (fine) .978 
1.15x 10-4 (fine) .977 
2. Olx 10-5 (crude) .976 
2.36x10- 5 (crude) .974 
2.04x10-5 (crude) .972 
9 .OOx10-6 (crude) .970 
1.07x10-5 (crude) .969 
1.40x10-5 (crude) .965 
1.07x10-5 (crude) .960 
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Wing Fitted with 0.15(b/2), A = 0.5, h = 50- Winglet 
Without Winglet Twist Alteration 

Configuration A 

M = 0.75 
(Wing) (Winglet) 

ex CL Cop CDJ ~ Cru3M CL __ . C~ Cof ~ Cru3M DELTA PHI MAX 

1.5- .31452 .01880 .00237 -.34565 .16719 .00402 -.00218 .00014 -.00582 .00502 1.80x10-s (crude) 
1- .29025 .01542 .00238 -.32146 .15439 .00384 -.00199 .00014 -.00556 .00479 1.58x10-S (crude) 
0.5- .26836 .01275 .00240 -.30111 .14315 .00375 -.00182 .00014 -.00544 .00466 1.78x10-S (crude) 
0- .24522 .01016 .00241 -.27887 .13114 .00360 -.00164 .00014 -.00524 .00446 9.92x10- 6 (crude) 
-.5- .22076 .00777 .00243 -.25485 .11822 .00337 -.00144 .00014 -.00492 .00418 1.28x10-S (crude) 
-1- .19704 .00581 .00245 -.23216 .10585 .00320 -.00127 .00014 -.00468 .00395 1.28x10-S (crude) 
-1.5- .17310 .00414 .00248 -.20929 .09320 .00297 -.00106 .00014 -.00436 .00366 1.56x10-S (crude) 

Wing-Alone A: A = 0.2, A = 50- , AR = 2.63 

M = 0.75 

ex CL COp Cof Cf.t Cru3M DELTA PHI MAX e 

1. 5- .31904 .01894 .00236 -.34508 .16381 3.66x10-S (crude) .973 
1- .29767 .01590 .00236 -.32522 .15291 1.71x10-S (crude) .972 
0.5- .27455 .01294 .00238 -.30304 .14134 1. 15x10-s (crude) .970 
0- .25240 .01054 .00239 -.28247 .12988 1.35x10-S (crude) .969 
-1- .20754 .00646 .00243 -.24079 .10691 8.80x10-6 (crude) .965 
-1.5- .18276 .00457 .00245 -.21672 .09416 1.70x10-S (crude) .965 
-2- .15997 .00331 .00248 -.19578 .08226 1.49x10-S (crude) .964 
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Wing Fitted with 0.15(b/2), h = 0.5, h = 50- Winglet 
Without Winglet Twist Alteration 

Configuration A 

M = 0.7 
(Wing) (Winglet) 

IX CL COp CDf ~ Cru3M CL Cop Cof ~ Cru3M DELTA PHI MAX 

2.5- .34521 .02464 .00234 -.37172 .18255 .00408 -.00231 .00014 -.00590 .00511 2.24x10-S (crude) 
2- .32411 .02115 .00234 -.35168 .17161 .00398 -.00216 .00014 -.00576 .00498 3.43x10-S (crude) 
1.5- .30218 .01775 .00235 -.33042 .16031 .00388 -.00201 .00014 -.00562 .00484 1.56x10-S (crude) 
1- .28195 .01504 .00236 -.31201 .14988 .00375 -.00186 .00014 -.00545 .00467 1.80x10-S (crude) 
.85- .27424 .01400 .00236 -.30399 .14575 .00372 -.00182 .00014 -.00539 .00462 1.83x10-S (crude) 
0- .23666 .00968 .00239 -.26821 .12626 .00345 -.00153 .00014 -.00502 .00427 1. 13x10-S (crude) 
-. 5- .21397 .00748 .00241 -.24647 .11443 .00327 -.00136 .00014 -.00479 .00405 1.31x10-S (crude) 
-1- .19118 .00560 .00243 -.22475 .10235 .00308 -.00117 .00014 -.00451 .00379 8.10x10-6 (crude) 
-1.5- .16807 .00401 .00245 -.20276 .09021 .00286 -.00097 .00014 -.00421 .00352 7.53x10- 6 (crude) 

Wing-Alone A: h = 0.2, h = 50- , AR = 2.63 

M = 0.7 

IX CL Cop CDf ~ Cru3M DELTA PHI MAX e 

2.5- .34865 .02478 .00232 -.36986 .17847 2. 19x10-s (crude) .978 
2- .32714 .02113 .00232 -.34925 .16761 1.55x10-S (crude) .976 
1.5- .30728 .01816 .00233 -.33125 .15740 2.56x10-S (crude) .975 
1- .28652 .01524 .00234 -.31200 .14695 2. 15x10-s (crude) .974 
.5- .26509 .01254 .00235 -.29190 .13605 1.93x10-S (crude) .972 
0- .24423 .01023 .00237 -.27281 .12546 1.61x10-S (crude) .970 
-1- .19951 .00604 .00240 -.23048 .10251 1.42x10-S (crude) .968 
-1.5- .17733 .00448 .00243 -.20987 .09103 9.96x10-6 (crude) .967 
-2- .15414 .00308 .00245 -.18792 .07898 9.82x10-6 (crude) .966 



Wing Fitted with 0.15(b/2), X = 0.5, h = 50- Winglet 
Without Winglet Twist Alteration 

Configuration B 

M ='0.8 
(Wing) (Winglet) 

ex CL Cop Cof CM Cru3M CL Cop Cnf ct1 Cm3M DELTA PHI MAX 

.75- .29486 .01548 .00220 -.29749 .15744 .00425 -.00230 .00013 -.00527 .00528 1.91x10-5 (crude) 
0.5- .28272 .01400 .00221 -.28726 .15093 .00416 -.00218 .00013 -.00517 .00517 2.17x10- 5 (tag} 
.25- .27114 .01266 .00221 -.27785 .14497 .00408 -.00207 .00013 -.00508 .00506 1.36x10-5 (crude) 
.0- .25894 .01132 .00222 -.26765 .13858 .00399 -.00197 .00013 -.00498 .00495 9.96x10- 6 (crude) 
-. 5- .23433 .00887 .00223 -.24698 .12572 .00381 -.00176 .00013 -.00476 .00471 1.38x10-5 (tag) 
-1- .20915 .00669 .00225 -.22567 .11245 .00360 -.00154 .00013 -.00451 .00444 8.55x10-6 (crude) 
-1.5- .18511 .00499 .00226 -.20609 .10007 .00338 -.00133 .00013 -.00426 .00417 7.89x10-6 (crude) 
-1.75- .i7248 .00421 .00227 -.19554 .09338 .00326 -.00121 .00013 -.00411 .00401 7.93x10-6 (crude) 
-2.0- .15987 .00347 .00228 -.18500 .08679 .00314 -.00110 .00013 -.00397 .00386 8.99x10-6 (crude) 

~ 
N 

Wing-Alone B: X = 0.2, h = 45- , AR = 2.67 

M = 0.8 

ex CL Cop Cof ct1 Cru3M DELTA PHI MAX e 

.75- .30218 .01548 .00217 -.29977 .15441 1. 18x10-5 (crude) .979 

.5- .29024 .01407 .00218 -.29004 .14840 1.32x10-5 (crude) .978 
0- .26566 .01127 .00219 -.26943 .13577 1.70x10-5 (crude) .977 
-.5- .24144 .00893 .00220 -.24952 .12325 1.45x10-5 (crude) .976 
-1- .21732 .00688 .00221 -.22988 .11096 1.06x10-5 (crude) .975 
-1.5- .19278 .00511 .00223 -.20975 .09826 9.47x10-6 (crude) .973 
-2- .16806 .00369 .00225 -.18958 .08546 6.72x10-6 (crude) .970 
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Wing Fitted with 0.15(b/2), A = 0.5, h = 50- Wing let 
Without Winglet Twist Alteration 

Configuration F 

M = 0.8 
(Wing) (Winglet) 

ex CL Cop CDf CM Cru3M CL Cop CDf Cr1 Cru3M DELTA PHI MAX 

.65- .29104 .01814 .00205 -.26348 .15481 .00447 -.00262 .00013 -.00464 .00557 1.82xlO-S (fine) 

.5- .28474 .01725 .00205 -.25900 .15153 .00442 -.00255 .00013 -.00459 .00551 1. 57x lO-s (fine) 
0- .26315 ~01436 .00206 -.24335 .14031 .00426 -.00232 .00013 -.00444 .00530 1.35x10-S (crude) 
-.5- .24126 .01175 .00207 -.22745 .12881 .00407 -.00208 .00013 -.00426 .00505 1.38x10-S (crude) 
-1- .21938 .00943 .00208 -.21163 .11738 .00388 -.00185 .00013 -.00407 .00480 1. 17x10-s (crude) 
-1.5- .19753 .00740 .00210 -.19592 .10597 .00367 -.00162 .00013 -.00387 .00454 2.45x10- S (tag) 
-2- .17558 .00569 .00211 -.18029 .09453 .00344 -.00137 .00013 -.00364 .00424 8.91x10-6 (crude) 
-2.5- .15291 .00423 .00213 -.16390 .08258 .00318 -.00111 .00013 -.00339 .00391 8.23x10-6 (crude) 
-2.75- .14141 .00363 .00214 -.15560 .07652 .00305 -.00098 .00013 -.00326 .00374 8.05x10-6 (crude) 

Wing-Alone F: X = 0.2, h =45- , AR = 2.20 

M = 0.8 

ex CL CDp Cof Cri Cru3M DELTA PHI MAX e 

1- .31218 .02063 .00202 -.27576 .15925 1. 49x10-s (crude) .982 
0.5- .29181 .01761 .00203 -.26151 .14888 1.46x10-S (crude) .981 
0- .27130 .01485 .00203 .-.24713 .13843 1.32x10-S (crude) .980 
-.5- .25058 .01233 .00204 -.23257 .12785 1.16x10-S (crude) .980 
-1- .22975 .01008 .00205 -.21797 .11721 1. 04x 10-s (crude) .979 
-1.5- .20880 .00808 .00206 -.20330 .10646 9.23xlO-6 (crude) .978 
-2- .18761 .00635 .00208 -.18847 .09555 8.87xlO-6 (crude) .977 
-2.25- .17685 .00560 .00209 -.18093 .08999 8.71xlO-6 (crude) .976 



+=> 
~ 

Wing Fitted with 0.15(b/2), A = 0.5, h = 50" Winglet 
Without Winglet Twist Alteration 

Configuration G 

M = 0.8 
(Wing) (Winglet) 

Ot CL CDp CDf ~ Cm3M CL CD2 CDr Cr1 CRBM 

I" .30693 .01991 .00230 -.30581 .16415 .00415 -.00275 .00013 -.00506 .00518 
.5" .28677 .01700 .00231 -.28958 .15262 .00404 -.00251 .00013 -.00493 .00490 
0" .26355 .01388 .00232 -.26921 .14144 .00388 -.00229 .00013 -.00475 .00482 
-.5- .24255 .01145 .00233 -.25202 .13043 .00372 -.00206 .00013 -.00457 .00461 
-I" .21853 .00888 .00235 -.23084 .11765 .00355 -.00186 .00013 -.00437 .00439 
-1.25" .20859 ;00795 .00236 -.22301 .11253 .00346 -.00176 .00013 -.00427 .00428 

Wing-Alone G: \ = 0.2, ~ = 50", AR = 2.2 

M = 0.8 

Ot CL CDp CDf Cr1 Cm3M DELTA PHI MAX e 

1· .30782 .01951 .00227 -.30140 .15736 1.32xl0-S (crude) .980 -. .::> .28877 .01684 .00228 -.28665 .14757 1. 93x10-s (crude) .979 
O· .26707 .. 01397 .00229 -.26837 .13665 9 .67x10- 6 (crude) .978 
-.5" .24576 .01140 .00230 -.25065 .12577 1. 30x 10-s (crude) .977 
-I" .22442 .00921 .00232 -.23312 .11473 1. 29x 10-s (crude) .977 

DELTA PHI MAX 

1. 26x10- s (crude) 
1. 39x lO- s (crude) 
1. 3lx 10-s (crude) 
1. 62x 10-s (crude) 
9.87xl0- 6 (crude) 
2.77x10- s (crude) 
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Wing Fitted with 0.15(b/2), A = 0.5, A = 50- Wing let 
With Wing let Twist Alteration 

Configuration G , twinglet = -3-,-.5-,0-,0· 

M = 0.8 
(Wing) (Winglet) 

0( CL CDp CDf ~ Cffi3M CL CDp CDf Crvl CR.BM 

1- .30681.01993 .00230 -.30575 .16401 .00404 -.00280 .00013 -.00494 .00505 -. • :> .28614 .01693 .00231 -.28882 .15234 .00392 -.00259 .00013 -.00480 .00488 
-.5- .24078 .01119 .00233 -.24969 .12933 .00360 -.00213 .00013 -.00443 .00446 
-1- .21793 .00883 .00235 -.23014 .11725 .00342 -.00192 .00013 -.00422 .00423 
-1.5- .19517 .00675 .00237 -.21078 .10521 .00321 -.00168 .00013 -.00397 .00396 

DELTA PHlMAX 

1. 28x 10- 5 (crude) 
1. 36x 10-s (crude) 
2.44xlO- S (crude) 
1.05x10-s (crude) 
1. 88x 10- 5 (crude) 
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Wing H Fitted with 0.25(b/2), A = 0.5, h = 50- Winglet 
With Wing And Winglet Twist Alteration 

Configuration L45 Ewing = .5-, 0-, ---, 0-, -.5-
Ewlet = -1.6-, -.4-, 2.8-, 4.6-

M = 0.8 
(Wing) 

ex CL CDp COf CM Cffi3r.l CL 
(Winglet) 

CDp COf CM Cru3r--l 

0.5-
0- ---.0 
-1-

.27631 .01624 .00256 -.31360 .14902 

.25356 .01323 .00258 -.29046 .13703 

.23406 .01106 .00260 -.27226 .12661 

.21132 .00868 .00262 -.24959 .11465 

.00730 -.00325 .00022 -.01062 .01037 

.00692 -.00287 .00022 -.01009 .00983 

.00658 -.00254 .00022 -.00962 .00932 

.00614 -.00210 .00022 -.00901 .00867 

\~ing-Alone H: A = 0.2, h = 55- AR = 2.2 

~1 = 0.8 

ex CL CDp Cnf CM Cm3M DELTA PHI MAX e 

1- .30335 .01887 .00253 -.33396 .15471 7. 13x10-6 (crude) .979 
,.5- .28300 .01598 .00254 -.31442 .14423 6. 98x 10- 6 (crude) .978 
0- .26256 .01340 .00255 -.29489 .13377 7.47x10- 6 (crude) .978 
-.5- .24305 .01123 .00257 -.27680 .12372 6. 75x 10- 6 (crude) .977 
-1- .22005 .00887 .00260 -.25393 .11193 1.29xlO-s (crude) .976 

DELTA PHI MAX 

1. 91x10- s (fine) 
2.57x10- S (fine) 
3. 60x lO- s (tag) 
1.66xlO-s (crude) 
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