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SUMMARY

A linear finite strip plate element based on Mindlin/Reissner plate theory
is developed. The analysis is suitable for both thin and thick plates. In the
formulation new transverse shear strains are introduced and assumed constant in
each two-node linear strip. The element stiffness matrix is explicitly formu-
lated for efficient computation and computer implementation. Numerical results
showing the efficiency and predictive capability of the element for the analy-
sis of plates are presented for different support and loading conditions and a
wide range of thicknesses. No sign of shear locking phenomenon was observed
with the newly developed element.

1. INTRODUCTION

The finite strip method, a combination of finite element and Fourier-
series expansion, has important advantages for the analysis of a wide range of
plate problems. The first finite strip bending element was developed following
classical Kirchhoff thin plate theory (refs. 1 and 2). This formulation is
very reliable for thin plate analysis but lack the ability to account for shear
deformation which can be important when a plate becomes thick. In addition,
displacement based finite element implementation of Kirchhoff plate theory
requires Cj-continuity (ref. 17, p. 172); this leads to high order or noncon-
forming elements which is generally undesirable.

Another theory, that has been subject of most recent research in finite
plate elements, is the Mindlin/Reissner theory (refs. 3 and 4). In the Mindlin
theory, transverse shear deformation is included. Therefore Mindlin plate
theory is applicable to modeling of classical thin plates as well as moderately
thick, sandwich and composite plates (refs. 5 to 8). The basic assumption is
that a straight line originally normal to the middle surface of the plate
remains straight but not necessary normal to the middle surface during deforma-
tion. The vertical disptacement is assumed not to vary through the plate
thickness. Consequently, rotations are treated as independent variables. The
finite element implementation requires only Cgo-continuity (ref. 17, p. 172).
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Despite its mathematical elegance, overstiff numerical results are obtained
when using linear and quadratic elements for the analysis of thin plates. This
problem is very common and often refers to as a "shear locking" phenomenon.

Several techniques have been proposed to remove the shear locking effect
(refs. 9 and 10). However in the literature of finite strip, only two tech-
niques are widely used. First, the use of "reduced integration" schemes for
evaluation of the transverse shear components of the-element stiffness matrix
is applied by Mawenya and Davies (ref. 6) for three-node quadratic Mindlin
strip element. Benson and Hinton (ref. 11) used the same technique but
extended the analysis to vibration and stability problems. The second tech-
nique is the uses of polynomials of sufficiently high order to approximate the
displacements. Onate and Suarez (ref. 12) used both techniques and compared
the linear, quadratic, and cubic Mindlin strip elements using full, selective,
and reduced integrations. Their conclusion is the two-node linear element with
selective/reduced integration for the simplest and most efficient finite strip
element. This agreed very well with the results of Hinton and Zienkiewicz
(ref. 13).

A new, simple two-node linear finite strip plate bending element for the
analysis of very thin to thick structures is presented here. The essential
ingredient of this new element lies in an assumed strain distribution technique
introduced by McNeal (ref. 14) and Dvorkin (ref. 15) for developing finite ele-
ment plate and shell elements. A new transverse shear strain is proposed and
then constrained to equal the conventional transverse shear strain at selected
points.

In section 2, the standard Mindlin finite strip plate bending element for-
mulation is presented. The new formulation is given in section 3. Particular
attention is focussed on points of evaluation for transverse shear strain. 1In
addition to the theoretical development, numerical results for different sup-
ports and loading conditions and a wide range of thickness are illustrated to
assess the convergence and accuracy of the element are given in section 4.

NOMENCLATURE
A cross sectional of plate
[B%] strain displacement matrix for bending at node i for the ch
b harmonic¢c term
[B%] strain displacement matrix forvshear at node i for the ch
S harmonic term
E Young's Modulus
K shear correction factor
Nj shape function for node i
q transverse loading per unit area
{Rg} externally applied load vector at node i for the ch harmonic

term




r natural coordinate variable

t thickness of plate

{U%} nodal displacement vector at node {1 for the ch harmonic term
W transverse displacement

w% nodal displacement at node i for ¢ harmonic term

Bx section rotation in x-direction

By section rotation in y-direction

Yxz» Yyz transverse shear strains

ep bending strain
€g transverse shear strain
2 . . . . . .
ex nodal rotation in x-direction at node i for the 2oth harmonic
i term
2 . . . . . .
9 nodal rotation in y-direction at node i for the &oth harmonic
Y term
K vector of curvature
op bending stress
og shear stress
) Poisson's ratio
T total potential energy

2. FORMULATION OF MINDLIN/REISSNER STRIP ELEMENT

The finite strip method offers an alternative to the standard finite ele-
ment method which uses polynomial functions in both x- and y-directions.
The combination of polynomial and harmonic functions satisfy a priori the
boundary conditions at the end of the strips and have the advantage of greatly
reducing the number of equations to be solved for static analysis. For each
type of supported condition at the strip ends, the necessary harmonic function
is different. In this paper only simply supported conditions are considered.

Consider a typical finite strip plate element, whose mid-surface lies in
the x-y plane, with thickness t, longitudinal width b, strip width a, as
shown in figure 1. The =z-axis is normal to the plate mid-surface and the
plate is assumed to be loaded by a pressure gq. The sign conventions for posi-
tive direction of the independent variables are illustrated in figure 1.

For a two-node linear strip element, both the transverse displacement w
and the section rotations By and By within an element are interpolated in
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terms of nodal displacements w% and nodal rotations eX , ey as
. i

n 2
)
W= EE::Z: NiwiSy

=1 i=1

n 2
E ::E : 1)
BX = NieyisQ oy

0=1 i=1

n 2
Q
By = E E NiexiCQ

2=1 i=1

1 -r
Ny =3
(2)
1 +r
Ny =
r is the natural coordinate in x-direction
and
S, = sin(gﬁx>° C, = cos<g51>
(U b/’ Q- b
By using equation (1) simply supported boundary conditions are automati-
cally satisfied at y = 0 and b,
B R
-p X Y
W= Bx T 9x  3ax T ay. 0 (3
Bending and shear strains are introduced separately as follow:
Bending Strains (linear through the thickness)
ey = 2, (4a)
where
Bx,_x n 2
: 2 2
c=| By, |- E E [Bi]b{Ui} (4b)
2=1 i=1
_Bx,y - By,x




and [Bg

1] is the strain-displacement matrix for bending at node i1 for the
b

ch harmonic term which can be written as
8N1 )
0 0 xS
owN. S
[Bﬂ - o — 0 (4¢)
b
. i 8_N1_ c Q.TfNiCQ
ax Q b
]

and {U%} is the nodal displacement vector as

9 9 .9 Q T
Wy ={w‘ % eyié

Transverse Shear Strains (constant through the thickness)

aw + B n 2
ax X Q )
e = =E E [B] ¥ (5a)
S 3w i s i
v
ay y

2=1 i=1

where [B%] is the strain-displacement matrix for shear at node 1 for the
S
ch harmonic term which can be written as
i aN1 |
Fraily 0 NiSe
[B%] - (5b)
S QnrNiCQ
b -NiCy 0

The state of stress in the plate corresponds to a plane stress assumption.
Considering an isotropic linear elastic material, the stress-strain relations
are:

-OX Fl v 0
o. = |o =2 E v 1 0 K ‘ (6)
b y - vz
1 - v
[Ty | L0 0 5



and

T

Xz E
T | TEITaw s D

yz

where E is Young's modulus and v 1is Poisson's ratio.
The total potential energy can be obtained as (ref. 17)
+t/2 +t/2
T = % J J egob dzdA + % j J CIOS dzdA - J qw dA (8)
Av-t/2 AvY-t/2 A

where

t is the thickness of plate

A is the cross-sectional area of plate
q 1is transverse loading per unit area

k 1is shear correction factor to account for nonuniformity of the transverse
shear stresses through the plate thickness (usually set equal to 5/6)

Substituting equation (1) and equations (4) to (7) into equation (8), the total
potential energy can be rewritten as

n 2
1 T 1 T 2
=3 J k Dyk dA + 3 J e D e dA - E .NiwiSQ qdA (9
A A
A =1 j=1
where
1 v 0 ]
3
Et
D, = ————— |v 1 0 (10a)
b 12(1 - V%)
1 - v
_0 0 5
1 0
Etk
D =20+ w [o ]] 10>

The loads are also resolved into a sine series in the y-direction similar
to the displacement expression such that




n
a=) 4,5, (11a)
0=1

where for a distributed load per unit area from y=c¢c to y=4d

d
2
4 = p J q(x,y)SQdy (11b)
c
The strip equilibrium equations are obtained by imposing the stationary

condition on w, where w, By, and By are independent variables. Using the
orthogonality properties of the harmonic series (ref. 8) as

n n
> [K%j]{u%} - EE:EE:{R%} (12)
Q=1 1i,j 2=1 i
where
T T
(] - | 8, B, oo | B IR, o oo
for a single strip with node i and j
®Y=-2 J a0 0 N, 0 o] T x (14)
for node i under distributed load
or
(R} = P sin (49 (15

for node 1 wunder a concentrated load P at y =c¢



The total resulting stiffness matrix is
- ) 7 4] -
[k'] J[w

= | (16)

raits RM

where

[KQ] is the global stiffness matrik for the ch harmonic term

{UQ} is the global nodal displacement vector for fhe ch harmonic term
and o

th harmonic term

{RQ} is the global externally applied load vector for the ¢

Equation (12) reflects the uncoupling of the stiffness matrix that leads
to independent sets of equilibrium equations for each harmonic term. This fact
can be taken advantage in simply supported case. That is, for other boundary
conditions, the different harmonic terms may not always uncouple and a full
stiffness matrix may have to be evaluated.

3. ASSUMED STRAIN DISTRIBUTIONS

The finite strip formulation presented in the previous section has some
drawback. The element locks when the thickness is very thin using two-point
Gauss quadrature integration for both bending and shear stiffness. This is due
to the fact that the shear stiffness terms are overwhelming the bending stiff-
ness terms and this leads to an overstiff element even though a very fine mesh
is used. In the past this excessive stiffness may be attributed to "spurious
shear" effects which were suppressed by reducing the order of the integration
rule (ref. 9). To circumvent this locking phenomenon even though selective
and reduced integration is a well-established approach, an assumed strain dis-
tribution technique (refs. 14 and 15) is employed here.

For each strip element, instead of using equation (5), new transverse
shear strains are introduced as

Q | C

Yz =2 \Yxz * Yxz

an

2 =2 (2 * w2)

where and Ygz are the transverse shear strains evaluated at points A

Yxz




and C with r =0, y =b/4, and y = 3b/4 respectively (see fig. 2) using
equation (5) as

-W W
A 1AM o M2 e
Yyz = 7 SQ 7+ Gy] tyt eyz
L ]
. (18)
. ) ]
C 1M 0.2
Yxz =2 2|73 * y; * 3 * ¥y
A C

with S¢ = sin(3er/4), SQ =

the transverse shear strains evaluated at points B and C with r at Gauss
points and y = b/4, respectively (see fig. 2) using equation (5) as

X B D
sin(Qw/4), and J = a/2, and Yyz » Yyz are also

8 _ B[+ 3 (k)b - L V3L, 1-1/3 (B)d _ L V3 g |
Yyz = ~¢ 2 b /™M 2 X, 2 b /"2 2 X
' | (19)
D _ D [1-3 By - L V3 |, 1+1/3 (bo)b L V3 o |
Tyz = g 2 b /™ 2 X, 2 b /"2 2 X,
. B D
with Cop = Cp = cos(Qw/4).

Hence, equation (17) can be rewritten with the new shear-strain displace-
ment matrix as

n 9 n

Y
A W E [BQ] ) (20a)
s 2 s el

o=1 [Yyz] g=1

where
(A C A C A C A C\
) (s + s5) . (p+s5) (259 0 (sp * 55)
. 43 a3 23
[B]s= B D
-C -C
0\ B 9 om\~D 9
(5_>CQ 7 0 b/ e 5 o
(20b)
and
w3 = lwr e oF Wk o ! (20¢)
el’ ~ 1 x] y] 2 x2 yz



Notice that the assumed shear strains are constant throughout the cross-
sections and constrained to equal the shear strains of equation (5) at selected
points. The choice of these points is of paramount importance in evaluating the
predictive capability of the element even though the assumed strain distribu-
tions in equation (17) are the integral part of the overall performance. With
the shear strain displacement matrix of equation (20b) replacing equation (5b)
the element stiffness matrix is formed explicitly as shown in figure 3 using
exact order of integration.

4. EVALUATION OF THE NEW FINITE STRIP ELEMENT

The new finite strip element has been implemented into the finite element
computer program FEAP (ref. 18) with relative ease. The subroutines written
in FORTRAN 77 for the formulation of the element stiffness matrix consists of
approximately 200 lines. All the results presented in this paper were obtained
using double precision arithmetic on an IBM/PC-AT.

Numerical problems have been tested in this section to show the perform-
ance of the new element. The results are presented for different aspects:
mesh size and harmonic term convergence characteristics, shear locking phenome-
non as the thickness decreases, and shear force and bending moment prediction.
Exact order of numerical integration is employed. Spurious zero energy mode
effect (ref. 17) were not observed for the problems tested and the boundary
conditions specified. Some of these results are compared with the analytical
results obtained by other investigators (refs. 19 and 20).

Shear Locking Investigation

Using eight strip elements with four nonzero harmonic terms and v = 0.3,
a simply supported square plate under two loading conditions: uniform and con-
centrated loads, is investigated with a wide range of span/thickness ratio
from 5 to 10°. The deflection at the center and quarter of the plate are plot-
ted for both the full and reduced integrations of the troublesome transverse
shear strain element, in figure 4 (uniform load case) and in figure 5 (concen-
trated load case). Shear locking was not detected for the entire range of
aspect ratios for the new element and reduced integration element. If the ele-
ment was to exhibit shear locking as seen in the case of full integration of
troublesome transverse shear strain, the displacements would be significantly
less and less as the thickness decreased, due to overly stiff element behavior.
Note that for the uniform load case the even harmonic terms are always zero as
well as for the central concentrated load case. If however, the concentrated
load was not located at the center, all the harmonic terms must be included.

Convergence of Mesh Size and Harmonic Term

To assess the convergence characteristics of the new element, a simply
supported, uniformly loaded, square plate with t/b ratio equal to 0.01 and
v = 0.3 is considered. For mesh convergence, the central deflections, central
bending moments in both the x- and y-directions are tabulated in table I for
four different meshes as well as the exact solution (ref. 19). Bending moments
shown are linearly extrapolated from the Gauss points to the node. Also in the
table, the number of degrees of freedom for each mesh is shown. This gives a
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more realistic view of the computational cost. Graphical representation is
shown in figure 6 by plotting percentage of error of the central deflections
and central bending moment in the x-direction with mesh size. Good solutions
are reached with only four strips and single harmonic term for both displace-
ment and moment. The central deflection and bending moment for a four-node
plate finite element (ref. 15) are also plotted in figure 6 for comparison pur-
poses. This shows how rapid the rate of convergence is with no sign of shear
Tocking. '

For the convergence of harmonic term, eight strip element mesh is used
and the numerical results are tabulated in table II with four nonzero harmonic
terms. Fairly good convergence is again obtained. Errors are less than
0.4 percent when the third nonzero harmonic term is specified for both quanti-
ties (see fig. 7). However the number of nonzero harmonic terms required for
the analysis of more complicated problems may be increased. Note that this
element is a low-order two-node strip. Numerical computation is minimum but
convergence rate is relatively high.

Predictions of Shear Force and Bending Moment

For low-order element the standard finite strip formulation based on
Mindlin/Reissner plate theory is well recognized to predict accurate displace-
ments and fairly good bending moments when the selective and reduced integra-
tion technique or high-order element is used (ref. 12). However, the shear
force predictions are poor (see figs. 8 to 12) and hardly found in the finite
strip literature even though they can be important in designing structures such
as bridges and slabs. Therefore, the shear force predictive capability of this
new finite strip element is studied and presented here. Due to the 1imited
availability of analytical solutions, only four cases for shear forces and one
case for bending moment are compared.

The uniformly loaded square plates involving a variety of support condi-
tions in the x-direction are investigated. In order to capture the steep gra-
dient of the dependent variables near a plate edge, a rather fine mesh is
modeled in the analysis with the new strip element. The results for varia-
tions of shear forces and bending moments across the mid-plate in the various
cases are plotted with analytical solutions by Kant and Hinton (ref. 20) in
figures 8 to 12. These analytical solutions based on Mindlin plate theory
assume the transverse displacement and sectional rotations similar to standard
finite strip element. The system of differential equations is used and then
numerically integrated using the so-called “segmentation method." The authors
in that paper claimed that the analytical results compared favorably well with
the finite strip method.

The results of shear force and bending moment shown in figures 8 to 12
along with the pertinent data and boundary conditions are in good agreement
near the center of the plates. In the regions away from the center, the dif-
ferences start to magnify and are approximately average at 15 percent near the
edge of mid-plate. However, the curves for both solutions seem to follow the
same pattern. Note that our element is only a simple, two-node linear element
and its predictive capabilities (see figs. 8 to 12) are shown to exceed previ-
ously developed elements.




5. CONCLUDING REMARKS

A two-node linear finite strip element based on Mindlin/Reissner plate
theory is presented for static analysis of plates. A new shear strain distri-
bution is assumed and connected to the standard shear strains at selected
points. These points are chosen to remove shear locking phenomenon without the
need for "reduced integration" technique. Due to the uncoupling nature of the
finite strip method, the element stiffness matrix can be explicitly formulated
for efficient computation and computer implementation.

Several numerical studies were performed to assess the numerical perform-
ance of the aforementioned finite strip element. Based on the results
obtained, the following characteristics of the element can be stated:

1. Simple, reliable, and efficient in computations

2. Good convergence characteristics both in mesh size and harmonic term

3. No shear locking effect for very thin situations

4. Fairly accurate moment and shear force predictions

5. Applicable to both thin and thick structures
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TABLE I. - CONVERGENCE STUDY OF MESH SIZE FOR A SIMPLY
SUPPORTED SQUARE PLATE UNDER UNIFORM LOAD
WITH FOUR NONZERO HARMONIC TERMS

[b/t = 100 and

v = 0.3.]

No. of | No. of Central Central bending moments?
DOF strips | displacement, .
W(qb/D) Mx(qb) My(qb)
5 2 0.00348 0.03691 0.03865
11 4 .00401 .04785 .04699
17 6 .00404 .04799 .04753
23 8 .00405 .04794 .04766
Exact 0.00406 0.0479 0.0479

2 inearly extrapolated from the Gauss points.

TABLE IT. - CONVERGENCE STUDY OF HARMONIC TERMS FOR A
SIMPLY SUPPORTED SQUARE PLATE UNDER UNIFORM LOAD

(b/t = 100 and

v = 0.3.]

Harmonic Central Central bending moments?
term displacement, .
W(qb/D) Mx(qb) My(qb)
2 =1 -0.004101 -0.04930 -0.05162
¢=3 .000051 .00158 .00461
2 =5 -.000004 -.00032 ~.00103
g =7 .000001 .00011 .00038
Sum -.004054 -.04794 ~.04766
Exact -0.00406 -0.0479 -0.0479
dlinearly extrapolated from the Gauss points.
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