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SUMMARY 

This report presents the research performed at the Catholic 

University of America on the research grant entitled: "Robust 

Design of Distributed Controllers for Large Flexible Space 

Structures," under the Grant No NAG 5-949, between June 30th, 1987 

and June 30th, 1988. 

Independent nodal Space Control (ZHSC) nethod avoids control 

spillover generated by conventional control schemes such as Coupled 

Modal Control by &coupling the large flexible space structure into 

independent subsystems of second order and controlling each rode 

independently. The I H S C  implementation requires that the number of 

actuators be equal to that of modeled modes, which is in general 

very huge. Consequently the number of required actuators is 

unrea 1 izab le. 

In this report two methods are  proposed for the implementation 

of IHSC uith reduced number of actuators. In the first method, the 

first R modes are optimized, leaving the last (n-m) modes 

unchanged. In the second method, generalized inverse matrices are 

employed to design the feedback controller so that the control 

scheme is suboptimal with respect to IHSC.  The performance of the 

proposed methods is tested by performing computer simulation on a 

simply supported beam. Simulation results will be presented and 

discussed. 



l. NTROMICTION 

The development o f  t h e  space s h u t t l e  has opened the  

poss ib i l i ty  o f  const ruct ing very l a rge  space s t ruc tu res  (LSS) i n  

space f o r  space explorat ions. Two con t ro l  problems f o r  LSS are 

a t t i t u d e  con t ro l  and shape control .  Complex missions impose many 

s t r i n g e n t  requirements on shape and a t t i t u d e  o f  the LSS, which lead 

the c o n t r o l  researchers t o  the concept o f  d i s t r i b u t e d  a c t i v e  

c o n t r o l  t h a t  places on the s t ructure a number o f  sensor/actuator 

pa i rs  i n  oder t o  optimize the LSS performance and behavior. Act ive 

c o n t r o l  o f  LSS has been an act ive research area In  the l a s t  several 

years [11-[71. A large number o f  con t ro l  schemes has been 

developed f o r  LSS, but they represent one form o r  another o f  modal 

c o n t r o l  [ l ] .  Two main modal control  schemes are the  Coupled Modal 

Contro l  (CMC) and the Independent Modal Space Control (IMSC). The 

CMC employs an ac t i ve  con t ro l l e r  t h a t  cons is ts  o f  a s t a t e  estimator 

and a s t a t e  feedback whi le  the IMSC decouples the LSS i n t o  n 

independent subsystems according t o  n c o n t r o l l e d  modes and con t ro l s  

each mode independently by  means o f  a modal f i l t e r  151 and an 

o p t i m a l  c o n t r o l l e r .  It i s  well-known t h a t  CMC causes con t ro l  and 

observat ion s p i l l o v e r ,  which together can des tab i l i ze  the LSS [ l l .  

IMSC el iminates control  and observation s p i l l o v e r  because each mode 

i s contro 1 1 ed i ndependent 1 y. However t h e  i mp 1 ementat i on o f  I MSC 

r e q u i r e s  t h a t  the actuator number be equal t o  the number o f  modeled 

modes, which i s  usual ly  very  huge f o r  the modeling o f  the LSS t o  be 

faithful.  This f a c t  presents a fundamental l i m i t a t i o n  o f  IMSC f o r  

the requ i red  number o f  actuators i s  impract ical .  The main 

o b j e c t i v e  of t h i s  repo r t  i s  t o  propose methods implementing the 

I 

: 
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IMSC with a milder requirement of the actuator number. In 

particular, we will develop two control schemes that uses a reduced 

number of actuators to control all modeled modes in such a way that 

the closed-loop system modes are as identical as possible to the 

optimal modes specified by the IMSC scheme. In the first control 

scheme, the first m modes are optimized, leaving the last (n-m) 

modes unchanged. In the second scheme, generalized inverse 

matrices are employed to design the feedback controller so that the 

control scheme i s  suboptimal with respect to IMSC. 

Matrix notations used in this report are given below: 

Block diag(M, M2 , . . . , I d  1 = 
n 

0 = mxn nul 1 matrix 
nun 

M, 0 . . .  0 
0 M 2 . . .  0 
. .  . .  . .  

n 
0 0  M 

I = nxn identity matrix 
n 

2. SUMMARY OF WDEPENDENT MODAL SPACE CONTROL 

A large flexible space structure can be described by the 

following partial differential equations 141: 

M(P) a2u(P,t)/at2 + Lu(P,t) = f(P,t) ( 1 )  

that must be satisfied at every point P of the domain D, where 

u(P,t) i s  the displacement of point P, L a linear differential 

self-adjoint operator of order 2p, expressing the system stiffness, 

N(P) the distributed mass, and F(P,t) the distributed control 

force. The displacement u(P,t) i s  subject to the boundary 

conditions: 

T.u(P,t) = 0; i = 1,2, . . . , p  
1 
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where Ti, i = 1,2, . . . , p  are l inear  d i f f e r e n t i a l  operators o f  order 

ranging from 0 t o  (2p-1). 

The associated eigenvalue problem i s  formulated by: 

LO (PI = A M(PI 0 (PI; r = 1.2,. . . (3) r r r 

w i t h  t he  boundary condi t ions:  

T O (P) = 0; i = 1,2 ,..., p; r = 1.2 ,... (4  1 i r  

where h i s  the  r t h  eigenvalue and ( P I  Is t he  eigenfunct ion 

(sometimes a lso  known as Mode Shape) associated w i t h  A . Suppose 

t h e  operator L is sel f -ad jo in t  and p o s i t i v e  d e f i n i t e ,  and a l l  

r r 

r 

eigenvalues are p o s i t i v e  and are ordered so t h a t  h <A <. . . . Since 

L i s  se l f -ad jo in t ,  t he  eigenfunctions are orthogonal and therefore 

1 2  

can be normalized such tha t :  

D bOrQsdD = 6 rs 

and J O L O d D  = A 6  * r ,s  = 1,2 ,.... 
r rs’ D s r  

(5) 

(6) 

where 6 is t he  Kronecker Delta. 
rs 

Using the expression theorem [31, the  s o l u t i o n  o f  u (P, t )  can 

be obtained as: 
W 

u(P,t)  = c (P)u ( t )  
r r 

r =l 
( 7 )  

where u ( t )  is the  modal coordinate. Subs t i t u t i ng  (7) i n t o  (l), 

m u l t i p l y i n g  both s ides o f  the  r e s u l t i n g  expression by as, 

i n t e g r a t i n g  over D and employing (5) and (61, we obta in  

r 

I n  ( 8 ) .  the  mode (o r  natura l  frequency) w i s  de f ined as 
r 

; r = 1,2, .... (9) v 2  
0 = ( A )  

r r 

and the  modal con t ro l  force f (t) i s  computed by: r 

3 



f r ( t )  = J0er(P)f(P.t) dD (10) 

In  pract ice,  t he  i n f i n i t e  series i n  ( 7 )  1s t runcated as 

where n i s  chosen t o  be s u f f i c i e n t l y  l a rge  so t h a t  u (P , t )  can be 

represented w i t h  good f i d e l i t y .  I n  th is  case we are dea l i ng  on ly  

w i t h  the f i r s t  n modes. 

Eq. ( 8 )  can be transformed i n t o  s t a t e  equation form as 

fol lows: 

r 
and (18) 

f o r  i=1,2,. .. ,n. 

REMARK 1: 

A t  t h i s  p o i n t  we should d i s t i ngu ish  between the eigenvalues o f  

A and the eigenvalues o f  t h e  f l e x i b l e  space s t ruc tu re .  From (15) 

and (18) the 2n eigenvalues of  t h e  matr ix  A t h a t  represent a l so  the 

open-loop poles o f  the s y s t e m  consis t  of n p a i r s  o f  imaginary 

numbers: 7olj, i w 2 j , .  . ,+onJ. However according t o  ( 9 ) '  the 

eigenvalues o f  the f l e x i b l e  space s t r u c t u r e  are given by o2 
1' 2' 

- 

2 o 

L o . We a l so  note t h a t  the r th mode or i s  the magnitude o f  the 
n 
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eigenvalues o f  A .  I n  other words, a mode corresponds t o  2 
r 

eigenvalues o f  one subsystem o f  t he  complete f l e x i b l e  system. 

The system described by (12) consis ts  o f  n subsystems given 

by  

ic (t) = A x ( t )  + Wr(t); r = 1,2D...,n (19) 
r r r  

The essence o f  IMSC i s  t o  choose W ( t )  such t h a t  i t  depends 
r 

on x ( t )  alone. Thus 
r 

W ( t )  = Gr xr; r = 1,2 ,,.. . . ,n (20) 
r 

are  (2x2) ga in matrices. 

S u b s t i t u t i n g  (16) and (17) i n t o  (201, we f i nd  t h a t  G m u s t  
r 

assume the  f o l l o w i n g  form: 

r = 1.2,. . . ,n (22) 

and g should be determined such t h a t  
'r21 r22 

For optimal cont ro l ,  

t h e  f o l l o w i n g  quadratic cost f unc t i on  i s  minimized ( l i n e a r  regu la to r  

problem) : 
n 

r 
J = C J  

r 4  

where 
1 

J = I (x'Q x + WTR W ) d t  
r r r r  r r r  

(23) 

(24) 

0 
Qr and Rr are p o s i t i v e  semidef in i te and p o s i t i v e  d e f i n i t e  weighting 

matr ix,  respect ive ly ,  associated w i t h  the r t h  mode. 

The form o f  G given by (22) requi res t h a t  Rr assume the  form 
r 

given below [71: 

Since W depends on x alone as seen i n  (201, J can be minimized by 
r r 



minimizing each J , Independently. From optimal control theory 

[15] ,  the optimal solution for G i s  given by 

r 

r 

(26) 
-1  G (t) = Rr Kr(t); r = 1.2, ... ,n 

r 

where K (t) is the solution o f  Riccati equation: 
r 

(27) - 1  i (t) = - K A  - A ' K  + K R  - Q ~ ;  r = i ,2 ,  ..., n 
r r r  r r  r r  

with boundary condition Kr(T) = 0. 

Selecting Qr= o2 I and substituting (25) and (18) into (27) 
r 2  

yield 

(28) 

(29) 

(30) 

-1  K 2  2 Kll= 2orK12 + r - 0  

-1 K 2  2 KZ2 = -2oK + r - w  

r 12 r 
- 1  
r K12K22 

= or(KZ2 - Kll) + r 
12 

r 12 r 22 r 

where K . -  (1, j = 1,2) are the elements o f  Kr ,  and K = KZ1.The 

steady state solutions of (28)-(30) can be found by letting Kll = 

K12 - KZ2= 0. Introducing R =  ( l /o r )R  where 

1 J  12 

' - 2 
r r 

R: = r): ] r = 1,2, . . . ,  n (31 1 

the steady-state solutions o f  (28)-(30) are obtained as 
' 

(32) 

(33) 

(34) 

(35) 

2 112) 

- 202 re' + 2 0 r  a I K Z 2  = or [rr r r  r r  
2 2 3'2 - 2r'rz -re 1 112 K ~ ~ =  or [l/wr + (2/or')a 

= w ( - o r  + a 
K12 = K21 r r r  

' 1/2 1/2 2 

r r r r  * 2 
r r  

where a = o re2 + rr .  

Substituting (32)-(34) into (26) yields 

r o  0 1 



for r = 1,2 ,..., n. 
Substituting (38) into (8 )  yields 

u (t) + [20 (b - w 1 + r*-111’2 ri (t) + o bu (t) = 0 (39) 
r r r r r r r  

From (39) the closed-loop poles (eigenvalues) o f  the system are 

= =-1/2 [2w (b-w 1 + r*-lll’z T 112 [-2w (b+wr) + r *-1 I 1/2 ( 4 0 )  
rl,r2 r r r r r 

S 

for r = 1,2 ,..., n. 
The closed-loop system is stabilized since the poles given in 

(40)  are either complex conjugates with negative real parts, o r  

both real and negative. Figure 1 illustrates the concept of 

Independent Modal Space Control in the state equation form. As we 

observe, each mode is controlled independently by an actuator. 

Therefore the number of required actuators must be equal to the 

number of modes that is in general very high. This facts 

represents a principal disadvantage of IMSC. On the other hand, 

one main advantage of IMSC is the elimination of control and 

observation spillover. 

3. IMPLEMENTATION OF INDEPENDENT MODAL SPACE CONTROL 

The IMSC scheme is represented by Equations (19) and (20) that 

however are in the modal form. In order to implement the IMSC, a 

finite number of discrete sensors and discrete actuators must be 

employed. 

DISCRETE SENSORS AND )IODAL FILTER 

Suppose there are 2p discrete sensors consisting of p 

displacement sensors and p velocity sensors located at p locations 

P,,P2,..,P Using ( 1 1 ) .  the output of the displacement sensor and 
P’ 
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v e l o c i t y  sensor can be expressed as 
n 

Yi = U(Pi,t) = c 0 (P.) u (t), i = 1,2 ,..., p 
(41 1 r i  r 

r.1 
n 

I f  we def ine an output vector y ( t )  conta in ing both 

displacement and v e l o c i t y  sensor output as 

y ( t )  = [Y, Jil Y2 3, ... Yn 9"l T * 

then using (411, we can w r i t e  

Oj(Pi) 

and i j  = [ .  

(42) 

(45) 

In  order t o  implement (20) modal s t a t e  vec-or x ( t )  mus 
r 

be 

ex t rac ted  f rom the sensor outputs. A device c a l l e d  Modal F i l t e r  

[SI i n te rpo la tes  the d iscrete sensor measurements t o  ob ta in  

continuous displacement and v e l o c i t y  p r o f i l e s  u(P, t )  and u(P, t )  and 

then computes the estimated modal displacement and v e l o c i t y  using 

t h e  expansion theorem s ta ted  by (7) :  

A x 

I; r ( t )  = li.((P) Or(P) G(P,t)dD 
D 

f o r  r = 1,2, ..,n 

(46) 

(47) 

DISCRETE ACTUATORS 

Since it i s  impossible t o  con t ro l  f o rce  a t  every p o i n t  i n  the  

domain D, t he  d i s t r i b u t e d  control  f o rce  is r e a l i z e d  by m (m<n) 

d i s c r e t e  p o i n t  f o rce  actuators appl ied a t  m p o i n t s  P1, Pz, ..., P 
II 



i n  the  domain D as given below 

f (P, t )  = G(P-Pi) F . ( t )  
1 

ill 
(48) 

where 6(P-Pi) i s  a s p a t i a l  Dirac De l ta  func t i on  and F . ( t )  i s  the  

force appl ied by the i t h  actuator on the p o i n t  P 

1 

i' 

Now s u b s t i t u t i n g  (48) i n t o  (10) y i e l d s  

From the proper ty  o f  t he  Dirac De l ta  funct ion,  (49)  can be reduced 

t o  
n 

f r (t) = @,(Pi) Fi ( t )  
i=l 

(50)  

I f  we de f ine  a fo rce  vector F ( t )  such t h a t  

F ( t )  = [ Fl(t) F 2 ( t ) . .  ..F (til', (51 1 
II 

then using ( 5 0 )  t he  r e l a t i o n  between F ( t )  and W ( t )  can be expressed 

where 

1 1  1 1  B = [B1 B2.. . .BZn1 

'(2i-1, 1m* 
= 0 - i = 1,2 ,...., n 

f o r  i = 1,2 ,..., n. 

4. PROBLEM STATEMENT 

Since i n  th is paper, t he  implementation problem i s  focused on 

actuators, we suppose t h a t  there e x i s t s  a modal f i l t e r  which takes 

2p measurements of p displacement sensors and p v e l o c i t y  sensors 

and produces a "per fect "  estimated s t a t e  >;(t) o f  x ( t ) .  It i s  

obvious t h a t  if the  modal displacement ur( t )  and modal v e l o c i t y  

u ( t )  can be p e r f e c t l y  estimated as shown by (46) and (471, then in  r 



view o f  (16) and (131, the s t a t e  x ( t 1  can a l so  be p e r f e c t l y  

estimated. Here the s t a t e  x ( t )  is s a i d  t o  be p e r f e c t l y  est imated 

if i ( t )  approaches x ( t )  as t --> m. I n  contro l  theory, t he  

corresponding s t a t e  estimator is s a i d  t o  be asymptot ica l ly  s t a b l e  

F igure 2 i l l u s t r a t e s  the imlementation o f  IMSC i n  which the 

optimal s t a t e  feedback law i s  denoted by 

and G = Block diag (G,, G2,. . . ,G 1 ( 5 8 )  n 

In  sect ion 3, the optimal s o l u t i o n  f o r  IMSC i s  obtained i n  

modal space, namely from (20) 

W(t) = G x ( t )  (59) 

Under the  assumption o f  per fect  s t a t e  estimation, we note t h a t  

W --> Gx(t)  as t+ m. Therefore the  optimal s o l u t i o n  can be 
A 

achieved if (59) i s  sa t i s f i ed .  To make W ( t )  equal t o  Gx( t ) ,  the 

ma t r i x  D i n  F ig.  2 is chosen such t h a t  W(t) = W ( t ) .  
A 

From Fig.  2 we note t h a t  

F ( t )  = 0 i ( t )  

S u b s t i t u t i n g  (60) i n t o  (52) yields 

W(t) = B D i ( t )  

( 6 0 )  

(61 1 
A 

Obviously t o  make W(t) = W(t), D is chosen such t h a t  

(62) I 2n 
B D -  

From the  s t ruc tu re  o f  B a s  given by (53)-(55), each ( 2 i - l ) t h  

row (odd row) o f  BD, f o r  i=1,2, ..., n i s  a row o f  zeros. We r e a l f z e  

t h a t  (62) can never be s a t i s f i e d .  However, no t i ng  t h a t  each odd row 

o f  W ( t )  is a l s o  a row o f  zeros, i f  we de f ine  

10 



where Bi is the i t h  row o f  B and 0 ,  the i t h  column o f  D, then 

choosing a matr ix  D such t h a t  

(65) 
n 

B D = I  
A 

w i l l  ensure t h a t  W(t) = W(t). It is noted t h a t  i f  (65) holds, then 

EO i s  a modif ied i d e n t i t y  matr ix o f  order (2nx2n) whose main 

diagonal elements are 0 a t  the (2i-1,2i-1) p o s i t i o n  and 1 a t  the 

(21,211 p o s i t i o n  f o r  i = 1.2, . .., n. 

The s o l u t i o n  o f  (65) for  D needs the inverse o f  8. However, 

t he  existence o f  the inverse o f  B requ i re  t h a t  t h e  number o f  

actuators  be equal t o  the  number o f  modeled modes (m=n). This f a c t  

presents the p r i n c i p a l  l i m i t a t i o n  o f  IMSC because t h e  number o f  

modeled modes is u s u a l l y  very high, r e s u l t i n g  i n  an unreal izable 

number o f  actuators. 

The problem considered in this report is formulated as to 

develop a control scheme that allows one to use a reduced 

number of actuators to control all modeled modes such that the 

closed-loop system is as optimal as possible compared to I N S .  

I n  the  f o l l o w i n g  we w i l l  propose two contro l  schemes t h a t  w i l l  

accomplish the  above object lvc.  

5. THE FIRST CONTROL SCHEME 

The development o f  t h e  f i r s t  contro 

t h e  fo l l ow ing  theorem: 

scheme s represented i n  

11 



THEoREn 1: 

Cons i der a 1 arge f 1 ex i bl e space structure whose descr i pt i on 

and solution are given by ( 1 )  and ( 1 1 1 ,  respectively. If the 

operator L i s  self-adjoint and the state x(t) i s  perfectly 

estimated, then there exists a control scheme with m actuators, 

which optimizes the first m modes with respect to the cost function 

(24) and leaves the last (m-n) natural modes unchanged, thus 

ensuring the system stability. 

Proof: 

If the hypothesis of Theorem 1 i s  satisfied, then employing m 

actuators placed at m distinct points P1, P2, . . . ,  P 

D results in a matrix that can be partitioned as 

in the domain 
a 

where i s  an (mxm) matrix and an (n-mlxm matrix. Based on the 

property of  the rows o f  g specified by (551, without loss of 

1 2 

general i ty we can assume that the first m rows of 55 are 1 inearly 

Independent for the locations o f  m actuators are distinct. Thus g, 

i s  a nonsingular matrix. Now i f  a matrix D i s  chosen such that 

then it i s  clear that 

We proceed by considering the c,osed-loop feedback system given in 

Fig. 2 that can be described by 

A(t) = A x(t) + B 0 G >;(t) (691 

under the assumption o f  perfect state estimation, in the steady 



s t a t e  ( t +  001, (69) can be rewr i t t en  as: 

k ( t )  = (A + BDG) x ( t )  

Now i f  6 is chosen as i n  (671, then 

1’ 2’”  n 
A+BDG = Block diag(A A . ,A ) + 

(70) 

obra2(n-m) 

0 
81 ock di ag(G1, G2, . . . , G 1 (71 1 1 n 

+ [,:a I 

2(n-m)x2(n-r) 

where X is an 2(n-m)x2m matrix whose elements are obtained from 

and I is a modif ied (2mx2m) i d e n t i t y  matr ix  whose main 

diagonal elements are 0 a t  the ( 2 i - l , 2 i - l )  p o s i t i o n  and 1 a t  the 

* f j  f j  -1 
2 1  2m 

(21,211 p o s i t i o n  f o r  i = 1,2 ,..., m. 

Recal l ing the  form o f  G f o r  r = 1,2, ..., n as given 
r 

we can r e w r i t e  (71) as 

A + BDG = 

2m x 2  ( n - m )  
d iag (A1+ G1,A2+ G 2,. . . ,A+ G 1 0 - m m  - 

X Block diag(A1,A2,. . . ,A  1 
n 

i n  (221, 

From (72) the closed-loop eigenvalues can be computed as 
m rn 

d A  + BDG) = U d A .  + Gi) + U d A i )  (73) 
1 

i =l i =I 
m 

where u S. denotes the union operation on the se ts  S., i=1,2, . . . , m .  
1 1 i =l 

and c(A) denotes the se t  o f  eigenvalues o f  the matr ix  A. 

According t o  Remark 1. i t  is obvious from (73) t h a t  t he  f i r s t  

rn modes are optimized and the l a s t  (n-m) modes are unchanged. 

Since optimal modes correspond t o  s tab le  closed-loop poles as 

s t a t e d  by (40)  and natura l  modes correspond t o  p a i r s  o f  imaglnary 

complex conJugate eigenvalues, as pointed out  in  Remark 1, we 

13 



conclude that the above control scheme also ensures the system 

stability. We therefore just complete the proof of Theorem 1. 

REMARK 2: 

If the control scheme proposed in Theorem 1 i s  implemented, 

then there are some unwanted excitations of the (n-m) modes, which 

i s  well-known as control spillover [ l l .  However the oscillations 

caused by exciting the (n-m) modes are insignificant because the 

mode amplitudes tend to decrease as the number of modes is 

increased because higher modes require more energy to excite. We 

also note that in ( 1  1 ,  we assume the worst case where no natural 

damping exists. In practice, existing natural damping in the 

structure can suppress the unwanted oscillations of the higher 

modes. 

6. THE SECOND CONTROL SCHEME 

In this section, another control scheme is developed using the 

concept of generalized inverse matrices. We first present the 

following lemma: 

LEEMA 1: 

Consider the following equation: 

W(t) = E at) (74)  

where W(t) and p(t) are matrices consisting of even rows o f  W(t) 

and F(t1, respectively, If the (nxm) matrix has rank m, then the 

solution for (741, which minimizes the weighted norm o f  error 

( 7 5 )  

14 



i s  given by 
* 

F ( t )  = B G ( t )  

where t h e  matr ix  

- 1 - 1  * 
B = (g ' s )  B S 

( 7 6 )  

( 7 7 )  

i s  t h e  general ized inverse o f  . A proof of Lemma 1 can be found 

i n  1141. 

The f o l l o w i n g  theorem w i l l  present t he  development o f  t he  second 

c o n t r o l  scheme: 

mom 2: 

Consider a large f l e x i b l e  space s t ruc tu re  whose desc r ip t i on  

and s o l u t i o n  are given by (1) and (111, respect ive ly .  I f  the  

operator L i s  se l f -ad jo in t ,  then the re  e x i s t s  a contro l  scheme w i t h  

m actuators  ( m  < n) t h a t  i s  suboptimal w i t h  respect t o  (24) i n  the  

sense t h a t  the c 1 osed- 1 oop e i  genva 1 ues are ass i gned as c 1 osed as 

poss ib le  t o  those optimal eigenvalues s p e c i f i e d  by IMSC. 

hoof: ' 

A c o n t r o l  scheme w i t h  a reduced number o f  actuators would be 

optimal if could be selected t o  be a r igh t  inverse of 6 i n  ( 6 5 ) .  

Here i s  assumed t o  have rank m s ince the d i sc re te  actuators apply 

p o i n t  forces a t  m d i s t i n c t  po ints  P,, P z D . .  . , P . From 1141. It I s  

well-known t h a t  an (nxm) matrix (m < n) having rank m does n o t  have 

II 

any r i gh t  inverse. According t o  Lemma 1 .  because F ( t  1 as given i n  

( 7 6 )  minimizes (751, select ing a matr ix  6 = B w i l l  minimize the  
* 

maklng (65) s a t l s f l e d  as wel l  as possible.  I n' 
d l f f e r e n c e  E - 

* 
Therefore se lec t i ng  6 = B also makes the closed-loop eigenvalues 

l 15 



as i d e n t i c a l  as possible t o  those s p e c i f i e d  by IMSC. Thus there 

e x i s t s  a con t ro l  scheme w i t h  a reduced number o f  actuators, which 

i s  suboptimal w i t h  respect t o  (24). We just complete the proof o f  

Theorem 2. 

7. COMPUTER SIMULATION STUDY 

I n  order t o  evaluate the performance of the proposed con t ro l  

schemes, we cons i der the control o f  a si mp 1 y-supported beam whose 

dynamics is given by the Euler-Bernoull i  p a r t i a l  d i f f e r e n t i a l  

equat i on : 

where f o r  s i m p l i c i t y  we se t  the mass m, the moment o f  i n e r t i a  I, 

t h e  modulus o f  e l a s t i c i t y  E and the  length o f  t he  beam t o  unity. 

The boundary o f  the simply-supported beam are 

u(1. t )  = 0. u(O,t) = ---- a' a2 ---- 
' ax2 ax ' (80) 

The so lu t i ons  f o r  the eigenvalue problem are given by: 

'k = (knI2 (81 1 

Computer simu 

con t ro l  scheme 

Suppose we cons 

t h e  beam i n t o  

= (2)"'sin (knx) (82) 'k 

a t i o n  was performed t o  evaluate the  second 

and t o  compare i t s  performance t o  t h a t  o f  IMSC. 

der 20 modeled modes and d i v i d e  the  whole length o f  

20 sections, spec i f i ed  by x ( k )  = k/21 f o r  k = 

1,2, . .., 21. Then s t a r t i n g  with one actuator  we performed computer 

simulation f o r  d i f f e r e n t  locations o f  t he  actuator.  A f t e r  t h a t  

16 



computer s imulat ion was performed w i t h  increasing number o f  

actuators. The s imulat ion r e s u l t s  are summarized and discussed 

bel  ow: 

(a )  T h e  Nunber of Actuators: 

Simulation r e s u l t s  show tha t  the dynamics o f  the closed-loop 

system i s  a f f e c t e d  considerably by the number o f  the actuators. 

A s  expected, t h e  number o f  s tab le  closed-loop eigenvalues i s  

propor t ional  t o  t h a t  o f  the actuators. The maximum number o f  

closed-loop eigenvalues when using 1, 2, 3, and 4 actuators i s  5, 

18, 19, and 20, respect ive ly ,  as showed from computer s imulat ion.  

(b)  The Location of Actuators: 

Results show t h a t  the actuator l oca t i on  a lso a f f e c t s  the 

c l  osed-1 oop system dynamics. Figure 2a i 1 l u s t r a t e s  the 

r e l a t i o n s h i p  between actuator l oca t i on  and the  number o f  s tab le  

closed-loop eigenvalues for t he  case o f  1 actuator.  We note t h a t  

t h e  optimal actuator  locat ions center around both ends o f  the beam. 

The number of the closed-loop eigenvalues decreases as the actuator 

moves toward the  center of t h e  beam. The above observations are 

consis tent  w i t h  t he  cases o f  2, 3, and 4 actuators.  

( c )  The Second Control Scheme versus IMSC: 

The open-loop eigenvalues o f  t he  LSS , the closed-loop 

eigenvalues o f  IMSC implemented w i t h  20 actuators  and 2 actuators 

and the  second con t ro l  scheme implemented w i t h  2 actuators are 

presented In Table 1. The tab le shows t h a t  t he  second con t ro l  

17 



scheme implemented w i t h  a reduced number o f  actuators assigns 

eigenvalues t h a t  are very close t o  those specif i e d  by the  optimal 

IMSC. 

Figures 3 and 5 represent the v e r t i c a l  displacements o f  the 

beam center when being exc i ted by a unit impulse f o r  IMSC w i t h  20 

actuators  and the  second control  scheme w i t h  2 actuators, 

respec t i ve l y  whi le  Figure 4 represents the  case o f  IMSC w i t h  2 

actuators.  We observe t h a t  with a reduced number o f  actuators (2 

actuators),  the second control  schema provides w i t h  the same 

performance as t h a t  o f  IMSC when implemented by  20 actuators. On  

t h e  other hand, as we see i n  Figure 4, when being implemented w i t h  

a reduced number o f  actuators (2  actuators),  t he  IMSC s u f f e r s  from 

some o s c i l l a t i o n s .  Beam movements f o r  the case o f  IMSC w i t h  20 

actuators  and 2 actuators are i l l u s t r a t e d  i n  Figures 6 and 7, 

respec t i ve l y .  The case o f  the second con t ro l  scheme w i t h  2 

actuators  is presented in Figure 8. S im i la r  t o  the previous case, 

t h e  performance o f  the second control  scheme i s  b e t t e r  than t h a t  o f  

IMSC when being implemented w i t h  a reduced number o f  actuators. 

8. CONCLUSION AND FUTURE RESEARCH 

I n  th is  repo r t ,  we f i r s t  reviewed the theory o f  Independent 

Modal Space Control i n  the context o f  optimal con t ro l .  The 

requirement t h a t  the number o f  actuators be equal t o  t h a t  o f  

modeled modes for  the implementation o f  IMSC was pointed out as a 

p r i n c i p a l  l i m i t a t i o n .  Assuming t h a t  the large space s t ruc tu re  is 

self-adJolnt, we developed two con t ro l  schemes implemented w i t h  a 

reduced number of actuators, which are suboptimal w i t h  respect t o  



t h e  IMSC performance. The f i r s t  con t ro l  scheme optimizes t h e  f i r s t  

m modes leaving the l a s t  (n-m) modes uncontrol led. The second 

c o n t r o l  scheme employs the method o f  general ized inverse matr ices 

t o  assign closed-loop eigenvalues, which are as c lose as poss ib le  

t o  those spec i f i ed  by IMSC. Computer s imulat ion performed on a 

simply-supported beam showed t h a t  the second proposed con t ro l  

scheme performs b e t t e r  than the  I M S C  when both are implemented by a 

reduced number o f  actuators. Future research should focus the 

a t t e n t i o n  on the opt imizat ion o f  t he  number of actuators and the 

placement o f  actuators i n  order t o  minimize the  contro l  s p i l l o v e r .  

The e f f e c t  o f  modal f i l t e r  i n  terms o f  observation s p i l l o v e r  should 

be investigated. The method of  a r b i t r a r y  eigenvalue assignment [81 

should a l so  be considered f o r  the design o f  cont ro l  schemes f o r  

l a rge  space structures.  

The research performed under th is  grant were t ransmi t ted to 

one semi annual progress repo r t  [ 11 1, one conference paper I121 one 

publ ished journal  paper 191 and one technical  paper t o  be submitted 

t o  a major journal  [131. 
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Figure 2a: Stable Mode Number versus Actuator Location 
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