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ABSTRACT

We discuss the relationship between the observed distribution of discrete sources of a

flux limited sample, the luminosity function of these sources, and the cosmological model.

We stress that some assumptions about the form and evolution of the luminosity function

must be made in order to determine the cosmological parameters from the observed dis-

tribution of sources. We present a method to test the validity of these assumptions using

the observations. We show how, using higher moments of the observed distribution, one

can determine, independently of the cosmological model, all parameters of the luminosity

function except those describing evolution of the density and the luminosity of the lumi-

nosity function. We apply these methods to the sample of ~ 1000 galaxies recently used

by Loh and Spillar to determine a value of the cosmological density parameter ft « 1.

We show that the assumptions made by Loh and Spillar about the luminosity function

are inconsistent with the data, and that a self-consistent treatment of the data indicates

a lower value of Q « 0.2 and a flatter luminosity function. It should be noted, however,

that incompleteness in the sample could cause a flattening of the luminosity function and

lower the calculated value of ft and that uncertainty in the values of these parameters due

to random fluctuations is large.

*Also Department of Applied Physics.



I. INTRODUCTION

The use of redshift-magnitude (or flux) data of discrete sources such as galaxies or

quasars for the determination of cosmological parameters has proven difficult because of

large dispersion in the absolute magnitudes (or luminosities) of these objects and possible

evolution of their luminosities or other intrinsic parameters. Dispersion merely complicates

the simple classical tests for standard candles (e.g., Petrosian, 1974), but as stressed in

this work, the presence of evolution of the luminosity of standard candles, or the evolution

of the parameters of the luminosity function of non-standard candles, makes simultaneous

determination of such evolution and the cosmological parameters impossible. Assumptions

based on theory or other observations not related to redshift-flux data are required.

Recently, Loh and Spillar (1986a) have measured redshifts and monochromatic fluxes

of about one thousand galaxies extending to redshifts z ~ 1. In a second paper (Loh

and Spillar 1986b, hereafter LS) they claim that this data indicate a value for the density

parameter, ft = .9 ± .3 (for cosmological constant A = 0). This is an important result

especially since it disagrees with all other recent estimates of the contribution to ft from

visible and dark matter (which indicate ft < .4), but it agrees with the required value of

ft = 1 for the inflationary model.

As mentioned above, such analyses require some assumptions. In this work we examine

the assumptions made by LS in order to determine the reliability of their results. Bachall

and Tremaine (1988) have criticized these assumptions based on theoretical estimates of

the rates of accretion, galaxy mergers, and differential evolution of various galaxy classes.

Our approach, on the other hand, is based purely upon the observed data. We test the

reliability of the assumptions made by LS using only their data, and without any other

assumptions or theoretical estimates.

Our general procedure is described in section II. The results of the application of

this procedure to the LS data and the tests of the consistency of their assumptions are

described in section III. Section IV summarizes our results and conclusions which are that



the uncertainties in the various parameters are larger than assumed or determined by LS

and a value of £1 lower than that claimed by LS is more consistent with the data.

II. GENERAL EQUATIONS

The observed distribution, n(/,2), of non-standard candles in the redshift-flux plane

contains information about the cosmological parameters, which we denote as fli, as well as

information about the luminosity function and its evolution, \P(L, z), where L is the abso-

lute luminosity of the sources, assumed here to be greater that some minimum luminosity,

Lmm- The bolometric (or k-corrected monochromatic) flux and luminosity, and the two

distributions are related via

(1)

(2)

where d\ is the luminosity distance and V is the derivative of the comoving volume with

respect to redshift (e.g., Weinberg 1972).

Without loss of generality, we can write the luminosity function as

, z) dL = p(z)f(L/L* , 01 , o2 , . . .) dL/L* , (3)

with the normalization

f(x,ai)dx = l, (4)
min

where xmin = Lm«n/L«, so that p(z) is the comoving density evolution (or number of

sources within a specified comoving volume, V), and L* is a luminosity scale. In general,

/9, L*, and the parameters a,- may vary with redshift. However, if o^ are constant, then the

luminosity function retains its shape and L»(z) describes the identical luminosity evolution

of all objects.

It is well known that in most cases of practical importance, a distribution function

can be completely specified by its moments about any arbitrary point (Kendall, 1970).

Knowledge of the moments of a distribution function, therefore, is equivalent to knowledge
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of distribution function itself, and in theory, any calculations involving the distribution

function can be performed equally well with the moments of the distribution.

For a sample of sources with fluxes / > /0, the nth flux moment in the redshift interval

£z, defined as £Mn = Jj°°(///0)nn(/, z) d/^2, can be written as

(5)

where
r00

Gn = x0
n xnf(x,oa)dx, (6)

JX 0

and
L*> m,-n

I J /mtn)

We note that for our chioce of Lm,-n for the data to be discussed in section III, x0 is given

by the first of the expressions in equation (7).

If we parameterize the luminosity function with n parameters, (p, L*,or,-), then in

principle, the first n moments may be used to solve for these parameters. Note, however,

that the parameters p and L* always occur in the combinations pV and L*/c^, and there-

fore these parameters may not be determined independently from the cosmological model.

Information about the cosmology is needed to obtain these parameters, or alternatively,

if we know the values of these parameters and their variation with redshift independently,

we can determine the values of the cosmological parameters. Clearly, if the value of any

parameter is chosen incorrectly, then the remaining parameters calculated by the method

of moments should be considered suspect.

The Number-Flux Test

Loh and Spillar (1986) apply the above test to their sample of ~ 1000 field galaxies

using the first two moments of the distribution, and assuming a two parameter Schechter

function for the galaxy luminosity function:

m W T / T (L/LJ«exp(-L/L.)(dL/L.)
/(L, z) dL/L. = • ' ( '



where F represents the incomplete gamma function. This form has been shown to fit well

to the locally (z < .1) observed galaxy luminosity function (e.g., Felten 1985) and LS

assume local values of the parameters, derived from the analyses of Kirshner, Oemler, and

Schechter (1979) and Kirshner, et al (1983), of a = -1.25, and $* = p/Y(a + l,zmin) =

1.23 x 10 ~2 h~3Mpc~3 where h is the hubble constant in units of 100 Km sec"1 Mpc"1. We

note, however, that recent analyses have found different values for the these parameters.

Efstathiou, Ellis, and Peterson (1988) for example, find the range of -0.92 < a < -1.72,

depending on the survey analyzed, and a best estimate of a — —1.07 ± .05. For certain

galaxy types they find values as high as a = —0.48.

LS assume that the slope, a, is independent of redshift up to z ~ 1 which means that

the luminosity function undergoes density evolution if p (or $*) varies with redshift, and

luminosity evolution if L* varies with redshift. With this assumption, only the zeroth and

first moments - the total number of sources, <5N, and total flux, SF - are needed:

<5N = SzpV T(a + 1, *0)/r(a + 1, xmin) , (9)

SF = ^L T(a + 2, *0)/r(a + 1, xmin) . (10)
X0

LS introduce the quantity Ci = SF/6N = T(a+2, x0)/z0F(a:+l,z0) for the ratio of average

flux to the limiting flux, 10. The right hand side depends only on x0, and in principle can

be solved for x0 from the observed values of Cj. With x0 known, the quantities pV and

L»/c^ may be found from equations (7) and (9). One further assumption on the form

of either p(z) or L*(z) is necessary to separate the evolution of the luminosity function

from cosmological evolution. For example, in the case of pure luminosity evolution, p =

constant, and after the determination of x0(z), equation (9) can be used to solve for the

cosmological parameters, fl,-. Equation (7) may then be used to solve for the luminosity

evolution, L,(z). For pure density evolution, on the other hand, L» = constant, and one

uses equation (7) and the values of x0 to find the cosmological parameters and equation

(9) to find the density evolution, p(z). We note that, a priori, any form of either p(z) or
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L*(z) could be assumed with correspondingly different values found for £1. LS assume the

case of pure luminosity evolution and find ffc = 0.9 ± 0.3 for cosmological constant A = 0.

This result is only as reliable as the assumptions which are very restrictive and have

been criticized by Bachall and Tremaine (1988) who show, for example, that differential

evolution between spirals and ellipticals could have caused LS to find a value of ft = 1

in an ft = 0 universe. This demonstrates that the values of the cosmological parameters

calculated by this method are sensitive to the evolutionary form chosen for the luminosity

function, and information contained in the sample must be used to determine this evolution.

We use two different methods to determine the reliability of the LS results, both based

purely on the properties of their observed sample.

III. ANALYSIS OF THE LS DATA

In this section we first examine the self-consistency of the LS procedure and then

describe the use of higher moments of the observed distribution as a refinement of this

procedure. We use the data set kindly made available to us by Dr. Loh which is a set of

apparent magnitudes and redshift of galaxies complete to an apparent magnitude of 22. In

the following, we shall be dealing with redshift bins of 8z = 0.2. This is sufficiently narrow

that for our purposes here we can ignore the differential k-corrections across each bin and

use the data directly. However, to determine the of evolution of L*(z) more accurately

than is possible with the present data, these corrections must be included. Our results on

a and ft are independent of such refinements.

i) Testing the Assumptions

As described above, LS assume a Schechter function undergoing pure luminosity evo-

lution (a = —1.25, p = const.) to determine a value for ft (assuming A = 0). Their

procedure also gives L*(z), although they do not explicitly calculate it. We find that

within the observational uncertainties, L* can be assumed constant. On the other hand,

given the value of ft obtained by LS, we can determine the luminosity function and its
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evolution using a non-parametric method (Petrosian, 1986). This method gives the cumu-

lative luminosity function, $(L, z) = Jj°° ty (I/, z) dL' and the cumulative density function,

cr(z) = JQ p(z}V (z) cfz as functions of redshift. We have carried out this treatment of

the LS data assuming fi = 1 (close to their derived value) for four different redshift bins.

The resulting cumulative luminosity functions are shown in figure 1. In order to test the

validity of the LS assumptions, one can fit these distributions to integrals of Schechter

functions with varying the slope, a, and characteristic luminosity, L*. Equivalently, one

can carry out the test by fitting to the observed cumulative counts the function

N ( > L , z ) = (L',z)£V(L',z)<fL', (11)
Jlr

where <5V(L,z) = V(zL) - V(z - ^) and ZL = z + ^ for L > Lr = 4;r/X(z + ^,ft) Or is

found from di = (L/47r/0)^ for L < Lz. The error and confidence regoin analysis is more

straightforward for the second method and consequently we use this method in our fitting

procedure. The best chisquare fits form this method and the 90% confidence regions,

determined by Monte Carlo simulation, are shown in the insets of figure 1, and the best

fit parameters are plotted as a function of redshift in figure 2. It is evident that the best

fit values of a are inconsistent with the value of a = —1.25 assumed by LS. Furthermore,

for z > .3, the slope and characteristic luminosity seem to be constant to within random

errors, a « —0.2 and L* « 5.0 x 109 h~2LQ.

With L*(z) known, we may now use the non-parametric method to construct the

cumulative density function, <r(z), from the data. The result is shown in figure 3 where

we plot a as a function of comoving volume (not redshift). We also plot a straight line

expected for constant comoving density (p =const., cr(V] oc V"). The deviation from

constant density is not statistically significant.

As we shall see below, a lower value of H may be a more likely result. Consequently,

we have repeated the above analysis for 0, = 0.5 and Q, = 0.0. The results for the ft = 0.0

case are also plotted in figures 2 and 3. Again, we find a and L, to be constant above
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z = 0.3, and <r(V) ex V. In this case, however, the deviation of <r(V) from the constant

comoving density line is less significant than for ft = 1, although no firm conclusions can

be reached from this.

We conclude from the above discussion that the results found by LS are not consistent

with their assumption of constant slope, a, and normalization, $*. To further demonstrate

this fact, we show in table I the values of pV for the redshift bin 0.3 < z < 0.5 for different

subsamples of the data determined by assuming different limiting fluxes 10 (or magnitudes,

m0), which means different values of the parameter xa. We expect pV to be independent

of x0 (see equation 9) as is the case for the best fit a = —0.2 found above and not

for a = —1.25 assumed by LS. Because of this variation, the value of fi calculated in the

redshift-number test with a = —1.25 is sensitive to the values of x0 chosen for each redshift

bin and can vary by as much as 100% for different choices of m0. The best fit a produces

no such variation in pV and we are able to include the dimmest objects, and hence the

largest number of them in the redshift-number test, while encountering no ambiguity in

the calculated value of fl.

ii) Self-Consistent Method

We also test the assumptions made by LS using higher moments of the distribution.

For example, the value of the slope, a can be obtained together with L* directly from

the data using the second moment. In addition to the average flux, Ci = 8Mi/6M.0 =

<5F/<5N, we calculate the rms flux (in units of limiting flux), €2 = (5M2/^Mo)1^2 =
1 /9

(G2(£0)/Go(£0)) . Using these two relations, we can calculate for each redshift bin

the values of both a and x0 (instead of just x0 from Ci with an assumed value of a as

done by LS). Table II gives the results of this procedure obtained numerically. It is evident

that the data does not warrant the assumption of constant a; the value of a. increases with

z, and for z > 0.4, it is larger than —1.25. This is in agreement with the results of the

fitting procedure described above.

Because the values of the higher moments become increasingly sensitive to random

8



fluctuations in the data, it is usually best to restrict the analysis to the first few moments

of the luminosity function and to determine the remaining parameters by other means.

Consequently, the values of a. given in table II should be considered as rough estimates.

in) Cosmological Parameters

Clearly, the value of O derived by LS is suspect. Using the larger value a = —0.2,

we obtain a lower value for fi. To show this, we carry out the test using only the first

moment in the redshift range 0.3 < z < 0.9 by evaluating fi for various assumed values

of a and no evolution in the number of galaxies, p =constant. In order to avoid possible

uncertainty caused by incompleteness in the data toward the lower fluxes, we perform this

determination for three different limiting fluxes (or limiting apparent magnitudes m0 =

21.0, 21.5, and 22.0). The results plotted as curves of a vs. J7 are shown in figure 4

(filled triangles, squares, and circles, respectively) together with the best fit values of a

obtained above (open circles). It can be seen that the three a vs. fi curves, each derived

using different values of x0, converge for ex ~ —0.2, indicating that this is the correct value

of slope, and that fi is less sensitive to a for the curves with higher values of x0. The

intersection of these curves with the best fit a curve (obtained for various assumed values

of fi) gives the self-consistent values, a = —0.2 and fi = 0.2, but with large possible errors.

IV. SUMMARY AND CONCLUSIONS

We have discussed the relationship between the observed distribution of a magnitude

limited sample of discrete sources in the redshift-flux plane, the evolution of the luminosity

function of the sources, and the cosmological model. We emphasize that some assumptions

about the shape and evolution of the luminosity function are necessary before we can derive

the cosmological parameters from this relationship. For example, in the simplest case of

a luminosity function of invariant shape undergoing density and/or luminosity evolution,

knowledge of one of these evolutions is required before the number-redshift or flux-redshift

distribution can be used to determine the other evolution and the cosmological model.
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Loh and Spillar, assuming the local values for the parameters of the luminosity function (a

Schechter function) and only pure luminosity evolution, derive a large value for the density

parameter (ft = 1 for A = 0).

We have shown how the method of LS can be generalized for a more complete analysis

of the data and we describe two procedures for testing the validity of such a determination

of the cosmological parameters. The first method checks for consistency of the assumptions

with the final results. Given the cosmological model derived by LS (ft = 1), we use a

non-parametric method to determine the form of the luminosity function and the density

evolution. While we find that the absence of density evolution (as assumed by LS) is

consistent with the data, the exponent a of the luminosity function is larger (a ~ —0.2)

for z > .3 than the local value (a = —1.25) assumed by LS. With this larger value of a we

find ft w 0.2

With the second method we use one more moment of the observed distribution to

determine the value of the exponent, or, explicitly independent of ft. Again, we find a

larger a, ranging from —0.5 to +0.1, but with larger error bars because random errors

tend to increase with higher moments.

We conclude, therefore, that the large value of ft derived by LS is not consistent

with their data, and that the exponent, a undergoes rapid evolution from the local value

of —1.25 to —0.2 in the redshift range 0 to 0.4. This is perhaps unexpected based on

conventional ideas of galaxy evolution, and we have sought other explanations for the high

values of a at high redshift. First of all it should be noted that the error bars are large

and our calculated values of a are not strictly inconsistent with the new determinations of

slope by Efstathiou, et al. (1988). Another possibility is that the data are not complete

to the limiting magnitude claimed by LS. A large incompleteness at lower fluxes (higher

magnitudes) would reduce the observed number of low luminosity galaxies resulting in a

flatter luminosity function or a larger a. This, of course would not validate the high value

of ft found by LS. It would mean that both the high value of ft and the high value of a

10



are suspect.

There is some evidence, however, against the arguments that high a and low fi are the

result of simple incompleteness in the LS data. First, the effect of incompleteness should in-

crease with increasing redshift and therefore, the value of a should increase monotonically.

This is not what is observed. Secondly, we have tested the incompleteness hypothesis by

repeating the above analysis using subsamples (with magnitudes less than 21.5 and 21.0)

of the original sample with a limit of 22 magnitude. As shown in figure 4, while the value

of O derived using the smaller local value of a (= —1.25) changes with limiting magni-

tude, it remains essentially constant for the larger values of a. Thus, we conclude that

incompleteness, unless it is more complicated than a simple undercounting objects above a

certain magnitude, does not effect our derived values of o: w —0.2 and fi ~ 0.2. We stress,

however, that the error bars are large and more data is needed for a reliable determination

of both the cosmological parameters and the parameters of the luminosity function. If the

data are accurate and a does indeed vary as shown above, then this will have important

consequences for deep galaxy counts.
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Table I

Variation of $*V with x0 for 0.3 < z < 0.5

Ci

5.29

3.83

2.83

2.18
1.74

N

111

158

126
92
52

a =

X0

0.06

0.11
0.22

0.41

0.78

-i ocr
— JL.^0

$*y

(xlO2)

2.72

3.39
4.41

5.79
8.84

a =

X0

0.20
0.31

0.49
0.77
1.25

f̂— .z
$*V

(xlO2)

10.67

10.35

10.20
10.24

10.69

Table II

Solutions to x0 and a from second moment test

z

0.25

0.40

0.60

0.80

N

104

177

157

98

Ci

8.58

5.29

2.92

2.19

C2

16.33

7.27

3.47

2.49

X Q

.026

.153

.556

.839

a

-1.24

-0.52

0.13

-0.01
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Figure Captions

Fig. 1 - Nonparametric cumulative luminosity functions, $(> L), for the Loh and Spillar

data at four different redshifts for ft = 1 and Hubble constant H0 = 100 Km sec"1 Mpc"1.

Insets: x2 contours (90% confidence) for characteristic luminosity, L*, and slope, a, of the

Schechter functions fit to the data. Filled circles indicate best fit values. Note that at

low redshifts the sample includes more low luminosity objects and the fitting procedure is

more sensitive to the slope, a, while at higher redshifts it samples the exponential tail of

the distribution and the procedure is more sensitive to L». Note, also, that for the redshift

bin 0.2 < z < 0.3, the Schechter function is not a good fit. This could be due to random

fluctuations or contamination by stars in the low redshift bin.

Fig. 2 - Variation with redshift of the characteristic luminosity, L*, and slope, a, of the

Schechter luminosity function fitted to the Loh and Spillar data for H0 = 100 Km sec"1

Mpc"1. Best x2 fit and 90% confidence intervals are shown for ft = 1 (filled circles). Best

fit L* are also shown for ft = 0 (open circles). Best fit a for £1 = 0 are almost identical

to those for ft = 1. The error bars on the local values of a and L* indicate the range of

various determinations. Note that the local value of L* refers to a rest frame wavelength

of about 400 nm while values of L* at higher redshifts refer to luminosities at observed

800 nm. Correction due to these differences will be smaller than the indicated error bars.

The large error bar at z = 0.25 is reflective of poor fit to Schechter function refered to in

figure 1.

Fig. 3 - Nonparametric cumulative density functions, cr(V), vs. comoving volume for

0.3 < z < 0.9. Straight lines indicate constant comoving density. Vmin = V(z = 0.3).

Note that the vertical scale is arbitrary and that ft = 0 shows better consistency with no

evolution than the ft = 1 model.

Fig. 4 - Best fit values of slope, a, (derived from the values in figure 2) for assumed value

of ft and for z > 0.3 (open circles), and solutions for ft (closed symbols) from the number-

flux test for various assumed values of a and for three different values of limiting flux,

m0 = 21.0, 21.5, and 22.0 (triangles, squares, and circles, respectively). Two typical error

bars are shown. Note that the value of ft calculated by the number-flux test is strongly

dependent upon the choice of a and m0 for a ~ —1.25. The intersection of these curves

gives the self-consistent values of a = —0.2 and ft = 0.2. Note however that because of

large error bars, —0.9 < a < 0.5 and 0 < ft < 0.8 are possible solutions.
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