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FOREWORD

The paper entitled "General Equations for the Motions of Ice

Crystals and Water Drops in Gravitational and Electric Fields" has

been submitted for publication in Annales Geophysicae.

AVANT-PROPOS

L'article intituld "General Equations for the notions of Ice

Crystals and Water Drops in Gravitational and Electric Fields" a dtd

soumis pour publication dans Annales Geophysicae.

VOORWOORD

Net artikel "General Equations for the Notions of Ice Crystals

and Water Drops in Gravitational and Electric Fields" word voorgelegd

ter publikatie in Annales Geophysicae.

VORWORT

Der Artikei "General Equations for the Motions of Ice Crystals

and Water Drops in Gravitational and Electric Fields" wurde

vorgestellt zur Publikation in Annales Geophysicae.

r



^	 4

*	 y

GENERAL EQUATIONS FOR THE MOTIONS OF ICE CRYSTALS AND WATER DROPS IN

GRAVITATIONAL AND ELECTRIC FIELDS

by

John S. Nisbet

Communications and Space Sciences Laboratory, Penn State University,

316 EEE, University Park, Pa 16802, USA, Presently at the Institut

d'Adronomie Spatiale de Belgique, Ave Circulaire 3, 1180 Bruxelles,

Belgique, and l'Universitd Paul Sabatier, Toulouse, France.

ABSTRACT

The technique of fitting with asymptotic functions has been used to

develop simple equations relating the forces for a variety of types

of ice crystals and water drops and droplets in terms of the Davies,

Bond and Knudsen numbers to the Reynolds numbers and hence to the

velocities. Equations are also given, in a common format suitable

for incorporation in computer models, of the sedimentation velocity

and mobility as functions of the atmospheric pressure level and an

appropriate length parameter for each particle type,

RESUME

La technique d 1 aJustement & l'aide de functions asymptotiques a

k dtd utilisde pour ddduire des dquations simples .reliant les forces au

nombre de Reynolds done aux vitesses pour plusieurs types de cristaux

de glace, des gouttes et des gouttelettes d'eau en termes des nombres

de Davies, Bond, et Knudsen. Des dquations de la vitesse de

sedimentation et de la mobilitd en fonction de la pression

atmosphdrique et dune dimension caractdristique pour chaque type de

particule sont dgalement donndes dans un format utile pour

l'incorporation dans des codes numdrique.s.
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SAMENVATTINS

De aanpassingstechniek met behulp van asympto.tische functies

werd gebruikt om eenvoudige vergelij kingen of to leiden dire een

r	 verband leggen tussen de krachten voor een aantal types

iJskristallen, waterdruppels en druppeltjes in termen van de Davies,

Bond, en Knudsen getallen tot de Reynolds getallen en daarom tot de

snelheden. Vergelijkingen werden eveneens gegeven, in een algemeen

formaat geschikt om opgenomen to worden in computer modellen, van de

sedimentatiesnelheid en beweegli,ikheid in functie van de

atmosferische druk en een geschikte lengte-parameter voor elk soort

deeltde.

ZUSAMMENFASSUNG

Die Anpassu.ngstechnik mit der Hilfe von asymptotischer

Funktionen wurde benutzt um Vergleichunggen ab zu leiten, die einen

Zussammenhang machen awischen den Kraften fair mehrere Typen

Eiskristallen, Wassertropfen and Wassertropfchen each deco Wortlaut

der Davies, Bond and Knudsen Zahlen, and der Reynolds Zahlen, and

folglich der Geschwindigkeiten. Vergleichungen sind such gegeben, in

einem geeigneten Format fur numerische Modellen, der

Absetsgeschwindigkeit and der Beweglichkeit wie Funktionen des

atmospharischen Druckes and ein geeignete Langenparamt.ter fair jede

Partikel.
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I. INTRODUCTION

The motions of hydrometeors in the gravity and electric fields

of a thundercicuti are of prime importance: in understanding the

generation, neutralization, accretion and transport processes, At

the upper end of the mass spectrum are the hail and graupel particles

with sizes of the order mm to cm, while at the lower end cloud

conductivities are controlled by cloud droplets as small as a few

microns in diameter. Because gravitational forces are proportional

to the volume while the electrical forces may be more closely

proportional to the surface area the size spectrum of interest when

electrification is involved generally extends below that which must

be considered when all the particles are neutral.

For several processes it is the differences in velocities

between different types and sizes of particles that are critical.

Currents are produced when relative motion occurs between charged

particles of opposite polarities. It is upon the differences in

velocities that the collision .rates depend which control charge

transfer and accretion for example. Electrical forces are

particularly important in controlling collisions between charged

particles. Charge build up occurs wherever there is a divergence in

the current density and so factors such as the altitude gradient of

the velocities are important.

The implications of transport to, for example, mass fluxes,

current densities, or collision rates depend on integrals over the

range of types and sizes of particles present and so it is necessary

to have statistical parameters that can be used for such

calculations.

The number of different types and sizes of particles that needs

to be considered in a cloud electrification model can be large and so

it becomes important to have reasonably efficient subroutines for the

calculation of the transport properties. In particular it is

advisable not to have to check, the force for example, before

choosing an appropriate formula for a calculation. The development

of such equations is the aim of the present study.
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2, GENERAL RELATIONS

x

The momentum continuity equation may be written,

F n -m(dU/dt+9)+q E 	 -D
	

(1)

where,

0 is the drag force, (N)

m is the mass of the particle, (kg)

U is the particle velocity, (m sr1)

t is the time, (s)

g is the gravitational acceleration (m s"2)

q is the charge on the particle, (C)

and	 E is the electric field. (V/m)

The drag force on solid particles is a function of the relative

velocity and the density and viscosity of the surrounding air.

It is convenient to work in dimensionless parameters. The

parameter, which is conventionally used, related to the force is the

Davies or Best number, Davies [1945], Best [1950],

ND =(8p/x72)F (2)

(3)

where	 n is the dynamic viscosity of air

p is the air density

The Reynolds number is,

NR-(pd/n)(U-Ua)

where	 U is the particle velocity

Ua is the air velocity

and	 d is the particle diameter

(kg/m s)

( k9 m-3)

(.m/s)

(m/s)

(m)

The mean free path at cloud altitudes is of the order of 10 -7 m

and for cloud particles smaller than about 10 -5 m the drag force

becomes a function of the ratio of the mean free path to the particle

diameter, the Knudsen number.
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where 1 is the mean free path

The force on a particle can be calculated from the electric

field strength and particle mass and charge. The calculation of the

velocities of solid particles thus involves determining the

functional relation of the Davies and Knudsen numbers to the Reynolds

number.

2.1. SPHERICAL PARTICLES

Let us first examine the drag forces on spherical particles.

The Reynolds number is related to the Davies number by the relation,

NR	 [ ND / Cd ] 1/2	 (5)

where Cd is the drag coefficient.

Terminal fall velocities for large graupel and hail have been

given by Bilham and Relf [1937], List [1959], Macklin and Ludlam

[1961], Auer [1972a] and Roos [1972]. In the range of Reynolds

numbers between 1000 and 5000, corresponding to particles in the size

range from about i to 5 mm depending on the altitude and particle

density, the drag coefficient Cd is not greatly dependent on Reynolds

number and the relative velocity of the particle is given by,

U - Ua - [ 8 F / ( X P Cd )] 1/2 / d	 (m/ s )	 (6)

For the range of Reynolds numbers between 10 -6 and 10-2

corresponding to particle diameters in the range from 10 -6 m to

2 10-5 the flow is laminar and the Knudsen number lies between 0.003

and 0.015 over the range of densities normally encountered in clouds.

Drag forces on spherical particles in this regime have been treated

by Knudsen and Weber [1911], Epstein [1924], Davies [1945], Beard

[1976], and others.

The drag force in this region is given by first-order

correction to the Stokes equation,
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NR s

.

ND ( 1 + 2.5 Nk ) / 24	 (7)

In this range of Reynolds numbers the relative velocity of the

particle is given by,

u - ua. F ( 1 + 2 .51/d)/(3xnd) (m/s)	 (8)

The range of Reynolds numbers between these two regimes is of
considerable importance because it corresponds to diameters between 2

10 m and 10'3 m an; includes the major part of the precipitation
particles in the cloud. It is in this region however, that the flow

changes from laminar to turbulent and the relation between the drag

force and the velocity changes markedly. At Reynolds numbers below

10 the relative velocity is proportional to the Davies number and at
Reynolds numbers above 1000 proportional to the square root of the

Davies number. It is thus apparent that the drag coefficient and its

altitude variation are both functions of the Reynolds number in this

region: Theory as well as sea level measurements are thus necessary

to obtain altitude dependant drag coefficients.

LeClair et al. (1970] have presented equations for the drag

coefficient in terms of the Reynolds number for 0.01 < NR < 20, Beard
and Pruppacher [1969] for 20 < N R < 258, and Perry [1950] for 258 <
N R < 5000. Such equations are difficult to use when it is desired to
calculate the velocity from the force.

It has been common following Davies [1945] to make empirical

polynomial fits to the relationship of the logarithm of the Davies

number to the logarithm of the Reynolds number. This technique has

been used, for example, by Heymsfield [1972] for a variety of types

of ice crystals and by Beard [1976] for cloud and precipitation

drops. The method provides good fits to the sedimentation velocities

providing the range of Reynolds numbers is not too large, however,

the coefficients in the equations for adjacent ranges differ

considerably and the fits using higher order polynomials deteriorate

very rapidly outside their range. These problems are aggravated when

electric forces are considered because the Reynolds number is no

longer a unique function of the particle diameter so that checks have

to be put into computer programs to ensure that the correct formula

is used. The fluctuations in the first derivative of the

relationship between the Reynolds number and the Davies number appear

06
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to be of the order of 16% over the range from 10 to 1000 in Reynolds

number due to the form of the function used for the fit: alone. The

calculated mobilities depend on these derivitaves. Moreover, though
the formulas are continuous for the Reynolds number at the
boundaries, they are not for the first derivative, and so

discontinuities are introduced in the mobilities between ranges,
Abraham (1970] presented a model of a blunt body passing

through a viscous medium based on boundary layer theory which results
in a relation batween the drag coefficient and the Reynolds number

that agrees well with experiment over a wide range of Reynolds
numbers,

Cd - 
CA ( Mo -0 5 + NR" 0.5 )2	 (g)

Cd from equation (9) when used in equation (5) provides an

asymptotic fit to the function in equation (7) after applying the

Knudsen number correction term. It also provides good agreement with

relations given by LeClair at Al. (1970); Beard and Pruppacher

(1969],and Perry [1950]. It is apparent that, despite the

complexities of the transitions that occur in the flow

patterns over tW s very extensive range of Reynolds numbers, the

Abraham relation provides good agreement with empirical relationships

expressed in polynomial expressions each applicable to a much more

limited range. The Abraham (1970] relation is not convenient to use

to calculate velocities from forces because it expresses the Davies

number in terms of the Reynolds number and not vice versa. It did

indicate, however, that the technique of using asymptotic matching

functions might provide a simple relation of the Reynolds number to

the Davies number in which the coefficients were related to physical

parameters.

It is apparent that a function of the form,

N R - ( 1 + 2.5 N K ) / ( A ND -1 + Fm + C ND-0.5 )	 (10)

would provide an asymptotic fit to equations (5) and (7) as N D tends

to zero and infinity provided the matching function F m is chosen

appropriately. A suitable form for FM is giver by a series of terms

of the form

07
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Fm - E ( ai Non, ) 	 -1 < n i < -0.5	 (11'

For most atmospheric modeling purposes a single term with n - -0,75

appears to give an adequate fit,
By fitting to the relations given by LeClair et al. (1910]. 	 for

0,01 < N R < 20, Beard and Pruppacher [19691 for 20< NB < 258, and by
Perry 119501 for 258 < NR < 5000 the following expression, was

obtained,

NR - (1+2,5 NK)/(bl No-1 +b2 No'0,75+b3 ND' 0.5) 	 (12)

where,

b1 - 21,786

b2 - 2,3836

b3 - 015590

From equation (2),

No - 8 P / n2 [ (g ap / 6 ) d 3 + E C  d2	(13)

where ep (kg/m3 ) is the difference between the particle and air

density

and Cq (C/m2 ) is the charge per unit area on the particle

From equation (3),

U - Ua-(n/ pd )NR
	

(14)

Using the effective collision diameter of mean air from the US

Standard Atmosphere [1976] in equation (4) gives,

NK - 2.33E-10 T / ( p d )	 (15)

Where T is the air temperature 	 (K)

and	 p is the atmospheric pressure 	 (bar)

Equations (12) to (15) above may be combined for the case of no

electric field to give the terminal fall velocity to be,

08
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U-Ua * (1+2.5"K)/ 13( ai ^":nci ddi psi nfi ) (m/s) 	(16)

The values for the coefficients in this expression are given in

Table l
TABLE 1

i	 ai ci di	 ei fi

1	 1.6656 -1.0 2	 0 1.0

2	 0.3466 -0.75 •1,25	 0.25 015

3	 0,1546 -0.5 -015	 0,5 010

Figure 1 shows a comparison between the sedimentation

velocities in the absence of an electric field calculated using

equation (16) with those given by the relation of Beard [19761 for

the range of diameters between 0.5 microns and 20 microns. Figure 2

is a similar comparison with the relations given by LeClair et a1,

[1970), Beard and Pruppacher [1969], and Perry [19501 from 20 microns

to 6 mm.

2.2 PLANE FORN CRYSTALS

Jayaweera and Cottis [ 19691 studied the relationship between

the force and the drag on circular and hexagonal plates over a range

of Davies numbers from about l to 10 4 . They concluded that for

plate-like forms the relationship between the Reynolds number and the

Davies number is almost independent of the ratio of the thickness t

to the width W. As was done with the spherical forms the data of

Jayaweera and Cottis [ 1969] were fitted by the expression,

NR - (1 + 2..5 NK)/(bl ND.l+b2 ND" 0.75 +b3 ND-0.5) 	(17)

which gave	 bl n 11.71

b2 - 3.654

b3 n 0.6586

where	 ND	 ( 8 p / e n2 ) F	 (18)
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of an electric field for spherical particles given by Equation (16)
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(1969), and Perry (19501, p - 1000 mb, Ap n 1000 kg/m3.
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Kajikawa [1971] and List and Schemenauer [1971] and Jayaweera [1972]

have given relations between the Davies and Revnolds numbers for

different shapes of plate-like ice crystals. List and 5chemenauer

[1971] have given an equation for the drag coefficient C d as a

function of the area of the crystal A C to the area of a circular disc

AD of the same width that allows equation (17) to be used for all

crystals of plane form.

This gives,

U - Ua	 1.34 NR q/(p W (1+ 0.96 AC/AD ) 0 ' 5 ) (m/s) (19)

As - ( AC/AD ) N W2 / 2 (m2) (20)

F - m g + As Cq E (N) (21)

Table 2 gives values for the ratio of the area of various plane form

crystals to the area of a circular disk and of the ratio of the

velocities for the same force F and width W from the data of List and

S.chamenauer [1971].

TABLE 2

CRYSTAL TYPE AC/AD UC-Ua/UD-Ua

Thick Plates 0.834 1.04

Hexagonal Plates 0.834 1.04

Sectorlike Branches 0.736 1.07

Broad Branches 0.473 1.18

Stellar Forms 0.277 1.24

Dendrites 0.182 1.29

Heymsfield [1972], Kajikawa [1972], Hobbs et al., [1974], and

Locatelli and Hobbs [1974] have made measurements of the dimensions

and masses for various types of plane crystals that can be used to

calculate general relations for transport velocities,

Magono and Lee [1966] have suggested a subjective

classification of snow crystals into eighty classes which has been

widely adopted. It is, however, useful to have a numerical

coordinate system in which the statistical properties appropriate to

transport of a group of crystals can be specified. It is desirable

a



to have a single parameter which characterizes the crystal size and

another which corresponds as far as possible to a given type of
crystal. Figure 3 shows measurements of the equivalent diameters of

the drops formed on melting plane form crystals measured by Kajikawa
[1972]. Superimposed on these data are lines given by the equations,

M W	 mo ( W / do ) N	 (kg)	 (22)

where	 mo - ( x Apo / 6 ) d03	 (kg)	 (73)

This expression tends to the mass of a sphere of density Apo as

the diameter tends to do. The: values used for d o and Apo are not

very critical as far as fitting the data in Figure 3 is concerned,
however, they do affect the values of N. A value of 10" 5

 m for do

and of 1000 (kg/m3 ,) for Apo have been adopted nere because they
appear to organize the data reasonably well for the thinner and

lighter crystals. Kumai [1961] found the sizes of microspherule

central nuclei of ice crystals varied from 5 
10"7 

to 8 10"
6 m. Auer

[1971] found the average size of frozen cloud droplet embryos of

planar ice crystals to be 1.1 10 -5 m and Auer [1972b] reported values
near 2.5 10 -" 5

 m. The value adopted appears to be reasonably

consistent with both these modes of nucleation. Heymsfield [1972]

presented data showing that measurements of the density of a variety
of plane form crystals tended to 1000 (kg /m3 ) as their diameters
decreased.

Table 3 gives values of N calculated from data given by a

number of investigators. It may be seen from an examination of the

data in Figure 3 that there is a large spread in the mass of crystals

of each form for any given width. If ice physics were constraining

crystal growth into a series of discretely different forms then a

distribution of probability as a function of N with a strong central

maximum would be expected for each type. Instead the distributions

appear to be quite uniform in each category suggesting a more or less

continuous range of crystal habits with the selection criteria

controlling the limiting values.

12
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Figure 3.	 Measurements of the equivalent diameters of drops formed

on melting plane form ice crystals measured by Kajikawa [1972]

compared with values given by Equation (22) for six values of N.
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CRYSTAL TYPE N

Thick Plates 2,4 -2,8

Hexagonal 2.2 -2,4

Plates

Thin Plates 2.1 -2.3

Plates with sector 2,1 -2.2

like Branches

Broad Branches 2.0 -2.1

Stellar Forms 1.9 -2.0

Dendrites 1.75-1.85

Stellar Forms 1.7 -2,1

a^

TABLE 3

REFERENCE

Kajikawa [1972]

Kajikawa [1972]

Bashkirova and Pershina [1964]

Kajikawa [197?]

Kajikawa [1972]

Kajikawa [1972]

Kajikawa [1972]

Bashkirova and Pershina [1964]

Equations (17) to (23) above may be combined for the case of no

electric field to give the terminal fall velocity to be,

U - 
u
a°	

1.34(1 + 2.5 NNO(m/s) (24)

(1+0196A0/AD)0.5)7,3( ai loci wdi 
Pei nfi)

The values for the coefficients in this expression are given in

Table 4

TABLE 4

i	 ai ci di ei fi

1	 8.953 11-5.0 N 1-	 N 0 1.0

2	 5.313 8-3.75N 1-0.75N 0.25 0.5

3	 1.813 5-2.5 N 1-0.5 N 0.5 0.0

Figure 4 shows the measured fall velocities of Kajikawa [1972)

compared with predictions based on equation (24,) for the range of

values of N found for plane type ice crystals.

There is much variation in estimates of fall velocities of

smaller sized ice crystals. One of the problems that arises with

fitting data with power series is that the fitted fall velocities

frequently become negative for small crystal widths. Yagi [1970]

presented data for the fall velocities of ice crystals whose mean

14
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size was 103 microns drifting in supercooled fog. Figure 5 shows

this statistical distribution of velocities compared with values

calculated from equation (24) for N . 2.3 assuming the statistical

size distribution measured by Yagi [1970].

2.3 COLUMNAR ICE CRYSTALS

Column, bullet, and needle ice crystals have drag coefficients

that depend on their l ,ingth to diameter ratio. Jayaweera and Cotti;s

[1969] made an extensive study of the drag on cylindrical ice

crystals. They gave experimental values for the relationship between

a modified Davies number X, and the Reynolds number for d/L - 1, 0.5,

and 0.1 based on measurements with plastic and aluminum cylinders.

For the limiting case as d/L tends to zero, theoretical values from

Jayaweera and Mason [1965] were used. Their results are well fitted

by the expression,

NR - (1 + 2.5 NK)/(bl X -1+ b2 X-0.75 + b3 X
-0.5 )	(25)

where	 bl - 3.684 + 13.59 d/L

b2 = 1.299 - 0.8678 d/L

b3 - 0.8311 -0.04911 d/L

X-( 2 P d /( L n 2 )	 ) F (26)

and	 NR - { p d / n ) ( U - Ua ) (27)

Values obtained from equation (25) for the relation of NR to X

are plotted in Figure 6 for four values of d/L. This relation was

used for the subsequent analysis of columnar ice crystals.

To calculate the force and the velocity it is necessary to have

relationships of the mass and surface area to the crystal length, L.

Nakaya and Terada [1935], Bashkirova and Pershina [1964], Ono [1969],

Auer and Veal [1970], Heymsfield [1972], Kajikawa [1972], Hobbs et

al. [1974], and Locatelli and Hobbs [1974] have studied the masses

and dimensions of columnar ice crystals. The density and length to

diameter ratio depend on the conditions under which the crystals have

grown. Within a given type of crystal general relationships between

16
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[1970] compared with values given by Equations (24) and (31) for his
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the length, the diameter and the density have been measured but there

appears to be considerable scatter.

As with the crystals of plane form it is desirable to have a

single parameter which characterizes the crystal size and another

which corresponds as far as possible to a given type of crystals 

Figure 7 shows measurements of the masses of various types of

crystals of columnar form measured by Bashkirova and Pershina [1964].

Superimposed on their data are lines given by the equations,

M	 .	 mo ( L / do ) N	 (k9)	 (28)

where	 mo	 - ( x Apo / 6 )
d03

(k9) (29)

d/L	 n ( 2 K Apo / 3 Ap) L'(N40do(3-N)/2 (30)

A value of 10' 5 m for do and of 1000 (kg/m3 ) for Apo have been
r.

adopted here because they appear to organize the data well for the

smaller diameter-to-length ratio columns in both mass and diameter.

They are the same values used for the planar ice crystals.	 No

appreciable improvement in fitting either mass or velocity data was

obtained by varying Apo/Ap from unity so this value was adopted in

equation	 (30).	 Figure 8 shows the statistical distributions of

values of the density exponent N in equation (28) calculated for

needle crystals, columns and bullets from the data of Bashkirova and

Pershina [1964], for columns for the data of Kajikawa [1972], and for

densely rimed columns for the data of Locatelli and Hobbs [1974].	 It

appears that, as in the case of planar crystals, columnar crystals in
w•

the atmosphere have a fairly continuous distribution in N and in

size.

Three parameters of columnar ice crystal's, the length, N, and

Cq , the charge per unit area of surface, are sufficient to calculate

the crystal	 velocities in gravitational 	 and electric fields using

equations (25) to (30)	 in terms of the atmospheric densities.	 The

statistical properties of these parameters can be related to the

transport properties of the ensemble of ice crystals.

E.y
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TABLE 5

COLUMN TYPE

Short Columns
Columns and

Bullets K<2

Solid Columns

Densely Rimed

Columns

Columns and

Bullets 0 2

Hollow Columns

Heavily Rimed

Needles
Rimed Needles

Unrimed Needles

N	 REFEREKCE

2.75-2.95	 Ka,)ikawa (1972)

2.5-2,85	 Bashkirova and Pershina [1964]

2.46-2,85	 KaJikawa [19721

2.20-2.55	 Locatelli and Hobbs (1974)

2.2 - 2,5	 Bashkirova and Pershina [1964)

2.0-2,55	 Kajikawa [1972)

2.0 . 2,2	 Bashkirova and Pershina [1964)

1.88 . 2.0	 Bashkirova and Pershina (1964)

1.76-1.82	 Bashkirova and Pershina [1964)

Equations (25) to (30) above may be combined for the case of no

electric field to give the terminal fall velocity to be,

U-Ua w (1 + 2.5 NK)/13( ai 10ci Ldi aei nfi )(m/ s ) (31)

The values for the coefficients in this expression are given in

Table 6

TABLE 6

i ai ci di ei fi

t	 1 3.586 11-5.0 N (1-N) 0 1

2 2.908 6-3.125N 0.625(1-N) 0.25 0.5

3 4.278 1-1.25 N 0.25	 (1-N) 0.5 0

4 3.600 4 - 2.5	 N - 0.5	 -0.5 N 0 1

5 -5.287 -2-0.625N -0.875-0.125N 0,25 0.5

6 -6,880 -8+1,25 N -1,25 +0.25 N 0.5 0

Figure 9 shows the measured fall velocities of Bashkirova and

Pershina [1964], Zikmunda and Vali [19721, and Locatelli and Hobbs

23

F
,F

m ^
P

J^l



0	 '	 '
r

••

,

r
Q	 ,	 '

!	

,

xx
r

A

x
c

x

o^

a;	 o+
^}y

 x C``
	 t

t	 '

x x^ox \

1 4x

hr/

•^ r w	 n.^

s

V 6

+ C 4 q x

P"
r.
d+

L

A

8 ^g
O

A
IA

•w
A r+

r N V

8 u
G

N A
A 4)

O P, a

8
0 .- L

v 'p ^tyry

O A ^

9

N
Q^ wS

8 a=+ ^ ^G
01

O
H

r C C
t^

G N d

N Q A

A iJ
O N

M	 N
N

b 0 10
R

N .- 4
O

0
O

♦
O

W
O

O

11 ,r L
16 .1L A

' pl N

s.

't !y0!	

24

d



t

r

[1974] compared with predictions based on Equation (31) for a range

of values of N at a pressure level of 680 mb.

The above treatment depends on the uniformity of the ice

crystals and the degree with which they correspond to the models used

by Jayaweera and Cottis 11969] so that dynamic similarity can be

applied, It is only applicable in the absence of oscillations,

rotations, or sideways slips. Crystals of columnar form are

particularly sensitive to deviation of the major axis from the

horizontal position, laboratory studies of the fall patterns of

unevenly loaded cylinders have shown that these effects can occur,

Jayaweera and Mason [1966], Podzimek [1968]. Zikmunda and Vali

[1972] have made an extensive study of the fall velocities of rimed

ice crystals in natural clouds. Their studies showed that the

velocity increases rapidly with increasing angle of deviation and

that crystal orientation rapidly became the controlling factor, The

terminal velocity increased by about 16% for g = 20 0 and by 300-400%

for o n 60-800 . While only a small fraction of the columns observed

had large deviations they concluded that as a general rule fall

velocities of heavily rimed columns increased by a factor of about

two over those of unrimed crystals. The scatter in the fall

velocities introduced by riming is evident in the data for 23 rimed

columnar crystals from Zikmunda and Vali [1972] shown in Figure 9.
As with other forms of ice crystals several of the published

empirical fits to observed velocity distributions give negative drag

coefficients for small size crystals. Some of the data for the fall

velocities of ice crystals whose mean size was 103 microns drifting

in supercooled fog presented by Yagi [1970] concerned those of

columnar form. Figure 5 also shows velocities calculated from

equation (31) for N - 2.3 assuming the statistical size distribution

measured by Yagi [1970] compared with measured velocities.

Assemblages of planar and columnar ice crystals are more

difficult to treat in a systematic manner than their constituent

particles, however, it is important to be able to estimate the effect

of aggregation on transport properties. Locatelli and Hobbs [1974]

have summarized the range of fall speeds and maximum dimensions for

aggregrates and their component particles. Figure 10 has been

adapted from Figure 27 of this paper with the addition of the

velocities calculated for planar crystals for a range of mass

exponents N and a pressure of 680 mb.
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2.4 CONICAL PARTICLES

List and Schemenauer [1971] have described the sequence of

growth by accretion from a dendritic snow crystal to a graupel, then

a small hail particle and finally to a hailstone as follows. A

dendritic crystal falling in a cloud of supercooled water droplets

catches them and becomes filled in, while the total thickness

increases. The drag coefficient drops to the disc-liAe equivalent.

Further accretion of cloud droplets will cause the conglomerate to

grow in the direction of the vertical axis and a transition is made

to the graupel stage with the drag coefficients behaving accordingly.

As the particle grows by accretion, heat transfer is less effective,

and the accreted water partially enters the ice framework of the

graupel, causing densification. This is the small hail stage where

tumbling may start; the drag coefficient changes accordingly and

eventually the particle falls as a roughly spherical hailstone.

List and Schemenauer [1971] have studied the fall motions of

plastic models of conical graupel. The Reynolds number is the sole

independent dimensionless parameter to characterize the flow as long

as the Navier-Stokes equation describing the situation does not

contain a local time derivative, [List 1966]. As soon as the

particles do not fall steadily, but oscillate, rotate or move

horizontally, then Stroudhal numbers have to be considered. List and

Schemenauer [1971] concluded that because such secondary motions were

either non-existent or rather small in a majority of their

experiments the effect of non-steadiness on their simulations was

negligible.

Values of drag coefficient for four conical models were

measured by List and Schemenauer [1971]. The four models were,

A a 90' cone-spherical sector,

B a 70' cone-spherical sector,

C a 90' cone-hemisphere,

A a 90' teardrop.

Values of drag coefficient for each of these forms measured when

released apex down were used to calculate values of Davies and

Reynolds numbers and these were then fitted to the expression,

NR = 1 /(bl ND_ 
1 +b2 ND_ 0.75+b3 ND_ 0.5)
	

(32)
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Values of these coefficients are listed in Table 7.

TABLE 7

TYPE H/d b1 b2 b3 kl k2

A 0.71 37.04 -4.453 1.148 0.219 2.05.

B 0.86 64.52 -7.519 1.162 0.288 2.23

C 0.97 51.88 -5.302 1.070 0.376 2.70

D 1.16 42.66 -2.080 0.8309 0.625 4.36

ND - ( 8 P /(W n2 ) ) F	 (33)

where	 F - k1 Ap g d3 + k2 Cq E d2	(34)

and	 NR -	 p d/ n ) ( U- U a )	 (35)

Values obtained from equation (32) for the relation of Cd to NR

are plotted in Figure 11 for the four conical forms for comparison

with the List and Schemenauer (1971] data.

Equations (32) to (35) above may be combined for the case of no

electric field to give the terminal fall velocity to be,

U-Ua = 1 / E3 ( a i Apci ddi Pei nfi ) (
m/s)	 (36)

The values for the coefficients in this expression are given in

Table 8

TABLE 8

A	 B	 C	 D SPHERE

i	 ai	 ai	 ai	 ai	 ai	 ci	 di	 ei	 fi

1 6.771 8.968 5.523 2.732 1.666 -1.00 -2.00 0.00 1.00

2 -1.245 -1.712 -0.988 -0.265 0.347 -0.75 -1.25 0.25 0.50

3 0.491 0.433 0.349 0.210 0.155 -0.50 -0.50 0.50 0.00
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2.5 MATER DROPS AND DROPLETS

Small water drops are spherical and the treatment given in

Section 2.1 is applicable. Water drops above a diameter of about 0.5

mm become nonspherical, and both the cross sectional area in the

horizontal plane and the drag coefficient are greater than for

spherical particles of the same mass and equivalent diameter. These

effects have been experimentally studied by Lenard [1904], Flower

[19281, Laws [1941], Gunn and Kinzer [1949], Blanchard [1950, 1955],

Kumai and Itagaki [1954], Magono [1954], Jones [1959], Pruppacher and

Beard [1970], and Pruppacher and Pitter [1971]. Empirical relations

for the velocity as a function of drop size of various ranges of

application and complexity have been given by Best [1950], Liu and

Orville [1969], Ogura and Takahashi [1973], Berry and Pranger [1974],

Beard [1976], Shiino [1983], and Liu [1986].

When fall velocities of only uncharged water drops are

concerned it may be adequate to use a unique analytic relationship

between d and the axial ratio of the drop b/a as was done by Beard

[1976]. The temperature dependence of the surface tension is not

very important and the pressure on the surface, because it is only

controlled by the mass of the water drop, remains constant with

height. This assumption is not valid for mobility calculations

b+t-C4iTe the force, and hence the drop shape, depend on the electric

f i C.1€1

Green [1975] has developed a simple analytic model which

assumes that the drop shape approximates that of an oblate spheroid

for all deformations and which determines the equilibrium shape by

considering only the hydrostatic and surface tension stresses. This

approximation appears to be justified by a more complete analysis by

Pitter and Pruppacher [Pruppacher and Klett; 1978, p315] which showed

that dynamic stresses cause only weak to moderate distortions in the

shape of an oblate spheroid. The aspect ratios and maximum diameters

given by Green [1975] agree well with the experimental results of

Pruppacher and Pitter [1971].

The analytic expression of Green [1975] may be written,

NBo - 4 ( a/b) 1/3 [(a/b) 2 - 2 (a/b)' /3 + 1 ]	 (36)

L 30
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where the Bond number, a nondimensional parameter relating the
pressure on the surface to the surface tension is given by,

NBo -6F/(itd a)
	

(37)

a/b - the ratio of the major diameter to the height

d - a2/3 b 1/3 is the equivalent drop diameter.

and	 v	 is the surface tension of water with respect to air.

Equation (36) is not in a convenient form for the calculation

of a/b from the Bond number. It may, however, be fitted by the

expression,

a/b = 1 + 0.1472 N Bo
0.8
	

(38)

Values of b/a calculated from equation (38) are shown in Figure

12 compared with experimental values of Pruppacher and Pitter [1971].

This function can be used to relate the drop shape to the force on

the particle.

Two effects occur due to the deformation of the shape of the

drops. The cross sectional area normal to the flow direction

increases and the drag coefficient increases, Maklin and Ludlam

[1961]. It is apparent, however, that large departures from a

spherical form do not take place until the drop diameter has reached

about 0.5 mm. By this time the Reynolds numbers are already large

enough that the ratio of the drag coefficients of spherical to

ellipsoidal particles is not greatly dependent on Reynolds number.

It thus appears that a simple relation can be used to relate the drag

coefficient to the value of a/b.

The relation given in equation (12) for spherical particles can

thus be used to relate the Davies number to the force and the effects

of drop deformation included by modifying the relation between the

calculated Reynolds number and the velocity.

NR - (1 + 2.5 NK)/(bl ND-142 ND
-0.75 +b3 ND-0.5 )	(39)

where,
	

b l - 21.786

b2 - 2.3836

b3 - 0.5590	
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ND- 8p / ►12 [ (9 AP/6)d
3 +E Cg d2]

and U - U a - ( n / p d ) NR (a/b)'0.75

with	 a/b - 1 + 0.1472 NBo0.8

where NB, - [ g Ap d 2 + 6 E Cq d]

(41)

(38)

(42)

Figure 13 shows the fall velocities for water drops given by

Equation (41) compared with the measurements of Gunn and Kinzer

[1949] and the empirical models of Liu and Orville [1969], Manton and
Cotton [1979], Shiino [1983], and Liu [1986]. The agreement between

equation (41) and the experimental results is quite satisfactory at

the larger drop sizes where the effects of drop shape become

important. Differences with the Gunn and Kinzer [1949] data are

evident for the smaller particles, however, Beard and Pruppacher

[1969] concluded that their results were in error in this region due

to evaporation. In this size range the drops are spherical and

equation (41) gives essentially the same results as equation (16)

which has been compared with the relations given by Beard [1976] for

the size range up to 20 micro m in Figure 1 and the relations of

LeClair et al. [1970], Beard and Pruppacher [1969], and perry [1950]

in Figure 2. Beard [1976] gives three relationships for water drop

velocities according to size range. His relationship for the size

range 19 micro m and 1.07 mm is essentially identical to those of

LeClair et al. [1970], Beard and Pruppacher [1969], and Perry [1950]

and between 1.07 mm and 7 mm is essentially identical to the Gunn and

Kinzer [1949] data. Equation (41) should thus give adequate values

for water drop velocities in gravitational and electric fields for

any atmospheric conditions over the size range from 0.5 micro m to 7

mm.

3. SEDIMENTATION VELOCITIES AND MOBILITIES

While the relations given in Section 2 are quite simple they

involve the calculation of the Davies numbers from the diameters,

densities, viscosities, and electric fields, and the velocities from

the Reynolds numbers, densities and viscosities. It is convenient to

have simple expressions for the sedimentation velocity and mobility
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in terms of the particle diameter, particle density, and the ambient

atmospheric pressure. Such relations are useful, for example, when

m3ki,tg estimates of the relative importance of electric fields,

crystal size or habit, The simplicity of the expressions can also

provide important savings in large computer programs.

Before using mobilities to relate the velocity to the electric

field for drop sized particles it is important to determine the

validity of the concept. For particles in the Stokes' drag regime

the velocity is proportional to the force and hence to the electric

field, For larger particles, however, the velocity is proportional

to the square root of the total force on the particle. The linearity

of the process thus depends on the fraction of the force provided by

the electric field. Takahashi [1973] has summarized measured values

of charge on cloud drops up through precipitation particles. These

data show that larger values of the charge per unit surface area in

thunderstorm clouds can be approximately represented by C  = 5 10 -7 C

M-2 . Gunn [19491 using aircraft measured mean maximum electric field

strengths of 1.3 10 5 V m'1 and on once an electric field of 3.4 10 5 V

m'1 ,lust before the aircraft was struck. Fitzgerald and Byers [1962]

measured fields as large as 2.3 10 5 V m" I , and Holitza and Kasemir

[1974] as large as 3 10 5 V m" 2 . Winn et al. [1974) measured peak

valuer in excess of 1 105 V m'1 10% of the time and once observed a

field as large as 4 10 5 V m" I . It would thus appear that a typical

large value for C  E, the product of the charge per unit surface area

and the electric field, might be about 5 10"2 
J 

m",3 with maximum

values as large as 2 10" 1 J m" 3 . Figure (14) shows the normalized

mobilities for spherical particles calculated using Equation (12) for

three values of Cq E. Figure (15) shows the mobilities for planar

ice crystals with N - 2 calculated using Equation (24) and Figure

(16) the values for columnar ice crystals using Equation (25) again

14

	

	
for the same three values of C  E. It would thus appear that for

reasonable values of C  E the use of estimates based on the

assumption of an electric field independent mobility should provide a

good estimate of the velocity components produced by the electric

fields. In cases where the electric and gravitational forces are

approximately equal and opposite the use of the expressions given in

Section 2 in terms of the Davies numbers is, of course, advisable.

i
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3.1 SPHERES

The expression for the velocity obtained by fitting equation
(16) is,

U	 Ua - 1 / E3 ( a i Apii pki dli ) (m/ s )	 (43)

The values for the coefficients in this expression are given in

Table 9

TABLE 9

i	 ai 3i ki	 li

1	 3.079E-5 -1.000 0.1522	 -2.00

2	 1.548E-3 -0.750 0.2790	 -1.25

3	 1.668E-1 -0.500 0.4057	 -0.50

and for the mobility is,

B - Cq / E3 ( b i epmi pni doi ) (m2/V s)	 (44)

The values for the coefficients in this expression are given in

Table 10

TABLE 10

i	 bi	 mi	 ni	 of

1	 3.440E-5	 0.0670	 0.1522	 -1.0

k	 2	 2.810E-3	 0.1606	 0.2790	 -0.25

3	 5.234E-1	 0.5051	 0.4057	 +0.5

where Ap is the particle density (kg/m3)

and	 p is the pressure (bar) , 1 N/m2 = 10 -5 bar

The US Standard Atmosphere [1976] was used to relate the

temperature and viscosity to the pressure. The calculated

sedimentation velocity of a 1 mm diameter particle with a density of

1000 kg/m3 at the 0.4 bar level changed by only 2% between using. the

30 N July and the 75 N January (Cold) US Standard Atmosphere [1966]

`
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Figure (17) shows values of the velocity as a function of the

particle diameter for six aifferent altitudes and Figure (18) shows

the corresponding mobility normalized by dividing by Cq . Figures

(19) and (20) show the corresponding relations at three values of

particle density.

3.2 PLANE FORM CRYSTALS

Using the relationships given in Section 2.2 equations can been

derived for the velocities and mobilities as functions of N, the

crystal width, and the pressure.

U - Ua - 1 ,/ E3 ( a i 10ji Wki pli )	 (m/s)	 (45)

The values for the coefficients in this expression are given in

Table 11

TABLE 11

i	 ai

1	 9.016

2	 1.291

3	 1.064

B=Cq/23(bi

The values for the coeff

Table 12

ii

6-4.905 N

6-3.655 M

5-2.405 N

10mi Wni poi

icients in th

ki	li

1 - N	 0.1522

1-0.75N	 0.2790

1-0.5 N	 0.4057

(m 2/V s)	 (46)

is expression are given in

TABLE 12

i	 bi mi ni of

1	 0.5944+192.2 N" 7.2 -4 -1.0 0.1522

2	 0.4421+151.4 N" 7.7 0 0 0.2790

3	 -585.0+0.9020 N+7.7 -2 +0.5 0.4057

Plots of the sedimentation velocities of plane form ice

crystals at the 400 mb level for a range of values of N are given in

Figure 21 and the corresponding normalized mobilities are shown in

Figure 22. Plots of the fall velocities at several different

40
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altitudes of plane form ice crystals with a density exponent N of 2.2

are shown in Figure 23 and the corresponding normalized mobilities 	 y

are shown in Figure 24.

3.3 COLUMNAR ICE CRYSTALS

,.^	 Using the relationships given in Section 23 equations can be

derived for the velocities and mobilities as functions of the

6	
pressure and crystal length as was done for the spherical ice

particles.

U - Ua = 1 / E6 ( a i IOP L
ki pli ) . (m/ s )	 (47)

The values for the coefficients in this expression are given in

Table 13

TABLE 13

i	 ai 3i ki I 

1	 6.630 6-5.0 N (1-N) 0.1522

2	 1.299 4-3.125N 0.625(1-N) 0.2790

3	 4.616 1-1.25 N 0.25	 (1-N) 0.4057

4	 6.656 -1-2.5	 N -0.5	 -0.5	 N 0.1522

5	 -2.361 -4-0.625N -0.875-0.125N 0.2790

6	 -7.423 -8+1.25 N -1.25 +0.25 N 0.4057

B = Cq / 13 ( b i 10mi Lni poi ) (m2/V s)	 (48)

The values for the coefficients in this expression are given in

Table 14

TABLE 14

i	 bi mi n i of

1	 -3.55+2.38 NO.5 -4 -1.0 0.1522

2	 7.09-4.13 NO ' 5 -2 -0.5 0.2790

3	 3.22+0.111 N5 0 +0.5 0.4057

Plots of the sedimentation velocities of columnar ice crystals

at the 400 mb level for a range of values of N are given in Figure 25
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and the corresponding normalized mobilities are shown in Figure 26.

Plots of the fall velocities at several different altitudes of

columnar ice crystals with a density exponent N of 2.2 are shown in

Figure 27 and the corresponding normalized mobilities are shown in

Figure 28,

3.4 CONICAL TORN PARTICLES

Using the relationships given in Section 2,4 equations for the

velocities and mobilities can be obtained for the conical form

particles as functons of the diameter, particle density and

atmospheric pressure.

The expression for the velocity obtained from Equation (32) is,

U - Ua - 1 / E3 ( a i Apji pki dli ) (m/ s )	 (49)

The values for the coefficients in this expression are given in

Table 15

TABLE 15

A. 90' CONE-SPHERICAL SEGMENT

i	 ai ji ki li

1	 1.252E-04 -1.00 0.1522 -2.00

2	 -5.561E-03 -0.75 0.2790 -1.25

3	 5.522E-01 -0.50 0.4507 -0.50

B. 70' CONE-SPHERICAL SEGMENT

1	 1.658E-04 -1.00 0.1522 -2.00

2	 -7.647E-03 -0.75 0.2790 -1.25

3	 4.870E-01 -0.50 0.4507 -0.50

C.	 90' CONE-HEMISPHERE

1	 1.021E-04 -1.00 0.1522 -2.00

2	 -4.413E-03 -0.75 0.2790 -1.25

3	 3.925E-01 -0.50 0.4507 -0.50

D. 90' TEARDROP

1	 5.051E-05 -1.00 0.1522 -2.00

2	 -1.184E-03 -0.75 0.2790 -1.25

3	 2.362E-01 -0.50 0.4507 -0.50

t
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and for the mom 1 i ty is,

B - Cq l E3 ( b i Apmi pni doi ) (m2/V s)	 (50)

The values for the coefficients in this expression are given in

Table 16

TABLE 16

A. 90' CONE-SPHERICAL SEGMENT

i bi	 mi ni of

1 1.331E-04	 0.0252 0.1473 -1.00

2 -1.122E-02	 0.2716 0.544 -0.25

3 1.256E+00	 0.4909 0.3980 0.50

B. 70' CONE-SPHERICAL SEGMENT

1 1.733E-04	 0.0595 0.1102 -1.00

2 -1.353E-02	 0.3155 0.2885 -0.25

3 1.286E+00	 015010 0.4019 0150

C. 90' CONE-HEMISPHERE

1 1.328E-04	 0.0365 0.1566 -1.00

2 -1.081E-02	 0.2844 0.2682 -0.25

3 1.150E+00	 0.4938 0.3990 0.50

D. 90' TEARDROP

1 7.417E-05	 0.0185 0.1517 -1.00

2 -3.915E-03	 0.2836 0.2591 -0.25

3 6.883E-01	 0.4955 0.4005 0.50

Plots of the sedimentation velocities of four conical forms of

particles at a pressure of 400 mb with a density of 800 kg/m 3 are

given in Figure 29 and the corresponding normalized mobilities are

shown in Figure 30.

3.5 WATER DROPS AND DROPLETS

Using the relationships given in Section 2.5 equations have

been derived for the velocities and mobilities of water drops as a

function of the equivalent diame 0r and the atmospheric pressure. It

was found necessary to use a four term series for each parameter
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because of the 'large changes in drag coefficient caused by drop
distortion for drops larger than about 0,5 mm.

U • Ua . 1 / E4 ( a i IOJi Lki pli ) (m/s)	 (61)

The values for the coefficients in this expression are given in
Table 17

TABLE 17

WW

i	 ai

1	 3.0666

2	 8,493

3	 5,462

4	 5.284

B-Cq/24 ( bi

The values for the coeff

Table 18

J 	 ki

-8	 -2.00

.6	 -1.25

-3	 -0,50

0	 +1.00

10mi dni poi )

icieots in this

I 
0,1323

0,2699

0.4137

0,4760

(m2/V s)	 (52)

expression are given in

TABLE 18

i	 bi mi ni of

1	 5.746 -5 -1,0 0.1522

2	 7,160 -3 -0.25 0.1604

3	 1.806 +1 +0,5 0,4199

4	 1.664 +4 +2.0 0,4733

Plots of the sedimentation velocities of water drops are given

in Figure 31 and the corresponding normalized mobilities are shown in

Figure 32,

4. CONCLUSIONS

Section 2 of this paper gives general equations for the

Reynolds number of a variety of types of ice crystals and water drops

in terms of the Davies, Bond, and Knudsen numbers, The equations are
in terms of the basic physical parameters of the system and are valid
for calculating velocities in gravitational and electric fields over
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a very wide range of sizes and atmospheric conditions. The equations

are asymptotically matched at the bottom and top of the size
Y

spectrum, a useful attribute when checking large computer codes.
A numerical system for specifying the dimensional properties of

ice crystals has been introduced as an adjunct to more subjective

classification schemes. This allows the observed dimensional

statistical properties of an ensemble of particles to be related to

the statistical properties dependent on transport, 	 {

It is important to realize that particles in the atmosphere

come in a broad spectrum of sizes, forms, and densities. Riming and
aggregation greatly increase the variability in the transport

velocities. When one is dealing with properties of the ensemble such

as the mass density, the conductivity, or the energy, for example, it

is necessary to integrate over statistical distributions because the

variation about a mean value is usually so large. The expressions in

this paper have been developed with this in mind.

Within the limits imposed by such variables as particle

density, which have large deviations, the accuracy of velocities

appear to be within about 10% over the entire range of sizes of

interest when compared with such data as are available. Particular

attention has been given to ensuring that at the lower end of the

size distribution values tend to reasonable limits. Because of the

behavior of the drag coefficient as size decreases negative

velocities are a common feature of empirical expressions for particle

velocities expressed as power series in a length parameter. Such an

artifact can have serious consequences in a computer code.

Conical form ice crystals present special problems for the
X

development of simple equations of motion because of the varying
a

.aspects they present and the oscillatory motions they exhibit.. The

relations given here should at least allow reasonable estimates to be

made of the range of variability likely to be produced by shape

variatioc,,)s

Section 3 gives simple equations in a uniform format for the

terminal velocity and normalized mobility for a wide range of sizes

and habits of ice srystals, and water drops in terms of the

atmospheric pressure and an appropriate size parameter. These

equations are simpler to use for many purposes and have comparable

accuracies and ranges of application with the more basic formulas

given in Section 2.
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APPENDIX

LIST OF SYMBOLS,

a/b - the ratio of the major diameter to the height of a water drop.

AC is the cross sectional area of a crystal in a plane normal to the
motion. (m2)

AD is the cross sectional area of a circular disc of diameter W,

AD - N W2 / 4 (m2)

As is the total surface area of a crystal 	 (W)

B is the mobility of a particle - AU / E	 (m V -1 s-2)

Cd is the drag coefficient..

Cd - No / NR 

Cq is the charge per unit area on a particle	 (C/m2)

Cq s q / As	 (C/m2)

d is the particle diameter	 (m)

For crystals of columnar form d is the length along the a-axis.

For water drops of ellipsoidal shape with major diameter a and height

b the equivalent drop diameter is,

d = a2/3 b 1/3	 (m)

do is the diameter of a sphere of mass mo and density Apo.

The value assumed here is, do - 1 10 -5	(m)

D is the drag force,	 (N)

E is the electric field.	 (V/m)

F is the force on the particle 	 (N)

g is the gravitational acceleration 	 (m s-2)

1 is the mean free path 	 (m)

Using the effective collision diameter of mean air from the US

Standard Atmosphere [1976] gives,

1 - 2.33E-10 T / p	 (m)

L is the length of a columnar form crystal along the c-axis. (m)

m is the mass of a particle,	 (kg)

mo - ( x Apo / 6 ) 
d03	

(kg)

with the values adopted here for Ap o and do

mo = 5.236 10 -13	 (kg)

N is the exponent of the density

for particles of plane form	 N - log(m d o )/log(mo W)

for particles of columnar form N - log(m d o )/log(mo L)

NBo the Bond number is a nondimensional parameter relating the

pressure on the surface to the surface tension,

NBo -6F/ (xda)

C
54



I ar

Np is the Davies or Best number, a nondimensional parameter related

to the force on the particle, ND * ( 8 p / X n2 ) F
NX is the Knudsen number, the ratio of the mean free path to the

particle diameter, NK - 1 / d

NR is the Reynolds number N R - ( p d / n) ( U - Ua )
p is the atmospheric pressure 	 (bar)

1 N/m2 * 10 -5 bar

q is the charge on the particle,	 (C)

t is the time,	 (s)

T is the air temperature 	 (K)

U is the particle velocity 	 (m/s)

U. is the air velocity	 (m/s)

W is the maximum width of a plane form crystal (m)

X is the modified Davies number for a column X - ( 2 p d /(L n 2 ) ) F

R is the dynamic viscosity of air 	 (kg/m s)

p is the air density 	 (kg m-3)

Ap is the difference between the particle and air density (kg/m3)

c is the surface tension of water against air	 (N/m)

o = 0.1165-1.492 10 -4 T for 265 K < T < 303 K	 (N/m)
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