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SUMMARY

The report is an introduction to an important but relatively neglected
aspect of regression theory which deals with near linear dependency in mea-
sured data, called collinearity. Several ways for detection and assessment of
collinearity are discussed. Because data collinearity usually results in poor
least squares estimates, two estimation techniques which can limit a damaging
effect of collinearity are presented. These two techniques, the principal
components regression and mixed estimation, belong to a class of biased esti-
mation techniques.

Data collinearity detection and assessment, and the two biased estimation
techniques are demonstrated in two examples using flight test data from longi-
tudinal maneuvers of an experimental aircraft. The eigensystem analysis and
parameter variance decomposition appeared to be a promising tool for collin-
earity evaluation. The biased estimators had far better accuracy than the
results from the ordinary least squares technique.



SYMBOLS AND ABBREVIATIONS

A matrix of known constants

a vector of specified values

a, vertical acceleration, g units

b unknown vector

Cz vertical-force coefficient

Cn pitching-moment coefficient

Cov(s) covariance matrix

c constant

c mean aerodynamic chord, m

D diagonal matrix

d constant indicating a region for a priori value
E (+) expected value

g acceleration due to gravity, m/sec2

1 identity matrix

Iy moment of inertia about lateral body axes, kg-m2
k constant

M matrix defined by eq. (37)

MSE () mean square error

m mass, kg

N number of data points

n number of regressors

P number of prior restrictions on elements of 0
q pitch rate, rad/sec or deg/sec

q dynamic pressure, pV2/2 , Pa

R? squared multiple correrlation coefficient
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e N

squared multiple correlation coefficient of X4 regressed on
the remaining regressors

rank of X matrix

wing area

square root of sum of squared differences Xy44 - ;j
n-r

standard error

matrix of eigenvectors

time, sec

jth column of T matrix

orthogonal matrix

airspeed, m/sec

variance inflation factor
weighting matrix

matrix of regressors and ones
regressor

vector of dependent variables
dependent variable

matrix of orthogonal regressors
angle of attack, rad or deg
parameters in model with orthogonal regressors

canard, flaperons, and strake deflection respectively, rad
or deg

vector of measurement noise
random vector
condition index

vector of unknown parameters (regression coefficients)
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Superscripts:

A

Matrix Exponents:
T
-1
Abbreviations:
LS
ME
PC

SVvD

condition number
matrix of eigenvalues
eigenvalue of XTx
singular value of X
sensitivity

variance proportion of jth regression coefficient
associated with kth component of its decomposition

air density, kg/m3

variance

least squared estimate

biased estimate
standardized regressors
scaled regressors

derivative with respect to time

transpose matrix

inverse matrix

least squares
mixed estimation
principal components

singular value decomposition
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INTRODUCTION

Recently, the introduction of highly maneuverable and often inherently
unstable aircraft has been presenting new challenges to aircraft identifi-
cation and parameter estimation. These new aircraft may have more control
surfaces than conventional aircraft which are moved through a flight control
system. Such a system can introduce a close relationship between the deflec-
tions of various surfaces and at the same time can preclude maneuvers suitable
for system identification. These characteristics can be reflected in an
inability to estimate the effectiveness of individual control surfaces and to
obtain accurate estimates of the remaining parameters. One of the reasons for
these problems is related to the near linear relationship among several vari-
ables entering model for various parameter estimation techniques.

Near linear dependency among variables in linear regression, often called
collinearity, has been studied by many statisticians. An introduction to the
problem of collinearity is presented in ref. l. The purpose of this report is
to briefly discuss the collinearity in a general model for linear regression,
detection of collinearity and its remedy. Two methods of dealing with colli-
near data, the principal components regression and mixed estimation, are
presented. They are based on an extension of the ordinary least squares
technique. The report is concluded by two examples with real flight data. In
these examples the detection of collinearity and application of estimation
techniques described is demonstrated.



COLLINEARITY
The linear regression model can be formulated as

y = 00 + lel + .4 0t Onxn (n

where Xy j=1,2, «. « +, n, are the regressors, y is a dependent variable
and @0, 01, o o ey On are the unknown parameters. After substituting measured

values into (1) the regression equation has the form
Y=X0 4+ ¢ (2)

where Y is an (N x 1) and 0 is (n + 1 x 1) vector, € is an (N x 1) vector of
measurement noise and X is the (N x n + 1) matrix of regressors and ones

[ X11 X21 = ¢+ ¢ *nl W

1 x12 x22 e o o o xn2

X = . . . .
S U

with N indicating the number of data points. The least squares estimates of
unknown parameters are obtained from

-1
- T T
oLS= (X'x) X¢Y (3)

For further discussion and analysis it will be more convenient to deal
with regressor variables which have been standardized (centered and scaled to

unit length), see Appendix A. There, the matrix X*Tx* is the (n x n) matrix
matrix of correlations because the off-diagonal elements of this matrix are
quite often referred to as correlation coefficients, although the regressors
are not necessarily random variables. Denoting X*j, j=1, 2, . « «4yn, as the

~olumns of the X* matrix with centered and scaled regressors, the matrix X*
can be expressed as

X* = [X*l, X*z, e o oy x* (4)

n!
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If X* X*k =0, j * k, the regressors are orthogonal and the X*IX* matrix is a

diagonal matrix. The vectors X*;, X*;, . . ., X* are called linearly depen-

dent if there is a set of constants, kj, not all zero, such that

n
I kX% =0 (5)
jo1 03
T -1
Then, the rank of X*TX* is less than n and (X* X*) does not exist.

In many practical applications of linear regression eq. (5) is only
approximately true. This indicates near linear dependency in X* and the

problem of collinearity exists. In such case X*IX* ig called 111 conditioned.
Because of that collinearity can cause computational problems and reduce the
accuracy of estimates. Thus in the context of linear regression, collinearity
is a data problem, not a statistical phenomenon.

There are at least three different sources of collinearity, namely,

a) design of an experiment,
b) constraints in the data,
¢) model specification.

If the model is designed in such a way that the resulting data is speci-
fied mostly on a subspace of the region defined approximately by (5), then
collinearity might occur. This type of problem can arise during the test of a
dynamical system where one or more variables representing regressors in (1)
were not sufficiently excited. The constraints in the data could be caused by
an inherent property of the system under test. For example, an aircraft
stability augmentation system can deflect various control surfaces in concert
thus causing near linear dependence among their deflections. Finally, to
avoid collinearity, a specified model should not be over parameterized. For

example, it should not include nonlinear terms, such as x%, or xyxp, if xj is

small.

The presence of collinearity usually results in various unwanted proper-
ties of the least squares estimates of unknown parameters. Two of them,
illustrated in ref. 1, include too large absolute values for parameter esti-
mates and their large variances and covariances.



DETECTION AND ASSESSMENT OF COLLINEARITY

Many procedures have been employed to detect collinearity. They are
discussed in ref. 1 and ref. 2. In this report only three of them will be
considered and their use later demonstrated in examples. These procedures
are:

1. Examination of the correlation matrix and its inverse.

This is the simplest and more straight forward procedure. High correla-
tion coefficient between two regressors can point to a possible collinearity
problem. The absence of high correlation, however, cannot be viewed as
evidence of no problem. The correlation matrix is unable to reveal the pre-
sence of several coexisting near dependencies among the regressors, as demon-
strated in ref. l. Because of the shortcoming mentioned in regard to the use

of X*Txx as a diagnostic measure of collinearity, the usefulness of its

inverse is also limited. The diagonal elements (X*TX*—)1 are often called the
variance inflation factors, VIFj, and they can be expressed as

1
VIF, = ———— (6)
3 1 - R%
J

where R% is the squared multiple correlation coefficient of xj regressed on

the remaining regressors (see ref. 1l and Appendix B for the development of

RZ). The term "variance inflation factor" reflects its relationship with the
2

jth parameter variance o (Oj). As shown in ref. 3

2

0%(0,) = ~%— VIF, 7)
X*"X*
J ]

The diagnostic value of VIF follows from expression (6). Large value of VIF
indicates an R% near unity and hence points to collinearity. The weakness of
this diagnostic measure 1is in its inability to distinguish among several
coexisting near dependencies and in its lack of meaningfull boundaries for
values of VIF.
2. Eigensystem Analysis and Singular Value Decomposition

The matrix XTx can be decomposed as

xTX = TATT (8)

where A is an (n x n) diagonal matrix whose diagonal elements are the eigen-

values Aj’ j=1,2, . «. ., n, of XTX, and T is an (n x n) orthogonal matrix



whose columns are the eigenvectors of XIX. The elgenvalues close to zero
indicate near linear dependency in the data. The elements of the correspond-
ing eigenvectors could reveal the nature of this dependency. Collinearity is,
therefore, indicated by the presence of a '"small" eigenvalue. Unfortunately
there is no specification what "small" is. In order to avoid this problem
some authors are using the condition number of XX defined as
A
Kj = sz » J=1, 2, « ¢+ o, n (9)

Then, they consider the condition number exceeding 1000 as an indication of
severe collinearity (see ref. 1).

In ref. 2 an approach using singular-value decomposition for diagnosing
collinearity is recommended. It is based on the decomposition of matrix X as

X = UDTY (10)
where U is a (N x n) matrix and UTy = TIT = 1. The matrix D is an (n x n)

diagonal matrix with nonnegative diagonal elements uj ,y J=1, 2, « « «, 1,

which are called the singular values of X. The singular-value decomposition
(SVD) is closely related to the concept of enigenvalues and eigenvectors,
since from (8) and (10)

xTx = 1021T = TATT (11)

The diagonal elements of D2 are therefore the eigenvalues of XX and the
columns of U are the eigenvectors of XTx associated with its n nonzero eigen-

values. The degree of 1ll conditioning depends on how small the singular
value is relative to the maximum singular value. In this connection a condi-
tion index of the matrix X is proposed as

y J =1, 2, « ¢« oy, n (12)

It is further suggested to consider nj from 30 to 100 as an evidence of moder~-
ately to strongly collinear data.
The SVD of the matrix X provides similar information to that given by the

eigensystem of XTX. The use of SVD is, however, preferred by many authors
namely because of greater numerical stability of its computing in comparison

to that of the eigensystem of XTX. This may be especially true when XTX is
111 conditioned.



3. Parameter Variance Decomposition

The parameter variance decomposition approach for detecting collinearity
was proposed in ref. 2. It follows from the covariance matrix of parameter
estimates © which is obtained as

2

Cov (8) = o2(xTx)~1 = % 1pA~ 1T (13)

The variance of each parameter is equal to

2
ik 2
- =0
1Y k

02(6j) = 02 .

N ~3
e 3

2
t
_jg (14)
1 uj

where tjg are the elements of eigenvector tj associated with Aj. Eq. (14)
decomposes the variance of each parameter into a sum of components, each
corresponding to one and only one of the n singular values by In (14) the
singular values appear in denominator, so one or more small singular values

can substantially increase the variance of ) This means that an unusually

jl
high proportion of the variance of two or more coefficients for the same small
singular value can provide evidence that the corresponding near dependency is

causing problems. Introducing

2
t, n

¢jk = 2 and ¢J° = Z- ¢jk ?
uj k=1

the j,k variance-decomposition proportion as the proportion of the variance of
the jth regression coefficient associated with the kth components of its
decomposition in (14) is given as

¢
w =—J£;j)k=1’2’

K ¢j e o oy, N (15)

Since two or more regressors are required to create near dependency, then two
or more variances will be adversely affected by high variance-decomposition
~roportions associlated with a single singular value. Variance-decomposition
proportions greater than 0.5 are recommended in ref. 2 as a guidance for
possible collinearity problems. It is also suggested that the columns of X
should be scaled to unit length but not centered. Thus the role of the bias
term in near-linear dependencies can be diagnosed.



SENSITIVITY ANALYSIS

As was mentioned earlier, the design of an experiment and constraint in
the data can contribute to data collinearity. Both of these phenomena may
also influence parameter identifiability resulting in limited accuracy of
their estimates. One of the possible ways to assess parameter identifiability
is based on the sensitivity analysis. For the regression model

Y = X0 + ¢ (2)
the sensitivity of the dependent variables to the changes in parameter ej,
keeping the remaining parameters fixed, is given as

aY 00

20, a0

3 3
Then, the measure of sensitivity for the parameter Oj can be defined as
2 ,0Y T oY 2 30 T T a0 2 T
Ej=ej(ﬁ) (a—oj-)=oj(3(¥)XX(%; =ojxjxj (17)

For practical computing of the sensitivities the values of parameters in
the regression model must be known. Because the parameter values are the
subject of estimation, the question can arise what values for Oj should be

used in computing gj. The least squares estimates using data with strong
collinearity and/or low parameter sensitivity could be highly unstable thus
causing distortions in the computed values of Ej' In these cases more stable

estimates or priori values for parameters should be used.

BIASED ESTIMATION TECHNIQUES

There are several ways on how to deal with the problem of collinearity.
They include a collection of additional data, redesign of an experiment, model
respecification, and use of different estimation techniques from the ordinary
least squares procedure. This report will address only the last possibility
mentioned.

As discussed previously, the application of the ordinary least squares
technique to the set of data with collinearity problems can result in large
estimated values for parameters and large values for their covariances. The



least squares technique provides an unbiased linear estimator which, according
to Gauss-Markoff theorem (see for example ref. 4), has minimum variance in the
class of unbiased linear estimators. There is no guarantee, however, that
this variance will be small. Figure 1l illustrates a situation of two distri-
butions of a parameter estimate. One estimate, O, is unbiased (a possible

result of least squares technique), the other, é, is biased (obtained by a
biased estimation technique). In the first case the variance of 0 is large,
indicating a large confidence interval on © and unstable point estimate 0.
In the second case the estimate é is subjected to bias error, E (@) - o , but

much smaller variance. The resulting mean square error of the estimator 0 1is
~ - 2 2 - ~ 2
MSE (0) =E (6 - 0) =0 (0) + [E (0) - 0] (18)

It is possible that for small bias error the MSE (0) could be smaller than the

variance of the least squares estimator 02 (0). This possibility has inspired
a development of various biased estimation techniques. Two of them, the
principal components regression and mixed estimation, will be described and
applied to experimental data.

PRINCIPAL COMPONENTS REGRESSION

The development of principal components estimator starts by transforming
the original regressors x;, j =1, 2, « . ., n to the space of orthogonal

regressor zje This transformation is accomplished by introducing

Z = XT (19)

and
0 =Ty (20)

where
TIXTXT = A and TIT = TTT = 1



Using (19) and (20) the regression model (2) becomes
Y=2 vy +¢ (21)

with the LS estimator of y as

v = 27 12Ty (22)

The columns of Z which define a new set of orthogonal regressors are referred
to as principal components.

To obtain principal components estimator the regressors in (21) are
arranged in order of decreasing eigenvalues

Al> A2> e e o 2 A

Then, the principal component estimator is given by a vector where the first r

-

components agree with y and remaining s = n - r components are zero

n

~ A

~ ~ T
Yoo = [ Y10 Yor v o s O e 0] (23)

The LS estimates in (22) can also be obtained as

Yj B A;I t§XTY! J = l’ 2) e+ e s, I ‘ (24)

where tj is the jth column of the eigenvector matrix T. By comparing (23) and

(24) it follows that the estimates Ypc are obtained by setting s =n - r small
eigenvalues to zero which is equivalent to assuming that the matrix X has rank
r < n.

The principal components estimates of parameters associated with the

original regressors X are obtained from (20) and (23) as

Op¢ = [tl’ Eas o o on B ] Ypg (25)



In order to find the expression for the bias in principal components estimates
and variance of these estimates the eigenvlaue and eigenvector matrices are
partitioned as

A = Ar 0
0 A

S

T = [T, T, |

where Ar and AS are diagonal matrices containing the eigenvalues associated

with the retained and eliminated principal components respectively. For the
eigenvectors, T, and Ts are similarly partitioned. The LS estimator of the
parameters y that are retained is

~  T.T
v, = AT XY (26)
From (24), (25) and (26) it follows that

-~ -~ r -
O,. =T y_ = £ A 1 t§ XTYtj (27)

The expected value of the PC estimator is

~ T
E (GPC) - TrYr - TrTre
Since T =1 = TTL +7T 17
rr s S
E (6 )y=[1-T TT] 0
PC S S

0 - TsYs

Thus the PC estimates of the n parameters O are biased by the quantity Tsys.

2
Assuming that ¢ has zero mean and variance o 1, the covariance matrix of
the LS estimates of 0 is given as

A 2 - -
Cov (©) = ¢ (XTX) . 02 TA 1TT

(28)

¢ W L W
rr r S S §

10



The form of the covariance matrix for the PC estimates of O follows from (13),
(14) and (27) as

Cov (6 ) = oZT A-ITT
pc rr r

(29)

r
+ 02 b A.lt.t?
The comparison of (28) and (29) reveals that the elimination of principal
components will result 1n a decrease in the variance of parameters OPC' The

-1
diagonal elements of the matrix TSAS T: are weighted sums of the inverse of

the eigenvalues associated with the eliminated principal components. If these
eigenvalues are small a substantial reduction in the variance of the PC esti-

mates can be expected.

In practical application of the PC regression the problem of how many or
if any principal components should be eliminated may arise. The answer to
this problem could come from the dlagnostic measures discussed and from

commonly used least squarvres criteria as sz, RZ and others. Reference 5 pre-
sents the way for finding an optimal value of r based on the minimization of
the criterion

. T -
(YPC Y) (YPC Y)

In the same reference it is also pointed out that the assumption of an
integral rank for X can be too restrictive. A possible improvement to the
principal components estimator, known as the fractional rank estimator, is
introduced. If the rank of X lies in the interval (r, r + 1), the fractional
rank estimator is glven as

~ - ~ - R T
YFR = l_Yl’ 'Y\z: e Yo CY 4y 0... UJ

where the criterion for choosing ¢ is given.

The second problem with the PC regression can be related to the formu-
lation of regressors in equation (2). In numerical computation the measured
data can enter the analysis 1in various forms. Probably the simplest approach
would be to use regressors in their original form. 1If the scaled regressors
to their unit length are preferred, different principal components will be

obtained. The use of standardized regressors will result in xTx being a
matrix of correlations and the principal components will be changed again.
This dependence of PC estimates on the form of regressors is obviously a
weakness of this estimation technique.

11



MIXED ESTIMATION

The mixed estimation was developed as a Bayes-like technique by augment-
fng the measured data by prior information. For the linear model

Y = X0+ ¢ (2)

with FE(e) and E (82) = 021

it is assumed that p < n prior restrictions on the elements of O are avail-
able. These restrictions are formulated as
a = A0+ 7 (30)

>

In (30) A is a matrix of each p < n which includes known constants, a is a
p-vector of values which can be specified, and ¢z 1s a random vector with
. 2 2
E(z) = 0, E(re) = 0 and E(g") = o'W
value W is a known weighting matrix.

Combining (2) and (30) the mixed model is given as

= 0+ (31)

For known 02 the application of least squares to (31) results in mixed
estimation

6ME - (x'x + ATW—IA)-I (XTY + ATw_la) (32)

Introducing the augmented variables Y , X
written as

as and £, the mixed model can be also

Ya=)(ao+ea (33)

w}lere, E (Ca) = () and E (Ez) = 02 lé 8J = ozw

12



Then, the mixed estimator can be expressed in the form

~ T -1 -1 T -1
D = X Y 4
)ME (Xawa a) Xawa a (34)

It follows from the Gauss—Markoff theorem that 9

g siven by (34) or (32) is an
optimal unbiased linear estimator of .

M

In real application of the mixed estimation the a priori information is
usually not known exactly. In this case

a=A0+b+¢ (35)

where b # 0 is an unknown vector. The mixed estimator corresponding to the

condition given by (35) will be called Oyvg

obtained by substituting (2) and (35) into (32)

The expected value of QMF is

B (0,,) = E MIXTXTo + w71xTe + MolaTwlao
+ M IaTy 1y + Mo 1aTy 1) (36)
=+ M 1aTy"1p
where M= xIx + aTw~la, (37)

The estimate Oy LS therefore biased by the quantity M-1aTy 1y,

The covariance matrix of the mixed estimator is
- |
Cov (UME) =g M (38)

The difference between the covariance of the LS and ME is given as

1 T

w'lA)'I (39)

~ ~ 2 - s
Cov (0) = Cov (G) = oo (XX)™H = o*(x"x + &

Since Cov_1 (GMF) - Cov_l () = Bz(ATw_lA) > 0, the right side of (39) is a

nonnegative definite matrix. This means that the addition of the priori
information to the ordinary regression will result in reduction of variance of
the LS estimates.

13



The restrictions on parameters glven by (30) can take several forms. The
most common are:

a) a separate estimate of all parameters Oj’
exlsts., If these estimates are called OO’ then (30) is changed as

O0 =0+ r

which means that a = 00 and A is the m x n identity matrix. If only
the estimates of some elements of the vector O are known a priori,
say 00’1, then

00,1 = Oj +

and A = [I, 0] where the dimension of I in A corresponds to the
dimension of Oj.

b) Special case occurs when W = 0. This corresponds to knowing that
a = A0 with certainty. This situation leads to a plecewise regres-
sion discussed in ref. 6.

c) Sometimes the a priori information is given as a statement that
particular parameters lie in a certain region (dpi,, dy,x)e For the
parameter Oj it means that

0 = 1/2 (dm +d )+,

0,3 in max i

EXAMPLES

The detection of collinearity and the biased estimation techniques
described are demonstrated in two examples. The flight test data for these
examples were obtained from the longitudinal small-amplitude maneuvers of a
highly augmented, inherently unstable research aircraft. The longitudinal
motion of this aircraft was controlled by three surfaces, canard, flaperons

14



and strake, moved by an automatic control system. The data used in the analy-
sis were In the form of sampled time histories of open-loop iunput varfables

$ 6f and 69 and output variables of V, «, q, a, and G. The model for the

vertical-force and pitching-moment coefficient was formulated as
+ C 65+C 5. + C & (40)

for a = Z or m. In (40) the regressors are represented by the increments of
the input and output variables from their values in steady flight conditions
prior to the excited motion. The independent variables in (40) were computed
from the expressions

CZ = gg_ a,
qSs

IY .

Cm = —— q
qSc

The unknown parameters in (39) are the stability and control derivatives, and
the bilas term Cao.

Fxample 1. Three control variables:

The alrcraft short-period response to a series of commanded pitch doub-
lets is 1llustrated in figure 2. Shown are time histories of three longitu-
dinal control and three output variables. Inspection of figure 2 reveals very
close relationship among all three open-loop inputs, thus indicating strong
possiblility for data collinearity. For the assessment of collinearity the
correlation matrix of standardized regressors was formulated and its deter-—
minant computed. The correlation matrix is shown in Table I. By examining
this matrix the simple correlation greater than .80 between two pairs of
regressors (Gc, a) and (GC, GS) can be seen. The determinant value was found

e¢qual to 0.00106. Therefore, the high pairwise correlations and the low value
of the determinant point out data collinearity. Because of the weakness of
the VIF as a diagnostic measure its values are not given.

In order to decide which regressors are affected by collinearity the
variance proportions were computed. They are presented in Table II for scaled

regressors in (40). Also included in the table are the eigenvalues of the XTx

matrix and condition numbers. The variance proportions corresponding to the
Lirgest condlition number indicate four damaging dependencies involving

GC, Gs, q and the bias term. The second dependency involves a and Gf. It

correspouds to the condition number « = 36 which may be considered too small
for having any serious effect on the estimates.

15



As the result of data collinearity assessment it was decided to use the
principal components regression with the smallest eigenvalue of XX equal to

zero, thus reducing rank of the X matrix by one (r = 5). For the mixed esti-
mation the parameters CZ and Cm were set at their wind-tunnel values with
8s 8s

the uncertalnties estimated from repeated measurements in different facilities
and for different configurations. The selection of strake terms was based on
small sensitivity of these parameters and expected sufficient accuracy of
thelr a priori values. The a priori values and three different values of
their variance used in the mixed estimation are given in Table III.

In Table IV the results of the least squares, principal components and
mixed estimation of parameters in the equation for C; are summarized. Pre-

sented are the mean values and standard errors of parameter estimates, and the
standard errors of the C, estimates using the residuals. Also included are

the sensitivities computed for wind-tunnel values given in the last column of
the table, and the increments of the squared multiple correlation coefficlent
due to regressors in (40). Both the sensitivity analysis and squared multiple
correlation coefficients indicate that the only important term in the equation
for C, 18 CZ a. This term in combination with CZO, explain 997 of variation

in the measured data. It can be, therefore, expected that data collinearity

combined with low sensitivities will cause severe identifiability problems for

most of the other parameters. These problems are immediately apparent from

the LS estimates of c, and CZ which are much higher than that from the wind
‘s q

tunnel and theory respectively.

The principal components regression was first applied to scaled data.
The results show no improvement over the LS results. When the original
regregssors were used, however, the parameters CZ and C7 came out with

és Sc
correct sign. There was a small increase in c, but substantial decrease in
a
€, « The fit to the data, measured by the standard error of C;, deterio-

q
rated. No explanation has been found for the differences between the two sets
of principal components estimates. The mixed estimation with moderate and
tight restrictions on the a priori value gave the best sets of estimates when
compared with the wind-tunnel data and results of the two previous techniques.

The results from the data governed by the pitching-moment equation are

presented in Table V., In the model for Cm two terms, Cm GC and Cm a, are
Sc a
..purtant, Together they explain 97% of the variation in the data. The
principal components regression with the original regressors improves the LS
estimates of Cm and Cm and makes them consistent with the mixed estimates
§c 8s
under moderate or tight restrictions. A serious problem with the principal
components regression is the non-physical value for the parameter Co*
q

16



Example 2. Two control variables:

The second maneuver was commanded by two pitch doublets. This time the
control system held the flaperons at constant deflection. The time histories
of input variables Gc and 68, and output variables a, q, and a, are plotted in

{igure 3. The correlation matrix is given in Table VI showing strong correla-
tion between (u, GS) and (GS, Gc). The value of the determinant was equal to

0.0100. The various proportions, eigenvalues of XTX and condition numbers are
presented in Table VIII. The damaging dependencies for the largest condition
number are again among the regressors Gs, GC, q and the bias term.

Table VIII and IX present the estimation results, sensitivities, squared
multiple correlation coefficients and wind-tunnel data used in the mixed esti-
mation (values for C7 and Cm ) and for comparison. The principal compo=-

‘s 8s
nents regression using the original data with r = 4 did not bring the expected
improvement over the LS estimates. Therefore further reduction in rank of the
X matrix was attempted. The following estimates of the important parameters
CZ , Cm and Cm were much closer to those from the mixed estimation. By
a a Sc

observing the results for r = 3 and r = 4, and the results from the mixed
estimation, it is possible to argue that the optimum r should be somewhere
between 3 and 4. Such selection of r would, however, lead to the fraction
rank estimator mentioned earlier but not developed in this report.

As in the previous example, the mixed estimation with moderate or tight
restrictions (see Table II1) resulted in the best sets of estimates. The
technique only falled to provide some physical values for the damping terms
Czq and Cmq. This fallure could be explained by very low sensitivities of

these parameters.

CONCLUDING REMARKS

Near linear dependency in measured data, called collinearity, and its
effect on linear regression were briefly discussed. Then, procedures for
detection and assessment of collinearity were presented. They included the
¢.aluation of the correlation matrix and its inverse, eigensystem analysis or
singular value decomposition, and parameter variance decomposition. The first
of these procedures 1s relatively simple and straight forward but, it cannot
reveal the presence of several coexisting dependencies among the regressors.
Kigensystem analysls examines the values of eigenvalues in the matrix composed

17



by regressors. The large condition numbers serve as indicators of data colli-
nearity. The singular value decomposition provides similar information. It is
preferred by some analysts because of greater stability in its computation.
Both approaches become more effective when combined with parameter variance
decomposition., This combination can find which regressors are near linearly
dependent and indicates what action should be taken in order to lessen the
¢ffect of collinearity on the estimates. In connection with data collinearity
the problem of parameter identification was also addressed and the sensitivity
analysis as a tool for its assessment introduced.

One way of dealing with collinearity is to use different estimation tech-
niques from the ordinary least squares. This report explained the reasons for
using the blased estimation techniques and presented two of these techniques,
principal components regression and mixed estimation. The principal compo-
nents regression eliminates the effect of small eigenvalues by reducing rank
of the matrix of regressors. The weakness of this technique can be seen in
the restriction to an integral rank and the dependence of the estimates on
various forms of the regressors (original, scaled or standardized). The mixed
estimation is a Bayes—-like technique which is applied to measured data aug-
mented by prior information. This estimation procedure can be very successful
provided that a priori values of selected parameters are known with reasonable

accuracy.

The detection and assessment of collinearity, and the two biased esti-
mation techniques were demonstrated in two examples using flight data from
longitudinal maneuvers of an experimental aircraft. In these examples the
correlation matrix of regressors indicated the existence of correlation
between two pairs of regressors. The variance proportions, however, deter-
mined which regressors were affected by collinearity. The estimates of
parameters in the aerodynamic model equations for the vertical-force and
pitching~moment coefficient were also obtained by the ordinary least
squares, These results confirmed a damaging effect of collinearity on the
estimated values and their standard errors. The principal components regres-
sion provided substantially improved estimates with the exception of damping-
in-pitch derivative. Some further improvement was obtained from mixed esti-
mition where the a priori values were taken from wind-tunnel data. The para-
meter estimates were completed by the results of the sensitivity analysis and
by increments In the squared multiple correlation coefficient indicating the
{fmportance of individual terms in regression equations. The proposed pro-
cedure for dealing with data collinearity proved that it could become a useful
approach for estimating parameters of a highly augmented, possibly unstable
aircraft from flight data.

18
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APPENDIX A
SCALED AND STANDARDIZED REGRESSORS

In order to have the columns of the X matrix of unit length, the original
regressors x; are replaced by scaled regressors x3 using the formula

j
X.1
x5, = — (A.1)
J N
2
j=1 I

for =1, 2, «. « oy ny and i =1, 2, . . ., N.

Using the scaled regressor the model in (2) is changed as

Y =X o (A.2)
r n
where — X X e« o o X
N 11 "21 nl
x, N —_1- ’ I ’ (A 3)
- —_ xlz x22 . . ] an .
vN
—i , ’, ,
= xlN XZN o o . an
L. i

and the new parameters O, are related to original parameters (:, by the
equation J ]

TR - (A.4)
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The standardized (scaled and centered) regressors x*j are obtained as

x,i-x.
x* = SN LN | (A.5)
it S, ,
J
N
where ; = l- LoX
j N (=1 ji
N
2
S, = ro(x.,m x,)
] =1 b 3

The regression

model has the form

Y = X% o* (A.6)

with the LS estimates

(")* =

where (X*T X*)
parameters are

and 0, =

x*Txx)™ xxTy (A.7)

is the correlation matrix of regressors. The original
related to the parameters in (A.6) as

o*
o (A.8)
j
o* 0* o*
1 - 2 - no-
* - -_% - - .1
0 0 Sl Xy Sz X, .« o e 3 X (A.9)
n
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APPENDIX B
SQUARED MULTIPLE CORRELATION COEFFICIENT

The regression equation with LS estimates is given as
Y=X0+c¢ (B.1)

where it is assumed that the regressors and dependent variable are centered.
Premultiplying each side of (B.l) by its own transpose results in

YTy = oTxTx 0 + eF ¢ (B.2)

-~ A

The term X! ¢ = 0 because the vector of residuals ¢ is orthogonal to each of

the n columns of X. From (B.2) it can be concluded that a fraction r2 of
N
“ Yy is accounted for the regressors and that a fraction ! - R2 is

i=1

represented by residuals. Then

0TX'x
vy

RZ =

and (8.3)
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The RZ is known as the squared multiple correlation coefficient associated
with (B.l). This coefficlent can be interpreted as a measure of variability
in y explained by the regression model.
N
For the regression equation with the bias term 60 the measure I vy
i=1
replaced by the sum of squared values taken as deviations from the mean, i.e.
N
X (y1 - y)2. With the new measure the expressions for R% will take the
1=1

2
{ is

form
2 0 XX 0 - Ny 2
R = —7 =2
Y'Y - Ny
(B.4)
) ele
L=RE =
Y'Y - Ny
- 1 N
where y = — LY,
N =1 i
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- X*Tx*

TABLE MATR1X IN CORRELATION FORM
EX 1.
a qc/2v 68 6f 6c
1.000 316 745 .682 - .839
1.000 499 - .287 - .134
1.000 .481 - .B91
1.000 - 794
1.000
TABLE — COLLINEARLI'TY DIAGNOSTIC FOR
DATA IN EXAMPLE 1.
Variance proportions
(scaled regressors)
Eigen- Condition _
values number 1 a qc/2v 6, g 6c
3.2401 1 .000 .018 .032 .001 .003 .000
1.4295 2 .005 .000 .000 .031 .018 .000
.9823 3 .001 111 .047 002 .027 .001
L2487 13 .026 .103 .002 .106 .008 .020
.0908 36 .053 «755 .010 014 «739 .005
.0086 377 914 014 .909 .845 .205 974

24




TABLE TII. - A PRIORI DATA.

EXAMPLE 1.

(€, Jg=-+20+¢ (€ Jg=--33+¢
6s &s
A priori 95% Implied 95% Implied
range variance range variance
Loose - .28, - .12 .0016 - «45, - .21 .0036
Medium - .24, - .16 .0004 - 41, - .25 .0016
Tight - .22, - .18 .0001 - .37, - .29 .0004
25
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TABLE VI, - X*]X* MATRIX

IN CORRELATTON FORM.

EXAMPLE

a qc/2v 6 8
1.000 .289 .813 - .780
1.000 227 - .159
1.000 - .987
1.000
TABLE VIL. - COLLINEARITY DIAGNOSTIC FOR DATA IN

EXAMPLE 2.

2

L.

Eigen— Condition Variance proportions
values number (scaled regressors)
1 a qc/2v 3 s
3 c
2.7482 1 .000 494 .000 .003 .000
1.0916 3 .011 095 .000 049 .000
.9184 3 .002 .003 .204 .001 .000
.2268 12 .063 .204 012 .031 .073
.0150 184 2924 .203 .784 917 .926
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