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BRIEF OUTLINE OF RESEARCH FINDINGS 

In relevant work accomplished prior to the NASA Grant and reported in Ref. 1-3, 
the results commonly referred to as Statistical Energy Analysis (SEA) have been 
rederived and generalized by considering the asymptotic limit of Classical Modal 
Analysis.. This approach is called Asymptotic Modal Analysis (AMA). The general 
approach is described in Ref. 1 for both structural and acoustic systems. The 
theoretical foundation is presented in Ref. 2 for structural systems and experimental 
verification is presented in Ref. 3 for a structural plate responding to a random force. 

Work accomplished subsequent to the grant initiation has focussed on the 
acoustic response of an interior cavity (e.g. an aircraft or spacecraft fuselage) with a 
portion of the wall vibrating in a large number of structural modes. Ref. 4 describes our 
first results and has been presented at the ASME Winter Annual Meeting in December, 
1987, and accepted for publication in the Journal of Vibration, Acoustics, Stress and 
Reliability in Design. Much of our work to date is summarized in Ref. 5. A copy of Ref. 
5 is enclosed. A journal article based upon Ref. 5 is in preparation. 

In Ref. 4 and 5 it is shown that asymptotically as the number of acoustic modes 
excited becomes large, the pressure level in the cavity becomes uniform except at the 
cavity boundaries. However the mean square pressure at the cavity corner, edge, arid 
wall is, respectively, eight, four and two times the value in the cavity interior. Also it is 
shown that when the portion of the wall which is vibrating is near a cavity corner or 
edge, the response is significantly higher than when the portion of the wall which is 
vibrating is placed elsewhere. 

One of the interesting issues is the distance over which the pressure level 
decays from a corner, edge or wall to the cavity interior. A preliminary analysis is 
given in Ref. 5. Further work is in progress. 
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l n t r o d u c t  ion 

Coupled structural-acoustic systems are encountered frequently 
in everyday life. Anytime a structure is used to attenuate or 
otherwise modify sound levels to a significant degree, the structural 
and acoustic properties of the system are effectively coupled. An 
auditorium, classroom, concert hall, theater, or the interior of either 
an automobile or an aircraft are all examples of such systems. 
Accurate, efficient means 'to analyze structural-acoustic systems 
are central to the design of structures with the desired sound 
transmittal properties. 
dimensional acoustic problems are classical modal analysis (CMA) 
and statistical energy analysis (SEA). Recently, Dowel1 and his 
colleagues [1,2,3,4] have developed an additional method, asymptotic 
modal analysis (AMA), which can also be applied to structural- 
acoustic systems. 

Classical modal analysis is a rigorous method, which produces an 
exact result. However, it requires extensive computation, since CMA 
takes the contribution of each mode into account. When there are a 
large number of modes, as in most practical 3-dimensional acoustic 
problems, CMA requires an equally large number of calculations. It is 
not uncommon to have on the order of 100,000 acoustic modes in a 
room acoustics problem. 

contributions into account, leading to a significant reduction in 
calculations required relative to CMA. 
modal density, average modal damping and average modal impedance 
to sound sources are required. This is the advantage of SEA. The 
disadvantage is that, as a statistical method, it produces statistical 
results. The answers obtained are in terms of averages or means and 
deviations. Therefore, SEA results do not contain any local 
information. 

The advantages of both these methods are incorporated in the 
AMA method. Providing there are a large number of modes, the CMA 

Two methods commonly used to solve three- 

Conversely, SEA, does not take the individual modal 

Instead, quantities such as 
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and the AMA results are nearly identical. But the computation cost 
of AMA is significantly less, since it does not take the individual 
modal contributions into account. An added advantage of AMA is that 
the degree of generality in the final result can be controlled by 
adjusting the types of assumptions and/or simplifications made in 
the derivation. This allows the use of AMA to obtain results 
identical to SEA, or to relax the averaging simplifications and obtain 
local results, of which SEA is not capable. 

To explore the capabilities of AMA, a numerical study was done 
to analyze the interior sound field of a rectangular acoustic cavity. 
The ratio of response predicted by classical modal analysis to that 
predicted by asymptotic modal analysis was calculated either as a 
spatial average or at particular locations inside the cavity. Five of 
the cavity walls were rigid and therefore, did not allow the 
transmission of sound. A random "white noise" sound field passed 
through a portion of the sixth wall into the interior of the cavity. 
The flexible vibrating portion was varied in size and location, the 
resulting sound pressure levels in the interior were calculated using 
AMA and CMA, and compared. 

Local response peaks or "intensification zones" were observed at 
boundary points, while the response in the interior region was nearly 
uniform. Finally, the "transition zone" which exists between an 
"intensification zone" and the nearly uniform interior response was 
closely examined. 

2 



Backaround 

Statistical energy analysis (SEA) has been used to study the high 
frequency interaction of large, complex, multimodal structures and 
acoustic spaces. The basic assumption underlying SEA is that the 
dynamic parameters in the system behave stochastically. SEA 
relates the power of the applied forces to the energy of the coupled 
systems and produces a set of linear equations that can be solved for 
the energy in each system. The energy in the system is the variable 
of primary interest, and other variables such as displacement, 
pressure, etc., are found from the energy of vibration. SEA has its 
advantages, as well as its limitations. The main advantage of SEA is 
its ability to describe the sound field without having to consider the 
individual modes. Statistical energy analysis also allows for a much 
simpler description of the system, requiring only parameters such as 
modal density, average modal damping, and certain averages of modal 
impedance to sound sources. The most significant disadvantage of 
using a statistical approach is that it is only valid for systems 
whose order is sufficiently high that the stochastic assumptions 
apply. Certain frequency bandwidths may not contain enough modes 
to allow the underlying assumptions to hold, rendering the SEA result 
unreliable. In addition, the local response information is lost in the 
SEA treatment. The text by Lyon 151 is the standard reference on SEA. 

Dowell [ l ]  has shown that results identical to those calculated 
using SEA can be obtained by studying the BsvmDtot ic behavior of 
classical modal analysis (CMA) for a general, linear (structural) 
system; this asymptotic approach is called asymptotic modal 
analysis (AMA). AMA is basically a modal sum method. It possesses 
all of the advantages of SEA, in that the individual modal 
characteristics do not play a role in the asymptotic analysis. 
Additionally, AMA has advantages which SEA does not. Since AMA 
results can be derived systematically from CMA, AMA allows an 
assessment of the assumptions and consequent simplifications which 
are made to obtain such results. Also, by using a combination of CMA 
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and AMA, results can be obtained for all frequency bandwidths of 
interest, not just those with a sufficiently high number of modes. 
And finally, AMA has predicted local response peaks, or 
"intensification zones," results unobtainable using SEA [3,4]. 

depends upon the number of modes in a frequency interval of interest 
and the location of point forces. In the limit of an infinite number of 
modes, all points on the structure have the same response except for 
some special areas. The exceptional areas ("intensification zones") 
are near the points of excitation and near the structural system 
boundary [3,4]. Numerical examples were presented for a beam in 
Ref. [2]. Crandall and his colleagues [6,7,8] experimentally found 
"intensification zones" in their work with structures. The response 
of a rectangular plate under a point random force was investigated by 
Kubota and Dowell [3], and AMA calculations were found to agree 
closely with experimental measurements. 

Work has also been done using AMA for structural-acoustic 
systems. Kubota, Dionne, and Dowell [4] examined a rectangular 
acoustic cavity with one vibrating wall (the other five rigid). 
assumed the vibrating wall had an infinite number of structural 
modes responding, and that the entire wall was oscillating. The 
results obtained from the numerical study indicated that the 
spatially averaged CMA response approaches the AMA response as the 
number of modes increases. The local asymptotic response revealed 
an almost uniform distribution in the cavity interior, with peaks at 
the boundaries (sides, edges, and corners) of the cavity. 

Analysis for structural-acoustic systems. 
the wall vibrates rather than the entire wall, and the size and 
location of the oscillating portion is varied. 
"intensification zones" at the cavity boundaries and their transition 
to the cavity interior are examined utilizing AMA techniques, for the 
one-dimensional case. 

Previous work has shown that the asymptotic behavior of AMA 

They 

The emphasis of this research is on developing Asymptotic Modal 
Here, only a portion of 

Also, the acoustic 
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Theorv 

Most coupled structural acoustic problems are modeled using 
either classical modal analysis, summing for the response of each 
mode, or statistical energy analysis which combines the predicted 
energies of the subsystems and coupling loss factors to obtain a 
final result. In this work, a comparison is made between the CMA 
result and the AMA result as the number of acoustic modes and the 
number of structural modes approach infinity. Note, that the 
spatially averaged AMA result is identical to the SEA result. 

Classical Modal Analvsis 

to the transmission of noise through a structural wall on its 
boundary, both the structural modes of the wall and the acoustic 
modes of the interior must be considered. 

vibrating wall is 

In order to calculate the response of the interior acoustic cavity 

The equation of motion describing the structural modes of the 

2 E 

where the modal expansion for the wall deflection is 

w = Cq,(t)y m(x,Y> 
m 

the structural generalized mass is 

and the generalized force due to a given external pressure is 
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The equation describing the acoustic modes of the cavity is: 

where the modal expansion for the acoustic cavity pressure is 

the acoustic generalized mass is 

Mf = l//[ V 
F;(x,y,z) dx dy dz 

and the generalized acceleration due to the structural wall is 

Kubota, Dionne and Dowell (Ref.41 have simplified these 
equations using the following assumptions: 

1. The number of structural modes is large, which implies that 
the power spectra of the wall response is uncorrelated in space. 
This assumption effectively removes the modal dynamics of the 
structure from the problem. 

2. The power spectrum of wall response is slowly varying with 
respect to frequency relative to the rapidly varying transfer 
function. Therefore, the power spectrum of the wall response is 
treated as a constant, independent of frequency. This is often 
referred to as the "white noise assumption." 

The result of applying these assumptions to the system of modal 
equations is the Classical Modal Analysis (CMA) result, and is 
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-- 
expressed in terms of the non-dimensionalized cavity pressure 
(P/P0Co2) as: 

The step-by-step derivation is done in Reference (41 and is . 

reproduced for convenience in the appendix. 

Asvmptotic Moda 1 Analvsis 
To obtain the Asymptotic Modal Analysis (AMA) result, further 

assume the acoustic generalized mass squared (MrA)2, the frequency 
of the acoustic mode cubed (orA)3, and the acoustic damping (crA), do 
not vary rapidly with respect to modal number r and can therefore be 
replaced by their values at the center frequency, (McA)2, (ocA)3, and 

(CcA). 
approximately equal to the average of Fr'(X,y,Z) times 
XJJFr'(X,Y,zo)dxdy as r 400, (Le. a large number of acoustic modes). 

Moreover, the expression CFr'(x,y,Z) JJFr'(x,y,zo) dx dy is 

~JjFr'(x,y,zo) dx dy can be further simplified by: 

r 

which reduces to: 

r 
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where <Z& = <Fc2>/<Fc2>Af. 
<Fc2>Af is an average over the vibrating structural wall area. 

<FC& is a volume average, and 

Then, 

This is the AMA representation, which is derived in the appendix, 
following the AMA techniques of Ref. [4]. 

ComDarisons of CMA & A MA 

from position of the flexible portion (Af) of the wall, 
needed. 

AMA is 

In order to separate the effects of position inside the cavity 
two ratios are 

The ratio of the spatial average of CMA to the spatial average of 

This is derived in Ref. 4 and can be obtained from equations (1) 
and (2). 

Equation (3) was used in the first half of the analysis, to assess 
the intensification due to area change and position of the vibrating 
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portion of the wall. The spatially averaged <AMA> result which 
comprises the denominator assumes that the vibrating portion was 
located at positions other than in a corner or on an edge. 

The separate effect of interior position was studied by taking 
the ratio of the local response of C M A  to the spatially-averaged AMA: 

CMA Fr ( X ~ Y ~ Z )  F, 2 (x,y,zJ dx dy ( 0, As(..'> 
A 

AN A, 

( 4 )  

2 

o= ?( A T (  A 7  
Mr 0, 

Equations (1) through (4) hold for any cavity geometry. 

Pectanoular Cavity 

for a rectangular cavity with a flexible wall (all others rigid) can be 
described by the well-known rigid wall expansion or "hard box 
modes" for the structure: 

Dowell, et.al. (91 have shown that the acoustic modal function 

Fr (x,Y,z) =COS(?) COS(?) COS(?) 

In this analysis, the flexible portion of the structural wall is 
Therefore, the integral allowed to vary both in size and position. 

IIFr2(x,y,z0) dx dy in equations (3) and (4) 
becomes: 

b, 
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where r,, ry, and rz are modal indicies, and xwOl yw0, X W ,  yw, L,, 
and Ly are defined in figure 1. This integral can then be solved 
analytically in terms of the parameters xwo, ywo and a,, bw. 
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Figure 1. The flexible vibrating portion of one wall of cavity. 
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A n a l v s i s  

For the numerical study, a 2' X 3' X 7' rectangular acoustic cavity 
was considered (figure 2). One of the 2' X 3' walls, or a portion 
thereof, was assumed to vibrate in an infinite number of structural 
modes. The wall was driven with "white noise," which means all 
frequencies within a certain bandwidth were present and that the 
response was uniform with respect to frequency. 

The effects of varying both the size and position of the vibrating 
portion of the wall were studied. 
(plate) varied from full wall (100% wall area) down to a point (.004% 
wall area). Initially, two cases were evaluated, converging to a point 
in the center of the wall, and converging to a point in a corner of the 
wall (figure 3). 

defined in the theoretical section. 
CMA and AMA were taken in order to avoid introducing the location 
within the cavity as an additional parameter. 
response of corner points, edge points, points on the face, and points 
in the interior were considered for the exceptional cases. 

The size of the flexible portion 

The quantities used in the study were the ratio of CMA to AMA as 
Initially, a spatial average of both 

Later, the local 
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Vi brat ing 
Portion 

Figure 2. 

2' 
2' X 3' X 7' Rectangular Acoustic Cavity with a portion of 
one wall flexible and vibrating. 

CONVERGING THE AREA OF THE FLEXIBLE PORTION ABOUT THE: 

CENTER CoRNEFI ARBITRARY PT 

Figure 3: Flexible area on wall converges to a point at various 
locations on the wall. 
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R e s u l t s  

SDat iallv Averaaed C ase: 
The ratio of the spatial average of CMA to the spatial average of 

AMA (eqn. 3) for the case where the oscillating portion of the wall 
converges to a Center Doinf is shown in figures 4,  5 ,  and 6. Each 
figure shows the spatially averaged CMA to spatially averaged AMA 
ratio for a different frequency bandwidth (200, 400, and 600 hz), as 
a function of center frequency. The bandwidth, bo, is defined. as, bo 
= Omax - Omin , and the center frequency a,, as a, = &max* Omin where 
Omax and Omin are the maximum and minimum frequencies of the 
frequency interval. All acoustic modes are assumed to have the same 
modal critical damping ratio, 5. 

As can be seen from figures 4, 5 ,  and 6, all results approach 
unity as the center frequency becomes large. The larger bandwidths 
yield smoother curves, and the smaller bandwidths approach the 
asymptote slightly more rapidly. These are expected results, and 
have already been discussed by Kubota in Ref. [9]. Kubota's work was 
done on a similar acoustic cavity, but with the entire wall 
oscillating. What was not expected was that departure from the 
entire wall oscillating, caused little change in the CMNAMA ratio 
for the cavity. This may have been due to the fact that the 
oscillating "plate" was centered about the midpoint on the wall, and 
that all modes are symmetric or anti-symmetric about that point. 

In figures 7, 8, and 9, the results of the spatially averaged 
CMNAMA ratio (eqn. 3) for the oscillating plate of variable area and 
converging to a point in the Corner are shown. Again, each plot 
corresponds to a different frequency bandwidth and the results are 
plotted as a function of center frequency. In this case, there are a 
family of curves which approach unity as center frequency (and 
therefore number of modes) increases, as expected. However, the 
asymptote is approached from above rather than below, for all 
plates smaller than the quarter wall. The quarter wall case is 
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equivalent, in terms of the CMNAMA ratio, to the full wall due to 
symmetry. The cases where the plate is larger than a quarter panel 
approach from below as did the center point cases. For those cases 
in which the vibrating wall is smaller than a quarter panel, not only 
does the curve approach the asymptote from above, but, as the 
oscillating portion of the wall better approximates a point, the peak 
of the curve approaches 4, and is slower to drop off to the 
asymptotic limit of 1. 
is similar to the "intensification" zones discussed in Crandall [6,7,8] 
and in Kubota, et al. [4]. 
excitation location rather than response location. 

In addition to these two extremes, the vibrating portion of the 
wall was centered around an intermediate point and varied in size. 
The results of the CMNAMA ratio are shown in Figures 10, 11, and 
12. Again, this is a spatial average of the response, which was 
calculated for three frequency bandwidths, and is plotted as a 
function of center frequency. 
also be reached in an oscillatory manner, rather than strictly from 
above or below. 

the oscillating portion of the wall in a spatially averaged sense, the 
local response was also calculated. 

This region of elevated sound pressure level 

However, the intensification is due t.0 

This case illustrates that the limit can 

In addition to studying the effects of varying size and position of 
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Local resDonse: 
The effect of position in the cavity was determined by 

considering the local response. This was again done for both 
convergence of the vibrating plate to the center and convergence to a 
corner. The results are presented as a ratio of CMA to spatially 
averaged AMA. (Were the AMA result not spatially averaged, this 
ratio would be 1.0 asymptotically for all positions. This will be 
discussed in further detail in the section which follows). The ratio 
was computed for many center frequencies at a constant bandwidth 
of 400 hz. There was no need to vary the bandwidth, since figures 4 
through 12 show little variation with bandwidth. The result was 
computed for various center frequencies in 200 hz bandwidth 
increments up to a center frequency of 6000 hz. 
hz there are over 5000 modes, and the number of modes increases as 
a function of the cube of the frequency. Therefore, it would be 
extremely time consuming to continue taking 200 hz bandwidth 
steps. Beyond 6000 hz, 1000 hz bandwidth increments were taken up 
to 11000 hz. This produces a smoother looking curve beyond 6000 h t ,  
which is due to the larger frequency bandwidth increments. 

figure 13), the corner point (O.,O.,O.), the midpoint of the flexible 
wall, the midpoint of the entire cavity, and a point on the wall along 
the center line (1.8, 1.5, 0.). For these four points, the ratio of CMA 
to spatially ave raged  AMA was plotted as a function of center 
frequency in figures 14 through 17. 

However, at 6000 

Initially, four special response points were considered (see 
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A 

Portion 

Four Particular Points of Interest - denoted by A, B, C, D 

Figure 13. Points at which the local response was predicted 

Taking the corner point first (point A in figure 13), figure 14 
shows that as the plate converges to the center of the wall, the 
response of the corner approaches a "pseudo-asymptote" of 8 ,  
whereas, for convergence of the plate to the corner (figure 15) this 
same point has a pseudo-asymptote of 32, a factor of 4 times 
greater. The idea of a "pseudo-asymptote" will be discussed in the 
section which follows. This factor of 4 was seen in the spatially 
averaged cases as the ratio between center convergence versus 
corner convergence of the vibrating plate. 

Figures 16 and 17 show that, at the mid point of the flexible 
wall (point B in figure 13), both types of convergence yield a pseudo- 
asymptote of 8. Since this point is on the wall, its expected pseudo- 
asymptote is 2. However, when the excitation is in the corner (figure 
17), this is increased by a factor of 4, hence the value, 8. On the 
other hand, when the excitation location and the response location 
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are at the center of the wall(figure 16), the response there is also 
increased by a factor of 4. This phenomena is similar to the 
"intensification" observed by Kubota in experiments where point 
loads are applied to a rectangular plate [3]. The effect of a point 
source is to divide the cavity into quadrants (defined by drawing 
perpendicular lines through the point source). In a newly defined 
sub-cavity this point where the source is located is now a corner 
point. The response at a corner point is eight-times greater than the 
interior region, so the pseudo-asymptote of 8 is appropriate for this 
case. 

Kubota also found "hot lines" running perpendicularly through the 
point force. To test for these in this analysis, a point along one of 
the anticipated "hot lines" was studied. The values at this point (C 
in fig. 13) are depicted in figures 18 and 19. Since this point is on 
the face, it is expected to have a pseudo-asymptote of 2.0, which is 
indeed the case if the full wall is moving (dotted line on both plots). 
However, in the case of center convergence (i.e. analogous to a point 
load acting at the center of the wall), this point lies on a "hot line" 
and figure 18 shows a pseudo-asymptote of 4. Assuming the "hot 
lines" divide the cavity into subcavities, 
of a sub-cavity. Therefore, the value of 4 is appropriate, since the 
response at an edge is 4-times greater than the interior. When the 
oscillating portion of the wall converges to the corner, the pseudo- 
asymptote is 8, which is a factor of 4 greater than if the whole wall 
is moving. This is consistent with previous findings for corner 
convergence. 

also considered (figures 20 and 21). At an interior point such as 
this, the expected asymptote is 1.0. However, when the plate 
converges to the center of the wall (figure 20), this point lies in the 
line of action of the "point force," resulting in a factor of 4 increase, 
and therefore, a pseudo-asymptote of 4. Similar to the previous 
case, this point now lies on an edge point of a newly defined sub- 
cavity. Edge point response is 4-times greater than the interior. 

this point is an edge point 

Response at the mid point of the entire cavity (D in fig. 13) was 
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When the plate converges to a corner of the wall, again a four-fold 
increase is expected, and the result is a pseudo-asymptote of 4, 
which is shown in figure 21. 

cavity midpoint (D) (figures 17 and 21) five curves are actually 
plotted. Only the curves representing the smallest plate area (.01% 
and .004%) deviate significantly from the curve for the full wall. 

The above points (A through D) were studied as the plate size 
was allowed to vary, for the two convergence cases and as a function 
of center frequency (for a fixed bandwidth). Next, the plate size was 
fixed at .004% of the wall area, which corresponds to a vibrating 
point. The center frequency was fixed at a value at which the 
pseudo-asymptotes had previously been reached (8000 hz), and the 
bandwidth was fixed at 400 hz. The distance into the cavity from the 
vibrating wall was varied, in figures 22 and 23 the trajectory is 
along an edge, while in figures 24 and 25 the trajectory is radial. 

center of the wall, and the response is plotted along an edge. The 
peak response in the corner is 8. Moving away from the corner, the 
response then oscillates before approaching the asymptote for an 
edge, which is 4.0. This region between the corner response peak and 
the almost flat response of the interior will later be referred to as 
the "transition zone." This same edge response is shown in figure 23, 
for the case when the sound source is located in the corner. The 
curves are basically the same shape, but the levels have increased by 
a factor of 4.0, which is due to the excitation (sound source) 
location. Both curves are symmetric in the z direction, which can be 
shown analytically, by substituting (z-d) in for (z) in the acoustic 
modal function, and using the trigonometric relations C O S ~ ( Z )  = 
cosZ(-z), and cos(a-b) = cos(a)*cos(b) + sin(a)'sin(b). Therefore, 
only half of the edge length is plotted (3.5 feet out of 7.0 feet). 

away from the corner of the cavity, for the two different point sound 
source locations. 

In the corner convergence cases for the wall midpoint (B) and the 

In figure 22, the sound source (vibrating point) is located in the 

Figures 24 and 25 are plots of the response in a radial direction 

The radial direction is defined by the line x=y=Z, 
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and the radial distance is equal to the square root of (x2 + y2 + 22 ). 
In figure 24, a point sound source (or vibrating point) is located in 
the center of the wall. Since the point source is in the center of the 
wall, "hot lines" exist which run down the center of the cavity. Due 
to these "hot lines," which redefine new effective boundary points, 
the cavity interior is no longer uniform, as is shown in figure 24. 
After the radial distance of 1.0, the response begins to increase, and 
approaches a value of 2.0, as if there were a wall or face there. This 
is not a physical boundary created by the cavity geometry, but rather 
an artificial boundary created by the point source. 
same radial trajectory is taken. 
located in the corner, the response of the interior is uniform. 
peak value in the corner is 32 (corner response point, 8 X corner 
excitation point, 4 = 32). The response then oscillates, and 
eventually approaches a uniform interior value of 4.0. 

asymptotic limit for points which do not lie on "hot lines" is: 1.0 for 
interior points, 2.0 for points on a face, 4.0 for points on an edge, and 
8.0 for corner points. Also, the corner convergence cases yield the 
same relationships between locations but the magnitudes are 
increased by a factor of 4. "Hot lines" can be thought of as dividing 
the cavity into subcavities or quadrants. Each subcavity then, 
produces its own corner, edge and face points, redefining "effective" 
boundary points. 

In figure 25, the 
However, since the point source is 

The 

In summary, for a vibrating point at the center of the wall, the 
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Discuss ion 

The term in the CMNAMA equation (3 or 4) which is affected by 
changing the flexible area size and location of the flexible portion is 
jIFr2(X,y,Zo) dx dy /Af . This can be thought of as a spatial average 
of the acoustic modal function in two dimensions (x and y). The 
expected result would be 1/4, unless the argument of one or both 
cosine functions (in Fr) is always zero. When the plate converges to 
a point in the corner, the x and y values are essentially zero, .the 
value for the cosine is equal to one, and the "spatial average" above 
would then be 1.0 rather than 114. Therefore, the effect of shrinking 
the area down to the corner yields a four-fold increase. 

the approximated corner point no longer behaves like a point 
compared to an acoustic wavelength. It is for this reason, that this 
has been called a "pseudo-asymptote," rather than a true asymptote. 
As the center frequency becomes sufficiently large, the true 
asymptote will always be 1.0 for the spatially averaged CMA/AMA 
ratio. 

The analysis has been done for the ratio of spatially averaged 
CMA [Spatial average denoted by e > ] to spatially averaged AMA : 
<CMA>/<AMA>, and for the local CMA response divided by spatially 
averaged AMA. If the local AMA to spatially averaged AMA (CAMAS) 
ratio were known, the local CMA to local AMA ratio could be deduced. 
This would (providing the result were 1.0 for a large number of 
modes) add to the credibility of AMA. Thus, consider the following. 

However, one can imagine driving the frequency up so high that 

The local AMA result is (equation 2): 
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whereas, the spatially averaged AMA result is: (derived in 
[Ref .4]) 

Therefore, the ratio of local AMA to spatially averaged AMA is: 

The numerator, (CFr2(X,y,Z)/ANA), is equal to or  
lis when x, y, and t are not zero or Lx, Ly, L,. It is equal to 
(1/2)*(1/2)*(1) or (114) when one of the values of x, y, or z are equal 
to 0 or the length of the cavity in the appropriate direction, which is 
true on any face. 

(1/2)*(l)*(l) = (1/2), since two values of x, y, or z are equal to 0 or 
the length of the cavity in their direction. 
is equal to (l)*(l)*(l) = (1) in a corner, since all three values of x, y, 
or z will either be 0 or Lx Ly, Lz. 

For an edge, the numerator, (CFr*(X,y,z)/ANA), is equal to 

And (xF$(x ,y , t ) /~NA)  

The spatially-averaged acoustic modal function evaluated at the 
center frequency, <FC%, which comprises the denominator of the 

( 1 /2) (1 /2) ( 1 12) or 1 18. 

the following table. For a 

(AMA)I,,aI / <AMA>Spajial average ratio, is always equal to 

Therefore, the (AMA),,,aI/<AMA>,palial average can be summarized in 

corner (1  ) / ( 1 W  8 
edge (1 /2)/( 1 /8) 4 
face (1 / 4 ) / (  1 /8) 2 
in te r io r  (1 /8)/( 1 /8) 1 
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Recall that local CMA to spatially averaged AMA for the center 
convergence case yields pseudo-asymptotes of : 

8 in the corner 
4 on an edge 
2 on a face 
1 in the interior 

This indicates that for a large number of modes, the asymptotic 
modal analysis results agree locally with the exact results predicted 
by classical modal analysis when the oscillating wall is a full wall 
or converging toward the center. For corner convergence, the 
multiplicative factor of 4 must be accounted for as explained 
previously. 

used in this study it was assumed that the excitation occurs at a 
location other than in a corner or on an edge. It is possible to 
incorporate the excitation location effect into the AMA result, if it 
is desired. 

This factor of 4 is due to the fact that in deriving the AMA result 
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l n t e n s i f  i c a t  i o n  

Acoustic theory predicts, and the previous numerical work has 
shown, that there are local asymptotic response peaks or 
”intensification zones” in the acoustic field near the cavity boundary, 
and an otherwise uniform response in the interior region. In 
particular, for a rectangular acoustic cavity, the mean square 
pressure is eight-, four-, and two-times the uniform interior 
pressure levels at the corners, edges and faces, respectively. 

intensification zones. 
characteristic distance over which the response levels change from 
their peak values at the boundary to the uniform interior level. 
Parameters such as, cavity dimensions, frequency bandwidth, and 
center frequency may play a role in determining the size of 
thisintransition zone,” where the response levels are neither their 
peak values nor the uniform interior level. It is desirable to 
determine which parameters affect the transition zone, and which do 
not. This knowledge may allow the design of a cavity with rapidly 
decaying intensification zones. 

As a first step, the one-dimensional case was considered. From 
the 1-d case, insight into the 2- and 3-d cases can be gained. 

In designing acoustic spaces, allowances must be made for these 
Therefore, it is important to determine the 

Analvsis 

examination of the one-dimensional transition zone is derived from 
equation 1. 
equation 1 to its spatially-averaged value. 
terms, the result is: 

The non-dimensional pressure ratio which is used in the 

A ratio is taken of the sound pressure level from 
After cancelling the like- 
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-2 
P 

and considering only a 1 -dimensional acoustic wave: 

Assuming a large number of acoustic modes allows the summation 
over n to be replaced by an integration (n is then treated as a 
continuous variable). 
squared is 112 and that o = nm/Lx 

Noting that the spatial average of cosine 
yields: 

A 
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The variable n can be replaced by 0 or f, in order to obtain a 
result in terms of frequency, by the relations: 

f = 2 x 0 ,  which leads to 0 = nxc/Lx , n = 2Lxf/c 

The final result in terms of frequency after doing the integration 
i s :  

where: 
fc is the center frequency, and fb is the frequency bandwidth, 
f l  and fu are defined as the lower & upper frequencies of the 

frequency interval as follows: 
fu - 11 = fb, and fc = 

and, 
81 = 2 kcx fl / fc 
8u = 2 kcx fu / f c  

kcx = ( 2 n f c ) ~  / c 
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Therefore, the ratios fl/fc, and fu/fc can be obtained from fb/fc 
using the above definitions. In fact, the entire expression (9), can be 
expressed in terms of fb/fc, and kcx, where kcx is the wave number 
associated with the center frequency times the distance away from 
the end point. Therefore, knowing the ratio of frequency bandwidth 
to center frequency (fb/fc), the pressure function in the transition 
zone can be plotted as a function of distance away from the endpoint, 
kcx. Note that the dimensions of the cavity do not appear in this 
result. 

Results and Discussion 
Plots are shown in figures 26 through 34 of non- 

dimensionalized pressure ratio versus kcx for various fb/fc ratios. 
An fb/fc ratio of .005 approximately simulates a tone, while an fb/fc 
ratio of .239 corresponds to a 1/3 octave bandwidth, and fb/fc = SO0 
represents an octave bandwidth. 

like" because of the small fb/fc ratio which corresponds to a narrow 
bandwidth at a high center frequency. However, it is not a "pure 
tone" because more than one frequency is present. Figure 26 shows 
the non-dimensionalized pressure ratio versus kcx, where the 
pressure ratio is calculated using an integration (similar to an AMA- 
type calculation) rather than a summation over all t h e  modes. 
comparison, figures 27 and 28 show the same ratio calculated as a 
summation over all the modes (this is similar to a CMA type 
calculation). In figure 27, only 2 modes are summed. This response 
starts to decay around kcx = 25. Figure 28 shows the response when 
26 modes are summed for the same fb/fc ratio. This summation case 
more closely resembles the integration case, even though only 26 
modes are included in the summation. Since the agreement is fairly 
good, at least to a kcx value of 50, between the integration (AMA- 
type) and the summation (CMA-type) results, this suggests that the 

The first three plots are for the "tone-like" case. It is "tone- 

For 
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integration is reasonably accurate even when a relatively few 
number of modes are present. 

figures. 
versus kcx calculated by integration rather than  summation over all 
the modes. In figures 30 and 31, plots are shown of the summation 
over 15 modes and 479 modes. Agreement between integration and 
summation is best for the 479 mode summation. However, for the 15 
mode summation plot the overall envelope of the function is still 
preserved. 

pressure ratio versus kcx for the octave band case. The results are 
similar to the 113 octave band case. The summation over the larger 
number of modes matches integration best, although the envelope of 
the function is still preserved for summation over relatively few 
modes. 

can be treated as a continuous variable, Le. when there are a large 
number of acoustic modes. However, these plots indicate that even 
when there are only a few modes the overall envelope is still 
preserved. For most applications, it is actually the envelope which 
is important. Therefore, the integration does quite well even at low 
center frequencies (or frequency ranges with relatively few modes). 
Which also indicates that the AMA method may also be accurate when 
t h e r e  are relatively few modes in a given frequency range. 

Another interesting outcome of the 1-d transition zone study is 
that the parameters which determine the size of the transition zone 
and the shape of the pressure function are kcx and fb/fc. The cavity 
(in this  case, I-d) dimensions are not a factor. Therefore, the size of 
the transition zone does not depend upon the length of the 1- 
dimensional cavity. Extrapolating th is  result to the 3-d case, cavity 
dimensions are not the key parameters which determine the 
intensification area or "transition zone." The ratios of Lx, Ly, and LZ 
to each other may be important. The one-dimensional case can not 

Results are shown for the 1/3 octave band case in the next three 
Figure 29 is a plot of non-dimensionalized pressure ratio 

Figures 32 through 34 are plots of the non-dimensionalized 

Replacing the summation with an integration is only valid when n 
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p r e d i c t  th i s .  
t h e  p r o b l e m  directly. 

But ,  t h e  actual size of the cavi ty  does not e n t e r  into 
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Conclus ! O n  

An Asymptotic Modal Analysis approach has been developed and 
applied to a coupled structural-acoustic problem. It is broadly 
applicable to any linear dynamic system regardless of geometry. It 
is an extremely flexible approach, and can be developed in accord 
with the nature of the system under study through inclusion or 
exclusion of a series of simplifying assumptions. This technique can 
thereby bridge the gap between CMA and SEA in terms of 
computational requirements and predictive capability. Insofar as 
AMA is developed from Classical Modal Analysis, it retains the 
capability to predict spatial variations (intensification) in sound 
pressure levels or other relevant responses, something of which SEA 
is not capable. Simplifications arising from the nature of the forces 
and the number of structural and acoustic modes involved result in a 
process which does not require individual modal characteristics. 
This greatly reduces the number of calculations required relative to 
CMA 

A rectangular acoustic cavity, with five rigid walls, was chosen 
to investigate the capabilities of AMA. Spatial averages and local 
behavior for sound pressure levels were calculated for a number of 
cases involving the location and size of the sound source on the wall. 
For the spatially averaged cases, a strong effect of sound source 
location on average sound pressure levels in t h e  cavity was noted. In 
particular, intensification due to source location was observed, such 
that, when a point sound source was located in the corner as opposed 
to the center of a wall, the spatially averged sound pressure ratio 
was increased by a factor of 4. 

In addition to the spatial average, the local response was also 
calculated. Kubota, et.al. (41 found that the response of the cavity 
interior is nearly uniform, with the exception of 
structural boundary (walls, edges, and corners), 
of the rectangular cavity is vibrating. However, 
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of one wall vibrates, and particularly when this portion approaches a 
vibrating point, there are further exceptions. 
(“hot lines”) which run through the vibrating point were found to 
divide the cavity into sub-cavities, which have new corners, edges, 
and walls. On these newly defined sub-structural boundaries, the 
local response is also elevated. Such that, new corners, edges, and 
walls, exhibit the same relative increase as the original corners, 
edges and walls do, which is 8, 4 and 2 times greater than the 
interior, respectively. 
point forces to a rectangular plate [SI. 

examined in the asymptotic limit. The shape of the sound pressure 
function, and therefore, the size of the intensification zone, were 
determined by a ratio of center frequency and frequency bandwidth. 
The length of the cavity did not play a role in determining the 
intensification zone. 
dimensional cases, leads to the conclusion that the intensification 
zone is independent of the lengths (x, y, and z) of the cavity, and may 
therefore, be independent of the geometry of the cavity, as well. 

Perpendicular lines 

Kubota found similar ”hot lines” in applying 

The intensification zone for a 1 -dimensional cavity was closely 

Extrapolating this result to the 2- and 3- 
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Future Work 

The work which has been done, thus far, regarding the 
application of AMA to structural-acoustic systems, has assumed that 
the number of responding structural modes was infinite, is. AMA was 
invoked for the structural wall from the beginning. 
certain simplifications to be made in deriving the AMA result for the 
acoustic cavity, which would not be valid otherwise. Future work 
should include the derivation of an AMA result for the case of a finite 
number of responding structural modes, and an infinite number of 
acoustic modes. 
a finite number of structural modes is CMA for both the structural 
wall and the acoustic cavity. 

The intensification zones are of importance for interior noise 
studies. Therefore, future work should include examination of the 
transition zone for the 2-dimensional and 3-dimensional cases, in 
addition to, the 1 -dimensionat case discussed in this thesis. 

For verification of the AMA method, experiments should be performed 
and the results compared with the numerical results already 
obtained. 

This allowed 

The case of a finite number of acoustic modes, and 

The previous work has been entirely theoretical and numerical. 
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APPENDIX A: DERIVATION OF CMA AND AMA RESULTS FOR 
A RECTANGULAR ACOUSTIC CAVITY 

A1 



The equation of motion describing the structural modes of the 
vibrating wall is (see Ref. 1, 2, and 3 for technical background). 

where the modal expansion for the wall deflection is 

m ( 2 )  
the structural generalized mass is 

Mm =JlI mpym 2 dx dy 

( 3 )  
and the generalized force due to a given external pressure is 

Qk = / l l p k m  dx dy 
( 4 )  

The acoustic cavity modal equation is: 
.. A A .  2 

( 5 )  Pr + 25,0r pr + (a:) Pf = Qy 
where the modal expansion for the acoustic cavity pressure is 

P = p.,'C PAt) F, (X9Y 2 )  

r M,A (6) 
the acoustic generalized mass is 

M: = L//l F:(x,y,z) dx dy dz 

QY= - L I i ,  W Fr dx dy 

V (7) 
and the generalized acceleration due to the structural wall is 

V (8) 
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Define 1, a non-dimensional cavity pressure, 

From (6) the auto-power spectrum of f may be determined as 

where the cross-spectra are defined as 

and the cross-correlations of the modal generalized pressure 
coordinates are 

Similarly from (8) the cross-power spectra of QrW and Q s ~  are 

(1 2) 
From (5) and standard random response theory, the relationship 
between @prps and @ QrWQsW is 

A A 

(1 3)  
@prp.(4 = H, (NHS (-4 @$Q74 

where the modal transfer function is defined as 

From (9), (12), and (13) 
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This is the basic expression for the power spectra of the cavity 
pressure in terms of the power spectra of the wall acceleration. 

it can be shown that 
When the number of excited structural modes is large, AM -) w, 

(1 6) O~,(~;X,y,X',y') E A,@G(co) 6 ( ~ - x ' )  ~ ( Y - Y ' )  

This means that the power spectra of the wall response is 
uncorrelated in space. This assumption is reasonable for large  AM^ 
because 

- 1 Ow(o;x,y,x*,y') 3 0 (x+x*, Y'Y') 
AM constant (x=x*, y=y*) 

Recall, [Ref. 1,2] 

m n  

(1 8 )  
(17) is readily derived from the above relationship and invoking the 
basic methods of AMA. 
Also for a smoothly varying power spectrum, it is assumed that 

This is just the usual white noise assumption. Thus, Eq. (15) 
becomes 

(1 9) @w(o) z <Pw(oJ 

(20) 
The mean square response of the non-dimensional cavity pressure is 
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This is the local CMA result which is referred to in this thesis. Note, 
that the structural wall is assumed to vibrate in an infinite number 
of modes, hence this result is AMA for the structural wall, but CMA 
for the acoustic cavity, (Le. a finite number of acoustic modes). 

Taking a spatial average of (21), and noting that (MrA)2, ( ~ r A ) 3 ,  
(CrA), and <(Fr2> do not vary rapidly with respect to modal number, r, 
for large ANA, Eq. (21) becomes 

which is the SDat iallv a v e r a m  CMA result referred to in the thesis. 

Now consider a cavity acoustic modal function 

Take the plane at z = to as the boundary of the acoustic cavity where 
the structural wall is vibrating. 
mode number r or it can be so normalized. Thus, for large ANA, 

(23)  F,(x,Y ,z) = Xr(x>Yr(Y>Zr(z) 

Zr( to)  is usually independent of . 

r r 
which reduces to: 
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where 

and 

M,"t (F:) 

~ A C O  z A o  OJoJ 
. . . .> denotes spatial average. <Fc2> is a volume average of 

cFC2>Af is an area average over the vibrating structural wall. 
eq.(22) becomes as A N A ,  00, 

3 

(24) 

and from the 

(G2)AaZ 

AMA 

x AM 
4 do 
-- 

results for structural wall 
L 2 \  

Finally then, Eq. (24) becomes 

Fc2, and 
Hence, 
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This is the SDatiallv averaaed AMA result, which is used in the 
denominator of the non-dimensionalized pressure ratios throughout 
this thesis. 
aco u s t ic cavity ) . 

(AMA is applied to both the structural wall and the 

To obtain the local Asymptotic Modal Analysis (AMA) result from 
the local CMA result (equation (21)), further assume the acoustic 
generalized mass squared (MIA)', the frequency of the acoustic mode 
cubed (or*)3, and the acoustic damping (CrA), do not vary rapidly 
with respect to modal number r and can therefore be replaced by 
their values at the center frequency, (McA)*, (ocA)3, and (ccA). 
Moreover, the expression CFr2(X,y,Z) IJFr'(X,y,zo) dx dy is 
approximately equal to the average of Fr'(x,y,z) times 
ZJJFr2(x,y,zo)dxdy as r +-, (Le. a large number of acoustic modes): 

CjjFr2(X,y,Zo) dx dy can be further simplified by: 

r r 

which reduces to: 
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where <Zc2> = <Fc2>/<Fc2>Af. 
<Fc2>Af is an average over the vibrating structural watt area. 

<Fc*> is a volume average, and 

Then, 

This is the AMA representation for the local response. 
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APPENDIX B: COMPUTER PROGRAMS 
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h f Am’ PR O G R  Ah1 
C 
C BY Y-LENGTH BY 2-LENGTH 
C 
C 

CALCULATES C h U  TO AhlA RATIO FOR C A W  X-LENGTH 

FLEXIBLE PLATE ON Oh% WALL VARIABLE 

C ASSUMES ACOUSTICAL AhD STRUCTUR4L DAhIPA’G ARE EQUAL 
C 
C 
c INPUT: STORED mT FILE CAVITY.IN, FREE FORMAT 
C SPEED OF SOUND 
C X-LENGTH, Y-LENGTH, 2-LENGTH 
C 
C 
C 
C 
C 

ALSO, hTEEDED FOR PART OF WALL FLEXIBLE: 
X W O ,  Y W O  THE X & Y COORDINAES OF FLEX PART 
AW, BW THE X 8: Y DIhlENSIONS OF FLEX PART 

C 
C 

number of locations - as well as the x,y,z components 

REAL*8 BAhDM’IDTH 
C 
C FREQUENCY BOLJNDS 
C 

C LOOP h D E X  FOR BAhTDWDTH 
C 

C SPEED OF SOUND 
C 
C 

C CEhTER FREQUENCY OF BANDWIDTH 
C DERATED AS SQUARE ROOT OF THE 
C PRODUCT OF THE UPPER Ah?> LOWER 
C FREQUENCY BOUNDS 
C 

C 
C 

C 
C CAVITY PRESSURE OBTATA‘ED FROM 
C 

DIFFERENCE IN UPPER AhD LOWER 

IXTEGER*4 BW-LOOP 

REAL*8 C 

REAL*8 CENTER-FREQ 

IhTTEGER*4 CFREQ-LOOP 
LOOP IhDEX FOR CENTER FREQUENCY 

REAL*8 CMATO-AMA-RATIO 
RATIO OF MEAN SQUARE RESPONSE OF 

CLASSICAL MODAL ANALYSIS TO THAT 
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C DERIVED FROM ASYMPTOTIC MODAL 
C ANALYSIS 
C 

IA'7EGER*2 ATUT-UAWl 
C INPUT UNIT 
C READS FROM "CAVITY.IN" 
C 

C 
C TO SUBROUTIh'E VARFREQ 
C 

C LOWER FREQUENCY IN BANDWIDTH 
C 

C 
C 
C 
C FOUND 
C 

C 
C 

C 
C WRITES TO "CARAT.PLTt 
C 

C 
C WRITES TO "CARAT.ERR" 
C 
C 

C 
C WRITES TO "CARAT.OUT" 
C 

C UPPER FREQUENCY IN BAh'DWDTH 
C 

REAL*8 X-LENGTH, Y-LENGTH, Z-LENGTH 
C ROOM DIMENSIONS 
C 

A'TEGER*4 Ih'DEX 
VALUE OF Ih'DEXING LOOP PASSED 

REAL*8 LOWER-FREQ 

LOGICAL hlODE-CHECK 
ERROR CODE FROM SUBROU"E MODES 
TRUE IF hIIODES EXIST IN SPECIFIED 
BANDWIDTH, FALSE IF NO MODES ARE 

AmGER*4  NUh.IBER-OF-MODES 
hWhlBER OF MODES IN BAhDM'IDTH 

IhTEGER*2 OUTPUT-Uh?Tl 
OUTPUT uh?T FOR PLOTllNG DATA 

INTEGER*2 OUTPUT-UAJT2 
OUTPUT UNIT FOR ERROR MESSAGES 

INTEGER*2 OUTPUT_Uh?T3 
OUTPUT UNIT FOR PRINTED OUTPUT 

REAL*8 UPPER-FREQ 
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C 
C 

C 
C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 
C 
C 

REAL*8 XWO, Y W O  
COORDA'AES OF FLEX PART 

REAL*8 AW, BW 
DIAEh'SlONS OF THE FLEXIBLE PART 

integeF2 num-loc 
number of locations 

integeF2 restart 
Restart = 1 (restarting from a previous run) 
Restart = 0 Fresh start : everything new 

integer*2 BWopt 
BWopt = 1 user specifies the bandwidth 
BWopt = 0 200,400,600 bandwidths done 

for 30 center frequencies 

integer count 

BAhTDWTDTH =O.O 
LOWER-FREQ = 0.0 
UPPER-FREQ = 0.0 

MODE-CHECK = .TRUE. 

FREQ-COUNT = 0 
CMA-TO-AMA-RATIO = 0.0 

READ IN SIZE OF ROOM AND SPEED OF SOUND 

READ(IhTUT-Uh?TI,*) C 
READ(INPUT-Uh'TTI,*) X-LENGTH, Y-LENGTH, Z-LENGTH 
read(input-unitl,*) xw0, yw0 
read(input-unitl,*) aw, bw 
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C 

C 

read(input-unit I,*) num-loc 
read(input-unitl,*) restart 
read(input-unit I,*) BWopt 
CLOSE(Uh?T=IATUT-Uh~ 1 ) 

OPEN(Uh?T=OUTPUT-UhTI ,ERR=3 1 O,FILE="space .ou t",STATUS='h'E\q 

L. 

OPEh'(LR\ZTT=OUTPUT_Uh?T3,ERR=330,F"E="CARAT.OUT",STATUS='r\'EW') 

if(restmeq.1) then 

else 

endif 

open(unit=53, file = "weights.out", status = 'old') 

open(unit=54, file = "weights.out", status = 'new') 

C 

C 
C 

C 

WUTE(OUTF'UT-UhlT1 ,FhIT=500) C 
wRITE(OUTPUT-Uh?T 1 ,FMT=50 1) X-LENGTH, Y-LENGTH, Z-LENGTH 

M?uTE(OUTPUT-Uh?Tl ,F'hfT=555) XXO, "0, AW, B W 
u?ite(output-unit 1 ,fmt=55 1) numloc,restart,bwopt 

User may just be interested in one bandwidth 

if (bwopt.eq.1) then 
open (51, file="inputbw.dat", status = 'old') 

read (51, *) upper-freq, lower-freq 
count = 1 
CALL MODES(UPPER-FREQ,LOWER-FREQ,X-LENGTH,Y_LEhTG, 

& Z-LENGTH,coun t,xwO,ywO,aw,bw,C,num-loc,restan, 
& CMA-TO-AMAJZATlO,M ODE-CHECK,h'UMB ER-OF-M ODES) 

write (6,*) num-loc,testart,c 
go to 100 

else 
C 

DO CFREQLOOP = -2.27 
CENTER-FREQ = 600. + FLOAT(CFREQ-LOOP) * 200. 
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C 

C 

C 

C 

C 

C 
C 

8; 

8; 
8; 

1- ( OUTPUT-Uh'TT 1 ,FA4 T=5 02) CE hTER-FRE Q 
M?uTE(OUTPUT-Uh~ ,FhIT400) CEhTER-FREQ 
M'RITE( OUTPUT-UhlT3 ,FhIT=502) CEhTER-FREQ 
~TRTTE(OUTPUT_Uh~3,Fh~T=550) 
M'RITE(OUTPUT-UhTI3 ,FhIT=505) 
M~(OLJTPVT_vh?T3,FhTT=550) 

DOBW-LOOP= 1,5,2 
do bw-loop = 3,3 
IhDEX = BW-LOOP 
CALL VARB W(IhDEX,CEhTER-FREQ,UPPER-mEQ,LO\lTR-mEQ, 

if (center-freq.eq.200.) then 
BAhDWDTH) 

count = 1 
else 
count = 0 

endif 
CALL MODES(UPPER-FREQ,L~\~TR-FREQ,X-LENGTH,Y-LENGTH, 

Z-LEhTGTH.com t,xwO,ywO,aa:bw,C,num-loc,restan, 
CMA-TO-AhlA-~nO,MODE_CHECK,hWhlB ER-OF-MODES) 

ENDDO 
Eh'DDO 
endif 

C 
100 CLOSE(UNIT=OUTPUT_UhTTl) 

C 

C 

C 

C 

C 
GO TO 1000 

200 FORMAT(2(FI 0.4,SX)) 

300 wRITE(6,301) 
301 FORMAT(SX,'***ERROR ENCOUh'TERED ACCESSING INPUT FILE 

C 

CAV1TY.I") 
G O T 0  1000 

310 WRITE(6,311) 
3 1 1 FORMAT(SX,'***ERROR ENCOUhTERED ACCESSING OUTPUT F E E  

CAR AT.PLT') 
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GOTO 1000 
320 \.1'R.ITE(6,321) 
321 FORhlAT(5X,'***ERROR ENCOUh'TERED ACCESSING OUTPUT FILE 

CARAT.ERR') 
GOTO 1000 

330 WUTE(6,331) 
331 FORhlAT(SX,'***ERROR ENCOUhTERED ACCESSIX'G OUTPUT FILE 

C ARAT.OUT') 
GOTO 1000 

C 
400 FORhlAT(2X,'ERROR MESSAGES FOR CARCF WITH CEhTER FREQUENCY 

1 - - 
8: F10.3,'HZ') 

420 FORMAT(2X,'NO hlODES FOUND IN BANDWIDTH OF ',F10.3,' H Z )  

500 FORMAT(2X,'SPEED OF SOUND IS ',F10.2) 
501 FORhfAT(2X,'CAVITY IS ',F10.3,' FT BY ',F10.3, ' FT BY ',F10.3,' FT 

C 

8:') 
502 FORMAT(2X,'CENTER FREQUENCY IS ',F10.3,' HZ') 
505 FORMAT(5X.' BANDWIDTH 

510 FORMAT(5X,F10.2,18X,F8.5,1OX,15) 
550 FORMAT(SX,' ') 
551 fomat(5x,'number of points =',l x,i3,5x,'options are:',!, 

555 FORMAT(2X,'FLEXIBLE PART BEGINS AT X =',F10.3,'Y =',F10.3, 

',4X,'ChlA TO AhlA RATI0',4X, 
Br 'AWhfBER OF MODES IN BAND') 

* 

&/,2X,'FXEXTBLE DUlENSJONS ARE: ',F10.3,'BY',F10.3J) 

45x,'restart opt - ',i2,/,45x,'bandwidth opt - ',i2J) 

C 
800 FORhfAT(2X,'OUTPUT IS IN CARAT.OUT, POATS FOR PLOTTING ARE IN 

CAM 
&T.PLT) 

C 
1000 CONTIh'UE 

C 
STOP 
EhD 
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USED FOR SPATIALLY AVERAGED ChWSPATLALLY AVERAGED AhlA RATIO 
SUBR0UTD.T hlODES(UPPER-BOUh?>,LO~f~R-BOU1\13, 
g: X-LENGTH,Y-LENGTH,Z-LENGTH, 
6: xu0, yw.0, aw, bw, Cy 

C 
C 

C 
C 
C 

C 
C 
C 

C 
C 
C 
C 
C 

C 
C 
C 
C 
C 
C 

C 
C 
C 
C 
C 

REAL*8 

REAL*8 

REAL* 8 

REAL*8 

LOGJCAL 

€i ChlA-TO-AhtA-RATIO,ERROR-CODE, 
g: FREQ-COUhr) 

C 
C 
C 

CALCULATES NATURAL FREQUENCIES OF ROOhl 
X-LENGTH BY Y-LENGTH BY Z-LENGTH 

BANDWIDTH 
DIFFERENCE BETWEEN UPPER Ah?> 
LOWER FREQUENCY LIhlITS 

C 
SPEED OF SOUh?> 

CENTER-FREQ 
CEhTER FREQUENCY OF BAhDWDTH 
DEFIhTED AS SQUARE ROOT OF THE 
PRODUCT OF THE UPPER Ah?> LOWER 
FREQUENCY BOUNDS 

CMA-TO-AMA-RATIO 
RATIO OF hEAN SQUARE RESPONSE OF 
CAVITY PRESSURE OBTAIh'ED FROhl 
CLASSICAL MODAL ANALYSIS TO THAT 
DERIVED FROhl ASYMPTOTIC hlODAL 
ANALYSIS 

ERROR-CODE 
.TRUE. RETURh'ED IF hlODES ARE FOUND 
WITHIN THE SPECIFIED BAh'DWDTH 
.FALSE. RETURNED IF NO MODES 
ARE FOUND 

IhTEGER*4 FREQCOUNT 
C COUhTS hWhBER OF ACOUSTICAL 
C MODES IN SPECIFIED BAhDWIDTH 
C 
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C 
C 

C 
C 

C 
C 

C 
C 
C 

C 
C 

C 
C 

C 
C 

REAL*8 FREQUENCY 
NATURAL FREQUENCY OF h!ODE 

Ih'GER*2 I 
ADEXING PARAhlETER 

I h J G E R * 4  

REAL*8 LOWER-BOUhD 
LOWER FREQUENCY IN BANDWIDTH 

REAL*8 SORTMAT( loo00) 
MATRIX OF FREQUENCY VALUES 

REAL*8 UPPER-BOUND 
UPPER FREQUENCY IN BANDWIDTH 

REAL*8 X-LENGTH, Y-LENGTH, 2-LENGTH,a,b,l,m 
ROOM DIhlENSIONS 

C 

C 

C 

C 
C 

c 
C 
C 
C 

C 

C 
C 
C 

C 

real*8 fintegral(10000) 
vector of intepal of modd function 
of flexible uall over the flex portion 

INTEGER*2 XhilODE,Yh.IODE,ZMODE 
IhTDEXING PARAMETER FOR MODES 

A'TEGER*2 XMODEW,YMODEhlAX,Zh4ODEhlAX 
MAXIMUM MODE ADEX 

IA'TI'IALIZE SORTMAT TO ZERO, INTEGRAL-WEIGHT TO 2 

REAL*8 XW0,YWO 
COORDINATES OF FLEX PART OF WALL 

REAL*8 AW,BW 
DIh4ENSIONS OF FLEX PART OF WALL 

real*8 fl,  f2, f3, f4, f5, f6, fl, fX, f9 
separate terms in integral 
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C 

C 

C 

C 

C 
C 
C 

C 

pi = 3.1415925 
a = x-length 
b = y-length 
XO = AX'O/A 
YO = Ywo/B 
AWA = AW/A 
BN'B = BW/B 

DO1 = 1,looOO 
SORThlAT(I) = 0.0 
IATEGRAL-WEIGHT(I) = 2 

EhDDO 

FREQ-COUNT = 0 
ERROR-CODE = .TRUE. 

CEhTER-FREQ = DSQRT(L0WER-BOUh73 * UPPER-BOUAD) 
BAhBWDTH = UPPER-BOUATD - LON'ERBOUh?> 

CALCULAE hlAXThlUh1 hilODE ATDICIES FOR SPECIFIED BAhD 

XMODEhilAX = AT(UPPER-BOUhTD * 2.0 * X-LENGTH / C ) + 2 
YMODEhW = IhT(UPPER-BOUhD * 2.0 * Y-LENGTH / C ) + 2 
ZMODEhlAX = IAT(UPPER-BOUhD * 2.0 * 2-LENGTH / C ) + 2 

DO XhlODE = 0, XhlODEMAX 
DO YhlODE = 0, YMODEhW 

DO ZhIODE = 0, ZMODEhlAX 
if (freq-count.gt.10000) go to 200 

FREQUENCY = .5 * C * DSQRT((XMODE/X-LENGTH)**2.0 
Br + (YM ODE/Y-LENGTH)* *2.0 
Br + (ZMODEE-LENGTH)* *2.0) 

IF ((FREQUENCY .GE. LOWER-BOUND ) .AAD. 
& (FREQUENCY .LE. UPPER-BOUhTD)) THEN 

FREQCOUNT = FREQ-COUhT + 1 
SORThlAT(FREQC0UhT) = FREQUENCY 
IF (ZhlODE .EQ. 0) THEN 

ELSE 

EhDIF 

XNTEGRAL-WEIGHT(FREQ-COUhT) = 1 

COhrllhWE 
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C for portion of wall flexible the following has been added: 
L = XhlODE * 2 * PI 
hl  = YhlODE * 2 * PI 

F1 = AW * BW 
C 

C 

if (xmode.eq.0) then 
f2 = AW * B W  
n = 0. 
go to 60 

endif 

60 if (ymode.eq.0) then 
f4 = AW * BW 
f5 = 0. 
go to 70 

endif 
C 

F4 = AW * (S/hf) * COS(h.I*YO) * SIN(hl*BU%) 
F5 = AW * (B/hl) * SIN(M*YO) * (COS(hl*BWB) - 1) 

C 
70 if ((xmode.eq.O).and.(ymde.eq.O)) then 

f6 = aw * bw 
€7 = 0. 
f8 = 0. 
f9 = 0. 
go to loo 

endif 

if (xmode.eq.0) then 
C 

f6 = f4 
€7 = f5 
f8 = 0. 
f9 = 0. 
go to 100 

endif 

if (ymode.eq.0) then 
C 

f6 = fz 
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n = 0. 
f8=n 
f9 = 0. 
go to loo 

endif 
C 
C 

F6 = (A/L) * (B/hl) * COS(L*XO) * COS@ 
* SIN(hl*BM’B) 

1 ,’O) * SIN(L*AWA) * 

F7 = (A/L) * (B/hl)  * COS(L*XO) * Sh’(hl*YO) * SIN(L*AWA) * 

F8 = (A/L) * (B/hl) * COS(hl*YO) * SIN(L*XO) * ShT(hll*B\VE3) * 

F9 = (a) * (B/hI) * SAT(L*XO) * SIN(hl*YO) * (COS(L*AWA) 

100 RhTEGRAL(fieq-count) = F1+ F2 + F3 + F4 + F5 + F6 + F7 
* + F8 + F9 

C 
c Now we need to divide by whole wall moving integral - 
c since original program was for whole wall moving. 

* (COS(hl”BWB) - 1) 

* (COS(L*AWA) - 1) 

* - 1) * (COS(hl*BM’B) - 1) 

C 

C 

C 

C 

C 

C 

C 

120 
C 

C 

fin tepid (freq-coun 1) = fin r e p 1  (freq-count)/(a * b) 

special consideration given to the case(s) where xmde, 
y m d e  are zero! 

if ((xmode.eq.O).and.O,mode.eq.O)) then 
fin t e p l  (frq-cou n t) = fin tegral (fieq-count ) * 2 5  
go to 120 

endif 

if ((xmode.eq.O).or.(ymode.eq.O)) then 
fin tegral(fieq-count) = fintegral(freq-count)*.50 
go to 120 

endif 

continue 

ELSE 
THE MODE IS NOT WITHIN THE DESIRED BAhD\I?DTH 

COh’TIhWE 
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Eh’DIF 
C 

EhDDO 
Eh’DDO 

Eh’DDO 
C 
C 

200 CALL 
~ ~ ~ ( C E ~ ~ R _ F R E Q . E Q - C O U A ~ , S  ORTI\IAT,I~TEGRAL-\VEIGHT, 

IF (FREQ-COUhT .GT. 0) THEN 

g: f i n t e p l ,  x-length,y-length, aw, bw, 
8: ChKTO-MU-RATIO) 

ELSE 

Eh’DIF 

RETURh’ 
EhD 

ERROR-CODE = .FALSE. 

C 
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USED FOR LOCAL ChWSPA?IALL\' AI'ERAGED AhM RATIO 
SUB ROUTLh'E hIODES (UPPERB OUA?),LOWER-B OUhTD, 
8: X-LENGTH,Y-LENGTH,Z-LENGTH,count, 
8: xw0, ywO, aw, bw, C,num-loc,restart, 
g: ChUTO-A hlA-RATI 0,ERROR-CODE, 
8: FREQ-COUAT) 

C 

c 
C of CARCF 

C 
C 
C 
C 

C 

this version is designed to be compatible with 6-24-87 version 

C 

CALCULATES NATURAL FREQUENCIES OF ROOM 
X-LENGTH BY Y-LENGTH BY Z-LENGTH 

integer count 
REAL* 8 

C 
C 
C 

C 
C 
C 

C 
C 
C 
C 
C 

C 
C 
C 
C 
C 
C 

C 
C 
C 
C 

REAL'8 

REAL* 8 

REAL*8 

LOG JCAL 

BAh'DWDTH 
DIFFERENCE BETWEEN UPPER AhTD 
LOWER FREQUENCY LIMITS 

C 
SPEED OF SOUhD 

CEhTER-FREQ 
CEhTER FREQUENCY OF BANDWIDTH 
DEFIhED AS SQUARE ROOT OF THE 
P R O D U n  OF THE UPPER AhD LOWER 
FREQUENCY BOUNDS 

Chk4-TO-AhIA-RATIO 
RATIO OF hEAN SQUARE RESPONSE OF 
CAVITY PRESSURE OBTAINED FROM 
CLASSICAL MODAL ANALYSIS TO THAT 
DERIVED FROM ASYMPTOTIC MODAL 
ANALYSIS 

ERROR-CODE 
.TRUE. RETURhTED IF MODES ARE FOUND 
WITHIN THE SPECIFIED BAhTDWDTH 
.FALSE. RETURnTED IF NO MODES 
ARE FOUhTD 
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C 

C COUhTS h'UhlBER OF ACOUSTICAL 
C hlODES Ih' SPECIFIED BAh'DWIDTH 
C 

IhTEGER*4 FREQCOUhT 

REAL*8 FREQUENCY 
C 
C 

C 
C 
C 
C 

C 
C 

GATLJRAL FREQUENCY OF MODE 

IhTEGER*2 1 
INDEXING PARAMETER 

REAL*8 LOWERBOUhD 
~ 

LOWER FREQUENCY IN BAhDWDTH 

C 
C 

REAL*8 UPPER-BOUhD 
C 
C 

C 
C 

UPPER FREQUENCY IN BAhTDWIDTH 

REAL*8 X-LENGTH, Y-LENGTH, Z-LENGTH,a,b,l,m,xO,yO,awa,bwb 

ROOhl DIhlENSIONS 

real*8 fmtegral 
C integral of modal function 
C 

C storage of fintegral 

C storage of weight 

of flexible w d l  over the flex portion 
real*8 flex-int(l0000) 

real*8 wt(loo00) 

C 

IhTEGER*2 XMODE,YMODE,ZhlODE 
C IhTDEXING PARAMETER FOR h4ODES 
C 

Ih'TEGER*2 XMODEhlAX,Yh4ODEW,ZhlODEMAX 
C 
C 

M I M U M  MODE INDEX 

C IhIITIALIZE SORThilAT TO ZERO, IhTEGRAL-WEIGHT TO 2 
0 
L 

REAL*8 XW0,YWO 
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C 

C 
C 
C 

f l ,  fz, f3, f4, f5, f6, f7, f8, fp 
C separate terms in integral 

C NOT SPATlALLY AVERAGED 
C 
C 

C 
C 

C READS FROM CAVITY.IN 

COORDA'ATES OF FLEX PART OF WALL 

DIhENSIONS OF FLJZX PART OF WALL 
REAL*8 AW,BW 

real*8 

C 

REAL*8 ARGX,ARGY,ARGZ 

INTEGER*2 lhTUT-uh?Tl 

Ih'TEGER*2 LOCATION 
C INDEXING PARAMETER 
C 

C INDEXING PARAMETER 
C 
C 
C 

A'TEGER*2 LOOP 

REAL*8 MODE( 1 ooo0) 
C MATRIX OF FREQUENCY VALUES 
C 

REAL*8 MODE-CONTRIB 
C 

REAL*8 MODE-SUM 

IhTTEGER*2 NUM-LOC 

Ih'TEGER*2 OUTPUT-UNIT], OLJTPUT-uh?T2,OUTPUT-uNIT3 

REAL*8 PI 

REAL*4 PLT-VAR 

REAL*8 SHAPE 

C 

C 

C 

C 

C 

C 
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C 

C SA'GLE PRECISION VARIABLES FOR 
C PLO'TTING 
C 
C 

C 

REAL*4 SPRAT,SPX,SPY,SPZ 

REAL*8 "EIGHT 

C 
real*8 xx(lOO),yy(lOO),zz(lO) 
REAL*8 X-LOC, Y-LOC, Z-LOC 

C POSITION IN CAVITY 
C 

integee2 restan 
C 

C 
(see main program CARCF for explanation) 

C INITIALIZE ARRAYS AND COUNTERS 
C DEFINE CONSTAhTS 
C 

PARAMETER (PI = 3.141592) 
output-unit1 = 55 

DO I = 1,2500 
C 

X,INDEx(I) = 0 
Y,LNDEX(J) = 0 
Z-AJDEX(I) = 0 
MODE0 = 0 

ENDDO 

write (a,*) numloc 
write (6,*) restart 
WRITE (6,*) NUM-LOC 
WRITE (6,*) XWO,YWO,AW,BW 
FREQCOUNT = 0 

OPEN(UNIT=52,ERR=l000,STATUS='OLD',FILE="locations.in") 

C 

C 

C 
C 
C 

a = x-length 
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C 
C 

C 

C 
C 
C 

C 
C 

b = y-length 
X’O = X\VO/A 
YO = IWO/B 
AWA = AW/A 
BMB = BW/B 

ERROR-CODE = .TRUE. 

CEhTER-FREQ = DSQRT(LOWER-BOUhD * UPPER-BOUhD) 
BAhDN’IDTH = UPPER-BOUhD - LON‘ERBOUhD 

CALCULATE hilAXlhmj MODE rnmicnzs FOR SPECIFIED B A ~ D  

XhlODEhlAX = A,’(UPPER-BOUhD * 2.0 * X-LENGTH 1 C ) + 2 
YMODEMAX = IhPT(UPPER-BOUND * 2.0 * Y-LENGTH / C ) + 2 
ZMODEMAX = A?(UPPER-BOUAD * 2.0 * Z-LENGTH I C ) + 2 

C 

C 

DO XMODE = 0, XhlODEMAX 
DO YhlODE = 0, Yh lODEhW 

DO ZMODE = 0, ZMODEhUX 
FREQUENCY = .5 * C * DSQRT((XMODE/X_LENGTH)**2.0 

& + (YhIODE/Y-LENGTH)**2.0 
8: + (ZMODEE-LENGTH)**2.0) 

IF ((FREQUENCY .GE. LOWER-BOUND ) .AND. 
8: (FREQUENCY .LE. UPPER-BOUhD)) THEN 

FREQ-COUNT = FREQCOUNT + 1 
MODE(FREQ-COUhT) = FREQUENCY 
X-IhDEX(FREQ-COUNT) = XNODE 
Y-IhDEX(FREQ-COUNT) = YMODE 
ZJhDEX(FREQC0UNT) = ZMODE 

ELSE 
TKE MODE IS NOT WITHIN THE DESIRED BAh’DMTDTH 

CONTINWE 
EhDIF 

EhDDO 
EhDDO 

ENDDO 
C 
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if (restarteq. 1) then 
do j=1 ,freq-count 

enddo 
read(53,*) u't(i), flexjnt(i), mode(j) 

endif 
C 

C 
C 

C 

C B :  FILE="SPOTS .DAT") 

IF (FREQCOUhT .GT. 0) THEN 
OPEN (Uh?T=OUTPUT-Uh?TI ,ERR= 10 I 0,STATU S='h'EW', 

M"E(OUTPUT-UhTT1 ,I 00) X-LENGTH,Y-LENGTH,Z-LENGTH 
WRITE( OUTPUT-UA?T 1.1 0) 
~ ~ ( O U T P U T - U h ' T T l  , I IO) CEhTER_FREQ,BAhQWDTH 

WRITE(OUTPUT~un?Tl,115) FREQCOUhT 
WRITE( OUTPUT_Uh?Tl, 10) 

wRITE(oUTPUT_m~1, 10) 
~?uTE(OuTPUT_mTr1,10) 
~ m ( o u T P U T - U h ~ 1  , 120) 

~RITE(ouTPuT~m~1,10) 
MRITE(OUTPUT-Uh~TI1121) 

C 
WRITE(6,*) CEhTER-FREQ,BAh?>WIDTH 
WRITE(6,*)FREQCOUhTT 

C 

C OPEN(UI\?T=OUTPUT_UA~,ERR=lO3O,STATUS='hTEW', 
c &  FILE=TOhTOUR.PLT") 
C OPEN( UNIT=OUTPUT_UhTr3 ,ERR= 1 020,STATU S='h'E W' , 
c &  RLE="S URFACE.PLT') 
C 

DO LOCATION = 1 ,AW-LOC 

read(52,*) xx(location),yy(location),zz(location) 

x-loc = xxflocation) 
y-loc = yp0ocation) 
z loc  = zzflocation) 

if (count.eq.1) then 

endif 

MODE-SUM = 0.0 
DO LOOP = I ,  FREQCOUNT 

ARGX = FLOAT(X-ADEX(LO0P)) * PI * X-LOCKLENGTH 
ARGY = FLOAT(Y-A'DEX(LO0P)) * PI * Y-LOC/Y-LENGTH 
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ARGZ = FLOAT(ZJXDEX(LO0P)) * PI * Z-LOC/L_LENGTH 
SHAPE = DCOS(ARGX) * DCOS(ARGY) * DCOS(ARG2) 

need not do the rest of the calculations for every location 
once is enough! 

if ((location.gt.I).or.(restaneq.l)) go to 1210 
C 

8c 
& 

8c 
& 

& 
8c 

& 
gr 

& 
& 

& 
& 

& 
& 

IF ( (XJNDEX(L0OP) .hT. 0 ) .Ah?>. 
(Y-Ih?)EX(LOOP) .NE. 0 ) .Ah?). 
(Z-h’DEX(LOOP) .hT. 0 ) ) THEN 

ELSEIF ( (XJNDEX(L0OP) .NE. 0 ) .AND. 
(Y-ThTDEX(LOOP) .NE. 0 ) .Ah?). 
(Z-INDEX(LOOP) .EQ. 0 ) ) THEN 

ELSEIF ( (XJhDEX(L0OP) .NE. 0 ) .AND. 
(Y-h’DEX(LOOP) .EQ. 0 ) .Ah?>. 
(Z-h?EX(LOOP) .hE. 0 ) ) THEN 

“EIGHT = 16.0 

WEIGHT = 4.0 

WEIGHT = 8.0 
ELSEIF ( (X-hDEX(LOOP) .EQ. 0 ) .AND. 

(Y-h?)EX(LOOP) .NE. 0 ) .Ah?). 
(Z-INDEX(LO0P) .hT. 0 ) ) THEN 

WEIGHT = 8.0 
ELSEIF ( (XJNDEX(LO0P) .NE. 0 ) .AND. 

(Y-INDEX(LOOP) .EQ. 0 ) .AND. 
(Z-INDEX(LO0P) .EQ. 0 ) ) THEN 

WEIGHT = 2.0 
ELSEIF ( (X-INDEX(LO0P) .EQ. 0 ) .AND. 

(YJNDEX(LO0P) .NE. 0 ) .Ah?>. 
(Z-II\?)EX(LOOP) .EQ. 0 ) ) THEN 

WEIGHT = 2.0 
ELSEIF ( (X-h’DEX(LO0P) .EQ. 0 ) .Ah?). 

(YJhTDEX(L0OP) .EQ. 0 ) .Ah?). 
(Z-h?)EX(LOOP) .NE. 0 ) ) THEN 

WEIGHT = 4.0 
ELSEIF ( (X-INDEX(LO0P) .EQ. 0 ) .AND. 

(Y-II\DEX(LOOP) .EQ. 0 ) .AND. 
(Z-IhDEX(LO0P) .EQ. 0 ) ) THEN 

WEIGHT = 1.0 

WRITE(6,800) 
ELSE 
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Eh’DIF 
C 

C 

C for portion of wall flexible the following has been added: 
xmode = xjndex0oop) 
ymode = y-index0oop) 
L = XhIODE * 2 * PI 
hf = YMODE * 2 * PI 

F1= AW * BW 
C 

C 

if (xmode.eq.0) then 
f 2 = A W * B W  
n=o. 
go to 60 

endif 
C 

E2 = BW * ( A L )  * COS(L*XO) * SIN(L*AWA) 
F3 = BW * (a) * SIN(L*XO) * (COS(L*AWA) - 1 )  

C 

60 if 6mode.eq.O) then 
f4 = AW * B W  
f5 = 0. 
go to 70 

endif 
C 

. F4 = AW * (B/hf) * COS(hl*YO) * SIN(hi/*B\W) 

C 
F5 = AW * (B/hf) * Sn\r’(M*YO) * (COS(M*BWB) - 1) 

70 if ((xmode.eq.O).and.(ymode.eq.O)) then 
f6 = aw * bw 
f7 = 0. 
f8 = 0. 
f9 =o. 
go to 1005 

endif 

if (xmode.eq.0) then 
C 

f6 = f4 
f7 = f5 
f8 = 0. 
f9 = 0. 
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C 

C 

C 

C 
C 

C 

C 

1205 

go to 1035 
endif 

if O.mo3e.eq.O) then 
C 

16 = iz 
n = 0. 
B=f3 
f9 = 0. 
go to 1005 

endif 
C 

C 

F6 = (AL) * (B/hl) * COS(L*XO) * COS(M*YO) * SIN(L*AWA) * 

€7 = (AL) * ( B h l )  * COS(L*XO) * SIN(hl*YO) * SIN(L*AWA) * 

FS = ( A L )  * (BM) * COS(h4*YO) * SIN(L*XO) * SIN(hl*BN’B) * 

F9 = ( A L )  * (Bhl) * SIhT(L*XO) * SIN(hl*YO) * (COS(L*AWA) 

* SIN(hl*B\VB) 

* (COS(hl*B\I’B) - I )  

* (COS(L*AWA)- 1) 

* - 1) * (COS(hl*BWB) - 1) 
1005 FA‘TEGRAL= F1+ M + F3 + F4 + F5 + F6 + F7 

+F8 +F9 * 
C 
c Now we need to &vide by whole wall moving integral - 
c since original propam was for whole wall moving. 

fmtegral= fmtegral/(a*b) 

special consideration given to the case(s) where xmode, 
ymode are zero! 

if ((xmode.eq.O).and.(ymode.eq.O)) then 
fintegral= fmtegral*.25 
go to 1205 

endif 

if (( xmode. eq.O).or. (ymode .eq. 0)) then 
fintegral= fmtegral*.50 
go to 1205 

endif 

continue 
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C 
C 
c At this point fmtepal is now the ratio of 
c Flexible integal for the partial wall to 
c Flexible integral for the whole wall moving, 
c where a factor of 1/4 cosine(z-index*pi*dz-length) has 
c been factored out of both the top and bonom. 
C 
C 
1210 if ((restm.ne. I).and.(location.eq. 1)) then 

wt0oop) = weight 
flex-intooop) = fintegral 

c wite(54,*) wt(loop),flex-int(loop),mode(loop) 
endif 

C 
MODE-CONTRTB = SHAPE ** 2.0 * wt(loop)* 

& flex-intOoop)*(mode(loop)**(-3.0)) 
MODE-SUM = MODE-SUM + MODE-COhTTRIB 

Eh'DDO 
C 
C 

ChlA-TO-AMA-RATIO =OS *(CENTER-FREQ**3.0) * MODE-SUh4 / 

B: (FREQCOUhT* ((aw *bw)/(x-length* y-length))) 
M m ( O U T P u T ~ u N T 1 , 2 0 0 )  

X_LOC,Y-LOC~-LOC,CM-TO_AX.IA_RATIO 

C 
C SPX = x-LOC 
C SPY = Y-LOC 
C SPZ = z-LOC 

WRTTE(6,*) X-LOC,Y-LoC,Z-LOC,CMA-TO-AhM-RATIO 

C SPRAT = CMA-TO-AMA-RATIO 
C 
C 

C WRITE(OUTPuT'UNIT2,*) SPRAT 
C 
C 

C 

PLT-VAR = SQRT(SPZ**2.0 + SPY**2.0) 
WRITE( OUTPUT-UNIT~,*) PLT-VAR,S PRAT,S PX 

Eh'DDO 

ELSE 

E h D F  
WRlTE(OUTPuT~UNIT1,900) 
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C 
c CLOSE(OUTPUT_Uh?Tl) 
c CLOSE(OUTPUT_UATM) 
c CLOSE(OUTPLJT-UhTX'3) 
C 

C 

C 

N"TE(6,2000) 

GO TO 1100 

10 FORhlAT(2X,' ') 
100 FORMAT(ZX,'CAVlTY IS ',F8.3,' FT BY ',F8.3,' FT BY ',F8.3,' FT') 
1 10 FORXIAT(2X,'CEATER FREQUENCY: ',F9.2,' HZ, BAhDWDTH: ',F9.2, 

8: 'rn) 
115 FORhlAT(2X,'A'UhlBER OF MODES IN THIS BAhD: ',Is) 
120 FORMAT(4X.X LOCATION',3X,'Y LOCATION',3X,'Z LOCATION', 
& 7X,'ChlA TO AMA RATIO') 

12 1 
'1 & 7X,'---_----_----_- 

200 FORhllAT(3(5X,F8.4), 1OX.F I 5.6) 
300 FORhlZAT(2X,F10.6) 
800 FORhWT(2X,'PROBLEhl WXTH WEIGHT) 
900 FORMAT(2X,'NO MODES IN THIS BAND') 
1000 WRITE(6,lOol) 
1001 FORMAT(2X,'ERROR ENCOUh'TEREiD ACCESSING CAVITY.IN') 

1010 N'lUTE(6,lOll) 
101 1 FORhUT(2X,'ERROR ENCOUNTERED ACCESSING SPOTS.DAT) 

1020 WTE(6,1021) 
102 1 FORhlAT(2X,'ERROR ENCOUNTERED ACCESSING COhTOUR.DAT') 

1030 WRITE(6,1031) 
I03 1 FORMAT(2X,'ERROR ENCOUNTERED ACCESSING COAT0UR.PLT) 
1100 COhTDWE 

C 
2000 FORMAT(2X,'OUTPUT IN SPOTS.DAT,CONTOUR.PLT AND 

S URFA CE.PLT) 
C 

FORhMT(4X,'----------' ,3X,'----------' ,3X,'---------- ' 

GOTO 1100 

GOTO I100 

GOTO 1100 

return 
EA' 
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C 
C 

C 
C 

C 
C 

C 
C 

ROUTIh‘E TO FIND UPPER AhD LOWER FREQUENCIES A h D  BAh’D\’i’IDTH 

FOR SPECIFIED CEhTER FREQUENCY 

REAL*8 BAh’DWIDTH 
REAL*8 CEhTER-FREQ 
REAL*8 UPPER-FREQ 
REAL*8 LOWER-FREQ 
IhTEGER*4 ADEX 

8: 

BANDWIDTH = 100. + FLOAT(ADEX) * 100.0 
UPPER-FREQ = .5 * (BAhDWIDTH + DSQRT( (BAhDWIDTH**2.0) 

LOM‘ER-FREQ = UPPER-FREQ - BAhDN’IDTH 
+ 4.0 * CENTER-FREQ ** 2.0)) 

RETURN 
Eh?) 
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IATEGRATION USED TO CALCULATE THE NON-DIhlENSIONAL PRESSURE 
RATIO FOR THE 1-DIhlENSIONAL CASE 

integer numratio 
real fbfcratio, kcx(lOl), press(4,lOl) 
write( * ,999) 

read(*,*) endkcx 
deltakcx=endkcx/100 
open(52, file="data") 
read(52,*) numratio 
do i=l,numratio 
read(52,*) fbfcratio 

999 format(2x,'enter endkcx') 

fubyfc=.S* (fbfcratio+sqrt( (fbfcratio**2)+4)) 
flbyfc=.S*(-fbfcratio+sqn((fbfcratio* *2)+4)) 
b=l/(fbfcratio*sqn((fbfcratio* *2)+4)) 
kcx( l)=O. 

do j=l,lOO 
thetafl =(kcx(j) *2 * fl byfc) 
thetafu=(kcx(j)*2*fubyfc) 
c = (cos(thetafl))/((flbyfc)**2) 
d = (cos(thetafu))/((fubyfc)**2) 
e = (2*kcx(j)*sin(thetafu))/(fubyfc) 
f = (2*kcx(j)*sin(thetafl))/(flbyfc) 
g = (4 *kcx(j)*kcx(j) *ci(thetafl)) 
h = (4*kcx(j)*kcx~)*ci(thetafu)) 

C 

if(kcx(j).eq.O) write(* ,*) c,d,e,f,g, h, b 
C 

press(i,j) = 1 + b*(c-d+e-f+g-h) 
if (kcx(i).eq.O) write(*,*) press(i,j) 

kcx(j+ 1 )=kcx(j)+deltakcx 
end do 

C 

C 

end do 

open (unit=53,file="output") 
write(53'111) 
do i=1,100 

C 

If(i.eq. 1) write(*,*) press(i,l) 
wite(53,llO) kcx(i),(press(j,i) j= 1 ,numratio) 
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If(i.eq.1) write(*,*) press(i,l) 

fonn at (3 x, 1 pe 1 3.6,3 x ,4 (( 1 pe 1 3.6),3x)) 
end do 

1 1 0 
1 1 1 fonnat (8x,'kcx',l lx,'ratiol ',lOx,'ratio2',10x,'ratio3', 1 Ox,'ratid') 

C 

C 

C 

C 

C 

C 

C 

end 

Function ci(x) 
Real x, numerator, denominator, f, g 

if (x.ge.1) then 
a1 = 38.027264 
a2 = 265.187033 
a3 = 335.677320 
a4 = 38.102495 
bl = 40.021433 
b2 = 322.62491 1 
b3 = 570.236280 
b4 = 157.105423 

numerator = x**8 + al*(x**6) + a2*(x**3) + a3*(x**2) + a4 
denominator = x**8 + bl*(x**6) + b2*(x**4) + b3*(x**2) + b4 

f = (numerator)/(denominator*x) 

a1 = 42.242855 
a2 = 302.757865 
a3 = 352.018498 
a4 = 21.821899 
b3 = 48.196927 
b2 = 482.485984 
b3 = 11 14.978885 
b4 = 449.690326 

numerator = x**8 + al*(x**6) + a2*(x**4) + a3*(x**2) + a4 
denominator = x**8 + bl*(x**6) + b2*(x**4) +b3*(x**2) + b4 

g = (numerator)/(denominator*x*x) 

ci = f*sin(x) - g*cos(x) 
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elseif (x.gt.0) then 
C 

sum = -(x**2)/4 + (x**4)/96. - (x**6)/4320. + (x**8)/322560. 

ci = S77215665 + log(x) + sum 
6: - (~**10)/36288000. 

C 

else 
C 

ci = 0. 
endif 
return 
end 

C 
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