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SUMMARY

An analysis of the Tip Aerodynamic/Aeroacoustic Test

(TAAT) data was performed to identify possible aerodynamic

sources of blade/vortex interaction (BVI) impulsive noise.

The identification is based upon correlation of measured

blade pressure time histories with predicted blade/vortex

intersections for the flight condition(s) where impulsive

noise was detected. Due to the location of the recording

microphones, only noise signatures associated with the

advancing blade were available, and the analysis was

accordingly restricted to the first and second azimuthal

quadrants.

The results show that the blade tip region is operating

transonically in the azimuthal range where previous BVI

experiments indicated the impulsive noise source to be. No

individual blade/vortex encounter is identifiable in the

pressure data, however, there is indication of multiple

intersections in the roll-up region which could be the

origin of the noise. Discrete blade/vortex encounters are

indicated in the second quadrant, however, if impulsive

noise was produced here, the directivity pattern would be

such that it was not recorded by the microphones. It is

demonstrated that the TAAT data base is a valuable resource

in the investigation of rotor aerodynamic/aeroacoustic

behavior, particularly when coupled with suitable analytical

models.



INTRODUCTION

The objective of the research program was to determine

the aerodynamic mechanism of blade/wake interaction

impulsive noise. This was to be accomplished through the

study of existing flight test rotor blade aerodynamic data

and the development of supporting analytical models. The

anticipated results were to include a definition of the

aerodynamic mechanism of the impulsive noise source and

analytical models which would provide the necessary means of

developing practical solutions to the problem.

Due to the unavailability of funding to continue the

program beyond the first year, the analytical model

development tasks were only partially completed. The

analysis of the flight test data was completed, however,

and is reported in the following.

ANALYTICAL MODEL DEVELOPMENT

Free Wake Analysis

Two different free wake model computer codes were

acquired and installed on the university Amdahl computer.

These are the methods of Crimi1 and of Sadler2. The methods

are similar, differing primarily in the model of the tip

vortex formation. Sadler utilizes a discrete vortex sheet

immediately aft of the blade, switching to a single tip

vortex element for the remainder of the wake. Crimi employs

a single vortex emanating from the tip. The Crimi method



was selected for this reason, and its demonstrated success

in correlating with flight data as shown by Charles3.

The current status of the method, identified as

TAMUWAKE, is that it is operational, utilizing Crimi's

original relations for the strength of the tip vortex

segment formed at the respective azimuthal intervals. The

azimuthal interval is presently constrained to be no smaller

than 10 degrees. The blade aerodynamic loading is determine

by simple lifting line theory, utilizing published data from

the NACA 0012 airfoil. Resulting blade motion is determined

using a rigid blade with specified flapping hinge and

stiffness parameters. The TAMUWAKE code was used to

generate the blade/wake geometry and azimuthal angle of

attack variation plots discussed in the flight test data

analysis section.

Improvements which were planned for TAMUWAKE included a

vortex dissipation model, reduction in azimuthal segment

length to enhance the effective frequency of the

blade/vortex encounter modeling, addition of the Operational

Load Survey (OLS) airfoil aerodynamic data, and an improved

aerodynamic loading analysis method. The program was

terminated before these modifications could be

made, and TAMUWAKE is presently in its original form

Navier-Stokes Solution Method

The objective of this effort was to investigate the

aerodynamic mechanism of blade/wake interaction impulsive

noise using an "accurate" mathematical model in the form of



the time dependent Navier-Stokes equations. The initial

development was for the two-dimensional problem, with

extension to three dimensions planned as a future activity.

The Navier-Stokes equations were expressed in nondimen-

sional conservation law form in general body fitted coordi-

nates, then linearized in time, giving the delta form of the

original equations, as shown by-Steger4, among others.

After the approximate factorization of the implicit part,

the resulting set of equations were discretized in space

using central differencing, producing in a block triagonal

set of algebraic equations, which were in a form readily

amenable to solution.

The treatment of the viscous terms was given special

attention. The common approach in solving the Navier-Stokes

equations is to neglect the streamwise viscous terms,

resulting in the so-called thin layer approximation. The

resulting scheme is significantly more efficient. However,

it has been shown by Chyu and Kuwahara5 that in the case of

transonic flows, this simplification results in incorrect

time history of the shock position and strength. The

results obtained using the full Navier-Stokes equations are

far superior to the thin shear layer results. Therefore,

the full Navier-Stokes equations were used the explicit part

of the algorithm. In the implicit part, the simplified thin

shear layer terms were used for simplicity.

The method was tested on several steady and unsteady

two-dimensional flow geometries. These included prediction

of separated laminar and turbulent flows in supersonic



diffusers and nozzles, and the flow about the NACA 0012

airfoil at an angle of attack of 0 degrees. The reference

Reynolds numbers varied between 3xl05 and 9xl06. Generally,

good agreement with experimental data and numerical

predictions by other authors was achieved.

Based on these results, it was decided to proceed with

the computation of the unsteady transonic viscous flow about

the helicopter rotor blade approximated by the NACA 0012

airfoil at several moderate angles of attack. It was

anticipated that after a fully developed steady state flow

was obtained, the two-dimensional component of a vortex

would by introduced at various positions relatively close to

the airfoil leading edge.

However, the nature of the predicted flow dictated very

high computational grid resolution. Unfortunately, it was

found that none of the computer systems currently available

at Texas A&M University was capable of the high execution

speeds required to reach a solution within a practical time

period. At the termination of the project, the code was

being transferred to the NASA computer system for

implementation.

Quasi-Steady Transonic Method

A quasi-steady method utilizing the existing TRANDES

code is also under development. While having no time

dependent representation, it is believed that useful

information can be obtained concerning the blade/vortex

encounter. The importance of this approach is the low



execution time and cost compared to time accurate

procedures. A detailed report of this activity, is

given by N. Gwinn6.

ANALYSIS OF TAAT FLIGHT TEST DATA

Utilizing the DATAMAP system7, an analysis of blade

pressure data was performed. Based upon a noise data tape

provided by the NASA collaborator, the flight condition of

65 knots airspeed and 400 feet-per-minute (fpm) rate of

descent was the only consistent wake interaction impulsive

noise condition of the TAAT test matrix. Impulsive noise

also occurred at the end of the 200 fpm rate of descent

condition, but this part of the record was not included in

the present DATAMAP file. For comparison purposes, data

from the 65 knot airspeed run for 0, 200 fpm and 400 fpm

rates of descent were used. These conditions are identified

as run numbers 3050, 3051 and 3052 respectively.

To assist in the interpretation of the blade pressure

data, results from the free wake analysis TAMUWAKE are

provided first. Figures 1-36 show the blades and

corresponding predicted tip vortex geometries for the 65

knot airspeed flight condition. The solid-line blade is the

instrumented blade, and is the reference for the azimuth

position. The tip vorticies are given in either solid line

or dash line depending on the originating blade. Also,

spanwise stations of pressure instrumentation for the 40,

60, 75, 86, 91 and 95 percent radius points are shown on the



solid blade. As discussed previously, the free wake

analysis is presently limited to a minimum azimuth increment

of 10 degrees. Free wake analysis computed azimuthal angle

of attack variations for the 60, 75, 86 and 92 percent

radius stations are given in figures 37-44. Figures 37, 39,

41 and 43 show the full 360 degree azimuth variation, while

figures 38, 40, 42 and 44 show the same variation in an

expanded azimuth scale for the region of interest on the

advancing side. Each figure contains five curves,

representing rates of descent of 0, 200, 400, 600 and 800

fpm respectively. The variation in angle of attack is

largest for the inboard 60 percent station because of the

relatively lower local blade velocity in relation to the

vortex induced vertical velocity components. The angle of

attack variation reduces as one proceeds towards the tip.

The blade wake interaction is evident on the advancing side

between 40 degrees and 100 degrees azimuth. The requirement

for a reduced azimuthal increment model is evident here. The

peak angle of attack points near 290 degrees azimuth agree

well with blade pressure data, however the details of the

local variation (peaks and valleys) were not specifically

compared with the pressure data. Using an empirical shock

number criterion for comparison with acoustic data, Charles3

indicates that the Crimi based model free wake analysis

tends to be biased towards larger blade/vortex vertical

separation than actually exists, i.e., predicted interaction

occurs at higher rates of descent than experiment. The

calculated angle of attack variations given in figures 37-44



must be viewed with this in mind.

The objective of the analysis of blade pressure data was

to identify the possible source(s) of impulsive noise.

Previous flight investigations, reported by Charles3,

supported the possibility of transonic shock waves as the

noise source. The approach taken here was to generate the

azimuthal variation of specific blade pressures using

DATAMAP, and attempt to identify behavior which could be

related to the presence of shock waves.

To isolate the behavior responsible for the impulsive

noise, the azimuthal variations for run numbers 3050, 3051

and 3052 are graphed together. This provides a comparison

of two non-impulsive noise cases (3050 and 3051) with an

impulsive noise case (3052). The comparison is also of

increasing blade/wake interaction for the 65 knot airspeed

condition, i.e., from 3050 to 5052. It was a priori

expected to see behavior in the 3052 data distinct from the

other two runs.

Blade pressure data for the 75 percent radius station

are given in figures 45-62. Azimuthal variations at

chordwise stations of 3, 8, and 15 percent on the upper and

lower surfaces are shown for the full 360 degree revolution,

and for the range 55 degrees to 150 degrees in an expanded

scale. The boundary for the critical pressure coefficient

is shown as the dash curve. The pressure coefficient at the

3 percent chordwise station will tend to follow the local

blade angle of attack, acting similarly to a flow vector

probe. Comparing figure 45 with figure 39, the free wake
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predicted angle of attack peaks at 270 degrees and 310

degrees azimuth are shown in the pressure data. The peak at

310 degrees occurs only at the higher descent rates for both

predicted and experimental cases. There is also the

indication that the predicted blade/vortex interaction is

biased toward higher descent rates as previously mentioned.

Referring to figures 25-32, the angle of attack and pressure

peaks correspond to tip vortex interactions at the 75

percent radius blade station. The predicted angle of attack

variation between 0 degrees and 130 degrees azimuth is not

well defined in the pressure data. However, the pressure

data indicates transonic flow near the leading edge on

the upper surface between 100 degrees and 150 degrees

azimuth. Referring to figures 7-13, the 75 percent station

interacts with two vorticies in this azimuth range.

Referring to the expanded range plots in figures 51-62, the

effects of the different descent rates are seen. There is a

pressure fluctuation on both upper and lower surfaces

between 60 degree and 110 degrees azimuth. This fluctuation

increases with descent rate. There is a much larger

pressure fluctuation between 110 degrees and 160 degrees

azimuth, however, this fluctuation occurs only on the upper

surface, and only for the level flight condition. Figures

7-16 show the blade/wake geometry for this azimuth range.

The vortex interaction with the 75 percent radius station is

predicted to have passed by 120 degrees azimuth. There is

at present no explanation for this pressure fluctuation

which is restricted to the upper surface only. There, also



is no evidence of impulsive noise associated with this

fluctuation in the measured acoustic data. Based upon

previous tests reported by Charles3, if impulsive were

created by this interaction, its directivity would project

forward of the blade in a chordwise direction and, quite

possibly, upward. If this interaction is a source of

impulsive noise, it has been missed by the relatively

limited measurements to date.

Pressure data for the 86 percent radius station are

given in figures 63-80. Figures 63-68 show a definite

transonic flow region on the upper surface between 40

degrees and 160 degrees azimuth. This is most evident for

the 15 percent chordwise station in figure 67. Referring to

the corresponding blade/wake geometry, figures 4-16, this

behavior does not appear to be the result of a discrete

blade/vortex interaction. It is possible, however, that

this is due to the roll-up of the wake, i.e., a fixed-wing

type vortex flow which exists on the lateral boundaries of

the helical wake. The expanded scale plots in figures 69-80

show pressure fluctuations associated with the blade/vortex

interactions between 60 degrees and 100 degrees azimuth.

The corresponding geometries are given in figures 6-10. As

with the 75 percent radius data, the upper surface is most

active for the level flight condition, and the lower surface

is most active for the 400 fpm rate of descent condition.

Pressure data for the 91 percent radius station are

given in figures 81-89. The data are restricted to the

upper surface due to the absence of lower surface data from

10



the DATAMAP file. The transonic flow region on the

advancing side is evident. The pressure fluctuations shown

in the expanded scale plots, figures 81-89, again show

flight condition dependent behavior. There is a large

amplitude peak at 15 percent chord for the level flight

condition. As the descent rate is increased, higher

frequency fluctuations occur earlier in azimuth.

Specific pressure fluctuations were further investigated

to search for evidence of wave propagation. The resulting

plots are shown in figures 90-101. As in the previous

plots, the critical pressure coefficient boundary is

represented by the dash curve. Figures 90-93 show a

relatively large amplitude fluctuation at the 75 percent

radius station which occurs only on the upper surface, and

only for the level flight condition. This fluctuation does

not correspond to a predicted blade/wake interaction, and no

explanation is immediately available. For the 86 percent

radius station shown in figures 94-97, the fluctuation

coincides with predicted blade/wake interaction geometry.

The fluctuation increases in frequency and duration as the

rate-of-descent increases. The chordwise extent of the

fluctuation coincides with the region of supersonic flow.

Examining the relative position of the amplitude peaks in

figure 96 suggests that the fluctuation is propagating

forward with respect to the blade. The fluctuation also

appears on the lower surface, which is fully subsonic,

and like the upper surface, indicates forward propagation.

At the 91 percent radius station, the fluctuation changes

11



a multiple disturbance occurs at the 400 fpm rate-of-descent

condition. The disturbance also shifts azimuthal position,

suggesting that different mechanisms are in effect. Unlike

the 86 percent radius station, the activity is restricted to

the upper surface. In figures 98 and 100, the disturbance

propagation appears to be rearward.

CONCLUSIONS

Based upon the analysis of blade pressure data, the

following conclusions are offered:

1. There is generally good agreement between free wake

analysis predicted blade/wake interactions and

pressure data indications. As previous experience

has shown, the current free wake method tends to

predict interactions at higher descent rates than

experiment.

2. In comparing the form of the observed pressure

fluctuations with flight condition, and

correspondingly with the generation of impulsive

noise, it appears that the aerodynamic mechanism

is a multiple peak disturbance, which may be due to

an interaction with the wake roll-up process rather

than an encounter with a particular vortex.

12



3. Blade/wake interaction impulsive noise on the

advancing side may be due to an encounter where the

vortex is (vorticies are) aligned chordwise with

respect to the blade, rather than spanwise. This

has important ramifications concerning the

direction of current BVI research activity.

4. Experience has shown that blade/wake interaction

impulsive noise is highly directional. The other

pressure fluctuations identified, particularly

those isolated to the upper surface, may be

producing impulsive noise which is beaming upward,

out of the region where normal observations are

made.

In summary, analysis of the TAAT flight test program

blade pressure data has identified possible aerodynamic

sources of impulsive noise. The identification is based

upon correlation with the measured noise producing flight

condition(s). Previous experience, reported by Charles3,

supports the correlation with respect to the azimuthal range

where the impulsive noise signal originates. Attention

should now be directed to the OLS flight test program, where

blade azimuthal position and acoustic data are available

with the blade pressure data. It is important now to

establish the connection between the observed pressure

fluctuations and the impulsive noise signal.

13
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R/C = -500 MU = 0.158 PSI = 20

Figure 2, Tip vortex geometry for instrumented
blade azimuth of 20 degrees.



R/C = -500 MU = 0.158 PSI = 30

Figure 3. Tip vortex geometry for instrumented
blade azimuth of 30 degrees.
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R/C = -500 MU = 0.158 PSI = 40

Figure 4. Tip vortex geometry for instrumented
blade azimuth of 40 degrees.
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R/C = -500 MU = 0.158 PSI = 50

Figure 5. Tip vortex geometry for instrumented
blade azimuth of 50 degrees.
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R/C = -500 MU = 0.158 PSI = 60

Figure 6. Tip vortex geometry for instrumented
blade azimuth of 60 degrees.
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R/C = -500 MU = 0.158 PSI = 70

Figure 7. Tip vortex geometry for instrumented
blade azimuth of 70 degrees.
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R/C = -500 MU = 0.158 PSI = 90

Figure 9. Tip vortex geometry for instrumented
blade azimuth of 90 degrees.
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R/C = -500 MU = 0.158 PSI = 110

Figure 11. Tip vortex geometry for instrumented
blade azimuth of 110 degrees.
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R/C = -500 MU = 0.158 PSI = 120

Figure 12. Tip vortex geometry for instrumented
blade azimuth of 120 degrees.
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R/C = -500 MU = 0.158 PSI = 130

Figure 13. Tip vortex geometry for instrumented
blade azimuth of 130 degrees.
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R/C •= -500 MU = 0.158 PSI = 140

Figure 14. Tip vortex geometry for instrumented
blade azimuth of 1 MO degrees.
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R/C = -500 MU = 0.158 PSI = 150

Figure 15. Tip vortex geometry for instrumented
blade azimuth of 150 degrees.
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R/C = -500 MU = 0.158 PSI = 160

Figure 16. Tip vortex geometry for instrumented
blade azimuth of 160 degrees.
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R/C = -500 MU = 0.158 PSI = 170

Figure 17. Tip vortex geometry for instrumented
blade azimuth of 170 degrees.
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R/C = -500 MU = 0.158 PSI = 180

Figure 18. Tip vortex geometry for instrumented
blade azimuth of 180 degrees.
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R/C = -500 MU = 0.158 PSI = 190

Figure 19. Tip vortex geometry for instrumented
blade azimuth of 190 degrees.
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R/C = -500 MU = 0.158 PSI = 200

Figure 20. Tip vortex geometry for instrumented
blade azimuth of 200 degrees.
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R/C = -500 MU = 0.158 PSI = 210

Figure 21. Tip vortex geometry for instrumented
blade azimuth of 210 degrees.
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R/C = -500 MU = 0.158 PSI = 220

Figure 22. Tip vortex geometry for instrumented
blade azimuth of 220 degrees.



R/C = -500 MU = 0.158 PSl = 230

Figure 23. Tip vortex geometry for instrumented
blade azimuth of 230 degrees.
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R/C = -500 MU = 0.158 PSI = 240

Figure 24. Tip vortex geometry for instrumented
blade azimuth of 240 degrees.
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R/C = -500 .MU = 0.158 PSI = 250

Figure 25. Tip vortex geometry for instrumented
blade azimuth of 250 degrees.
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R/C = -500 MU = 0.158 PSI = 260

Figure 26. Tip vortex geometry for instrumented
blade azimuth of 260 degrees.

40



R/C = -500 MU = 0.153 PSI = 270

Figure 27. Tip vortex geometry for instrumented
blade azimuth of 270 degrees.
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R/C = -500 MU = 0.158 PSI = 290

Figure 29. Tip vortex geometry for instrumented
blade azimuth of 290 degrees.
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R/C = -500 MU = 0.158 PSI = 300

Figure 30. Tip vortex geometry for instrumented
blade azimuth of 300 degrees.
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R/C = -500 MU = 0.158
= 310

Figure 31.



R/C = -500 MU = 0.158 PSI = 320

Figure 32. Tip vortex geometry for instrumented
blade azimuth of 320 degrees.
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R/C = -500 MU = 0.158 PSI = 330

Figure 33- Tip vortex geometry for instrumented
blade azimuth of 330 degrees.
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R/C = -500 MU = 0.158 PSI = 340

Figure 34. Tip vortex geometry for instrumented
blade azimuth of 3^0 degrees.
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R/C = -500 MU = 0.158 PSI = 350

Figure 35. Tip vortex geometry for instrumented
blade azimuth of 350 degrees.
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R/C = -500 MU = 0.158 PSI = 360

Figure 36. Tip vortex geometry for instrumented
blade azimuth of 360 degrees.
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coefficient for all chordwise stations.
Lower surface, 75 percent radius, level
flight.

105



i . t. is .22 1.29 1.30 I 35 1.40 1.45 1.50

AZIMUTH CDEG5 (XI2* )
.55 i.ea

DERIVED PARAMETER
CCLSTER 3152

75 3/PA3II/S

— .a-
93
39

— . '5
- 25
— J5

SLADE STATIC PRESSURE CCEFF
CROSS VT
1.3NC CS

S-IP .-o«L AH- ic
— --- -- •— 65 a
- ---- - ------- .78 X
------------ 02 X/CMC»0
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Figure 100. Azimuthal variation of pressure
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Upper surface, 91 percent radius, 400
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