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NUMERICAL METHODS FOR INCOMPRESSIBLE VISCOUS
FLOWS WITH ENGINEERING APPLICATIONS

By

M. E. Rose1 and R. L. Ash2

ABSTRACT

A numerical scheme has been developed to solve the incompressible,

three-dimensional Navier-Stokes equations using velocity-vorticity vari-

ables. This report summarizes the development of the numerical approxima-

tion schemes for the divergence and curl of the velocity vector fields and

the development of compact schemes for handling boundary and initial-boun-

dary value problems.

Research Associate, Department of Mechanical Engineering & Mechanics, Old
Dominion University, Norfolk, Virginia 23529.

2Eminent Professor, Department of Mechanical Engineering & Mechanics, Old
Dominion University, Norfolk, Virginia 23529.



INTRODUCTION

This report is intended to document the research which was conducted in

support of the development, a velocity-vorticity, Navier-Stokes solver

(Ref.l). The numerical techniques developed in this effort have been used

subsequently in the study of three-dimensional vortex breakdown (Ref. 2).

Approximation Schemes for d1v £ = 0, curl jj = £

Let the planes x_ = const, describe a Cartesian grid in R , and denote

by e a volume element with center at _x^ . Suppose that the fundamentalx> ~~Xr

domain, D, is the union of such elements. As Fig. 1 shows, each element, e,

has faces, y, edges, a, and vertices, v, and we identify these by a point

associated with each. In addition, |e|, |y |, |a| denote the respective
p

volume, area, and length such that, if |o| = 0(h), then |y| = 0(h ), and |e|

=0(h3).

Consistent with this geometric construction, let u_(e), ̂ (y), and u(a)

denote the average values of jj on e, y, and a, respectively. The values

u(v ) associated with the vertices are sometimes called box-variables and are

often useful for quadrature evaluations of £(e), JJ(Y), and u_(o). For

simplicity of notation, these will also designate the quadrature evaluation

of these average values in terms of box-variables.

Referring to Figure 1, consider the faces of an element e. . ,, where
1 , J , K

1 2the index i is associated with the x or x-axis, j is associated with the x

or y-axis, and k is associated with the x or z-axis. The defining

relations for the average and difference operators on the y.-.-i/o ^ \, faces
l±i/£ ,J ,K

are

(D



X

-*-

t

\
\
\

Figure 1. Cartesian element e, with faces y, edges a, and vertices v.



the operators y 2 » A 2 and W 3 ' A 3 are Simi1arly defined. The operators

< S . u ( y - . ,,) are determined byi— i, j, K

Ai = h^, i = 1,2,3 (3)

where h1 = ̂ - . The defining relations for the average and difference
2

operators relating sides and edges, and edges and vertices are similar.

With these operator definitions in mind, we can construct approximation

schemes for both div jj = 0 and curl jj = £ as follows:

First, define the volume average of div _u over an element e as

div u = / div u de. (4)
e~ lei

Gauss's theorem evaluates div u_ in terms of jXy) • n^ on 3e, where n^ is the

unit outward normal, i.e.,

div u = 6 u • n de ~ |e| 3e~ ~

—- § ui(Y) • y_ - (5)
e

where Y is the oriented area. By suitably arranging the order of summation

and using Eqs. (2) and (3), Eq. (5) can be written as



(6)

Using box-variables to evaluate the average values on the right hand side of

Eq. (6), one obtains

dive u_

In a similar fashion, define the surface average of the normal

component of curl u over a surface Y as

jn • curl jj= / in • curl _ud|Y|' (8)

Stokes1 theorem evaluates n • curl u in terms of u(a) • a on 8 , where a is
- Y - - . ~ Y -

the unit tangent vector, i.e.,

n • curl u = § u(cr) • a« (9)~ ~

For a Cartesian element the opposite edges a+ on a face Y have equal

lengths, and the associated unit tangent vectors have different signs. This

allows one to rewrite the summation in Eq. (9) in terms of an operator

acting on the edges. For example, the component on the x -face is given by

(10)

Using box variables to evalulate the average values on the right hand side

of Eq. (10), one obtains



With these defining relations, the general form for the (normal) vorticity

components on the faces of an element, e, can be written as

Cur1
y ti

where (i,j,k) indicates an even permutation of (1,2,3).

Using the definitions (7) and (12), Fix and Rose (Ref. 3) have shown

that the Cauchy-Rieman type equations described in (Ref. 1) can be solved by

the least-squares solution of

div u = 0 in D (12)
C —™

curl y = ? on r (13a)
Y

= n • u (13b)

when div ?_ =0.

Compact Schemes for Boundary and Initial-Boundary Value Problems

The following discussion will outline the general development of the

schemes that were used in developing the numerical schemes for (Ref. 1).

These schemes will be seen to provide domain decomposition extensions of

conventional boundary integral and boundary element methods. As a result,

both boundary value and initial-boundary value problems can be handled.



Consider a vector function, V, having s components. A typical feature

of boundary value problems for systems of elliptic equations involving V on

a domain, D, is that s-s1 components of V on 3D are determined, by means of

the solution operator on D, by s1 prescribed components of V on 3D, s' < s.

We may call the s1 prescribed components the primary variables and the s-s1

components the complementary variables. In certain simple cases the rela-

tionship between these variables can be described by means of simple inte-

gral equations.

By constructing an approximate solution operator on D it may be possi-

ble to determine the relationship between the primary and complementary

variables at N points of interpolation on 3D. We may expect that these

approximate values will converge, as N -»• », to the solution values V n under
o U

reasonable precautions about the construction. This is the basis of di-

screte boundary integral methods.

Returning to the continuous problem on D, suppose D is partitioned into

volume elements, D = {e}. With arbitrary values of the primary variables

chosen on the boundary of each element (but consistent with the values pre-

scribed on 9e 3D) we can solve the boundary value problem in each element;

the solution will be identical to the solution values of the boundary value

problem in D in corresponding volume elements if they both have the same

values on the boundary of each element and, thus, is continuous across in-

terelement boundaries.

This suggests the following discrete approximation method: In each

element, e, choose the center point of each face, y» of e as an interpola-

tion point and, using an appropriate solution operator in e, obtain the

discrete boundary integral relationship between the primary and complemen-

tary variables at the interpolation points on the boundary of 3e. We call

this a compact equation on the element. Next impose continuity conditions

6



at the interpolation points in D and use values prescribed by the problem on

D when the interpolation point lies on 30. Then, solve the resulting

algebraic problem. This, in effect, provides a domain decomposition

extension of boundary element methods. (In this construction one may

incorporate the continuity conditions quite simply by identifying the left

and right limits at an interpolation point by their common value.)

We call this construction a compact scheme. It requires for its de-

velopment only an element-by-element description of the discrete integral

equations which relate the primary and complementary variables at the inter-

polation points on the boundary of each element e. As shown below, this

idea may be applied to time dependent problems as well, (cf. Refs. 4-6).

The weak-element method (Ref. 7) implements this construction by using

as an approximation basis a manifold of solutions of the differential

equation (or an approximation to it) in each element. Necessarily, then,

the compact scheme which results is consistent with the differential

equation in each element. This construction also leads immediately to a

discrete energy estimate which approximates that which applies to the

differential equation on D. Thus the convergence of the scheme is assured

and leads to second order accurate results.

We will now indicate how a simple Galerkin method can be used to obtain

compact schemes for general volume elements.

A Boundary Value Problem
2

As an example, we will discuss the Poisson equation v v = f. Consis-

tent with earlier notations, let f(e) indicate the value at the center of e

and v(y) the value at the interpolation point on a face -y. Define the

bilinear boundary operator B (v,w) by



B (v,w) =/ ( w - - v^) d|y| (14)
3e 3n 3n

so that Green's theorem can be written

8e(v,w) =tf (w72v - W2w) d|e|* (15)
e

2
If w is any solution of the homogeneous problem (v w = 0), then

B (v,w) =/ wf d|e| = (w,f) • (16)
e e e

Second order accurate quadrature approximations to Eqs. 14 and 15 yield

Be
h(v,w) =

ye3e L an 3n

(w,f) = w(e)f(e)|e|v (18)

Suppose e has £ faces: . let w,, i = 1,2,...,£ denote, say, the first a
•̂  /

har

by

p
harmonic polynomials (i.e., V wi = 0). Compact equations on e are given

g (v,w.) = w1ff)g, i = 1,2,...,£ (19)

2
and provide an 0(h ) truncation error.

These equations establish an algebraic relationship between the 1

8



values V(Y) and —^- on the faces of 3e. The coefficients in the equation
9n

3Wi(Y)
are determined by evaluating w. (y) jy | and M on the faces, i =

1 3n
2

1,2,...,4 . For the Poisson equation v v = f, application of these ideas is

more straightforward if it is written as the system,

V • p = f (20a)

= W. (20b)

seen, in the case of a Cartesian grid, use of the functions

w = (1, x, y, z, x2 - y2, x2 - z2) (21)

in Eq. (19) leads to the compact equations

6 p + 6 p -hS p = f (22a)XKX K ZKZ v '

up = 6 v , up = 6 v , up =6v (22b,c,d)XKX x y y y z z z

"xv - \ hx 6xpx • V - \ hy6yPy = yzv ' \ hz6
ZPZ

In order to show the convergence of this scheme, it is possible to

construct a discrete energy estimate. Recall that the weak-element method
o

(Ref. 7) constructs an approximate solution v on each element as



ve = £ c iV i + v, (23)

f\

where v is a particular solution of 7 v = f(e). Equation (19) determines

the coefficients by a Galerkin construction on each element. Since ve is a

2 e
solution of 7 v = f(e) on e, it satisfies the energy equation

* ve^Ld|Y | = (ve, f) +/ |7ve|2 d|e|. (24)
3e 3n e

Using the second order accurate quadrature formulas to evaluate the integral

terms, one can approximate Eq. (24) as

rt

I v
e(Y) *JL±1 |Y| = (v2, f) + / (|7ve |2) d|e| (25)

ye3e 3n e

Recalling the continuity conditions imposed by the compact construction, and

summing over elements in D, we obtain

p

ve(Y) ilJlI |Y| = I {(ve , f) +/ (|7ve|2) d|e|}. (26)
3n eeD e

This is a discrete approximation to energy estimates for the solution in D,

viz.,

v
3D

v ild|y| =/ (vf + | 7 v | ) d |e |- (27)
3n. D

10



This discrete energy estimate, together with the obvious fact that the

approximation v is consistent with the differential equation, implies by

standard arguments that the scheme converges and, in fact, with second order

accuracy.

It is, of course, possible to extend these ideas to more general

boundary value problems of the form Lv = f. For sufficiently small volume

elements, L can be approximated by an operator with constant coefficients in

each element, which we call L . In this case Green's theorem can be written

as (cf. Eq. (15)).

Be(v,w) =/ (wLev - vL*w) d|e| (28)
e

* *
where L is the adjoint of L . Solutions of the adjoint equation L w = 0,

c G

are easily generated in the form

w = exp [a • x], (29)

*
where a satisfies the characteristic polynomial equation L (a_) = 0. The

compact equations which result,

B (v,w) = (w, f) (30)
e e

may now involve exponential factors. It is possible to avoid the use of
*

exponentials by using polynomial .solutions of L w = 0 which can be generated

by

11



— (exp[o_. xj)!a=o>
 1 = O.1.2"--; J = 1.2,3. (31)

The weak-element construction just described is based upon using a

projection on a manifold of solutions of the differential equation in each

element. This same idea can be applied to time-dependent problems as well.

Initial-Boundary Value Problems

As an example, we will base our discussion on the diffusion equation

vt = y2v» 1 e D> 0 < t < T (32a)

with initial and boundary conditions

v(x, 0) = g(x), t = 0, (32b)

, t) = VjXXj,), % e 3D. (32c)

From the discussion in (Ref. 1), it is sufficient to solve this problem in a

time strip Sm: |t - t | < T; i.e., with initial data v(x_, t ip) and

m " mboundary data v on 3D x S , we seek to determine — =1— on 3D x S as
3n

well as v(x_, t + i/?^' x e D.

Introducing a domain decomposition D = {e}, we consider the same type

of problem on each cylinder set e x S . The general solution can be written

as

v(£, t; o_) = / A(o_) exp(o_ • _x - 0t) da, (33)

12



where B satisfies the dispersion relation

(34)

and A(o_) is determined from the initial and boundary conditions in e x Sm.

If e has £ faces, one can seek an approximate solution which interpolates to

the initial and boundary conditions on the element in the form

l
v(x, t) = I A(a,) exp(a. . x - (J.t). (35)

i=0 - 1 - 1 - 1

Once again, the relationship between the primary and complementary

variables for the discrete problem can be determined by a Galerkin procedure

using an appropriate form of Green's theorem. Let w indicate a solution of

the adjoint equation

L*(w) = wt + V
2w = 0. (36)

The application of Green's theorem to this problem leads to the relation

(cf. Eq. (30)).

— (w, v) = Bp (v, w). (37)
dt e e

The approximation which results by interpolation is then (cf. Eq. 19)).

— (*.v)|| = B^(v,w). , (38)

13



A time average of Eq. (38) on S produces the equation

6(w, v ) = B , ) (39)

where v , w indicate time averages over the strip S and

6tv(tm) = (v(tm + T) ' v(tm " r))/At (40a)

Mtv(tm) = (v(tm + r) + v(tm- r))/2. (40b)

Once again, the choice of s1 + 1 solutions vi of the adjoint Eq. (36) will

then determine the s1 + 1 complementary solution values at points of

interpolation in e x Sm in terms of the s1 + 1 primary solution values.

The result is a set of compact equations for the problem. Write Eq. (32a)

as the first order system

3x
(41)

3X

In this case, e. is the interval |x - x.| < h. The discrete mixed initial

value problem on e x Sm can be stated as: given v(e, tm_ly,2) as initial

m 3v (XF)
data and v (x_)» x_ e 3 e, as boundary data, determine (i) , x e 3e,T T 3x r

and (ii) v(e,

14



Three elementary polynomial solutions of the adjoint Eq. (36) are

2
wi = (wQ.w^Wg) = (l,x, t+—)> (42)

where the origin is taken at the center of e x S . The compact Eq. (39)

then leads to

«tv(e,tra) = B(v
m,wJ)/Ax (43a)

0 = B(v,w)/Ax (43b)

, . \ Jf\r m ITU
ytv(e'tm) = Be^v >W2)

These simplify to

«tv = 6xp (44a)

up = 6 v (44b)
A A

2
and y.v = MVV - —6 ¥ p , (44c)

I A A

where we have suppressed_the reference to e x Sm. The compact scheme

results by requiring that v and p be continuous across endpoints of the

15



intervals interior to D, using prescribed values of v on 3D. (Note that the

space operators in Eq. (44) apply to the face values of (v,p) on the

cylinder e x S , while the time operators apply to the values of v on the

upper and lower bases.)

It is possible to obtain an energy estimate for the system described by

Equations (44). Multiply Eq. (44a) by v. v and use both Eqs. (44b,c); the

resulting equation is

Iat v2 + (8xv)
2 +JL (5xp)

2 = 6x(vp). (45)

Summing over the elements in D,-the discrete energy estimate for the

approximation is

-6tl v2Ax +I[(6xv)
2 +H- (6xp)

2]Ax = vp|6D. (46)
2 e e 2

This expression corresponds to that for the continuous problem

i£-/ v2 dx +/ (v )2 dx = vpLD. (47)
2 dt D D

The compact equations (44) are obviously consistent with the

differential equation and, in view of the discrete energy estimate Eq. (46),

the Lax equivalence theorem implies the convergence of the compact scheme.

This same argument holds in three dimensions using an arbitrary partition of

the domain D, D = {E}.

16



Finally, it is straightforward to extend these ideas to the advection-

diffusion equation

o
v + 7 • (_av) = vv v, (48)

where a_ and v are coefficients, which in the context of the physical

problems of Ref. 1 are associated with the velocity and viscosity of a

fluid, respectively. Once again, writing this as a first order system

yields the equations

v. = v • p . (49a)
V* ^̂

2 = vW - ay (49b)

The corresponding adjoint equations are.

v _a _q (50a)

q = vVw (50b)

The resulting form of Green's theorem is now

— (w,v) = B (v,w) =/ (wp - vq) - ndy. (51)
dt e e 3e

If, in the time-strip S , the coefficient a in each element e is frozen as

17



_a , then the elementary solution of Eq. (50) is

w = exp [o_ • x. - Bt] (52a)

where

S = via I2 + am • x (52b)

and, again, the origin is taken as the centerpoint of e x S . The discrete

form of Eq. (50) is obtained by using appropriate interpolated values in the

quadrature approximation to B and taking the time average over S .

The values a = 0, a = -v am in Eq. (51) lead to steady-state

solutions, while x - a t is a simple time-dependent polynomial solution.

Thus the appropriate approximation basis for this simple advection-diffusion

equation is

V (w0,w1>W2) = (1, x - amt, exp[-^i]). (53)

The compact equations which result are

6tv = B£ (vm, W^/AX (54a)

(540)

He"1)'1 s i n h e v = B K . w / A x (54c)

18



where

.in m. / ,_. .,6 = a h/v . (54d)

When Eqs. (54a) and (54c) are combined (using (43)), (44c) can be replaced

by

0 = B^(vm,(em)-1 s inhem - $ . (55)

Expanding the right hand sides of Eqs. (54a,b and d), one obtains the

compact scheme

(56a)

a u v = w p - v 6 v (56b)

where

P = coth 6m - (Qm)~ l . (56d)

and

c¥ = 1 - A¥a'"(u a'") p. (56e)
^ /\ /\

19



The coefficient p given by (55d) controls the weighting given to upwind

terms in the compact scheme. It can be consistently approximated by

p(6) = 6/3, |e | < 3

(57)

= sgn e, |e | > 3

whose use allows us to employ an exponential-type scheme without having, in

fact, to calculate exponential terms.

The extension to three dimensions results by using the basis

wi = (1, x - a^, y - a2t, z - a.jt, exp(-a1x/v),

exp(-a2y/v), exp(-a3z/v)). (58)

20
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