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SUMMARY

This report presents the research performed at the Catholic
University of America on the research grant entitled: "Robust
Design of Distributed Controllers for Large Flexible Space
Structures," under the Grant No NAG 5-949, between June 30th, 1387
and June 30th, 1988.

Independent Modal Space Control (IMSC) method avoids control
spillover generated by conventional control schemes such as Coupled
Modal Control by decoupling the large flexible space structure into
independent subsystems of second order and controlling each mode
independently. The IMSC implementation requires that the number of
actuators be equal to that of modeled modes, which is in general
very huge. Consequently the number of required actuators is
unrealizable.

In this report two methods are proposed for the implementation
of IMSC with reduced number of actuators. In the first method, the
first m modes are optimized, leaving the last (n-m) modes
unchanged. In the second method, generalized inverse matrices are
employed to design the feedback controller so that the control
scheme is suboptimal with respect to IMSC. The performance of the
proposed methods is tested by performing computer simulation on a

simply supported beam. Simulation results will be presented and

,
discussed.
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1 NTRODUCTION

The development of the space shuttle has opened the
possibility of constructing very large space structures (LSS) in
space for space explorations. Two control problems for LSS are
attitude control and shape control. Complex missions impose many
stringent requirements on shape and attitude of the LSS, which lead
the control researchers to the concept of distributed active
control that places on the structure a number of sensor/actuator
pairs in oder to optimize the LSS performance and behavior. Active
control of LSS has been an active research area in the last several
“years [1]-[7]. A large number of control schemes has been
developed for LSS, but they represent one form or another of modal
control [1]. Two main modal control schemes are the Coupled Modal
Control (CMC) and the Independent Modal Space Control (IMSC). The
CMC employs an active controller that consists of a state estimator
and a state feedback while the IMSC decouples the LSS into n
independent subsystems according to n controlled modes and controls
each mode independently by means of a modal filter [5] and an
optimal controller. It is well-known that CMC causes control and
observation spillover, which together can destabilize the LSS [1].
IMSC eliminates control and observation spillover because each mode
is controlled independentiy. However the implementation of IMSC
requires that the actuator number be equal to the number of modeled
modes, which is usually very huge for the modeling of the LSS to be
faithful. This fact presents a fundamental limitation of IMSC for
the required number of actuators 1is impractical. The main

objective of this report is to propose methods impiementing the



IMSC w.ith a milder requirement of the actuator number. In
particular, we will develop two control schemes that uses a reduced
number of actuators to control all modeled modes in such a way that
the closed-loop system modes are as identical as possible to the
optimal modes specified by the IMSC scheme. In the first control
scheme, the first m modes are optimized, leaving the last (n-m)
modes unchanged. In the second scheme, generalized inverse
matrices are employed to design the feedback controller so that the
control scheme is suboptimal with respect to IMSC.

Matrix notations used in this report are given below:

Block dlag(M1 M2 ,...,Mn) = M1 0...0
... 0
2
0 0 M
8] = mxn null matrix
mxn
I = nxn identity matrix

2. SUMMARY OF INDEPENDENT MODAL SPACE CONTROL

A large flexible space structure can be described by the
following partial differential equations [4]:

M(P) 3%l(P,t)/at? + Lu(P,t) = f(P,t) (1)
that must be satisfied at every point P of the domain D, where
u(P,t) is the displacement of point P, L a linear differential
self-adjoint operator of order 2p, expressing the system stiffness,
M(P) the distributed mass, and F(P,t) the distributed control
force. The displacement u(P,t) 1is subject to the boundary

conditions:

TiU(P,t) = 0; i=12...,p - (2)



Awhere T{, i=1,2,...,p are linear differential operators of order
ranging from 0 to (2p-1).

The associated eigenvalue problem is formulated by:

Lor(P) = Ar M(P) Qr(P); r=1,2,... (3)
with the boundary conditions:

TiQr(P) = 0; i=12,...,p; r=1,2,... (4)
where Ar is the rth eigenvalue and Qr(P) is the eigenfunction
(sometimes also known as Mode Shape) associated with Ar. Suppose
the operator L is self-adjoint and positive definite, and all
etgenvalues are positive and are ordered so that A1<A2<.... Since
L is self-adjoint, the eigenfunctions are orthogonal and therefore

can be normalized such that:

IM¢rOsdD =5 (5)
D

"
>
(=]]

and IQL&dD S rys=1,2,.... (6)
D 8 r

where Brs is the Kronecker Delta.
Using the expression theorem [3], the solution of u(P,t) can
be obtained as:

©
u(P,t) = % ¢ (Plu (1) (7)
r=1

where ur(t) is the modal coordinate. Substituting (7) into (1),
multiplying both sides of the resulting expression by Qg
integrating over D and employing (5) and (6), we obtain
u (t) + u%;(t) =f (t); r=1,2,... (8)
r rr r
In (8), the mode (or natural frequency) o is defined as
w =() sr=1,2,.... (9)
r r

and the modal control force fﬁt) is computed by:



£ (t) = J’ & (P)F(P,t) dD (10)
r o "

In practice, the infinite series in (7) is truncated as

n
u(P,t) = % Qr(P) ur(t) (11)

r=1

where n is chosen to be sufficiently large so that u{(P,t) can be
represented with good fidelity. In this case we are dealing only
with the first n modes.

Eq. (8) can be transformed into state equation form as

follows:
x(t) = A x(t) + W(t) (12)

where x(t) = [x:(t) x;(t) ....x:(t)]T (13)
w(t) = [w:(t) w;(t) w:(t)]T (18)
A = Block diag(A1,Az,....,Ar) (15)
x (t) = [u(t) u(t)ze) (16)
r r ¢ r
W(t) = [0 f(t)el (17)
r r r

and A =10 it (18)
r - 0

r
for i=1,2,...,nNn.
REMARK 1:

At this point we should distinguish between the eigenvalues of
A and the eigenvalues of the flexible space structure. From (15)
and (18) the 2n eigenvalues of the matrix A that represent also the
open—-loop poles of the system consist of n pairs of imaginary

numbers: $u1j, $uzj,..,$uwy However according to (9), the

eigenvalues of the flexible space structure are given by uf, u;

uz. We also note that the rth mode ur is the magnitude of the
n



eigenvalues of Ar. In other words, a mode corresponds to 2
eigenvalues of one subsystem of the complete flexible system.
The system described by (12) consists of n subsystems given
by
x(t) =A x(t) +WI(t); r=1,2,...,n (19)
r r r r
The essence of IMSC is to choose wr(t) such that it depends

on xr(t) alone. Thus

W(t) =G x; r=12,,....,n (20)
r ror
g g
where G = ['" "j; r=1,2,....,n (21)
r 921 9

are (2x2) gain matrices.
Substituting (16) and (17) into (20), we find that Gr must

assume the following form:

0 o
G = : r=1,2,...,n (22)
gr21 gr22

For optimal control, g 1 and 9.2, should be determined such that

r2

the following quadratic cost function is minimized (linear regulator

probliem):
n
J=2 J (23)
r
r=1
T T
where J =J(x0x + WR W )dt (24)
r rer rrr
0

Qr and Rr are positive semidefinite and positive definite weighting
matrix, respectively, associated with the rth mode.
The form of Gr given by (22) requires that Rr assume the form

given below [7]:

Rr = [ 3 Er] or=1,2,...,n. (25)

Since wr depends on xr alone as seen in (20), J can be minimized by




minimizing each .Jr. independently. From optimal control theory
(15], the optimal solution for Gr is given by
G() =R K (t); r=1,2,....n (26)
r r r
where K (t) is the solution of Riccati equation:
K(t) =-KA -A"K +kR'-Q; r=1,2,...,n (27)
r rr r r rr r
with boundary condition Kr(T) = 0.

Selecting Qr= ui I2 and substituting (25) and (18) into (27)

yield
© 4.2 _ 2
K“- 2(..)'!(12 tr l(12 o (28)
. -1
K12 = ur(KZZ K“) + l‘r K12K22 (29)
¢ = - 1,2 2
K22 = 24‘.)'_K12 +r, Kzz o (30)

where K. (i, j = 1,2) are the elements of K, and K,. = K_..The
i) r 12 21

steady state solutions of (28)-(30) can be found by letting K" =

=K = = 2
K2 = K;;= 0. Introducing R (170)R _ where
* o O _
Rr—[o r:] r=12,...,n (31)

the steady-state solutions of (28)-(30) are obtained as

- N P RV
l(12 _ K21 ur( urrr +a’’) (32)
K_ = [~ - 202 r" %+ 20r" aVZIUZ (33)
22 r r rr rr
K = o [1/w2 + (270 r")ay2 - 2r'r? ot ]1/2 (34)
n" r r rr r r
2 _*2 .
where a = r " +pr . (35)
ror r

Substituting (32)-(34) into (26) yields

0 0

Gr “lo -b -[2uo (-0 + b) + r*'1]1/2 (38)
P r

where b = (u: + r:'1)1/2 (37)

From (17), (20), (22) and (35), we obtain

"-1] 172

f(t) = (w-blou(t) - [20 (-0 + b) +r u (t) (38)
r r rr r r r r




for r =1,2,...,n.

Substituting (38) into (8) yields

'-1] 172

u(t) + [2a(b-0) +r
r r r r

G(t) + obu(t) =0 (39)
r r r
From (39) the closed-loop poles (eigenvalues) of the system are

N3 72 (20 (bew ) + r 12 (40)

r

2 ==1/2 [2ur(b-ur) +r
forr=12,...,n.

The closed-loop system is stabilized since the poles given in
(40) are either complex conjugates with negative real parts, or
both real and negative. Figure 1 illustrates the concept of
Independent Modal Space Control in the state equation form. As we
observe, each mode is controlled independently by an actuator.
Therefore the number of required actuators must be equal to the
number of modes that is in general very high. This facts
represents a principal disadvantage of IMSC. On the other hand,

one main advantage of IMSC is the elimination of control and

observation spillover.

3. IMPLEMENTATION OF INDEPENDENT MODAL SPACE CONTROL

The IMSC scheme is represented by Equations (138) and (20} that
however are in the modal form. In order to implement the IMSC, a
finite number of discrete sensors and discrete actuators must be

employed.

DISCRETE SENSORS AND MODAL FILTER
Suppose there are 2p discrete sensors consisting of p
displacement sensors and p velocity sensors located at p locattons

P1'Pz""Pp' Using (11), the output of the displacement sensor and




velocity sensor can be expressed as

n
y.=uP,t) =2 @®(P)ul(t), 1 =1,2,...,p
! ! par 7T (41)

n
P ,t) = ®(P)u(t), 1=1,2,...,p
i roi r

r=1

and yi
If we define an output vector y(t) containing both
displacement and velocity sensor output as
_ . . .
y(t) = [y1 V. Y, ¥, Y, yn] , (42)

then using (41), we can write

y(t) = C x(t) (43)
where CcC= [cij], 1,J=1,2,...,p (44)
o (P) 0
and c.. = P (45)
H 0 uij(Pi)

In order to implement (20) modal state vector xr(t) must be
extracted from the sensor outputs. A device called Modal Filter
[S] interpolates the discrete sensor measurements to obtain
continuous displacement and velocity profiles G(P,t) and G(P,t) and
then computes the estimated modal displacement and velocity using

the expansion theorem stated by (7):

a(t) = J'M(P) ® (P) G(P,t)dD (46)
r 0 r
b'S ES
u(t) = IM(P) ® (P) u(P,t)dD (47)
r o r

forr=1,2, ..,n

DISCRETE ACTUATORS
Since it is impossible to control force at every point in the

domain D, the distributed control force is realized by m (m<n)

P

discrete point force actuators applied at m points P1. Pz’ oo P




in the domain D as given below

a
f(P,t) =% S(P—Pi) Fi(t) (48)

i=1

where 6(P—Pi) is a spatial Dirac Delta function and Fi(t) is the
force applied by the ith actuator on the point Pf
Now substituting (48) into (10) yields

[ ]
£ (t) = fq» (P) £ 5(P-P) F (t) dD (49)
r D r 1 1

i=t

From the property of the Dirac Delta function, (49) can be reduced

to

m
f(t) =3 &(P) F. (t) (50)
r r i i

i=1

If we define a force vector F(t) such that
F(t) = [ F(t) F.(t)....F(t)1", (51)
1 2 »

then using (50) the relation between F(t) and W(t) can be expressed

by
W(t) = B F(t) . (52)
where
B = (B B,...B 1 (53)
B(2L4)= Ohm; i=1,2,....,n (54)
BZi = IOi(P1)/ui Qi(Pz)/u{ ..... ¢i(P.)/ui] (55)
for 1 =1,2,...,nNn.

4. PROBLEM STATEMENT

Since in this paper, the implementation problem is focused on
actuators, we suppose that there exists a modal filter which takes
2p measurements of p displacement sensors and p veloclty sensors
and produces a "perfect" estimated state x(t) of x(t). It is
obvious that if the modal displacement ur(t) and modal velocity

ur(t) can be perfectly estimated as shown by (46) and (47), then in



view of (16) and (13), the state x(t) can also be perfectly
estimated. Here the state x(t) is said to be perfectly estimated
if ;(t) approaches x(t) as t --> w. In control theory, the
corresponding state estimator is said to be asymptotically stable
[10].

Figure 2 illustrates the imlementation of IMSC in which the

optimal state feedback law is denoted by

W(t) = G x(t) (56)
where  W(t) = [\;I:(t) Qz'(t)....ﬁn'(t)l' (57)
and G = Block diag (G1, Gz,....Gn) (58)

In section 3, the optimal solution for IMSC is obtained in
modal space, namely from (20)

W(t) = G x(t) (59)

Under the assumption of perfect state estimation, we note that
W - Gx(t) as to w. Therefore the optimal solution can be
achieved if (59) is satisfied. To make W(t) equal to Gx(t), the
matrix D in Fig. 2 is chosen such that W(t) = Q(t).

From Fig. 2 we note that

F(t) = D W(t) (60)
Substituting (60) into (52) yields

W(t) = B D W(t) (61)
Obviously to make W(t) = W(t), D is chosen such that

BD= IZn ) (62)

From the structure of B as given by (53)-(55), each (2i-1)th
row (odd row) of BD, for i=1,2,...,n is a row of zeros. We realize

that (62) can never be satisfied. However, noting that each odd row

of W(t) is also a row of zeros, if we define

10



-t

B(t) = (B! B ....s;n]‘ (63)
T
coeDy

N

and D(t) 1 (64)

(D

T
4
T
D‘

N -

where Bi is the ith row of B and Di the ith column of D, then
choosing a matrix D such that

BD=1 (65)
will ensure that W(t) = W(t). It is noted that if (65) holds, then
BD is a modified identity matrix of order (2nx2n) whose main
diagonal elements are O at the (21-1,2i-1) position and 1 at the
(21,2i) position for 1 = 1,2,...,n.

The solution of (65) for D needs the inverse of B. However,
the existence of the inverse of B require that the number of
actuators be equal to the number of modeled modes (m=n). This fact
presents the principal limitation of IMSC because the number of

modeled modes is usually very high, resulting in an unrealizable

number of actuators.

The problem considered in this report is formulated as to
devélop a control scheme that allows one to use a reduced
number of actuators to control all modeled modes such that the

closed-loop system is as optimal as possible compared to IMSC.

In the following we will propose two control schemes that will

accomplish the above ob jective.

5.  THE FIRST CONTROL SCHEME

The development of the first control scheme is represented in

the following theorem:

11




THEORENM 1:

Consider a large flexible space structure whose description
and solution are given by (1) and (11), respectively. If the
operator L 1is self-adjoint and the state x(t) is perfectly
estimated, then there exists a control scheme with m actuators,
which optimizes the first m modes with respect to the cost function
(24) and leaves the last (m-n) natural modes unchanged, thus

ensuring the system stability.

Proof :
If the hypothesis of Theorem 1 is satisfied, then employing m
actuators placed at m distinct points P1, Pz’ RN P. in the domain

D results in a matrix B that can be partitioned as

. [8,
B = B (66)
2

where 5115 an {mxm) matrix and §2an {n-m)xm matrix. Based on the
property of éhe rows of B specified by (55), without loss of
generality we can assume that the first m rows of B are linearly
independent for the locations of m actuators are distinct. Thus 51
is a nonsingular matrix. Now if a matrix D is chosen such that
b=18' o 1 (67)

then it is clear that

B281 o(n-m)x(n-m)
We proceed by considering the closed-loop feedback system given in
Fig. 2 that can be described by
x(t) = A x(t) + B D G x(t) (69)

under the assumption of perfect state estimation, in the steady

12




state (t5 »), (638) can be rewritten as:
x{t) = (A + BDG) x(t) (70)
Now if D is chosen as in (67), then

A+BDG = Block diag(A1,A2,...,An) +

0
2m Zmx2(n-m) Block diag(G1,G2,----Gn) (71)

02(n-m)x2(n-m)
where X is an 2(n-m)x2m matrix whose elements are obtained from
5;514 and I:n is a modified (2mx2m) identity matrix whose main
diagonal elements are O at the (2i-1,2i-1) position and 1 at the
(2i,21) position for 1 =1,2,...,m.

Recalling the form of Gr for r = 1,2,...,n as given in (22),

we can rewrite (71) as
A + BDG =

B]ock diag (A1+ G1,A2"' GZ)"-iAm." Gm) 02m x2 (n-m)

X Block diag(A1,A2,...,An)
(72)
From (72) the closed-loop eigenvalues can be computed as

m m
o(A + BDG) = U c(Ai + Gi) + U ¢(Ai) (73)

i=1 i=1
m

where {J S, denotes the union operation on the sets Si’ i=1,2,...,m.
i=1

and o(A) denotes the set of eigenvalues of the matrix A.

According to Remark 1. it is obvious from (73) that the first
m modes are optimized and the last (n-m) modes are unchanged.
Since optimal modes correspond to stable closed-loop poles as

stated by (40) and natural modes correspond to pairs of imaginary

complex conjugate eigenvalues, as pointed out in Remark 1, we

13




conclude that the above control scheme also ensures the system

stability. We therefore just complete the proof of Theorem 1.

REMARK 2:

If the control scheme proposed in Theorem 1 is implemented,
then there are some unwanted excitations of the (n-m) modes, which
is well-known as control spillover [1]. However the oscillations
caused by exciting the (n-m) modes are insignificant because the
mode amplitudes tend to decrease as the number of modes is
increased because higher modes require more energy to excite. We
also note that in (1), we assume the worst case where no natural
damping exists. In practice, existing natural damping in the
structure can suppress the unwanted oscillations of the higher

modes.

6. THE SECOND CONTROL SCHEME

In this section, another control scheme is developed using the
concept 6f generalized inverse matrices. We first present the

following lemma:

LEMMA 1:

Consider the followiﬁg equation:

W(t) = B F(t) (78)
where W(t) and F(t) are matrices consisting of even rows of W(t)
and F(t), respectively. If the (nxm) matrix has rank m, then the
solution for (74), which minimizes the weighted norm of error

[le(t)||§ = ||W - BF||2 = (W - BF)'s(W - 8F) (75)

14



is given by
Ft) = 8" Wt (76)
where the matrix
8" = (8's8) '8"s (77)
is the generalized inverse of B . A proof of Lemma 1 can be found
in [14].
The following theorem will present the development of the second

control scheme:

THEORENM 2:

Consider a large flexible space structure whose description
and solution are given by (1) and (11), respectively. If the
operator L is self-adjoint, then there exists a control scheme with
m actuators (m < n) that is suboptimal with respect to (24) in the
sense that the closed-loop eigenvalues are assigned as closed as

possible to those optimal eigenvalues specified by IMSC.

Proof:

A control scheme with a reduced number of actuators would be
optimal if D could be selected to be a right inverse of B in (65).
Here B is assumed to have rank m since the discrete actuators apply

point forces at m distinct points P1, P Pm. From [14], it is

2t

well-known that an (nxm) matrix (m < n) having rank m does not have

any right inverse. According to Lemma 1, because F(t) as given in
- »

(76) minimizes (75), selecting a matrix D = B will minimize the

difference BD - In, making (65) satisfied as well as possible.

- »
Therefore selecting D = B also makes the closed-loop eigenvalues

18




as identical as possible to those specified by IMSC. Thus there
exists a control scheme with a reduced number of actuators, which
is suboptimal with respect to (24). We just complete the proof of

Theorem 2.

7. COMPUTER SIMULATION STUDY

In order to evaluate the performance of the proposed control
schemes, we consider the control of a simply-supported beam whose

dynamics is given by the Euler-Bernoulli partial differential

equation:
4 2

El _Q_Z ulx,t) + m -9-5 ulx,t) = fix,t) (78)
Ax ot

where for simplicity we set the mass m, the moment of inertia I,
the modulus of elasticity E and the length of the beam to unity.

The boundary of the simply-supported beam are

u(o,t) =u(1,t) =0 (79)
2 2
2 2
ax ax

The solutions for the eigenvalue problem are given by:

A (k)2 (81)

k

1/72

(2) sin (knx) (82)

¢k

Computer simulation was performed to evaluate the second
control scheme and to compare its performance to that of IMsC.
Suppose we consider 20 modeled modes and divide the whole length of
the beam into 20 sections, specified by x(k) = k/21 for k =
1,2,..., 21. Then starting with one actuator we performed computer

simulation for different locations of the actuator. After that

18




computer simulation was performed with increasing number of
actuators. The simulation results are summarized and discussed

below:

(a) The Number of Actuators:

Simulation results show that the dynamics of the closed-loop
system is affected considerably by the number of the actuators.
As expected, the number of stable closed-loop eigenvalues is
proportional to that of the actuators. The maximum number of
closed-loop eigenvalues when using 1, 2, 3, and 4 actuators is 5,

18, 19, and 20, respectively, as showed from computer simulation.

(b) The Location of Actuators:

Resulits show that the actuator Jlocation also affects the
closed-loop system dynamics. Figure 2a illustrates the
relationship between actuator location and the number of stable
closed-loop eigenvalues for the case of 1 actuator. We note that
the optimal actuator locations center around both ends of the beam.
The number of the closed-loop eigenvalues decreases as the actuator
moves toward the center of the beam. The above observations are

consistent with the cases of 2, 3, and 4 actuators.

(c) The Second Control Scheme versus IMSC:

The open-loop eigenvalues of the LSS , the closed-loop
eigenvalues of IMSC implemented with 20 actuators and 2 actuators
and the second control scheme implemented with 2 actuators are

presented in Table 1. The table shows that the second control

17




scheme implemented with a reduced number of actuators assigns
eigenvalues that are very close to those specified by the optimal
IMSC.

Figures 3 and 5 represent the vertical displacements of the
beam center when being excited by a unit impulse for IMSC with 20
actuators and the second control scheme with 2 actuators,
respectively while Figure 4 represents the case of IMSC with 2
actuators. We observe that with a reduced number of actuators (2
actuators), the second control scheme provides with the same
performance as that of IMSC when implemented by 20 actuators. On
the other hand, as we see in Figure 4, when being implemented with
a reduced number of actuators (2 actuators), the IMSC suffers from
some oscillations. Beam movements for the case of IMSC with 20
actuators and 2 actuators are illustrated in Figures 6 and 7,
respectively. The case of the second control scheme with 2
actuators is presented in Figure 8. Similar to the previous case,
the performance of the second control scheme is better than that of

IMSC when being tmplemented with a reduced number of actuators.

8.  CONCLUSION AND FUTURE RESEARCH

In this report, we first reviewed the theory of Independent
Modal Space Control in the context of optimal control. The
requirement that the number of actuators be equal to that of
modeled modes for the implementation of IMSC was pointed out as a
principal limitation. Assuming that the large space structure fis
self-adjoint, we developed two control schemes implemented with a

reduced number of actuators, which are suboptimal with respect to

18




the IMSC performance. The first control scheme optimizes the first
m modes leaving the last (n-m) modes uncontrolled. The second
control scheme employs the method of generalized inverse matrices
to assign closed-loop eigenvalues, which are as close as possible
to those specified by IMSC. Computer simulation performed on a
simply-supported beam showed that the second proposed control
scheme performs better than the IMSC when both are implemented by a
reduced number of actuators. Future research should focus the
attention on the optimization of the number of actuators and the
placement of actuators in order to minimize the control spillover.
The effect of modal filter in terms of observation spillover should
be investigated. The method of arbitrary eigenvalue assignment [8]
should also be considered for the design of control schemes for
large space structures.

The research performed under this grant were transmitted to
one semiannual progress report [11], one conference paper [12] one
published journal paper [9] and one technical paper to be submitted

to a majdr journat [13].
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