
Quality Measures and Assurance
for AI Software

John Rushby

CONTRACT NAS1-17067
OCTOBER 1988

NASA

https://ntrs.nasa.gov/search.jsp?R=19880020920 2020-03-20T05:25:23+00:00Z

NASA Contractor Report 4187

Quality Measures and Assurance
for AI Software

John Rushby
SR I Internationa 2
MenZo Park, CaZifomia

Prepared for
Langley Research Center
under Contract NAS1-17067

National Aeronautics
and Space Administration

Scientific and Technical
Information Division

1988

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Acknowledgments . 2

I Quality Measures for Conventional Software 3

2 Software Engineering and Software Quality Assurance 5
2.1 Software Quality Assurance 6

3 Software Reliability 8
3.1 The Basic Execution Time Reliability Model 10
3.2 Discussion of Software Reliability 17

4 Size. Complexity. and Effort Metrics 19
4.1 Size Metrics . 19
4.2 Complexity Metrics . 21

4.2.1 Measures of Control Flow Complexity 21
4.2.2 Measures of Data Complexity 22

4.3 Cost and Effort Metrics . 23
4.4 Discussion of Software Metrics 26

5 Testing 29
5.1 Dynamic Testing . 29

5.1.1 Random Test Selection 30
5.1.2 Regression Testing . 32
5.1.3 Thorough Testing . 32

5.1.3.1 Structural Testing 34
5.1.3.2 Functional Testing 36

iii

PRECEDING PAGE BLANR NOT FILMED

Con tents

5.1.4 Symbolic Execution

5.2 Static Testing .
5.2.1 Anomaly Detection .
5.2.2 Structured Walk-Throughs
5.2.3 Mathematical Verification

5.2.3.1 Executable Assertions
5.2.3.2 Verification of Limited Properties

Testing Requirements and Specifications
5.3.1 Requirements Engineering and Evaluation

5.3.1.1 SREM .
5.3.2 Completeness and Consistency of Specifications
5.3.3 Mathematical Verification of Specifications
5.3.4 Executable Specifications
5.3.5 Testing of Specifications
5.3.6 Rapid Prototyping .

5.4 Discussion of Testing .

5.1.5 Automated Support for Systematic Testing Strategies

5.2.4 Fault-Tree Analysis
5.3

37
38
39
40
41
41
44
45
46
48
49
51
55
55
56
57
57
58

I1 Application of Software Quality Measures to AI Soft-
ware 6 5

6 Characteristics of AI Software 67

7 Issues in Evaluating the Behavior of AI Software 74
7.1 Requirements and Specifications 74

7.1.1 Service and Competency Requirements 75
7.1.2 Desired and Minimum Competency Requirements . . 75

7.2 Evaluating Desired Competency Requirements 76
7.2.1 Model-Based Adversaries 77
7.2.2 Competency Evaluation Against Human Experts . . . 77

7.2.2.1 Choice of Gold Standard 78

7.2.2.3 Realistic Standards of Performance 79
7.2.2.4 Realistic Time Demands 79

7.2.3 Evaluation against Linear Models 80

7.3.1 Identifying the Purpose and Audience of Tests 83

7.2.2.2 Biasing and Blinding 78

7.3 Acceptance of AI Systems . 82

iv

Con tents

7.3.2 Involving the User . 84
7.3.2.1 Performance Evaluation of AI Software . . . 85

8 Testing of AI Systems 87
Dynamic Testing . 87
8.1.1 Influence of Conflict-Resolution Strategies 89
8.1.2 Sensitivity Analysis 89
8.1.3 Statistical Analysis and Measures 90
8.1.4 Regression Testing and Automated Testing Support . 91
Static Testing . 91
8.2.1 Anomaly Detection . 92
8.2.2 Mathematical Verification 99
8.2.3 Structured Walk-Throughs 104
8.2.4 Comprehension Aids 105

8.1

8.2

9 Reliability Assessment and Metrics for AI Systems 107

I11 Conclusions and Recommendations for Research 109

10 Conclusions 111
10.1 Recommendations for Research 117

Bibliography 119

V

Chapter 1

Introduction

This report is concerned with the application of software quality and eval-
uation measures to AI software and, more broadly, with the question of
quality assurance for AI software. By AI software we mean software that
uses techniques from the field of Artificial Intelligence. (Genesereth and
Nilsson ([72] give an excellent modern introduction to such techniques; Har-
mon and King [83] provide a more elementary overview.) We consider not
only metrics that attempt to measure some aspect of software quality, but
also methodologies and techniques (such as systematic testing) that attempt
to improve some dimension of quality, without necessarily quantifying the
extent of the improvement. The bulk of the report is divided into three
parts. In Part I we review existing software quality measures-those that
have been developed for, and applied to, conventional software. In Part 11,
we consider the characteristics of AI software, the applicability and potential
utility of measures and techniques identified in the first part, and we review
those few methods that have been developed specifically for AI software. In
Part I11 of this report, we present our assessment and recommendations for
the further exploration of this important area.

1.1 Motivation

It is now widely recognized that the cost of software vastly exceeds that of
the hardware it runs on-software accounts for 80% of the total computer
systems budget of the Department of Defense, for example. Furthermore,
as much as 60% of the software budget may be spent on maintenance. Not
only does software cost a huge amount to develop and maintain, but vast

2 Chapter 1. Introduction

economic or social assets may be dependent upon its functioning correctly.
It is therefore essential to develop techniques for measuring, predicting, and
controlling the costs of software development and the quality of the software
produced.

The quality-assurance problem is particularly acute in the case of AI
software-which for present purposes we may define as software that per-
forms functions previously thought to require human judgment, knowledge,
or intelligence, using heuristic, search-based techniques. As Parnas ob-
serves [1491 :

“The rules that one obtains by studying people turn out to be
inconsistent, incomplete, and inaccurate, Heuristic programs are
developed by a trial and error process in which a new rule is
added whenever one finds a case that is not handled by the old
rules. This approach usually yields a program whose behavior is
poorly understood and hard to predict.”

Unless compelling evidence can be adduced that such software can be “trusted”
to perform its function, then it will not-and should not-be used in many
circumstances where it would otherwise bring great benefit. In the follow-
ing sections of this report, we consider measures and techniques that may
provide the compelling evidence required.

1.2 Acknowledgments

Alan Whitehurst of the Computer Science Laboratory (CSL) and Leonard
Wesley of the Artificial Intelligence Center (AIC) at SRI contributed ma-
terial to this report. It is also a pleasure to acknowledge several useful
discussions with Tom Garvey of AIC, and the careful reading and criticism
of drafts provided by Oscar Firschein of AIC and Teresa Lunt of CSL. The
guidance provided by our technical monitors, Kathy Abbott and Wendell
Ricks of NASA Langley Research Center, was extremely valuable.

Part I

Quality Measures for
Conventional Software

3

Chapter 2

Software Engineering and
Software Quality Assurance

Before describing specific quality metrics and methods, we need briefly to
review the Software Engineering process, and some of the terms used in
Software Quality Assurance.

One of the key concepts in modern software engineering is the system
life-cycle model. Its premise is that development and implementation are
carried out in several distinguishable, sequential phases, each performing
unique, well-defined tasks, and requiring different skills. One of the outputs
of each phase is a document that serves as the basis for evaluating the
outcome of the phase, and forms a guideline for the subsequent phases. The
life-cycle phases can be grouped into the following four major classes:

Specification comprising problem definition, feasibility studies, system re-
quirements specification, software requirements specification, and pre-
liminary design.

Development comprising detailed design, coding and unit testing, and the
establishment of operating procedures.

Implementation comprising integration and test, acceptance tests, and
user training.

Operation and maintenance.

There have been many refinements to this basic model: Royce’s Water-
fall model [163], for example, recognized the existence of feedback between

5

PRECEDING PAGE BLANR NOT PlLMED

6 Chapter 2. Software Engineering and Software Quality Assurance

phases and recommended that such feedback should be confined to adjacent
phases.

There is considerable agreement that the early phases of the life-cycle
are particularly important to the successful outcome of the whole process:
Brooks, for example observes [33]

“I believe the hard part of building software to be the specifi-
cation, design, and testing of this conceptual construct, not the
labor of representing it and testing the fidelity of the representa-
tion. We still make syntax errors, to be sure, but they are fuzz
compared with the conceptual errors in most systems.

“The hardest single part of building a software system is deciding
precisely what to build. No other part of the work so cripples the
resulting system if done wrong. No other part is more difficult
to rectify later.”

The more phases of the life-cycle that separate the commission and de-
tection of an error, the more expensive it is to correct. It is usually cheap
and simple to correct a coding bug caught during unit test, and it is usu-
ally equally simple and cheap to insert a missed requirement that is caught
during system requirements review. But it will be ruinously expensive to
correct such a missed requirement if it is not detected until the system has
been coded and is undergoing integration test. Software Quality Assurance
comprises a collection of techniques and guidelines that endeavor to ensure
that all errors are caught, and caught early.

2.1 Software Quality Assurance

Software Quality Assurance (SQA) is concerned with the problems of ensur-
ing and demonstrating that software (or, rather, software-intensive systems)
will satisfy the needs and requirements of those who procure them. These
needs and requirements may cover not only how well the software works
now, but how well documented it is, how easy to fix if it does go wrong, how
adaptable it is to new requirements, and other attributes that influence how
well it will continue to satisfy the user’s needs in the future. In the case of
military procurements, a number of standards have been established to gov-
ern the practice of various facets of software development: MIL-S-52779A
for software program requirements, DOD-STD-1679A and DOD-STD-2167
for software development, DOD-STD-2168 for software quality evaluation,

2.1. Software Quality Assurance 7

and DOD-STD-7935 for software documentation. Similar standards exist in
the civil and international sectors.

One important methodology in SQA is “Verification and Validation”
(V&V). Verification is the process of determining whether each level of
specification, and the final code itself, fully and exclusively implements the
requirements of its superior specification. That is, all specifications and
code must be traceable to a superior specification. Val idat ion is the pro-
cess by which delivered code is directly shown to satisfy the original user
requirements.

Verification is usually a manual process that examines descriptions of
the software, while validation depends on testing the software in execution.
The two processes are complementary: each is effective at detecting errors
that the other will miss, and they are therefore usually employed together.
Procurements for mission-critical systems often specify that an i ndependen t
group, unconnected to the development team, should undertake the V&V
activity.

Chapter 3

Software Reliability

Software reliability is concerned with quantifying how well software func-
tions to meet the needs of its customer. It is defined as the probability
that the software will function without failure for a specified period of time.
“Failure” means that in some way the software has not functioned accord-
ing to the customer’s requirements. This broad definition of failure ensures
that the concept of reliability subsumes most properties generally associ-
ated with quality-not only correctness, but also adequacy of performance,
and user-friendliness. Reliability is a user-oriented view of software quality:
it is concerned with how well the software actually works. Alternative no-
tions of software quality tend to be introspective, developer-oriented views
that associate quality with the “complexity” or “structure” of the software.
Fortunately, software reliability is not only one of the most important and
immediate attributes of software quality, it is also the most readily quantified
and measured.

Software reliability is a scientific field, and employs careful definition
of terms. The two most important are “failure” and “fault”. A software
failure is a departure of the external behavior of the program from the user’s
requirements. The notion of requirements is discussed in 5.3.1. A software
fault is a defect in a program that, when executed under certain conditions,
causes a failure-that is, what is generally called a “bug”. Failure occurrence
is affected by two principal factors:

0 The number of faults in the software being executed-clearly, the more
bugs, the more failures may be expected, and

8

9

0 The circumstances of its execution (sometimes called the ((operational
profile”). Some circumstances may be more exacting than others and
may lead to more failures.

Software reliability is the probability of failure-free operation of a computer
program for a specified time under specified circumstances. Thus, for exam-
ple, a text-editor may have a reliability of 0.97 for 8 hours when employed by
a secretary-but only 0.83 for 8 hours when employed by a hacker. To give
an idea of the reliabilities demanded of flight-critical aircraft systems (in
which software components are increasingly important), the FAA requires
the probability of catastrophic failure to be less than per 10-hour flight
for a life-critical civil air transport flight control system; the US Air Force
requires the probability of mission failure to be less than per hour for
military aircraft.

From the basic notion of reliability, many different measures can be
developed to quantify the occurrence of failures in time. Some of the most
important of these measures, and their interrelationships are summarized
below:

Reliability, denoted by R(t) , is the probability of failure-free operation up
to time t.

Failure Probability, denoted by F (t) , is the probability that the software
will fail prior to time t . Reliability and failure probability are related
by R(t) = 1 - F (t) .

Failure Density, denoted by f (t) , is the probability density for failure at
time t . It is related to failure probability by f (t) = $ F (t) . The
probability of failure in the half-open interval (t , t + st] is f(t).st.

H a z a r d Rate, denoted by ~ (t) , is the conditional failure density at time
t , given that no failure has occurred up to that time. That is, z (t) =
f (t) /R(t) . Reliability and hazard rate are related by

An important special case occurs when the hazard rate is a constant
4. In this case the failure density has an exponential distribution
f (t) = q5e-#t, the failure probability is given by F (t) = 1 - e-dt and
the reliability is given by R(t) = e-#’.

10 Chapter 3. Software Reliability

Mean Value Function, denoted by p (t) , is the mean number of failures
that have occurred by time t .

Failure Intensity, denoted by A (t) , is the number of failures occurring per
unit time at time t . This is related to the mean value function by
A (t) = $p(t) . The number of failures expected to occur in the half-
open interval (t , t + 6t] is A(t) .st .

Failure intensity is the measure most commonly used in the quantifica-
tion of software reliability. Because of the complexity of the factors influ-
encing the occurrence of a failure, the quantities associated with reliability
are random variables, and reliability models are based on the mathematics
of random or stochastic processes. Because failures generally provoke (at-
tempted) repair, the number of faults in a program generally changes over
time, and so the probability distributions of the components of a reliabil-
ity model vary with time. That is to say, reliability models are based on
nonhomogeneous random processes.

A great many software reliability models have been developed. These
are treated systematically in the first textbook to cover the field, which has
just been published [1361. The most accurate and generally recommended
model is the "Basic Execution Time Model". We outline the derivation of
this model below.

3.1 The Basic Execution Time Reliability Model

The starting point for this derivation (and that of most other reliability mod-
els) is to model the software failure process as a NonHomogeneous Poisson
Process (NHPP)-a particular type of Markov model.

Let M (t) denote the number of failures experienced by time t . We make
the following assumptions:

1. No failures are experienced by time 0, that is M (0) = 0,

2. The process has independent increments, that is the value of M(t+St)
depends only on the present value of M (t) and is independent of its
history,

'Mean Time To Failure (MTTF), denoted by 0, is not employed to the extent that it
is in hardware reliability studies (probably because the models used in software reliability
tend not to give rise to closed form expressions for MTTF). This measure is related to
reliability by 8 = so" R (z) dz.

3.1. The Basic Execution Time Reliability Model 11

3. The probability that a failure will occur during the half-open interval
(t , t + st] is A(t).6t + .(st), where A (t) is the failure intensity of the
process.

4. The probability that more than one failure will occur during the half-
open interval (t , t + &] is o(6t) .

If we let Pm(t) denote the probability that M (t) is equal to m, that is:

Pm(q = Prob[M(t) = m]

then it can be shown that M (t) is distributed as a Poisson random variable.
That is:

where
p(t) = / t A(z) dx.

0

Next we make some further assumptions:

1. Whenever a software failure occurs, the fault that caused it will be
identified and removed instantaneously. (A more realistic assumption
will be substituted later).

2. The number of faults in the program initially is a Poisson random
variable with mean WO.

3. The hazard rate for all faults is the same for all faults, namely za(t).

Under these additional assumptions, it can be shown that

where F,(t) is the per-fault failure probability, and

where fa(t) is the per-fault failure density.

failure density has an exponential distribution. That is,
The final assumption in the derivation of the model is that the per-fault

12 Chapter 3. Software Reliability

(Note this implies that the per-fault hazard rate is constant, that is za(t) =
4). Substituting (3.3) into (3.2), we obtain

Letting XO denote X(O), we obtain q5 = Xo/wo and hence

Similarly, from (3.1) we obtain

Some additional manipulation allows us to express failure intensity, A , as a
function of failures observed, p:

The assumption that the fault responsible for each failure is identified
and removed immediately the failure occurs is clearly unrealistic. The model
can be modified to accommodate imperfect debugging by introducing a fault
reduction factor B. This attempts to account for faults that cannot be
located, faults found by code-inspection prior to causing failure, and faults
introduced during debugging, by assuming that, on average, each failure
leads to the removal of B faults (0 5 B 5 1). (Conversely, each fault will
lead to 1/B failures.) It can then be shown that

where uo = w o / B is the total expected number of failures, and

Ga(t) = 1 - e -B zc(z) dz

is the cumulative distribution function of the time to remove a fault. Simi-
larly

X(t) = voga(t)

where ga(t) is the probability density function associated with Ga(t).

3.1. The Basic Execution Time Reliability Model 13

The consequent modifications to the important equations (3.4-3.6) are
simple: merely replace wo (the number of faults) by vo (the total number of
failures expected). Thus we obtain

X(p) = Xo 1 - - . (3 (3.9)

As an example of the application of these formulae, consider a system
containing 90 faults and whose fault-reduction factor is 0.9. The system may
be expected to experience 100 failures. Suppose its initial failure intensity
was 10 failures per CPU-hour and that it has now experienced 50 failures.
Then the present failure intensity should be given by

= 5 failures per CPU-hour.

In addition we may ask what the failure intensity will be after 10 CPU-hours
and how many failures will have occurred by that time. For failure intensity
we have:

-2t X (t) = Xoe
X(10) = 10e-%10

= 10e-l
= 3.68 failures per CPU-hour,

and for failures we have

P (t) = vo (1 - e - 3)

p(10) = 100 (1 -e-+%'')

= 100 (I -e-')

= 63 failures.
= l O O (1 - 0.368)

14 Chapter 3. Software Reliability

Additional formulae can be derived to give the incremental number of
failures (Sp) or elapsed time (Si!) to progress from a known present failure
intensity (Xp), to a desired future goal (X F) :

Yo XP S t = -1n-.
A0 XF

(3.10)

(3.11)

Using the same example as before (90 faults, fault-reduction factor 0.9,
initial failure intensity 10 per CPU-hour), we can ask how many additional
failures may be expected between a present failure intensity of 3.68 per
CPU-hour, and a desired intensity of 0.000454 per CPU-hour:

VO

100
10

Sp = -(Xp -Xp)
X O

- - -(3.68 - 0.000454)

= lO(3.68)
= 37 failures.

Similarly we may inquire how long this may

vo XP 6t = -1n-
A0 XF

be expected to take:

100 3.68
10 0.000454

- - -In

= 101n8106
= lO(9)
= 90 CPU-hours.

The reliability model just developed is determined by two parameters:
the initial fault intensity, XO, and the total number of failures expected in
infinite time, YO. In order to apply the model, we need values for these two
parameters. If the program of interest has been in operation for a sufficient
length of time that accurate failure data are available, then we can estimate
the values of the two parameters. Maximum likelihood or other methods of
statistical estimation may be used, and confidence intervals may be used to
characterize the accuracy of the estimates.

Prior to operational data becoming available, however, we can only at-
tempt to predict values for the parameters of the model, using characteristics

3.1. The Basic Execution Time Reliability Model

I Development Phase I Faults/K source lines
Coding 99.50
Unit test 19.70
System test
Operation

15

Figure 3.1: Fault Density in Different Phases of Software Development

of the program itself, and the circumstances of its development. The total
number of failures can be predicted as the number of faults inherent in the
program, divided by the fault-reduction factor: vo = wo/B . Dozens of tech-
niques have been proposed for estimating the number of faults in a program
based on static characteristics of the program itself. These are generally
related to some notion of “complexity” of programs and are described in
detail in the following chapter. For the purposes of exposition, we will use
the simplest (yet one of the best) such measures: the length of the program.
There is quite good evidence that faults are linearly related to the length of
the source program. If we let I , denote the length of the program (measured
by lines of source code), and D the fault density (in faults per source line),
then we have

wo = I , x D (3.12)

and
I , x D

B v o = -. (3.13)

Results from a large number of experiments to determine values of D
are summarized in Figure 3.1 (taken from (136, page 1181). Experimental
determinations of the fault-reduction factor range from 0.925 to 0.993, with
an average of 0.955 (again, from [136, page 1211). Thus, an B priori estimate
for the number of failures to be expected from a 20,000 line program entering
the system test phase is given by

IB x D
B

20 x 6.01
0.955

= 126 failures.

VO =

- -

16 Chapter 3. Software Reliability

The initial failure intensity Xo depends upon the number of faults in the
program, the rate at which faults are encountered during execution, and the
ratio between fault encounters and failures (not all fault encounters-i.e.
execution of faulty pieces of code-will lead to failure: particular circum-
stances may be needed to “trigger” the bug). For the purposes of estimation,
we may assume that fault encounters are linearly related to the number of
instructions executed (i.e. to the duration of execution and to processor
speed), and that failures are linearly related to fault encounters. Since pro-
cessor speed is generally given in object instructions per second, we will also
assume that the number of object instructions I, in a compiled program
is linearly related to the number of source lines I,. Thus, if Q is the code
expansion ratio (Le. I , /Is) , and R, is the number of object instructions
executed in unit time, then the number of source lines executed in unit time
will be given by R, = R,/Q. Now each source line executed exposes wo/I,
faults. Thus wo x R3/19 faults will be exposed in unit time. If each fault
exposure leads to K failures, we see that the initial failure intensity is given
by Xo = K x wo x R3/13. Substituting the previously derived expressions
for wo and R,, we obtain:

A0 = D x K x -. R O

Q
(3.14)

In order to complete the estimation of Xo, we need values for three new
parameters: R,, Q , and K . The first of these is provided by the computer
manufacturer, while the second is a function of the programming language
and compiler used. A table of approximate expansion ratios is given by
Jones [103, page 491. The most difficult value to estimate is the fault expo-
sure ratio K. Experimental determinations of K for several large systems
yield values ranging from 1.41 x lob7 to 10.6 x 10-7-a range of 7.5 to 1,
with an average of 4.2 x [136, page 1221.

As an example, of the application of these estimates, consider a 20,000
line program entering the system test phase. Using D = 6.01 and B = 0.955
as before, and assuming a code expansion ratio Q of 4, a fault exposure ratio
K of 4.2 x failures per fault, and a 3 MIPS processor, we obtain:

R, XO = D x K x -
Q

6.01 4.2 3 x lo6
103 107 4

x - x - - - -

= 1.893 x failures per CPU-sec,

3.2. Discussion of Software Reliability 17

= 6.8 failures per CPU-hour.

Given these estimates of the parameters uo and XO, we may proceed to
calculate how long it will take to reduce the fault intensity to an acceptable
level-say 0.1 failures per CPU-hour.

vo AP St = -1n-
A0 AF
126 6.8

- -1n-
6.8 0.1

= 18.531n68

-

= 18.53(4.22)
= 78 CPU-hours.

3.2 Discussion of Software Reliability

Software reliability modeling is a serious scientific endeavor. It has been
pursued diligently by many of those with a real economic stake in the relia-
bility of their software products-for example, the manufacturers of embed-
ded systems (where repair is often impossible), and those with enormously
stringent reliability objectives (for example, the manufacturers of telephone
switching equipment).

The “Basic Execution Time Model” described here has been validated
over many large projects [136] and has the virtue of relative simplicity com-
pared with many other models. A similar model, the “Logarithmic Poisson
Model”, has been less intensively applied, but may be preferred in some
circumstances. Both of these models use execution-time as their time base.
This is one of the primary reasons for their greater accuracy over earlier
models, which used man-hours, or other human-oriented measures of time.
That execution time should prove more satisfactory is not surprising: the
number of failures manifested should surely be most strongly determined
by the amount of exercise the software has received. Converting from a
machine-oriented view of time to a human-oriented view is often necessary
for the application of the results obtained from the model; ways of doing
this are described by Musa et al. [136].

There are several circumstances that can complicate the application of
reliability models. Reliability is concerned with counting failures, and pre-
diction is based on collecting accurate failure data during the early stages

18 Chapter 3. Software Reliability

of a project. These data may be unreliable, and predications based upon
them may be inaccurate, if any of the following circumstances obtain:

0 There is ambiguity or uncertainty concerning what constitutes a fail-
ure,

0 There is a major shift in the operational profile between the data
gathering (e.g. testing) phase and the operational phase, or

0 The software is undergoing continuous change or evolution.

We note that these circumstances which cause difficulty in the application of
reliability modeling, also characterize much AI-software development. We
will return to this issue in the second part of the report.

Chapter 4

Size, Complexity, and Effort
Metrics

In the previous chapter, we have seen that B priori estimates for the relia-
bility of a program depend on estimates for the number of faults it contains
and for its initial failure intensity. It is plausible to suppose that these
parameters may themselves be determined by the “size” and “compIexity”
of the program. Accordingly, considerable effort has been expended in the
attempt to define and quantify these notions.

Whereas measurements of the static properties of completed programs
(e.g. size and complexity) may help in predicting some aspects of their
behavior in execution (e.g. reliability), similar measurements of “require-
ments” or “designs” may help to predict the “effort” or cost required to
develop the finished program.

In this chapter we will examine metrics that purport to measure the size,
and complexity of programs, and those that attempt to predict the cost of
developing a given piece of software.

4.1 Size Metrics

The size of a program is one of its most basic and measurable characteristics.
It seems eminently plausible that the effort required to construct a piece of
software is strongly influenced, if not fully determined, by its final size, and
that its reliability will be similarly influenced.

The crudest measure of the size of a piece of software is its length, mea-
sured by the number of lines of code that it contains. A line of code is

19

20 Chapter 4. Size, Complexity, and Effort Metrics

counted as any non-blank, non-comment line, regardless of the number of
statements or fragments of statements on the line. The basic unit of pro-
gram length is the “SL0C”-a single “Source Line Of Code”. A variant
is the “KL0C”-a thousand lines of code. An obvious objection to these
measures is that they do not account for the different “densities” of different
programming languages (e.g. a line of APL is generally considered to contain
more information, and to require more effort to write, than a line of Cobol),
and they do not account for the fact that different lines in the same pro-
gram, or lines written by different people, may have very different amounts
of information on them. A straightforward attempt to overcome the latter
objection (and perhaps the former also) is to count syntactic tokens rather
than lines.

An early, controversial, and influential system of this type was the “Soft-
ware Science” of Halstead [82]. Software Science classifies tokens as either
operators or operands. Operators correspond to the control structures of the
language, and to system and user-provided procedures, subroutines, and
functions. Operands correspond to variables, constants, and labels. The
basic Software Science metrics are then defined as follows:

ql: the number of distinct operators,

q2: the number of distinct operands,

N1: the total number of operators, and

N2: the total number of operands.

The length of a program is then defined as N = N I + N2. It is a matter of
taste, if not dispute, how the multiple keywords of iterative and conditional
statements should be counted (e.g. does one count each of while do, and
endwhile as three separate operators, or as a single ‘(while loop” operator).
Similarly controversial is the question whether tokens appearing in declara-
tions should be counted, or only those appearing in imperative statements
(opinion currently favors the first alternative). The Software Science metric
N may be converted to SLOC by the relationship SLOC = N / c , where c is
a language-dependent constant. For FORTRAN, c is believed to be about
7.

Software Science derives additional metrics from the basic terms. The
vocabulary is defined as r] = q 1 + r / 2 . Clearly it requires log2r] bits to represent
each element of the vocabulary in a uniform encoding, so the number of bits
required to represent the entire program is roughly V = N log,^. The metric

4.2. Complexity Metrics 21

V is called the volume of a program and provides an alternative measure for
the size of a program.

An alternative attempt to quantify the size of a program in a way that
is somewhat independent of language, and that may get closer to measuring
the semantic, rather than the purely syntactic or even merely lexical, content
of a program is one based on function count: that is, a count of the number
of procedures and functions defined by the program. Lisp programs are often
described in this way-for example, a medium sized Lisp application might
contain 10,000 function definitions. For some languages (e.g. Ada), the
number of modules might be a more natural or convenient measure than
function count.

4.2 Complexity Metrics

Two similarly sized programs may differ considerably in the effort required
to comprehend them, or to create them in the first place. Complezity met-
rics attempt to quantify the “difficulty” of a program. Generally, these
metrics measure some aspect of the program’s control flow-there being
some agreement that complicated control flow makes for a complex, hard-
to-understand, program.

4.2.1

The simplest complexity metric is the decision count, denoted DC which
can be defined as the number of “diamonds” in a program’s flow chart.
A good approximation to DC can be obtained by counting the number of
conditional and loop constructs in a program-and this can be reduced to
the purely lexical computation of adding the number of i f , case, while and
similar keywords appearing in the program.

An objection to this simple scheme is that it assigns a different complex-
ity to the program fragment

Measures of Control Flow Complexity

i f A and B then X endif

than it does to the semantically equivalent fragment

i f A then i f B then X endif endif.

This objection can be overcome by defining DC to be the number of ele-
mentary predicates in the program. Both the examples above contain two
elementary predicates: A and B.

22 Chapter 4. Size, Complexity, and Effort Metrics

Much the best-known of all syntactic complexity measures is the cyclo-
matic complezity metric of McCabe [1261. This metric, denoted Y , is given
by v = e - n + 2, where e is the number of edges and n the number of nodes
in the control flow graph of the program. The cyclomatic complexity of a
program is equivalent to the maximal number of linearly independent cycles
in its control flow graph. (Actually, in the control flow graph modified by the
addition of an edge from its exit point back to its entry point.) Clearly, the
simplest control flow graphs (Le. those corresponding to linear sequences of
code) have e = n - 1 and hence Y = 1. Motivated by testing considerations,
McCabe suggested that a value of Y = 10 as a reasonable upper limit on the
cyclomatic complexity of program modules.

Despite their different origins, and the apparently greater sophistication
of cyclomatic complexity, DC and v are intimately related. Each “rectangle”
in a program’s flow chart has a single outgoing edge (except the exit node,
which has none); each “diamond” has two outgoing edges. Therefore, the
total number of edges in the flow chart is equal to the total number of nodes
in the flow chart (n), plus the number of “diamonds” (DC) minus one (for
the exit node). Thus e = n + DC - 1. Hence

v = e - n + 2
= (n + D C - l) - n + 2
= D C + 1.

Thus, the highfalutin cyclomatic complexity measure turns out to be no
different than the elementary decision count!

Related to syntactic complexity measures are “style” metrics [21, 22,
84, 157, 1581. These seek to score programs on their adherence to coding
practices considered superior, in some sense. The details of these metrics
vary according to the individual preference of their inventors. Generally,
marks are added for instances of “good” style such as plenty of comments,
and the use of symbolic constants, and deducted for instances of “bad”
style such as explicit goto’s, and excessive module length. Some program
style analysis systems also perform limited anomaly detection (e.g. variables
declared but not used) and incorporate these into their scores. We discuss
anomaly detection separately in Section 5.2.1 (page 40).

4.2.2 Measures of Data Complexity

The simplest data complexity metrics simply count the number of variables
used by a program. Halstead’s q2 (the number of distinct operands) is a

4.3. Cost and Effort Metrics 23

slightly more elaborate measure of the same type. Such metrics only measure
the total number of different variables that are used in the program; they
do not indicate how many are “live” (Le. must be actively considered by the
programmer) in any one place. A simple definition states that a variable is
“live” in all statements lexically contained between its first appearance and
its last. It is then easy to compute the number of variables that are live at
each statement, and hence m- the average number of variables that are
live at each statement.

Another approach to quantifying the complexity of data usage is to
measure the extent of inter-module references. The work of Henry and Ka-
fura [89,90] is representative of this type. The fan-in of a module may be de-
fined as the number of modules that pass data to the module, either directly
or indirectly; similarly the fan-out may be defined as the number of mod-
ules to which the present module passes data, either directly or indirectly.
The complexity of the interconnections to the module are then defined as
(fan-in x fan-out)2. Henry and Kafura then relate the overall complexity
of a module within a program to both its length and the complexity of its
interconnections by the definition: complexity = SLOC x (fan-in x fan-out)2.

4.3 Cost and Effort Metrics

Cost and effort metrics attempt to measure, or predict, the eventual size of a
program, the cost required to construct it, the “effort” needed to understand
it, and other such interesting and important attributes.

Halstead’s “Software Science” postulates several composite metrics that
purport to measure such attributes. Halstead hypothesized that the length
of a program should be a function of the numbers of its distinct operands and
operators. That is, it should be possible to predict N , the length of a pro-
gram, from 01 and q2-the numbers of its distinct operators and operands,
respectively. Halstead encoded a relationship between these quantities in
his famous “length equation” :

8 = rll log2111 + 112 10g2112.

Going further, Halstead defined the “potential volume” V*, of a program
as the volume of the program of minimal size that accomplishes the same
purpose as the original. The “difficulty” D of a program is then defined by
D = V/V*, and its “level” L is defined as the reciprocal of difficulty. It is
then but a small step to hypothesize that the effort required to implement a

24 Chapter 4. Size, Complexity, and Effort Metrics

program should be related to both its length and its difficulty, and to define
the “effort” E required to implement a program by E = D x V(= V2/V*).
Halstead claimed that E represented “elementary mental discriminations”
and, based on the suggestion of a psychologist, J. Stroud, that the human
mind is capable of making only between 5 and 20 elementary mental dis-
criminations per second, he then proposed the equation T = E/18, where
T is the time required to construct a program in seconds.

The practical application of these last few formulae depend on a method
for computing or estimating the potential volume, V * , for a program. Hal-
stead proposed that potential volume could be defined by

where r] ; is the number of input/output operands, and estimated by

Using this estimation, we obtain

D=- ‘lN2 and E = V x -. rll N2

2rl2 2rl2
In contrast to the scientific pretensions of Software Science, a widely

practised method for predicting the time and effort required to construct a
software project is simply to ask the opinions of those experienced in similar
projects. A refinement of this approach is the “Delphi” technique in which
several people prepare independent estimates and are then told how their
estimates compare with those of the others. (In some variants, they discuss
their estimates with each other). Next, they are allowed to modify their
estimates and the process is repeated until the estimates stabilize. Often
the estimates converge to a very narrow range, from which a consensus value
may be extracted.

A composite cost estimation technique (which combines the use of expert
judgment with statistical data fitting) is the COCOMO (COnstructive Cos t
Model) of Boehm [27, 261. There are three “levels” of the COCOMO model;
the most successful seems to be the (modified) Intermediate Level. There
are also three “modes” to the COCOMO model-for simplicity we will pick
just one (the “semidetached” mode). This variant of the COCOMO predicts
development effort E in man-months by the equation

16
1

E = 3.0 x Sf.12 x mi
i=l

4.3. Cost and Effort Metr ia 25

I Rating I Multiplier
Very Low

Nominal
High
Very High 1.40

Figure 4.1: Multipliers for the Reliability Cost Driver in the COCOMO
Model

where S is the estimated KLOC and each mi is the multiplier assigned to
a particular “cost driver”. Development time (in months) can be obtained
from the COCOMO effort measure by the equation T = 2.5E0.35. Each of
the 16 cost drivers is evaluated by experts on a five point descriptive scale,
and a numerical value for the corresponding multiplier is then extracted
from a table. The table for the “reliability” cost driver is given in Figure
4.1. The 16 cost-drivers used in the (modified) Intermediate COCOMO
model are: required software reliability, data base size, product complexity,
execution time constraint, main storage constraint, virtual machine volatil-
ity, computer turnaround time, analyst capability, applications experience,
programmer capability, virtual machine experience, programming language
experience, modern programming practice, use of software tools, required
development schedule, and volatility of requirements. It is the presence of
the last cost driver (volatility of requirements) that distinguishes the mod-
ified Intermediate COCOMO model from the original Intermediate model.
For all cost drivers, a “nominal” value corresponds to a multiplier of 1.00.

Not all programs are written from scratch; the effort to develop a pro-
gram that includes a substantial quantity of reused code should be less than
one of comparable total size that consists of all new code. Various modi-
fications have been suggested to accommodate this factor; the simplest is
to treat the total size of the program (Se) as a linear combination of the
number of lines of new (Sn) and “old” code (So):

where k is an appropriate constant-a value of k = 0.2 has been found
reasonable [47], though this could vary if the “old” code requires significant
adapt at ion.

26 Chapter 4. Size, Complexity, and Effort Metrics

4.4 Discussion of Software Metrics

The attempt to measure and quantify the properties and characteristics
of programs is a laudable one-and one on which considerable effort has
been expended (see, for example, the survey and bibliography by Wagues-
pack and Badlani [185]). However, the substance and value of most of this
work is open to serious question. Kearney et al. marshal the arguments
against the standard complexity measures in their critique [107]. Firstly,
they observe that existing complexity measures have been developed in the
absence of a theory of programming behavior-there is no comprehensive
model of the programming process that provides any intellectual support
for the metrics developed. Any reasonable theory of programming behavior
would consider not only the program, but also the programmer (his skill and
experience), the programming environment, and the task that the program
is to accomplish. Yet existing complexity measures consider only the pro-
gram itself, and ignore its context. Furthermore, most complexity measures
examine only the surface features of programs-their lexical and syntac-
tic structure-and ignore the deeper semantic issues. Indeed, most metrics
research seems stuck in the preoccupations of the 1960’s: it equates complex-
ity with control flow (c.f. the “structured programming’’ nostrums of the
time) and seems unaware that the serious work on programming method-
ology over the last 15 years has been concerned with the deeper problems
of hierarchical development and decomposition, and with the issues of data
structuring, abstraction, and hiding. Some more recent work does attempt
to address these issues-for example, Bastani and Iyengar [15] found that
the perceived complexity of data structures is strongly determined by the
relationship between the concrete data representation and its more abstract
specification. They conjectured that a suitable measure for the complexity
of a data structure is the length of the mapping specification between its
abstract and concrete representations-i.e. a semantic measure.

Kearney et al. also criticise the fact that complexity measures are de-
veloped without regard to the intended application of the measure. There
is a significant difference between prescriptive uses of such metrics (using
them to “score” programmer’s performance), and merely descriptive uses.
A much greater burden of proof attends the former use, since we must be
sure that techniques that improve the score really do improve the program.
Kearney et al. find much to criticize in the methodology and interpretation
of experiments that purport to demonstrate the significance and merit of se-

4.4. Discussion of Software Metrics 27

lected complexity measures, and thereby cast serious doubt on the wisdom
of using complexity metrics in a prescriptive setting.

Criticism such as that levied by Kearney and his colleagues against much
of the work in complexity metrics is acknowledged by the more thoughtful
practioners. Shen, for example, introducing a magazine column dedicated
to metrics [170], writes:

“Metrics researchers in the 1980’s are generally less optimistic
than their colleagues in the 1970’s. Even though the pressure
to find better metrics is greater because of the greater cost of
software, fewer people today are trying to formulate combin&
tions of complexity metrics that they relate to some definition
of productivity and quality. Instead they set very narrow goals
and show whether these goals are met using focussed metrics
. . .one narrow goal would be to test software thoroughly. An
appropriate metric might be some measure of test coverage.”

The issue addressed in this report is software quality; size and complex-
ity metrics are of interest only in so far as they contribute to the estimation
or improvement of software quality. As far as estimation is concerned, met-
rics research does not yet seem able to provide accurate predictions for
the properties of economic interest (number of faults, cost to maintain or
modify) from the measurable properties of the program itself. The most ac-
curate and best validated predictive techniques seem to be the crudest-for
example 20 faults per KLOC for a program entering unit test [136, page
1211. Even these techniques are likely to need considerable calibration and
re-validation when used in new environments.

The application of software metrics to improving (a opposed to pre-
dicting) the quality of software is even more questionable. Given their lack
of substantiation, the use of such metrics prescriptively seems highly ill-
advised [1071. Their least controversial application might be as components
of “program comprehension aids”. By these, we mean systems that as-
sist a programmer to better comprehend his program and to master its
complexities-especially those due to scale. Examples of such aids range
from simple prettyprinters and cross-reference generators, to more seman-
tically oriented browsers. Descriptive complexity metrics might assist the
programmer in identifying parts of the program worthy of restructuring or
simplification in much the same way that profiling tools help to identify the
places where optimization can be applied most fruitfully.

28 Chapter 4. Size, Complexity, and Effort Metrics

Effort metrics are rather less controversial and easier to validate than
complexity metrics-their purpose, if not their effectiveness, is clear: to
enable the cost and duration of a programming task to be estimated in ad-
vance. However, the efficacy of existing effort metrics seems dubious at best.
The COCOMO model, for example, seems to perform very poorly when ap-
plied to projects other than those used in its own validation. Kemerer [log],
for example, reported an average error of over 600%) and also found that
the Basic COCOMO mode outperformed the more complex Intermediate
and Detailed modes. Conte et al. [47] suggest that the COCOMO model
is too complicated, and involves too many parameters that require estima-
tion. Kemerer’s data [lo91 suggests that a much simpler “function count”
method, similar to the Software Science metric, actually performs better
than COCOMO.

Chapter 5

Testing

Testing subjects software to scrutiny and examination under the controlled
conditions of a “test phase” before it is released into its “operational phase”.
The purpose of testing is to discover faults and thereby prevent failures in the
operational phase. Discussion of the efficiency of a test strategy must relate
the actual cost of testing to the avoided costs of the operational failures that
are averted.

Testing can take two forms: static, and dynamic, though the unadorned
term “testing” generally refers only to the latter. Static testing is that
which depends only on scrutiny on the program text (and possibly that of its
specifications and requirements also). Dynamic testing, on the other hand,
observes the behavior of the program in ezecution. We will describe dynamic
testing first, then three variants of static testing: anomaly detection, code
walk-throughs, and formal verification.

5.1 Dynamic Testing

The input space of any interesting program is so large (if not infinite) that
it is infeasible to examine the behavior of the program on all possible in-
puts. Given that only a fraction of the total input space can be explored
during testing, systematic testing strategies attempt to maximize the likely
benefit while minimizing the cost of testing. Two tactics underlie most sys-
tematic testing strategies: the first is to reduce cost by partitioning inputs
into groups whose members are likely to have very similar behavior, and
then testing only one member from each group (this is called “equivalence
partitioning”); the second is to maximize benefit by selecting test data from

29

30 Chapter 5. Testing

among inputs that are considered to have an above average likelihood of
revealing faults. The second of these tactics is not universally admitted to
be a good idea: the divergence of opinion occurs between those who are pri-
marily interested in enhancing reliability (actually, in reducing the cost of
unreliability), and those who are interested in finding bugs. Concentration
on input states believed to be fault-prone often leads testers t o examine the
boundaries of expected ranges of values, or cases that they believe the de-
signers may have overlooked. This tactic may be successful in finding bugs,
but because those bugs are manifested by rare or unusual inputs, they may
not be encountered during normal operation and may therefore contribute
little to the incidence of operational failures.

5.1.1 Random Test Selection

This argument may be developed into a case for r a n d o m testing. If individual
failures are all assumed to have similar cost, then the cost of unreliability
is proportional to failure intensity. Since the cost of testing is primarily
influenced by the execution time taken to perform the tests themselves, the
optimum test strategy is one which yields the greatest reduction in failure
intensity for a given amount of execution time devoted to testing. This
argues for concentrating on finding and eliminating those faults that lead to
failures on commonly occurring inputs-and therefore suggests the strategy
of selecting test cases randomly, with a probability distribution equal to that
expected to occur during operation. This approach has the advantage that
it essentially duplicates the operational profile and therefore yields failure
intensity data that approximates that which would have been found if the
program had been released into operation at that time. The failure intensity
data obtained during testing should therefore provide accurate estimates for
the reliability formulas developed in Section 3.1 (page 10).

A criticism of the random testing strategy is that it is wasteful: the s a n e
input may be tested several times. However, i t is usually easy to record each
input and to avoid repeating tests already performed. By reference to the
classic sampling problems of statistics, such methods are often called “test
selection without replacement”. If tests are selected and performed without
replacement, then the probability of selecting any particular input value
becomes uniform. However, the order in which inputs are selected will still
follow their expected probability of occurrence in operation.

Although random test selection without replacement should be more
cost-effective than a purely random strategy, such tests do not follow the

5.1. Dynamic Testing 31

expected operational profile and therefore do not provide an accurate es-
timate of the failure intensities to be expected in practice. It is possible
to take account of this divergence between the testing and the operational
profiles as follows.

Define C, the testing compression factor to be the ratio of the execution
time required to cover the entire input space during operation, to that re-
quired during test. Let 111 be the size (cardinality) of the input space, p k the
probability of occurrence of input k during operation, pmin the probability of
occurrence of the least likely input, and let Tk be the execution time required
for input I C . If the entire input space is covered during operation, then the
least likely input must be executed at least once. Hence the expected fre-
quency of execution of input k is Pk/Pmin and so the expected total time

execution of each input is required during test (without replacement), the

the testing compression factor is given by:

to cover the input space during operation is x k = l VI e T k . Since only one

execution time to cover the input space during test is only x k = l III Tk, and so

min

If all Tk are equal, then (5.1) simplifies to

1 C =
* P m i n '

If p k is assumed to be inversely proportional to k, then it can be shown that
as 11) grows from lo3 to lo9, C grows slowly from just less than 10 to a little
over 20.

If a value for the testing compression factor can be calculated or esti-
mated using the methods given above, then the reliability formulas of Sec-
tion 3.1 (page 10) can be employed to extrapolate from the testing to the
operational phase if execution times are multiplied by C (alternatively, fail-
ure intensities can be divided by C) in order to convert observations made
during test to those expected during operation.

The pure random test selection strategy described above assumes that
all failures have equal cost. In practice, some failures may be more expensive
than others; some may be unconscionable (perhaps endangering human life).
In these cases, the random test strategy may be modified in order to attempt
to identify and provide early tests of those inputs which might provoke

32 Chapter 5. Testing

especially costly failures. The technique of software fault-tree analysis may
be useful in identifying such critical inputs [122, 1201-see Section 5.2.4.

5.1.2 Regression Testing

The desirability of test selection without replacement is considerably di-
minished if we admit the possibility of imperfect debugging. Under the
assumption that debugging is imperfect, the repair that is initiated follow-
ing each failure may not only fail to remove the fault that caused it, but may
actually introduce new faults. These faults may cause failure on inputs that
previously worked satisfactorily. Under a regression testing regime, previ-
ously tested inputs are repeated whenever a repair (or other modification) is
made to the program. Under strict regression testing, all previous tests are
repeated; under less strict regimes, some subset of those tests (usually in-
cluding all those that provoked failure) are repeated. Models of the software
testing process under various assumptions are discussed by Downs [59].

5.1.3 Thorough Testing

The motivation behind random testing is find and remove the most costly
faults (generally interpreted as those that most frequently lead to opera-
tional failure) as quickly and as cheaply as possible. Test selection without
replacement and equivalence partitioning may be used to enhance the test-
ing compression factor and hence the cost-effectiveness of the process. The
motivation behind what we will call thorough testing, on the other hand,
is to find all the faults in a program (as efficiently as possible). The theo-
retical framework for thorough testing was established by Goodenough and
Gerhart in a landmark paper [77].

Let F denote the program being considered, and D its input space. If
d E D then O K (d) denotes that F behaves correctly when given input d.
We say that the test set T E D is successful if F behaves correctly on all its
members, that is SUCCESSFUL(T) def (Qt E T : OK(t)). A correct program is
one that behaves correctly throughout its input space-i.e. one that satisfies
SUCCESSFUL(D). A faulty program is one that is not correct-i.e. one that
satisfies TSUCCESSFUL(D). A thorough test set is one which, if successful,
guarantees that the program is correct, that is

THOROUGH(T) def SUCCESSFUL(T) 2 SUCCESSFUL(D)

5.1. Dynamic Testing 33

If C is a test selection criterion and the test set T satisfies C, then we
write SATISFIES(T, C) . We would like test criteria to be reliable and valid.
A criterion is reliable if all test sets that satisfy it give the same result:

RELIABLE(C) del (v T ~ , T~ E D : SATISFIES(T~, C) A SATISFIES(T~, C)
3 SUCCESSFUL(T~) = SUCCESSFUL(T~)).

A criterion is valid if it is capable of revealing all faulty programs. That is,
if F is faulty, then there should be some T that satisfies C and fails on F:

VALID(C) def ~SUCCESSFUL(D) 2 (3 ~ : SATISFIES(T, C)A~SUCCESSFUL(T)) .

Given these definitions, Goodenough and Gerhart were able to state the
Fundamental Theorem of Testing:

(3T, c : RELIABLE(C) A VALID(C) A SATISFIES(T, c) A SUCCESSFUL(T))
3 SUCCESSFUL(D).

In words, this says that if a successful test set satisfies a reliable and valid
criterion, then the program is correct. Another way of stating this result is
that a test is thorough if it satisfies a reliable and valid test criterion.

This result is called “Fundamental”, not because it is profound (indeed,
its proof is a trivial consequence of the definitions, and is omitted for that
reason), but because it captures the basic idea underlying all attempts to
create thorough test strategies, namely the search for test criteria that are
both reliable and valid, yet economical in the sense that they can be satisfied
by relatively small test sets.

Unfortunately, there are several problems with ,the practical application
of these definitions [188]. First of all, the concepts of reliability and validity
are not independent. A test selection criterion is valid if, given that the
program is faulty, at least one test set satisfying the criterion is unsuccessful.
Therefore, if a test selection criterion is invalid, all test sets that satisfy it
must be successful. Hence they will all give the same result, and so the
criterion is reliable. Thus, all test selection criteria are either valid or reliable
(or both) [188]. (Note also that if F is correct, then all criteria are both
reliable and valid for F .)

Next, the concepts of validity and reliability are relative to a single, given
program. A criterion that is valid and reliable for program F may not be so
for the slightly different program F’. Furthermore, since F‘ may result from

34 Chapter 5. Testing

correcting a bug in F , the reliability and validity of a test selection criterion
may not be preserved during the debugging process.

A plausible repair to this deficiency is to construct modified definitions
which quantify over all programs. Thus, a test selection criterion is said to
be uniformly valid if it is valid for all programs F , and uniformly reliable
if it is reliable for all programs F . Unfortunately, a criterion is uniformly
reliable if and only if it selects a single test and uniformly valid if and only if
the union of the test sets that satisfy it is the entire input space D. Hence a
criterion is uniformly reliable and valid if and only if it selects the single test
set D. Thus we see that the notions of uniform reliability and validity are
unhelpful [188]. A more recent attempt to axiomatize the notion of software
test data adequacy is described by Weyuker [186].

In theory, the construction of a reliable and valid test selection crite-
rion for a program is equivalent to proving the formal correctness of that
program-a very hard problem. In practice, constructing such a criterion is
virtually impossible without some knowledge, or at least some assumptions,
about the faults that it may contain. Thus, the search for a theoretical
basis for thorough test selection has shifted from the original goal of demon-
strating that no faults are present, to the more modest goal of showing that
specified classes of faults are not present. In practice, the goal is often re-
duced to that of finding as many faults as possible. This is accomplished
by systematic exploration of the state space based on one (or both) of two
strategies known as structural testing, and functional testing, respectively.

5.1.3.1 Structural Testing

Structural testing selects test data on the basis of the program’s structure.
As a minimum, test data are selected to exercise all statements in the pro-
gram; a more comprehensive criterion requires that all outcomes of all de-
cision points should be exercised. In terms of the control flow graph of the
program, the first of these criteria requires that all nodes must be visited
during testing; the second requires that all edges must be traversed, and
properly includes the first (unless there are isolated nodes-which surely
represent errors in their own right).

Test data that simply visits all nodes, or traverses all edges, may not be
very effective: not many faults will be so gross that they will be manifest
for all executions of the offending statement. Generally, faults are manifest
only under certain conditions, determined by the context-that is to say,
the values of the accessible variables-in which the offending statement is

_-

5.1. Dynamic Testing 35

executed. Context is established in part by the execution path taken through
the control flow graph; the path testing criterion requires test data that will
exercise all possible paths through the program.

There are (at least) two problems with the all-paths criterion. Firstly, a
path does not uniquely establish an execution context: two different sets of
input values may cause the same execution path to be traversed, yet one set
may precipitate a failure while the other does not. Secondly, any program
containing loops has an infinite number paths. Some further equivalence
partitioning is therefore needed. One plausible strategy is to partition exe-
cution paths through each cycle in the control flow graph into those involving
zero, one, and many iterations.

A more sophisticated strategy considers the data flow relationships in
the program. Data flow analysis, which was first studied systematically for
its application in optimizing compilers, considers how values are given to
variables, and how those values are used. Each occurrence of a variable
in a program can be classified as a def, or as a use: a def occurrence (for
example, an appearance in the left hand side of an assignment statement)
assigns a value to a variable; a use occurrence (for example, an appearance
in the right hand side of an assignment statement) makes use of the value
of a variable. Use occurrences may be further distinguished as c-uses (the
value is used in a computation that assigns a value to a variable) and p-uses
(the value is used in a predicate that influences control flow). For example,
in the program fragment

i f x = 1 then y := z e n d i f ,

x has a p-use, z a c-use, and y a def.
Rapps and Weyuker [156] proposed a family of path selection criteria

based on data flow considerations. The all-defs criterion requires that for
every defoccurrence of, say, variable x, the test data should cause a path
to be traversed from that def occurrence to some use occurrence of x (with
no intervening def occurrences of x). The all-p-uses criterion is similar but
requires paths to be traversed from that def occurrence to every p-use oc-
currence of x that can be reached without intervening def occurrences of x.
Definitions for the criteria all-c-uses, and all-uses are similar. A hybrid cri-
terion is all-p-uses/some-c-uses-this is the same as all-p-uses, except that
if there are no p-uses of x subsequent to a given def occurrence, then a path
to some subsequent c-use should be included. The all-c-uses/some-p-uses
criterion is defined dually.

36 Chapter 5. Testing

The all-uses criterion is a comprehensive one but, like the all-paths crite-
rion, may require an excessive, or infinite, number of test cases. The all-defs
criterion seems an attractive compromise from this point of view. System-
atic test selection criteria should surely draw on both data and control flow
perspectives-so a very reasonable criterion would seem to be one that en-
compassed both all-defs and all-edges. Rapps and Weyuker (1561 showed
that these are independent criteria-neither implies the other. This tends
to confirm the belief that both are important, but complicates test selection
since two very different criteria are involved. It would be nice if a single cri-
terion could be found that would include both all-defs and all-edges. Rapps
and Weyuker 11561 showed that all-p-uses/some-c-uses has this property and
recommended its use. Ntafos [1441 provides a comprehensive comparison of
the relative coverage of these and other structural testing strategies.

5.1.3.2 Functional Testing

Functional testing selects test data on the basis of the function of the pro-
gram, as described in its requirements, specification, and design documents.
Generally speaking, the detailed characteristics of the program itself are not
considered when selecting test data for functional testing, though general
aspects of its design may be.

Functional testing treats the program as a “black box” which accepts
input, performs one of a number of possible functions upon it, and produces
output. Based on the relevant requirements documents, classifications and
groupings are constructed for the input, output, and function domains. Test
data are then constructed to exercise each of these classifications, and com-
binations thereof. Typically, an attempt is made to select test data that
lie well inside, just inside, and outside each of the input domains identi-
fied. For example, if a program is intended to process “words” separated
by “whitespace”, we might select test data that consists of zero words, one
word, several words, and a huge number of words. Similarly, we would select
words consisting of but a single letter, a few letters, and very many letters-
not to mention words containing “illegal” letters. The “whitespace” domain
would be explored similarly.

Functional testing for a given program may take many forms, depending
on which of its requirements or design documents are used in the analy-
sis. Howden [94] argues that for maximum effectiveness, functional testing
should consider the “high-level” design of a program, and the context in
which functions will be employed. For example, if a particular function f(z)

5.1. Dynamic Testing 37

has the domain z E (-oo,oo), then the test values Slc and - I C , where lc is
a very large value, are likely to suggest themselves. But if the function is
used in the context

if z > -2 then f (z) end i f ,

the test value -k will not exercise f at all, and faults manifest by nega-
tive values for z, for example, will remain undiscovered. Given its contezt,
appropriate test values for f might be -2 f E and +k.

If a formal specification is available for a program, it may be possible
to derive a functional testing strategy from that specification in a highly
systematic fashion [86]. Other systematic functional testing strategies are
described by Mandl [125] and by Ostrand and Balcer [147].

5.1.4 Symbolic Execution

The model of testing described so far assumes that test data are presented
to the program and the results produced are compared with those expected.
In practice, however, programmers do not merely examine the final output
of the program, but often instrument or modify the program under test so
that traces of its control flow and of the intermediate values of its variables
are generated during execution. These traces greatly assist the programmer
in determining whether the actual behavior of the program corresponds to
that intended. Since they provide a peek into the inner workings of the
program, traces often yield much more insight than the single datum points
provided by tests that only consider input-output values.

Symbolic Ezecution constitutes a systematic technique for generating
information about the inner workings of a program. The idea is to allow
program variables to take symbolic values and to evaluate the functions com-
puted by program statements symbolically also. Symbolic execution bears a
similar relationship to conventional execution as algebra does to arithmetic.
Consider, for example, the following (Fortran) program fragment from a
subroutine to compute the sine of an angle:

1=3
TERM=TERM*X**2/ (I* (I- 1))
SUM=SUM+((-l)**(I/2)*TERM

We can compute the final values of variables I , TERM and SUM, given the
initial assignments TERM=SUM=X to be 1=3, TERM=X**3/6, and SUM=X-X**3/6.

38 Chapter 5. Testing

The process performed, statement by statement, is to substitute the current
symbolic values into each variable in the right hand side of each assignment
statement, simplify the resulting expression, and let this become the new
symbolic value of the variable on the left hand side. In a full symbolic
execution system, it is necessary to be able to carry the computation forward
through branches. Typically, the programmer indicates the paths he wishes
to explore and the symbolic execution system asserts the necessary truth of
the appropriate test predicates.

The output produced by a symbolic execution system consists of the
symbolic values accumulated in its variables through execution of a selected
path. The programmer can compare these values with those expected. This
is very convenient and appropriate for some computations, less so for others.
For example, Howden [96] cites a subroutine to compute the sine function
using the Maclaurin series sin(z) = z- %+% -. . . Two iterations round the
main loop in the subroutine yield the symbolic value X-X**3/6+X+*5/120
for the variable SUM in which the result is accumulating. This provides much
more useful information than would the output values for a couple of isolated
points.

Another use for symbolic execution is to help partition the input domain
by the execution paths invoked. This is helpful in the generation of test
data to satisfy path coverage criteria. Symbolic execution systems and their
applications are described by several authors [96, 1121; one of the first such
systems was developed in the Computer Science Laboratory of SRI [31].

3 5

5.1.5 Automated Support for Systematic Testing Strate-
gies

Given a systematic test selection criterion, the question naturally arises: how
does one generate test data satisfying the criterion? For functional testing,
there seems little alternative to generating the data by human inspection:
generally the requirements and design documents from which functional test
data are derived are not formal and not amenable to mechanical analysis.
However, it is feasible that automatic test data selection could be performed
once human inspection had performed the classification of the input domain:
that is to say, human skill would be used to identify the primitive classifica-
tions, but the generation of combinations of elements of each classification
would be performed mechanically.

Unlike functional testing, structural testing is ideally suited to automa-
tion. The program text is a formal object and well suited to systematic

5.2. Stat ic Testing 39

exploration. Unfortunately, considerable computation is needed to calcu-
late the input that will exercise a particular path: symbolic execution is
generally employed in order to derive the “path predicates” associated with
the path, then solutions must be found to the systems of numerical inequal-
ities that they induce. Consequently, most test case generators are severely
limited in the class of programs and/or in the class of test criteria that
they support. Ince [98] provides a modern survey of the field and also sug-
gests that systematic use of randomly generated test data could provide very
good coverage at low cost. The idea, which is elaborated in a short note [99],
starts from the observation that relatively small sets of random test data
seem to provide quite good coverage [60]. For example, with ten programs
ranging in size from 12 to 102 branches, random test data achieved an aver-
age branch coverage of 92.80% [99]. The average size of the test sets needed
to achieve this coverage was 12.8, with the largest being 112. Since the test
sets were randomly generated, they were far from optimal, and contained
subsets that provided the same coverage as the whole set. Using zero-one
integer linear programming, the minimum such subsets were found for each
test set. These were found to average only 3.1 in size, with the test set of size
112 being reduced to only 10. Thus, the suggestion is to generate random
test data until adequate coverage is achieved relative the chosen structural
testing criterion (or until further tests result in little increased coverage).
Coverage is measured by instrumenting the program under test. The ran-
domly generated test set is then reduced to minimum size using zero-one
integer linear programming, and the test results obtained using this subset
are examined.

5.2 Static Testing

Dynamic testing is an important method of validation; static testing tends
to address the complementary problem of verification. Static testing sub-
jects the program text (and its accompanying requirements and specification
documents) to scrutiny and review in order to detect inconsistencies and
omissions. The scrutiny may operate within a single level, in order to detect
internal inconsistencies (this is the basis of anomaly detection, discussed in
the next section), or across two levels. In the latter case, the purpose is to
establish that the lower level specification (or program) fully and exclusively
implements the requirements of its superior specification. Everything in a
lower level specification should be traceable to a requirement in a higher level

40 Chapter 5. Testing

specification; conversely, every requirement should ultimately be realized in
the implementation.

5.2.1 Anomaly Detection

The idea behind anomaly detection is to look for features in the program
that probably indicate the presence of a fault. For example, if a programmer
declares a variable name but never otherwise refers to it, he is guilty of care-
lessness at the very least. More ominously, this situation may indicate that
the programmer anticipated a need for the variable early in the programming
effort, but later forgot to deal with the anticipated circumstance-in which
case the existence of a genuine fault may have been detected. Anomaly
detection refers to the process of systematically searching for “suspicious”
quirks in the syntactic structure of the program, or in its control or data
flow.

At the syntactic level, the example given above is typical of a very fruitful
technique: searching for identifiers that are declared but not used. The dual
problem of identifiers that are used but not identified usually violates the
definition of the programming language concerned and will be caught by
its compiler. Other examples of anomalies that are likely to indicate faults
include supplying a constant as an actual parameter to a procedure call in
which the corresponding formal parameter is modified, and subscripting an
array with a loop index whose bounds exceed those declared for the array.

Control flow anomalies include unreachable sections of program, and
loops with no exit. These circumstances indicate certain errors; other control
flow anomalies may merely indicate “bad style”-for example, jumping into
the middle of a loop.

Among the most effective of techniques for anomaly detection are those
based on data flow analysis. For example, if it can be determined that the
value of a program variable may be used before it has been given a value (Le.
if there is a path to a use occurrence that does not pass a defoccurrence),
then it is very likely that a fault is present. Dually, defoccurrences that do
not lead to a subsequent use occurrence are also suspect, as are paths that
have two defoccurrences of a variable, with no intervening use occurrence.

Information flow analysis is related to data flow analysis, but is rather
more sophisticated in tracing the influence between program variables and
statements. For example, in the program fragment

i f z = 0 then y := 1 endif

5.2. Static Testing 41

there is no data flow from z to y, but the value of z certainly influences the
subsequent value of y, and so there is considered to be a flow of information
from z to y. Information flow analysis is used routinely in computer security
verification [56, 1’741; its application to more general analysis and anomaly
detection is promising [20].

Automated tools have been developed to perform detection of anoma-
lies of the types described above for programs written in a variety of lan-
guages [146, 1901.

5.2.2 Structured Walk-Throughs

Structured walk-throughs are a method for the manual inspection of pro-
gram designs and code. The method requires far more than mere ueye-
balling” : it is highly structured and somewhat grueling-its intensity is
such that no more than two two-hour sessions per day are recommended.

As first described by Fagan [61] (see [62] for an update), four participants
are required-the Moderator, the Designer, the Coder/lmplementor/ , and
the Tester. If a single person performed more than one role in the develop-
ment of the program, substitutes from related projects are impressed into
the review team. The review team scrutinizes the design or the program
in considerable detail: typically, one person (usually the coder) acts as a
“reader” and describes the workings of the program to the others, “walk-
ing through” its code in a systematic manner so that every piece of logic
is covered at least once, and every branch is taken at least once. Intensive
questioning is encouraged, but it is the Moderator’s responsibility to ensure
that it remains constructive and purposeful. As the design and its imple-
mentation become understood, the attention shifts to a conscious search for
faults. A checklist of likely errors may be used to guide the fault finding
process.

One of the main advantages of structured walk-throughs over other forms
of testing is that it does not require an executable program, nor even formal
specifications-it can be applied early in the design cycle to help uncover
errors and oversights before they become entrenched.

5.2.3 Mathematical Verification

Mathematical verification is the demonstration of consistency between two
different descriptions of a program. Usually, one description is the program
code itself and the other its specification, though the method can equally well

42 Chapter 5. Testing

be applied to two specifications at different levels of detail. This terminology
is entirely consistent with the notion of “verification” defined in Section 2.1
(page 7), but the presence of the adjective “mathematical” qualifies this
particular style of verification as a mathematical activity, in which the two
program descriptions are treated as formal, mathematical texts and the
notion of ‘(consistency” that is to be demonstrated between them is also a
formal, mathematical one (for example, that of “theory interpretation” or
of a homomorphism).

Mathematical verification can be performed at various levels of formal-
ity. As stated above, mathematical verification means that the process is
grounded on formal, mathematical principles. But just as conventional
mathematicians do not reduce everything to the level of Principia Math-
ematica, so it is entirely reasonable to perform mathematical verification
(‘rigorously”, but informally-that is to say, in the style of a normal math-
ematical demonstration.’

There are many worthwhile points along the spectrum of formality in
mathematical verification. At the most informal end is the “Clean Room”
methodology espoused by Mills [132]. Though informal in the sense that
the process is performed manually at the level of ordinary mathematical
discourse, the process itself is highly structured and formalized. Its goal is
to prevent faults getting into the software in the first place, rather than
to find and remove them once they have got in. (Hence the name of the
methodology-which refers to the dust-free environment employed in hard-
ware manufacturing in order to eliminate manufacturing defects.)

The two cornerstones of the Clean Room methodology are mathematical
verification and statistical quality control. The first requires that precise,
formal, specifications are written for all program components and that a
detailed mathematical argument is provided to justify the claim that the
component satisfies its specification. If a verification is difficult or uncon-
vincing, the program is revised and simplified so that the argument for its
correctness becomes more perspicuous.

Mathematical verification subsumes structural testing in the Clean Room
methodology, although functional testing is still performed. However, the

~

‘What we are calling mathematical verification is often called formal verification; we
have chosen our terminology to avoid having to talk about “informal” formal verifica-
tion which, if it is not an oxymoron, is undoubtedly a solecism. Our usage also avoids
confusion with some notions of “formal” verification that are anything but mathematical-
the adjective “formal” being used in this case to refer to a highly structured proceaa of
verification,

5.2. Static Testing 43

major testing effort performed in the Clean Room is random testing for the
purposes of statistical quality control. Software specifications in the Clean
Room methodology include not only a description of the functions to be
supported by the software, but a probability distribution on scenarios for
its use. The Clean Room methodology then prescribes a testing procedure
and a method for computing a certified statistical quality measure for the
delivered software.

The mathematical verification technique used in the Clean Room method-
ology is called “functional verification” and is different from that employed in
“classical” mathematical verification. The “rigorous” techniques of Jones [1021,
and of the Oxford school [85] are based on more conventional forms of math-
ematical verification than the Clean Room methodology, and are also more
formal, but share much of their motivation with the Clean Room approach.
An empirical evaluation of the Clean Room methodology has recently been
reported by Selby et al [168].

Beyond the techniques described above come the totally formal meth-
ods. These generally employ the assistance of an automated specification
and verification environment: the sheer quantity of detail entailed by com-
plete formality is likely to render verification less, rather than more, re-
liable unless mechanical assistance is employed. Formal specification and
verification environments generally provide a formal specification language,
a programming language, a means of reducing the problem of establishing
consistency between a program and its specification to a putative theorem in
some formal system, and a mechanical theorem prover for seeking, or check-
ing, proofs for such theorems. Three or four systems of this type have been
developed [lll]. One of the most recent and advanced is the EHDM system
which was developed in the Computer Science Laboratory of SRI [87].

All verification methods are vulnerable to two classes of error. First
is the possibility of a flaw in the verification itself-the demonstration of
consistency between the program and its specification may be flawed, and
the two descriptions may, in fact, be inconsistent. The second class of error
arises when the verification is sound, but irrelevant, because the specification
does not reflect the actual user requirements (Le. the system may satisfy
the verification process, but fail validation)

It is in order to avoid the first class of error that truly formal, and me-
chanically assisted, formal verification is generally recommended. There are,
however, drawbacks to this approach. Firstly, in order to be amenable to
mechanization, rather restrictive specification and programming languages,
built on a very elementary formal system (usually a variation on first-order

44 Chapter 5. Testing

predicate calculus), must usually be employed. Because of their lack of con-
venient expressiveness, such languages and logics may make it difficult for
the user to say what he really intends-so that instead of concentrating on
what he wants to say, he has to spend all his effort on how to say it-with
the consequent danger that he may fail to say it correctly, and so fall into
the second kind of error. Similarly, the user may have to spend consider-
able ingenuity, not in proving his theorems directly, but in persuading a
mechanical theorem prover to prove them for him. This problem is com-
pounded by the fact that most verification systems do not allow the user to
reason about programs directly (as he would do if performing the proof by
hand), but reduce the question of consistency to a (generally large) num-
ber of (generally lengthy) formulas called “verification conditions” that rob
the user of much of his intuition concerning the program’s behavior. This
latter difficulty should not affect the reliability of the process (provided the
theorem prover is sound), but will adversely affect its economics. SRI’s
EHDM system attempts to overcome these difficulties by providing a very
expressive specification language and powerful underlying logic (based on
multi-sorted higher order logic) together with the ability to reason about
programs directly (using the Hoare, or relational, calculus).

5.2.3.1 Executable Assert ions

The task of proving consistency between a program and its specification is
generally broken down into more manageable steps by embedding assertions
at suitable points in the program text and proving that the assertions will
always be satisfied when the locus of control passes these points during
execution. An interesting alternative to proving the assertions B priori is to
test them during execution and to halt the program with an error message
if any assertion fails. This can permit a fairly simple proof of consistency
between a program and the weakened specification “X or fail”, where “X”
was the original specification. Variations on this theme include the use of
executable assertions during conventional dynamic testing [ll], and in a
dynamic variant of anomaly detection [40]. In the former case, the presence
of the assertions allows the testing process to probe the “inner workings”
of the program, rather than merely its input-output behavior (recall our
discussion of symbolic execution in Section 5.1.4 on page 37). In the latter
case, instrumenting the program with executable assertions allows data flow
anomaly detection to be performed without requiring a data flow analyzer

5.2. Static Testing 45

for the programming language concerned. Of course, this approach can only
perform anomaly detection on paths actually executed.

More radical techniques that have much in common with executable as-
sertions include “provably safe” programming [lo], and the “recovery block”
approach to software fault tolerance-in which an “acceptance test” (effec-
tively an executable assertion) governs the invocation of alternative program
components to replace those that have failed [9]. An experiment by Ander-
son [8] showed promise for recovery blocks (70% of software failures were
eliminated, and MTBF was increased by 135%), but found that acceptance
tests are hard to write. In another study [39], 24 students were hired to
add self-checks to programs containing a total 60 known faults (there were
8 different programs, each was given to three students). Only 9 out the 24
self-checking programs detected any faults at all; those that did find faults
found only 6 of the 60 known faults, but they also discovered 6 previously
unknown faults (in programs which had already been subjected to one mil-
lion test-cases). Sadly, 22 new faults were introduced into the programs in
the process of adding the self-checks.

5.2.3.2 Verification of Limited Properties

A common and familiar example of executable assertions is the “range check”
generally compiled into array subscripting operations. Though a valuable
safety net, these checks can be very expensive when they appear in the
inner loops of a program. An approach which “turns the tables’’ on the
relationship between formal verification and executable assertions is to prove
that subscripting errors, and other simple forms of run-time error, cannot
occur [74]. This is an example of an important variation on the application
of formal verification.

Conventionally, the goal of formal verification is understood to be “proof
of correctness”. We have been careful to make a more careful and accurate
statement-namely, that it provides a demonstration of consistency between
a program and its specification-but we have implicitly assumed that the
specification concerned is one that provides a full description of the func-
tionality required of the program. This need not be the case, however. The
methods of formal verification can be applied equally well when the specifi-
cation is a limited, weak, or partial one: instead of proving that the program
does “everything right”, we can attempt to prove only that it does certain
things right, or even that it is does not do certain things wrong. In fact, the

46 Chapter 5. Testing

properties proved of a program need not be functional properties at all, but
can be higher order (e.g. “security’)), or structural.

The limited properties t o be proved may be chosen because of their
tractability-Le. because formal verification is among the most cost-effective
ways of ensuring those properties-or because of their importance. The ab-
sence of array subscripting errors is an example of the first class; security
exemplifies the second. In particular, security is an example of a “critical
property” : a property considered so important that really compelling ev-
idence must attest to its realization. What constitutes a critical property
is something that can only be determined by the customer (and the law!),
but it will generally include anything that could place human life, national
security, or major economic assets at risk.

Yet another variation on formal verification is to prove properties about
the structural properties of programs. For example, a specification may
assert that the program should have a certain structure, or that a certain
structural relationship should exist among some of its components (e.g. one
may use the other, but not vice-versa). Formal verification of these prop-
erties guarantees that the program respects the structural properties given
in its specification. One advantage of this style of verification is that it can
be performed with complete formality, but without burdening the user with
details. The PegaSys system developed in the Computer Science Laboratory
of SRI [134] supports the use of pictures as formal specifications of system
structure, and hides all the details of theorem proving from the user.

5.2.4 Fault-Tree Analysis

Reliability is not the same as safety, nor is a reliable system necessarily a safe
one. Reliability is concerned with the incidence of failures; safety concerns
the occurrence of accidents or mishaps-which are defined as unplanned
events that result in death, injury, illness, damage to or loss of property,
or environmental harm. Whereas system failures are defined in terms of
system services, safety is defined in terms of external consequences. If the
required system services are specified incorrectly, then a system may be
unsafe, though perfectly reliable. Conversely, it is feasible for a system to be
safe, but unreliable. Enhancing the reliability of software, though desirable
and perhaps necessary, is not sufficient for achieving safe software.

Leveson [121, 122, 1201 has discussed the issue of software safety at
length and proposed that some of the techniques of system safety engineering
should be adapted and applied to software. First, it is necessary to define

5.2. Static Testing 47

some of the terms used in system safety engineering. Damage is a measure
of the loss in a mishap. A hazard is a condition with the potential for
causing a mishap; the severity of a hazard is an assessment of the worst
possible damage that could result, while the danger is the probability of
the hazard leading to a mishap. Risk is the combination of hazard severity
and danger. Software Safety is concerned with ensuring that software will
execute in a system context without resulting in unacceptable risk. One
class of techniques for software safety is concerned with design principles
that will reduce the likelihood of hazardous states; another is concerned with
methods for analyzing software in order to identify any unduly hazardous
states. An example of the latter is “Software Fault Tree Analysis” (SFTA).
The description below is adapted from that in [122].

SFTA is an adaptation to software of a technique that was developed
and first applied in the late 60’s in order to minimize the risk of inadvertent
launch of a Minuteman missile. The first step, as in any safety analysis,
is a hazard analysis of the entire system. This is essentially a listing and
categorization of the hazards posed by the system. The classifications range
from “catastrophic,” meaning that the hazard poses extremely serious con-
sequences, down to “negligible” which denotes that the hazard will not se-
riously affect system performance. Once the hazards have been determined,
fault tree analysis proceeds. It should be noted here that in a complex
system, it is possible, and perhaps even likely, that not all hazards can be
predetermined. This fact does not decrease the necessity of identifying as
many hazards as possible, but does imply that additional procedures may
be necessary to ensure system safety.

The goal of SFTA is to show that the logic contained in the software
design will not produce system safety failures, and to determine environ-
mental conditions which could lead to the software causing a safety failure.
The basic procedure is to suppose that the software has caused a condition
which the hazard analysis has determined will lead to catastrophe, and then
to work backward to determine the set of possible causes for the condition
to occur.

The root of the fault tree is the event to be analyzed, Le., the “loss
event.” Necessary preconditions are described at the next level of the tree
with either an AND or an OR relationship. Each subnode is expanded in a
similar fashion until all leaves describe events of calculable probability or are
incapable of further analysis for some reason. SFTA builds software fault
trees using a subset of the symbols currently in use for hardware systems.
Thus hardware and software fault trees can be linked together at their inter-

48 Chapter 5. Testing

faces to allow the entire system to be analyzed. This is extremely important
since software safety procedures cannot be developed in a vacuum but must
be considered as part of overall system safety. For example, a particular
software error may cause a mishap only if there is a simultaneous human
and/or hardware failure. Alternatively, environmental failure may cause the
software error to manifest itself. In many previous safety mishaps, e.g., the
nuclear power plant failure at Three Mile Island, the safety failure was ac-
tually the result of a sequence of interrelated failures in different parts of
the system.

Fault tree analysis can be used at various levels and stages of software
development. At the lowest level the code may be analyzed, but it should
be noted that higher levels of analysis are important and can and will be
interspersed with the code level. Thus the analysis can proceed and be
viewed at various levels of abstraction. It is also possible to build fault trees
from a program design language (PDL) and to thus use the information
derived from the trees early in the software life cycle. When working at
the code level, the starting place for the analysis is the code responsible for
the output. The analysis then proceeds backward deducing both how the
program got to this part of the code and determining the current values of
the variable icurrent state).

An experimental application of SFTA to the flight and telemetry control
system of a spacecraft is described by Leveson and Harvey [122]. They
report that the analysis of a program consisting of over 1250 lines of Intel
8080 assembly code took two days and discovered a failure scenario that
could have resulted in the destruction of the spacecraft. Conventional testing
performed by an independent group prior to SFTA had failed to discover
the problem revealed by SFTA.

5.3 Testing Requirements and Specifications

So far we have explicitly considered only the testing of finished programs,
but there is much to be said for the testing of specifications and require-
ments also. In the first place, testing a program against its specification is
of little value if the specification is wrong; secondly, the cost of repairing
faults increases dramatically as the number of life-cycle stages between its
commission and its detection increase. As we noted in Section 2 (page 6), it
is relatively simple, quick, and cheap, to correct an error in a requirements
statement if that error is discovered during review of that statement, and

5.3. Testing Requirements and Specifications 49

before any further stages have begun; and it is also fairly simple, quick, and
cheap to correct a coding error during testing. It is, however, unlikely to
be either simple, quick, or cheap to correct an error in requirements that is
only discovered during system test. Major redesign may be required, and
wholesale changes necessitated. Any attempt to correct the problem by a
“quick fix” is likely to generate even more problems in the long run.

For these reasons, testing and evaluation of requirements, specifications,
and design documents may be considered a very wise investment. Of the
testing methods we have described, only structured walk-throughs are likely
to be feasible if the requirements and specification documents are infor-
mal, natural-language texts. If requirements and specifications are presented
in some semi-formal design language, then limited anomaly detection and
mathematical verification may be feasible, and possibly simulated execution
also. If fully formal requirements and/or specifications are available, then
quite strong forms of anomaly detection, mathematical verification, and even
dynamic testing may be feasible.

In the following sections, we will briefly touch on some of these topics.

5.3.1 Requirements Engineering and Evaluation

Many studies of the software life-cycle have concluded that its early stages
are particularly crucial. It is in these early stages that the overall require-
ments for a system are identified and the basic design of the system is spec-
ified. Errors or misapprehensions made at these stages can prove ruinously
expensive to correct later on. Recent studies (e.g., (14, 291) have shown
that errors due to faulty requirements are between 10 and 100 times more
expensive to fix a t the implementation stage than at the requirements stage.
There are two main reasons for the high cost of modifying early decisions
late in the life-cycle:

0 The changes often have a widespread impact on the system, requiring
many lines of code to be modified. Furthermore, it can be difficult to
identify all of the code requiring attention, resulting in the modifica-
tion being performed incorrectly.

0 The documentation is likely to be inadequate, exacerbating the prob-
lem of determining why certain decisions were made and assessing the
impact of decisions. It is also difficult to keep the documentation cur-
rent as changes are made.

50 Chapter 5. Testing

Not only are errors in requirements and specifications expensive to cor-
rect, they are also among the most frequent of all errors - one study 1141
found that 30% of all errors could be attributed to faulty statement or
understanding of requirements and specifications. Worse, it appears that
errors made in these early stages are among those most likely to lead to
catastrophic failures [1201.

These problems indicate the need for methodologies, languages, and tools
that address the earliest stages in the software life-cycle. The aims of such
requirements engineering are to see that the right system is built and that it is
built correctly. Since systems have many dimensions, there are several facets
to the question of what constitutes the right system. Roman [162] divides
these facets of system requirements into two main categories: functional
and non-functiond (these latter are also called constraints). Functional re-
quirements capture the nature of the interaction between the system and
its environment-they specify what the system is to do. Non-functional re-
quirements restrict the types of system solutions that should be considered.
Examples of non-functional requirements include security, performance, op-
erating constraints, and cost.

Functional requirements can be expressed in two very different ways.
The declarative (or non-constructive) approach seeks to describe what the
system must do without any indication of how it is to do it. This style of
requirement specification imposes little structure on the system and leaves
maximum freedom to the system designer-but, since it says nothing about
how the system is to work, it provides little basis for checking non-functional
constraints. The procedural approach to the specification of functional re-
quirements, on the other hand, aims to describe what the system must do
in terms of an outline design for accomplishing it. This approach appeals to
many engineers who find it most natural to think of a requirement in terms
of a mechanism for accomplishing it.

Both functional and non-functional requirements definitions, and declar-
ative and procedural specifications, should satisfy certain criteria. Boehm [29]
identifies four such criteria: namely, completeness, consistency, feasibility,
and testability.

Completeness : A specification is complete to the extent that all of its
parts are present and each part is fully developed. Specifically, this
means: no TBDs (“To Be Done”), no nonexistent references, no miss-
ing specification items, and no missing functions.

5.3. Testing Requirements and Specifications 51

Consistency : A specification is consistent to the extent that its provisions
do not conflict with each other or with governing specifications and
objectives. An important component of this is traceability-items in
the specification should have clear antecedents in earlier specifications
or statements of system objectives.

Feasibility : A specification is feasible to the extent that the life-cycle ben-
efits of the system specified exceed its life-cycle costs. Thus feasibility
involves more than verifying that a system satisfies functional and
performance requirements. It also implies validating that the spec-
ified system will be sufficiently maintainable, reliable, and human-
engineered to keep a positive life-cycle balance sheet.

Testability : A specification is testable to the extent that one can identify
an economically feasible technique for determining whether or not the
developed software will satisfy the specification.

Among the methodologies that aim to satisfy these criteria TRW’s SREM [5,
6, 17, 511 is representative, and is described in the following section.

5.3.1.1 SREM

SREM (Software Requirements Engineering Methodology) was the prod-
uct of a program undertaken by TRW Defense and Space Systems Group
as part of a larger program sponsored by the Ballistic Missile Defense Ad-
vanced Technology Center (BMDATC) in order to improve the techniques
for developing correct, reliable BMD software. Early descriptions of SREM
include [5, 171 ; descriptions of subsequent extensions for distributed systems
can be found in [6], and accounts of experience using SREM are given in [29,
38, 1651.

Owing to its genesis in the problems of software for ballistic missile
defense, SREM adopts a system paradigm derived from real-time control
systems. Such systems are considered as “stimulus-response” networks:
an “input message” is placed on an “input interface” and the results of
processing-the “output message’’ and the contents of memory-are ex-
tracted from an “output interface’’ [5]. Furthermore, the requirements for
the system are understood in terms of the processing steps necessary to un-
dertake the required task. The essence of a SREM requirements definition
is therefore a dataflow-like description (called an R-net) of the processing
steps to be performed and the flow of data (messages) between them.

52 Chapter 5. Testing

SREM recognizes that requirements engineering is concerned with more
than just writing a description of what is required-it is first necessary to
analyze the problem in order to discover just what is required, and it is
constantly necessary to check one’s understanding of the problem and its
evolving description against external reality. Accordingly, SREM allows be-
havioral simulation studies in order to verify that the system’s interfaces and
processing relationships behave as required. In addition, there is provision
for traceability of all decisions back to source.

Again due to its origins in ballistic missile defense, SREM is very much
concerned with the constraints of accuracy and performance. It there-
fore makes provision for traceable, testable, performance and accuracy con-
straints to be attached to requirements specifications.

In addition to support for analyzing the problem and checking under-
standing, SREM’s tools perform “internal” completeness and consistency
checks (i.e. checks that are performed relative to the requirements defini-
tion itself, without reference to external reality). These checks ensure, for
example, that all data has a source, and that there are no dangling items
stil1“to be done”.

The paradigm underlying SREM is that system requirements describe
the necessary processing in terms of all possible responses (and the condi-
tions for each type of response) to each input message across each interface.
This paradigm is based on a graph model of computation: requirements
are specified as Requirement Networks, or R-Nets, of processing steps. Each
R-Net is a tree of paths processing a given type of stimulus.

R-nets are expressed in the Requirements Statement Language (RSL),
the language of SREM: an RSL requirements definition is a linear repre-
sentation of a two-dimensional R-net. Requirements definitions in RSL are
composed of four types of primitives:

0 Elements in RSL include the types of data necessary in the system
(DATA), the objects manipulated by the system being described (MES-
SAGES), the functional processing steps (ALPHAS), and the process-
ing flow descriptions themselves.

0 Relationships are mathematical relations between elements. For exam-
ple, the relationship of DATA being INPUT to an ALPHA. Generally,
a complementary relationship is defined for each basic relationship:
for example, an ALPHA INPUTS DATA.

5.3. Testing Requirements and Specifications 53

e Attributes are properties of objects, such as the ACCURACY and INI-
TIAL-VALUE attributes of elements of type DATA. A set of values
(names, numbers, or text strings) may be associated with each at-
tribute. For example, the set of values associated with INITIAL-VALUE
is the set of initial values allowed for data items.

e Structures model the flows through the processing steps (ALPHAS) or
the flows between places where accuracy or timing requirements are
stated (VALIDATIONPOINTs) .

RSL is described as an extensible language. What this means is that the
user can declare new elements, relationships, and attributes; however, they
do not have meaning. Only dataflow concepts have meaning. Thus, in the
conventional sense, RSL is not an extensible language.

Using RSL, a user (called the requirements engineer) is encouraged to
identify significant units of processing, each of which is viewed as a single
input/single output ALPHA (inputs and outputs can have structure-rather
like PASCAL records-so the restriction to single inputs and outputs is not
as severe as it might appear). The definition of an ALPHA consists of
declarations of its input and output, declarations of any files the ALPHA
will write to and a brief natural language description of the transformations
it effects on the input data.

nodes into what can be viewed as a dataflow graph.2 The intention is to
express system requirements in terms of how significant units of processing
are connected with each other, and the kind of data that flows along the
interconnections.

OR nodes resemble a PASCAL case statement and indicate conditions
under which each output path will be followed. The conditions attached to
a path through an R-Net identify the conditions under which an ALPHA is
invoked and in which an output message must be produced in response to
an input message.

The AND node indicates that all of the paths following it are to be
executed. Execution of the paths can be in any order or with any degree
of parallelism permitted by the hardware base. It is intended that any file
read in any of the parallel paths is not written by any other path, otherwise

2Strictly, it is incorrect to refer to RSL descriptions as dataflow programs since they

ALPHAs are connected together with OR, AND, SELECT and FORBACH

can produce side-effects to files.

54 Chapter 5. Testing

the behavior of the system would be indeterminate. In RSL, this constraint
on files is called the independence property.

There is no goto statement in RSL. To produce other than loopless pro-
grams, RSL provides the FORBACH node. This takes a set of data items
as argument and indicates that the path following it is to be executed once
for each of the items in the set; the order is not specified.

Multiple R-Nets can be linked together using EVENT nodes, and VALI-
DATIONI’OINTs can be attached to paths in an R-Net in order to specify
performance and accuracy requirements.

Several tools have been constructed to support requirements descriptions
written in RSL. Collectively, these constitute the “Requirements Engineer-
ing Validation System” (REVS). The most basic component of REVS is
the RSL translator, which analyzes RSL requirements definitions and gen-
erates entries in a central database called the Abstract System Semantic
Model (ASSM). Information in the ASSM may be queried, and checked for
consistency using the “Requirements Analysis and Data Extraction” system
(RADX). RADX generates reports that trace source document requirements
to RSL definitions, identify data items with no source or sink, unspecified
attributes, useless entities and so on. Other checks ensure, among other
things, that the paths following an AND satisfy the independence property.

In addition to the analysis and eztraction tools described above, genera-
tion and display tools provide two-dimensional graphical displays for R-Nets,
and functional and analytical simulators support validation of performance,
accuracy, and functional requirements. Both types of simulator automati-
cally generate a PASCAL program corresponding to the R-Net structure.
Each ALPHA becomes a call to a PASCAL procedure-which is generally
written by the requirements engineer and associated with the corresponding
ALPHA as an attribute.

The REVS simulation tools attempt to generate input data from the
description of the data provided by the user. The user can also declare
artificial data, i.e., data not required to be generated by the system when
deployed. Typically, artificial data will be more abstract than the data
actually applied to the system in operation. In addition to functionality,
REVS supports simulation for the validation of performance and accuracy
constraints. The latter are evaluated using “rapid prototypes’’ of the critical
algorithms to be used in practice.

5.3. Testing Requirements and Specifications 55

t

5.3.2

Among the properties of specifications that are generally considered desir-
able, completeness and consistency rank highly. Informally, completeness
means that the specification gives enough information to totally determine
the properties of the object being specified; consistency means that it does
not specify two contradictory properties.

For a semi-formal specification language, it may be possible to give some
precepts for the construction of complete and consistent specifications, and
it may be feasible to check adherence to these precepts mechanically. With
formal specification languages, however, rather more may be possible. For
quantifier-free equational logic-which logic has been found very suitable
for the specification of abstract data types [137]-there is a formal notion of
“sufficient completeness” that can be checked mechanically [81], and a suf-
ficient test for consistency is that the Knuth-Bendix algorithm [115] should
terminate without adding the rule true -> f a l s e [104]. Kapur and Sri-
vas [lo51 discuss other important properties of such specifications and de-
scribe appropriate tests. Meyer [1301 provides some interesting examples of
flawed specifications that have appeared in the literature, while Wing [1911
describes 12 different specifications for a single problem and discusses some
of the incompletenesses and ambiguities found therein.

Completeness and Consistency of Specifications

5.3.3 Mathematical Verification of Specifications

As we explained in Section 5.2.3 (page 41)) mathematical verification demon-
strates consistency between two different descriptions of a program. Often,
one of these descriptions is the program itself-so that a program is verified
against its specification. However, it is perfectly feasible that two specifi-
cations, at different levels of detail, should be the focus of mathematical
verification. Indeed, a whole hierarchy of specifications may be verified in
stepwise fashion from a highly abstract, but intuitively understandable one,
down to a very detailed one that can be used as the basis for coding. If the
original, abstract specification, is studied and understood by the user, and
agreed by him to represent his requirements, then such hierarchical verifi-
cation (provided it is performed without error) accomplishes the validation
of the detailed specification. This approach is attractive in circumstances
where the properties of interest are difficult to validate directly-as in the
case of ultra-high reliability (where failure probabilities on the order of lo-’
per day may be required, but are unmeasurable in practice), and security

56 Chapter 5. Testing

(which requires that no possible attack should be able to defeat the protec-
tion mechanisms). The most ambitious verification so far undertaken for
a hierarchical system of specifications concerning ultra-high reliability was
performed by the Computer Science Laboratory of SRI [129, 1351, while tools
developed in this laboratory have been used extensively in the verification
of security [66, 1741.

5.3.4 Executable Specifications

Specification languages provide mechanisms for saying what must be accom-
plished, not how to accomplish it. As a result, specifications cannot usually
be executed. Programming languages on the other hand, reverse these con-
cerns and provide many mechanisms for stipulating how something is to be
accomplished. As a result, programs generally execute very efficiently, but
are inperspicuous. Recently, however, logic programming languages have
emerged that blur the distinction between specification and programming
languages. By employing a more powerful interpreter (essentially a theorem
prover, though generally referred to as an “inference engine”), logic program-
ming languages allow the programmer to concentrate more on the what, and
less on the how of his program. Dually, these languages can be regarded as
executable specification languages. The obvious merit of executable specifi-
cation languages is that they permit specifications to be tested and validated
directly in execution.

Prolog, the best known logic programming language (451, contains many
compromises intended to increase its efficiency in execution that detract
from its merit as a specification l a n g ~ a g e . ~ Languages based on equations,
however, offer considerable promise. OBJ [68], developed by Goguen and his
coworkers in the Computer Science Laboratory of SRI, is the best developed
and most widely known of these. In addition to a cleaner logical foundation
than Prolog, OBJ has sophisticated typing and parameterization features
that contribute to the clarity and power of its specifications. (Being based
on equational logic, OBJ could also exploit the completeness and consistency
checks described in Section 5.3.2 (page 55), although the present version of
the system does not do so.)

3Stickel’s Prolog Technology Theorem Prover (PTTP) 11771, which provides correct
first-order semantics-but with Prolog-like efficiency when restricted to Horn clauses-
overcomes some of these disadvantages.

5.3. Testing Requirements and Specifications 57

5.3.5 Testing of Specifications

Conventional formal specification languages are optimized for ease and clar-
ity of expression and are not directly executable. Furthermore, high-level
specifications are often deliberately partial-they indicate what is required
of any implementation, but do not provide enough information to uniquely
characterize an acceptable implementation. Nonetheless, it is highly desir-
able to subject such specifications to tests and scrutiny in order to determine
whether they accurately capture their intended meaning.

If direct execution is infeasible for the specification technique chosen,
indirect testing methods must be used. As noted above, a formal specifica-
tion defines properties that are required to be true of any implementation.
In addition to the properties S that have been specified in this way, there
may be additional properties A that are desired but not mandated, or that
are believed to be subsumed by S, or that are to be added in a later, more
detailed, specification. Tests of formal specifications consist of attempts to
check whether these intended relationships between the given S and various
sets of properties A do, in fact, hold. Thus, to ensure whether the property
A is subsumed by S, we may try to establish the putative theorem S I) A.
Independently of additional properties A, we may wish to ensure that the
specification S is consistent (i.e. has a model)-since otherwise S 2 A is a
theorem for all A.

Depending on the formal specification language and verification envi-
ronment available, examinations such as those described above may be con-
ducted by attempting to prove putative theorems, by symbolic evaluation, or
by rapid prototyping. Kemmerer [l l O] describes the latter two alternatives.
An important special case is the checking of specifications for consistency
with a notion of “multilevel security”. This activity, which is a requirement
for certain types of system [58] , seeks to demonstrate that a fairly concrete
specification of a system is consistent with an abstract specification of secu-
rity [43].

5.3.6 Rapid Prototyping

As we have noted several times, errors made early but detected late in
the life-cycle are particularly costly and serious. This applies especially
to missed or inappropriate requirements-yet such faults of omission are
especially difficult to detect at an early stage. Systematic review will often
detect inconsistent, or ambiguous requirements, but missing requirements

58 Chapter 5. Testing

generate no internal inconsistencies and often escape detection until the
system is actually built and tried in practice.

A rapid prototype is one that simulates the important interfaces and
performs the main functions of the intended system, while not necessarily
being bound by the same performance constraints. Prototypes typically
perform only the mainline tasks of the application, but make no attempt to
handle the exceptional cases, or respond gracefully to errors. The purpose
of a rapid prototype is to allow early experience with, and direct testing
of, the main aspects of the system’s proposed functionality-thereby allow-
ing much earlier and more realistic appraisals of the system’s requirements
specifications.

An experimental comparison of a prototyping versus the conventional
approach to software development [30] found that both approaches yielded
approximately equivalent products, though the prototyping approach re-
quired much less effort (45% less) and generated less code (chiefly due to
the elimination of marginal requirements). The products developed incre-
mentally were easier to learn and use, but the conventionally developed
products had more coherent designs and were easier to integrate. (Another
experimental evaluation of prototyping is described by Alavi [4] .)

Viewed as testing vehicles for evaluating and refining requirements spec-
ifications, rapid prototypes fit neatly into the standard life-cycle model of
software engineering. A more radical approach that has much in common
with rapid prototyping is incremental software development. Here, the com-
plete software system is made to run quite early in the development phase,
even if it does nothing useful except call dummy subprograms. Then it
is fleshed out, with the subprograms being developed in their turn to call
dummy routines at the next level down. and so on until the system is com-
plete. The advantages claimed for this approach [33] are that it necessitates
top-down design, allows easy backtracking to reconsider inappropriate de-
cisions, lends itself to rapid prototyping, and has a beneficial impact on
morale.

5.4 Discussion of Testing

Much attention has been focused on systematic testing strategies-especially
structurally based ones. However, there is evidence that, if increasing re-
liability (rather than finding the maximum number of bugs) is the goal,
then random testing is much superior to other methods. Currit, Dyer and

5.4. Discussion of Testing 59

Mills [SO] report data from major IBM systems which shows that random
testing would be 30 times more effective than structural testing in improving
the reliability of these systems. The reason for this is the enormous variation
in the rate at which different bugs lead to failure: one third of all the bugs
had a MTTF of over 5000 years (and thus have no effect on overall MTTF),
and a mere 2% of the bugs accounted for 1000 times more failures than the
60% of bugs that were encountered least often.4

Interpretation of data such as these requires a context that establishes
the purpose of testing-is it to find bugs or to improve reliability? Gelperin
and Hetzel [71] discuss this issue and identify a historical evolution of con-
cerns, starting with debugging in the 1950s. They propose that the concern
for 1988 and beyond should be the use of testing as a fault prevention mech-
anism, based on the detection of faults at the earliest possible stage in the
life-cycle.

Of the systematic testing strategies, Howden’s data [95] ([92] is similar,
but based on a smaller sample of programs) provides evidence that functional
testing finds about twice as many bugs as structural testing; furthermore,
several of the bugs found by structural testing would be found more easily
or more reliably by other methods, so that the ratio three to one probably
more accurately reflects the superiority of functional over structural testing.

Howden’s data also shows that static testing (particularly automated
anomaly detection) found more bugs than dynamic testing-however, the
two methods were complementary, dynamic testing tending to find the bugs
that static testing missed, and vice versa. Myers [138] presented similar
data, showing that code walk-throughs were about as effective as dynamic
testing at locating errors in PL/1 programs.

The efficacy of anomaly detection is likely to increase with the degree
of redundancy present in the programming language-indeed, the presence
of redundancy may often allow errors to be detected at compile-time that
would otherwise only be located a t run-time. (Compare Lisp with Ada,
for example: almost any string with balanced parentheses is a syntactically
valid Lisp program and any deficiencies will only be discovered in dynamic
testing, whereas writing a syntactically correct Ada program is quite de-
manding and many errors will be caught at the compilation stage.) There
have been proposals to increase the degree of redundancy in programs in or-
der to improve early error-detection. One of the most common suggestions

‘The thirty-fold improvement of random over structural testing is simply estimated by
the calculation 2 x 1000/60.

60 Chapter 5. Testing

is to allow physical units to be attached to variables and constants [106,
121. Expressions may then be subject to dimensional analysis in order to
prevent a variable representing length being added to one representing time,
or assigned to one representing ~ e l o c i t y . ~ Other proposals would render it
impossible to read from an empty message buffer, or to use a variable that
has not yet been given a value [178].

All forms of dynamic testing assume that it is possible to detect errors
when they occur. This may not always be the case-as, for example, when
the “correct” value of a result may be unknown. Weyuker [187] first identi-
fied the problem of “untestable” programs, and proposed two methods for
alleviating the difficulty they pose. The first is to use simplified test cases
for which it is possible to compute the “correct” answers. The second, and
more interesting method suggested by Weyuker is “dual coding” : writing a
second-probably simpler but less efficient-version of the program to serve
as a check on the “real” one. The efficacy of this technique depends on the
extent to which errors are correlated between the two versions. Recently,
experiments have been performed to examine this hypothesis in the context
of N-Version programming6 [113, 1141; the results indicate that errors do
tend to be correlated to some extent. Additional problems can arise with
numerical software, due to the character of finite-precision arithmetic [32].

The efficiency of the debugging process can be evaluated by seeding a
program with known errors-this is called mutation testing. If ten errors
are seeded, and debugging reveals 40 bugs, including 8 of those that were
seeded, we may conclude that 10 (= ?(lo - 8)) bugs (including two seeded
ones) remain. The weakness in this approach is that it is highly questionable
whether the seeded bugs reflect the characteristics of the natural bug popu-
lation: being introduced by simple modification to the program code, they
are unlikely to reflect the behavior of subtle errors committed earlier in the

5Strong typing, present in any modern programming language, provides some protec-
tion of this sort-preventing booleans being added to integers, for example-but the use
of physical units and dimensional analysis represents a capability beyond the normal typ-
ing rules. The data abstraction facilities of a modern language such as C++ or Ada can
provide this capability, however [46, 911.

‘N-version programming is an adaptation for software of the modular redundancy tech-
niques used to provide reliable and fault tolerant hardware. N (typically N = 3) separate
modules perform the computation and their results are submitted to a majority voter.
Since all software faults are design faults, the redundant software modules must be sepa-
rately designed and programmed. N-Version programming is advocated by Avizienis 1441
(see also 163, 641 for a slightly different perspective), but has been criticized by Leveson
and others (see the discussion in [9]).

5.4. Discussion of Testing 61

life-cycle. A counter-argument is that test sets that detect simple errors will
often catch subtle errors too (this is called “coupling” [131]) and mutation
testing provides a systematic technique for establishing the coverage of a
test set [35, 971.

For some very critical applications, formal verification is recommended
as the assurance mechanism of choice [58]. Some authors have cast doubt
on the value of this approach [54, 1391, arguing that use of truly formal
specification and verification tends to overload the user with intricate detail,
and that the soundness of the whole process rests on the correctness of the
underlying verification environment. Since this will typically be a very large
and complex program in its own right, located at the limits of the state
of the art, its own correctness should be regarded with more than usual
skepticism. The thrust of this argument is that formal verification moves
responsibility away from the “social process” that involves human scrutiny,
towards a mechanical process with little human participation. We believe
this concern unfounded and based on a mistaken view of how a mechanical
verification environment is used. De Millo, Lipton and Perlis [54] claim that:

“The scenario envisaged by the proponents of verification goes
something like this: the programmer inserts his 300-line in-
put/output package into the verifier. Several hours later, he
returns. There is his 20,000-line verification and the message
‘VERIFIED’.”

This is a parody of the scenario actually envisaged by the proponents of
verification. In a paper published several years earlier [88], von Henke and
Luckham indicated the true nature of this scenario when they wrote:

‘(The goal of practical usefulness does not imply that the verifi-
cation of a program must be made independent of creative effort
on the part of the programmer . . .such a requirement is utterly
unrealis tic .”

In reality, a verification system assists the human user to develop a convinc-
ing argument for his program by acting as an implacably skeptical colleague
who demands that all assumptions be stated and all claims justified. The re-
quirement to explicate and formalize what would otherwise be unexamined
assumptions is especially valuable. Speaking from substantial experience,
Shankar [1691 observes:

“The utility of proof-checkers is in clarifying proofs rather than in
validating assertions. The commonly held view of proof-checkers

62 Chapter 5. Testing

is that they do more of the latter than the former. In fact, very
little of the time spent with a proof-checker is actually spent
proving theorems. Much of it goes into finding counterexam-
ples, correcting mistakes, and refining arguments, definitions, or
statements of theorems. A useful automatic proof-checker plays
the role of a devil’s advocate for this purpose.”

Our own experience supports this view. We have recently undertaken the
formal verification of an important and well-known algorithm for clock-
synchronization and have discovered that the published journal proof [117)
contains major flaws.‘ It was the relentless skepticism of our formal verifi-
cation environment that led us to this discovery, but our belief in the cor-
rectness of our current proof owes as much to the increased understanding
of the problem that we obtained through arguing with the theorem prover
as it does to the fact that the theorem prover now accepts our proofs.

Another element in De Millo, Lipton and Perlis’ parody that is far from
the truth is their implicit assumption that formal verification is something
that is done after the program has been developed. In reality, formal ver-
ification is practised as a component of a development methodology: the
verification and the program (or specification) are developed together, each
generating new problems, solutions, and insights that contribute to the fur-
ther development of the other. Formal verification can be made easier if
the property being verified is achieved by direct and simple means. Thus, in
addition to helping the user build a convincing case for belief in his program,
formal verification encourages the programmer to build a more believable,
and often better, program in the first place.

Overall, the conclusion to be drawn from experimental and other data
seems to be that all testing methods have their merits, and these tend to
be complementary to each other. For the purpose of enhancing reliability,
random testing is a clear winner. For the purpose of finding bugs, anomaly
detection and walk-throughs should be used in combination with functional
and structural testing (Howden [93] describes such an integrated approach).
Techniques for evaluating requirements and other specifications early in the
life-cycle deserve special attention: rapid prototyping and some of the tech-
niques of formal verification may be especially useful here. For really critical

‘This work was undertaken for NASA under the same contract (but a different task)
as that which supported the preparation of this report. Our verification of the clock
synchronization algorithm will appear as a forthcoming SRI Technical Report and as a
NASA contractor report.

5.4. Discussion of Testing 63

requirements, formal verification of those properties should be considered;
conventional testing can be used to ensure that the less-critical requirements
are satisfied.

Part I1

Application of Software
Quality Measures to AI

Software

65

PRECEDING PAGE BLANK NOT FILMED

66

Chapter 6

Characteristics of AI
Software

In this part of the report we will consider the application of the quality
assurance techniques and metrics identified in Part I to AI software, and we
will examine those few techniques that have been developed specifically for
such software.

We face an initial difficulty in that the notion of AI software is fuzzy-
indeed practioners of AI do not even agree among themselves on what con-
stitutes AI. There are two notions of AI current today; Parnas [149] dubs
them AI-1 and AI-2:

AI-1 is a problemoriented notion that takes AI to be the use of computers
to solve problems that could previously be solved only by applying
human intelligence.

AI-2 is a technique-oriented notion that identifies AI with the use of char-
acteristic programming strategies, in particular those based on heuris-
tics, and explicit representation of “knowledge” .

These notions are not mutually exclusive-indeed, most AI software has
elements of both AI-1 and AI-2 and each facet contributes to the difficulty
of SQA for AI software. The problems addressed by AI software (AI-1) are
generally somewhat ill-defined, and a clear statement of requirements for
the task the software is to perform is often lacking. This means that the
notions of success and failure are vague, and evaluation is correspondingly
difficult. In addition, the heuristic techniques employed in AI software (AI-
2) tend to render it fragile, or unstable: very similar inputs may produce

67

PRECEDING PAGE BLANK NOT FILMED

68 Chapter 6. Characteristics of AI Software

wildly different outputs. This makes extrapolation from behavior on test
cases very risky.

For the purpose of this report, we will restrict our attention to those
applications and techniques of AI that could be used in the development of
“intelligent cockpit aids” for civil aviation. A NASA Contractor Report by
BBN [13] considers the potential for such applications. Broadly, they con-
clude that the most useful aids would be “expert systems” for fault monitor-
ing and diagnosis, and “planning assistants” to provide advice on such mat-
ters as fuel and thrust management. (A clear presentation of fault-diagnosis
is given by Reiter [160], while Georgeff [73] provides a good introduction to
planning.) Other important AI technologies for this application relate to the
human factors of introducing such aids into the cockpit-natural language
speech recognition and generation for example.

Given that they have been identified to be of special interest as intelli-
gent cockpit aids, and given also their central place in current applications
of AI in general, we will take expert systems and, to a lesser degree, plan-
ning systems, as our paradigms for AI software. Since it is reported that no
intelligent cockpit aids presently exist [13], we will consider expert and plan-
ning systems fairly generically, but will pay special attention to the issues
of fault monitoring and diagnosis where appropriate. The prototype fault
monitoring system developed at NASA Langley Research Center [l, 2, 148,
161, 166, 1671 provides a good example of the type of systems that may be
among the earliest AI systems deployed aboard commercial aircraft.

The class of AI software that we have identified for consideration is
often characterized as “knowledge-based”-meaning that it contains an ex-
plicit representation of knowledge about some aspects of the external world.
Conventional software incorporates knowledge implicitly in the form of al-
gorithms or procedures; the programmer knows how the program is to deal
with payrolls or radar images and encodes this knowledge in the form of pro-
cedures (pre-planned sequences of actions)-whence the term “procedural
knowledge’’ that is sometimes used for this type of knowledge representation.

Whereas knowledge is represented implicitly in conventional software,
knowledge-based software contains an explicit declarative representation of
knowledge, together with a reasoning component which can exploit that
knowledge in order to solve problems. For example, a knowledge-based sys-
tem to convert temperatures between Celsius and Fahrenheit might encode
knowledge about the problem in the declaration

C = (F - 32) x 5/9.

69

With the aid of a reasoning component capable of performing constraint
satisfaction [119], this single declaration would enable the system to con-
vert Fahrenheit to Celsius and vice-versa. A conventional system, on the
other hand, would encode this knowledge in a procedural form somewhat as
follows:

i f (direction = f-to-c) then c := (f-32)*5/9

endif
else f := c*9/5+32

“Expert systems” are knowledge-based systems that perform functions
in some specialized domain normally considered to require human expertise.’
Expert systems come in two main flavors: those that employ “deep knowl-
edge” and those that employ only “surface knowledge”. Surface knowledge
includes all the rules of thumb that human experts commonly employ. Such
rules are highly specific to their particular domains (e.g. diagnosis of a par-
ticular group of diseases), and are often expressed in the form of “if-then”
production rules. Systems based on surface knowledge expressed in this way
form the “rule-based expert systems” that are becoming widespread.

Deep knowledge, on the other hand, is that which includes a model of
a particular world-principles, axioms, laws-that can be used to make in-
ferences and deductions beyond those possible with rules. In cases where
the knowledge of even human experts is relatively superficial (e.g. medical
diagnosis), there would appear to be little prospect of developing more than
rule-based expert systems. In the case of fault monitoring and diagnosis for
man-made physical systems (machines), however, deep knowledge is avail-
able. Someone designed the machine in the first place and, presumably, has
a very good idea of how and why it works-there may also be very accurate
mathematical models available to predict the behavior of the machine. The
AI problem in such deep expert systems lies in knowing what information
and which model is relevant to a particular circumstance. A recent collection
of papers [24] provides a good overview of these topics.

The characteristics of knowledge-based systems render their evaluation
somewhat different than conventional algorithmic software. In one of the few

‘Expert systems that give advice to a human operator are called “decision aids”, those
that directly control some other system are called “autonomous”. There is folk lore to the
effect that decision aids are seldom used as such-users either rely on them completely
(in which case they are effectively autonomous systems with a human actuator) or else
ignore them altogether.

70 Chapter 6. Characteristics of AI Software

papers t o address the problem of quality assurance for AI software (specif- . -
ically, expert systems), Green and Keyes [79] summarize the difficulties as
follows:~

“Expert system software requirements are often nonexistent,
imprecise, or rapidly changing. Expert systems are often pro-
cured in situations where the user does not fully understand his
own needs. Some procurements omit requirements specifications
as too constraining or not cost-effective. When expert systems
are built by refinement and customer interaction, requirements
may change rapidly or go unrecorded.

“The success of verification demands that the requirements
of the superior specification be at least recognizable in the sub-
ordinate specification: if this is not so then requirements tracing
is futile. Expert systems are typically developed from a system
specification or an informal specification by prototyping and re-
finement. Intermediate specifications are either not produced,
not precise enough, or too subject to change to serve in verifica-
tion.

“Even if adequate specifications for requirements tracing were
available, it is doubtful that conventional verification would yield
many answers concerning whether the implemented system in-
deed satisfied the requirements.

“Conventional validation demands precise test procedures.
As long as reasonably precise requirements and design specifica-
tions can be obtained, test procedure preparation should be of
no greater difficulty than for conventional software. When re-
quirements and design information is unavailable, imprecise, or
changing, test procedure design becomes a matter of guesswork.

“There is no widely accepted, reliable method for evaluating
the results of tests of expert systems. The approach of hav-
ing human experts in the domain of the expert system evaluate
the results has numerous drawbacks. There may be no expert
available, or the expert may not be independent when indepen-
dent evaluation is needed. Human experts may be prejudiced or
parochial. The problem for which the expert system was written
may be one that no human can solve reliably or efficiently.”

2Culbert, Riley and Savely (491, Geissman and Schultz [70], Goodwin and Robert-
son 1781, Lane [118], and Pau [I521 provide additional discussions of these topics.

71

Green and Keyes go on to note that the present lack of understanding of
how to perform verification and validation (V&V) for expert systems leads
to a vicious circle: “nobody requires V&V of expert systems because nobody
knows how to do it, nobody knows how to do V&V of expert systems because
nobody has done it, and V&V is not done on expert systems because nobody
requires it”.

For all the reasons identified above, V&V for knowledge-based systems is
difficult and little practised. Yet the very characteristics of knowledge-based
systems tend to render them unreliable and untrustworthy, and so V&V-
or at least some form of quality assurance-is surely more rather than less
important for knowledge-based systems than it is for conventional software.

Among the characteristics of knowledge-based systems that render them
unreliable and untrustworthy are the development methodology employed,
their dependence on an explicit database of knowledge, their nondetermin-
ism, and the unsoundness of their interpreters. We will consider each of
these characteristics in turn.

0 The established methods of SQA for conventional software require an
orderly software engineering methodology with distinct phases, each
phase producing a requirements or specification document that be-
comes the input to the next phase and serves as the measure against
which its products can be evaluated. However, the ill-defined nature
of many of the tasks for which AI software is proposed often precludes
(or is claimed to preclude) the preparation of precise requirements
or specification documents, and the system itself may be developed
by a process of continuous modification and enhancement (tinkering) ,
with no clearly defined statement of objectives to determine when it
is finished.

0 The dependency of AI systems on an explicit, declarative database of
knowledge, means that “Knowledge Engineering”-the construction
and representation of such databases, is a central problem in the de-
velopment of such systems. Knowledge engineering is a laborious and
highly skilled activity, yet it scarcely qualifies as engineering since it
lacks a supporting body of science. At best, knowledge engineering is
an art (some would say a black art). Denning [57] observes:

“Expert systems are dependent on the information in their
knowledge-bases and are limited by the nature of the process
for acquiring and recording that knowledge. Expert systems

72 Chapter 6. Characteristics of AI Software

cannot report conclusions that are not already implicit in
their knowledge-bases. And the trial-and-error process by
which that knowledge is elicited, programmed, and tested,
is likely to produce inconsistent and incomplete knowledge
bases: hence an expert system may exhibit important gaps
in knowledge at unexpected times. Moreover . . .their de-
signers may be unable to predict reliably their behavior in
situations not tested.”

Cooke and McDonald [48] report that there is ample psychological
evidence that humans are often unable to report accurately on their
mental processes and that introspection is not very effective at eliciting
the methods by which they really operate. In addition, they observe,
the intended knowledge representation scheme guides the acquisition of
knowledge resulting in a representation-driven knowledge base rather
than one that is knowledge-driven.

0 The nondeterminism in AI systems is a product of their heuristic,
search-based method of interpretation. At any given point in the
search, many paths may be available and the AI system’s interpreter
(inference engine) must choose one to pursue (it may later backtrack
to try other paths if its first choice proves fruitless). Often, several of
the available paths would succeed-possibly with different outcomes.
The “conflict resolution’’ strategy employed by the interpreter may be
sensitive to minor variations in the form of the input (or even to ex-
traneous matter in its knowledge base), thereby causing very similar
inputs to produce very different outputs. The treatment of measures
of uncertainty, employed in some expert systems, may also produce
unstable behavior that is highly, and undesirably, sensitive to small
variations in the input.

0 Compromises made for the sake of efficiency in the interpreters (in-
ference engines) for rule-based systems may render them unsound.
Rule-based systems have much in common with logic programming,
discussed in Section 5.3.4 (page 56). The declarative style of pro-
gramming supported by logic programming and rule-based systems is
generally considered more perspicuous than the imperative style of lan-
guages like Ada, and is often described as having a simpler semantics,
and sounder logical foundations than imperative programming. In the
case of a “pure” logic as a programming language such as OBJ [68],

73

I

these claims may be true, but in practice logic programming languages
are often compromised, in the name of efficiency, to the point where
their semantics are as obscure, and as operational, as any impera-
tive programming language. Prolog programs, for example, cannot be
regarded as pure logical expressions because of the presence of imper-
ative and extra-logical features such as “cut” [55]. Furthermore, in the
absence of the “occurs check”, the resolution theorem proving strat-
egy underlying Prolog interpreters is unsound-and this check always
is omitted from Prolog interpreters for efficiency reasons [45].

These problems and difficulties may seem to render quality assurance
for AI software a hopeless task . It is certainly clear that much work and
thought needs to be devoted to these issues. In the following sections we
will consider the extent to which the techniques described in the previous
part of this report can be adapted and applied to AI software.

Chapter 7

Issues in Evaluating the
Behavior of AI Software

All the techniques for software reliability estimation and for dynamic testing
(and, for that matter, mathematical verification) that were described in Part
I depend on the availability of requirements and specification documents-
at least to the extent that it is possible to determine whether a program has
experienced a failure.

The problem with requirements and specifications for AI software is that
generally there aren’t any-so failures in fielded AI systems may go unno-
ticed because those using them have no idea what the “correct” behavior
should be. Almost any output may appear reasonable at the time it is pro-
duced and only be discovered as erroneous much later on (when, for example,
an autopsy is performed, or an engine is stripped down). The problems of
dynamic testing for AI software are similar: it may not be clear whether or
not the outcome of a particular test is satisfactory.

Thus, before we can consider the application of software reliability and
dynamic testing to AI software, we must consider the problems of obtain-
ing requirements and specifications for such software, and of evaluating the
system against these requirements and specifications.

7.1 Requirements and Specifications

The absence of precise requirements and specification documents for much
AI software reflects the genuine difficulty in stating 8. priori the expectations
and requirements for a system whose capabilities will evolve through a de-

74

7.1. Requirements and Specifications 75

velopment process that is partly experimental in nature. However, if any of
the established methods and techniques for SQA are to be applied to AI soft-
ware, precise requirements and specifications are a necessity. In an attempt
to break this impasse, we propose to distinguish the “inherently-AI” (i.e.
AI-1) aspects of AI software from the more conventional aspects-aspects
that should be amenable to conventional SQA.

7.1.1 Service and Competency Requirements

We believe it will be helpful to distinguish two sets of requirements and
specifications for AI-software: the competency requirements and the service
requirements. As the name suggests, the competency requirements will be
concerned with those dimensions of the overall requirements that concern
“knowledge” or appeal to comparison with human skills. We accept that
such requirements may of necessity be vague and incomplete (though every
effort should be expended to render them otherwise)-for example, “perform
diagnosis of faults in Machine A, on the basis of read-outs from modules X
and Y, at the level of competence of factory experts”. The service require-
ments cover all other requirements and should be amenable to statements
no less rigorous and formal than those for conventional software. Service
requirements should include descriptions of the input and output formats
expected, the processing rate, the explanation facilities required, and so on.
Service requirements and their decomposition through levels of specification
should be traceable, verifiable, and testable just like those of conventional
software.

In some cases, the satisfaction of service requirements will be wholly the
responsibility of the developer of the system concerned, in others it may de-
pend in part on facilities provided by an expert system “shell”. In the latter
case, the system developer should hope to see very precise specifications
of the services provided by the shell, and assurance that they are achieved
reliably.

7.1.2 Desired and Minimum Competency Requirements

Competency requirements can usefully be further subdivided into “desired”
and “minimum” requirements. The desired competency requirement is prob-
ably defined relative to human expertise and describes how well the system
is expected to perform. The minimum competency requirement should de-
fine how badly it is allowed to perform; minimum competency requirements

76 Chapter 7. Issues in Evaluating the Behavior of AI Software

may have much in common with system safety specifications. It is the estab-
lishment of precise and comprehensive minimum competency requirements,
and the demonstration that they have been achieved, that may be the de-
termining factor in the widespread acceptance of AI software in other than
non-critical applications.

Whereas desired competency requirements may be hard to state explic-
itly, there is some hope that minimum competency requirements may some-
times be capable of precise definition. This is particularly likely to be so
in the case of AI systems whose purpose is to optimize some function-for
although an optimal value may be hard to find, and its optimality just as
hard to check, it may be quite feasible to check that it is at least a valid
solution.

For example, one of the expert systems developed at SRI, by the Infor-
mation Sciences and Technology Center, is the Automated Air Load Plan-
ning System-AALPS 171. It is used to produce schedules and layouts for
loading army divisions and their equipment (tanks, helicopters, etc.) onto
air transports. One of the things to be considered is the unloading of the
aircraft, especially if this is to be performed in flight using parachute drops.
As the heavy equipment is first moved around inside the aircraft prior to
being dropped, and then actually dropped, the aerodynamic stability of the
aircraft must remain undisturbed. Specifying the desired competency of
AALPS is obviously difficult-we want a near optimum loading plan, but
an optimum loading plan is hard to define, and it is even harder to determine
whether a given plan is optimal. But the minimum competency requirement
can be given quite a sharp statement: the aerodynamic trim of the aircraft
must remain within certain limits at all times during all stages of unloading
in flight. Satisfaction of this requirement can easily be tested (e.g. by an-
other computer program that examines the output of AALPS and computes
the location of the center of gravity during all stages of unloading).

7.2 Evaluating Desired Competency Requirements

We have seen that some of the difficulties in evaluating the behavior of AI
software can be minimized by identifying the notions of service requirements
and of minimum competency requirements. Formal, or at least precise, re-
quirements and specification statements should be feasible for these classes
of requirements, and evaluation of the behavior of the system can be per-
formed with respect to these statements. The desired competency require-

7.2. Evaluating Desired Competency Requirements 77

ment, however, may not admit of a precise requirement statement, and the
only feasible evaluation may be against the performance of human experts.
When we are dealing with a problem for which no deep knowledge exists-
for example, medical diagnosis, there is almost certainly no alternative to
evaluation against human experts (though see Section 7.2.3 on page 80);
some experiences and recommended practices for this case are described be-
low in Section 7.2.2. When deep knowledge does exist, however, it may be
possible to evaluate competence against an automated adversary.

7.2.1 Model-Based Adversaries

Consider the problem of diagnosing faults in an electrical circuit. Given the
symptoms of a fault, the problem of diagnosing its cause may be a hard
one-despite the fact that accurate and complete models for the behavior of
electrical circuits are available. The difficulty is not in the solvability of the
problem-that can be accomplished by the naive algorithm of generating all
possible combinations of faults and using a mathematical model to calculate
the resulting symptoms until some are discovered that match the observed
symptoms-but in solving it quickly. An AI program for efficient diagnosis
of such problems will almost certainly employ rule-based techniques, or else a
sophisticated qualitative reasoning approach. Now although a mathematical
model of the circuit does not provide a good basis for an efficient diagnostic
tool, it does provide an excellent adversary against which to evaluate such a
tool: we simply inject faults into the model, observe the symptoms displayed,
feed these into the AI diagnostic tool and compare its results with the faults
that were injected in the first place.

This process can obviously be automated and, where it is feasible, it
permits accurate, quantifiable, statements to be made concerning the com-
petency of an AI system.

7.2.2 Competency Evaluation Against Human Experts

The goal of many AI systems is to reproduce the skill of human experts. In
these cases, there is no alternative but to evaluate their performance against
human experts. Gaschnig et al. [69] identify seven issues that should be con-
sidered in the design of such evaluations. Four of these issues are discussed
in the following subsections; the other three-sensitivity analysis, eliminat-
ing variables, and interaction of knowledge-are discussed in Sections 8.1.2

78 Chapter 7. Issues in Evaluating the Behavior of AI Software

(page 89)) 7.3.1 (page 83)) and 5.1.2 (page 32)) respectively. An additional
topic-statistical analysis of results-is covered in Section 8.1.3 (page 90).

7.2.2.1 Choice of Gold Standard

It is necessary to establish what will constitute the “gold standard” against
which the performance of an AI system will be evaluated. There are two
alternatives:

1. The gold standard is the objectively correct answer to the problem, or

2. It is the answer given by a human expert (or group of experts) when
presented with the same information as the system being evaluated.

The first alternative is often infeasible: in diagnosis, for example, the true
situation might be discovered only through autopsy or invasive surgery (in
the case of medicine) or dismantling (in the case of mechanical systems)-
and it may be unacceptable to perform these. Even where the use of an
objective standard is feasible, it may be inappropriate if no deep knowledge
is available for the domain or if human experts are unable to reliably identify
the objectively correct answer.

When the second alternative is chosen, it is necessary to identify how
the experts that constitute the gold standard are to be selected. If there is a
well-established procedure for assessing human performance in the domain
of interest, then it can serve not only as a means of selecting experts for
use in evaluation, but can itself provide a credible and well-accepted basis
for assessing the system. More commonly, human expertise is accepted and
acknowledged on the basis of informal indications such as testimonials, years
of training, seniority and salary, etc.

Whichever gold standard is chosen, and whatever criterion is used for
selecting human experts, the really important point is that the standard of
comparison should be agreed right at the beginning, before construction of
the system is even begun, and should be adhered to throughout the system’s
construction and evaluation.

7.2.2.2 Biasing and Blinding

Human experts may exhibit bias if they are aware that they are evaluating
the performance of a computer-based system. They may make judgments
on the basis of their expectations and opinions regarding computers, rather
than on the evidence that is presented. Accordingly, blind experiments that

7.2. Evaluating Desired Competency Requirements 79

approximate the “Turing Test” [184] may be appropriate [42]. In an evalua-
tion of MYCIN [194], the recommendations produced by the program were
mixed with those from nine humans (ranging in experience from students
to faculty members) and submitted to a panel of experts for evaluation.
This method of evaluation not only avoids the possibility of bias, but pro-
vides another evaluation measure: the performance of the system can be
compared to that of human practioners, as well as to experts. In the case
of MYCIN, for example, although the experts judged its recommendations
correct in only 65% of cases, none of the human subjects scored better than
62.5% [194].

7.2.2.3 Realistic Standards of Performance

It is important to agree at the outset what standard of performance should
be considered acceptable. It some cases, it may be more appropriate to
establish a standard based on the competence of those who currently perform
the function, rather than on the performance of experts. For example, even
if only 75% of a system’s responses are judged correct by an expert, this
may be acceptable if typical human practioners fall even further short of
expert levels of performance. Another factor that can influence the choice
of what is considered an adequate level of performance is the extent to which
human experts disagree among themselves. In highly uncertain fields, where
experts may agree with each other only 70% of the time, it is inappropriate
to expect an AI system to score 90% agreement with any one expert.

7.2.2.4 Realistic Time Demands

The use of human experts in evaluations introduces factors that may be un-
familiar to computer scientists. Unclear instructions may reduce the quality
of the evaluations produced by the experts; demands for excessive detail may
lessen their degree of cooperation and increase the time taken. For example,
it took a year for all the evaluation booklets to be returned by the experts
who had agreed to participate in an early evaluation of MYCIN. Advice
from those (such as psychologists and sociologists) experienced in the use
of human subjects may be very useful in helping to design evaluations that
generate prompt, accurate, and useful responses from human experts.

80 Chapter 7. Issues in Evaluating the Behavior of AI Software

7.2.3 Evaluation against Linear Models

When the purpose of a knowledge-based system is to reproduce the skill of
a human expert, it seems natural to evaluate its performance against that
of the actual expert. Another possibility, however, is to evaluate it against
some alternative model of the expert’s behavior. It may seem surprising that
there should be models of expert behavior that are not themselves expert
systems; what is even more surprising is that , for some domains, these mod-
els not only exist, but are very simple and extremely effective. The domains
concerned are judgment tasks, and the models are simple linear equations.
The relevant work dates back to the investigations of psychologists in the
1950s and 60s and is little known to the AI community.’ Psychologists in-
vestigating the behavior and accuracy of human experts (mainly medical
diagnosticians), have explored the extent t o which their performance can be
explained as the integration of a relatively small number of “codable infor-
mation sources” or cues. These cues may be objective (examination grades,
or the results of laboratory tests, for example), or subjective-requiring in-
terpretation, as in the case of reading X-ray films or estimating the severity
of a disease. Influenced, no doubt, by the statistical basis of their field,
psychologists compared the experts’ judgments to linear regression mod-
els (Le., linear combinations of cue values). These experiments tended to
confirm the hypothesis that experts used relatively few cues and integrated
them in simple ways. They also confirmed the hypothesis that experts may
be neither particularly accurate nor consistent in their judgments. Perhaps
more surprisingly, they also found that many of their experts were often
out-performed by the linear regression models of their own behavior [53].

Linear models of expert judgment have been found to be extremely ro-
bust: it is often not necessary to use the best fit (i.e., regression) model-

‘Dawes and Corrigan [53] trace some of the ideas back to Benjamin Franklin, and also
cite pertinent observations of Thorndike dating back to 1918 [182], including the following.

“There is a prevalent myth that the expert judge succeeds by some mys-
tery of divination. He succeeds because he
makes smaller errors in the facts or in the way he weights them. Sufficient
insight and investigation should enable us to secure all the advantages of the
impressionistic judgment (except its speed and convenience) without any of
its defects.

“The setting up of an equation of prophecy from an equation of status
will usually be very complex, but a rough [linear] approximation, if sound
in principle, will often give excellent results.”

Of course, this is nonsense.

7.2. Evaluating Desired Competency Requirements 81

linear models with unit, or even random weights can work quite well. For
example, Dawes and Corrigan report an experiment that involved prediction
of students’ grade point averages at the University of Oregon [53, Table 11.
The average validity of expert judges’ predictions was 0.37, that of their
regression models was 0.43, that of random linear models was 0.51, that of
an equal-weighting model was 0.60, while that of an optimal linear model
(i.e., one fitted to the actual outcomes, rather than the judges’ predictions)
was 0.69.

Dawes and Corrigan identify circumstances when linear models can be
expected to perform particularly well. First, there should be a “condition-
ally monotone” relationship between each cue and the judgment (outcome).
That is, it should be possible for the values of cue variables to be scaled so
that higher values of each predict a higher value of the judgment, indepen-
dently of the values of the remaining cue variables. Secondly, there should
be noise or uncertainty in the measurement of the judgment variable, and
thirdly, there should be noise or uncertainty in the measurement of the cue
variables. When these three conditions are satisfied, a linear model is often
accurate and robust.

Psychologists have proposed using linear models in two ways. The first is
as a “paramorphic representation” or model of the expert’s behavior that can
be used for analysis or prediction; the second, known as “bootstrapping”,
is as a replacement for the expert. The second of these applications of
linear models sets them in direct competition with expert systems and is
considered further in Chapter 10 (page 115). It is the use of linear models
as paramorphic representations that is of interest in this section, since it
suggests the use of such models in the evaluation of knowledge-based expert
systems.

Knowledge-based systems that perform judgment or discrimination tasks
for which it is possible to construct adequately performing linear models may
usefully be evaluated against such models. Clearly, there is little benefit in
employing a complex, knowledge-based system unless it can significantly
out-perform a simple linear model. Thus a linear model may serve to es-
tablish a testable “floor” for the desired competency level of the knowledge-
based system. In addition, since a linear model may be able to accurately
reproduce an expert’s behavior for at least some part of the input space, it
could serve as a “screening” filter during dynamic testing of the knowledge-
based system: those test cases that produce similar responses from both the
knowledge-based system and the linear model could be accepted as correct
(or subject to further investigation on only a random sampling basis), while

82 Chapter 7. Issues in Evaluating the Behavior of AI Software

those that produce different results are examined further, or submitted to
the human expert for “gold standard” comparison. In this way, it may be
feasible to subject a knowledge-based system to large numbers of tests with-
out incurring the huge costs of human evaluation for the outcome of every
test. Furthermore, since those test cases that produce different behavior
between the knowledge based system and the linear model are likely to be
the most revealing, the costs of human evaluation will be directed towards
interesting test cases.

7.3 Acceptance of AI Systems

An AI system may perform adequately in formal tests against human ex-
perts, yet still fail to be accepted by its users. Gaschnig et ai. [69] recount
the early history of R1 (see also [128]), a system that configures the com-
ponents of VAX computers. The acceptance plan called for R1 to configure
50 test orders, which would be examined by a panel of 12 human experts.
Deficiencies noted would be corrected, and the process repeated using dif-
ferent sets of 50 orders at three week intervals until an acceptable level of
accuracy and reliability had been demonstrated. In practice, the number
of test cases used at each evaluation cycle was reduced from 50 to 10, and
those 10 test cases were selected as simply the last 10 orders received. Five
evaluation cycles were performed (for a grand total of 50 test cases), at
which point R1 was judged sufficiently expert to be used routinely in the
configuration task. One year later, it was found that although R1 was nom-
inally in use, a human expert was reviewing the configurations produced
by R1 and modifying 40% to 50% of them. It was not known whether the
technicians who actually assembled the VAX computer systems were using
the detailed layouts specified by R1; when questioned, they provided what
is described as “extremely important feedback, albeit a bit overdue, as to
what is important and what is not in carrying out the configuration task”.

Among the lessons to be learned from this experience are:

1. The test selection criterion was naive: simply the last 10 orders re-
ceived. Many of these test cases were trivial and there was no attempt
to look for difficult configuration tasks on which the system might fail.
Consequently, McDermott admits [128]:

“In retrospect, it is clear that at the end of the validation
stage R1 was still a very inexperienced configurer. It had

7.3. Acceptance of AI Systems 83

encountered only a tiny fraction of the set of possible orders,
and consequently its knowledge was still very incomplete.”

2. There was no clearly established “gold standard”. It was found that
the human evaluators disagreed among themselves as to the right way
to do the configurations.

3. Testing for the purposes of development was confused with acceptance
testing.

4. There was insufficient involvement by the eventual users in the testing
and exercise of the system

The first of these points is considered more fully in Section 8.1 (page
87); the second was discussed above in Sections 7.2.2.1 and 7.2.2.2 (page
78). The third and fourth points are discussed below.

7.3.1 Identifying the Purpose and Audience of Tests

Although AI systems are typically developed in an iterative, incremental
fashion, it is important to distinguish different phases in the process and not
t o confuse development with evaluation. Gaschnig et al. [69], for example,
identify the following nine stages in the development of an Expert System:

Top-level design: definition of long-range goals.

Protoype: build Mark-I prototype to demonstrate feasibility.

Refinement: refine Mark-I prototype into Mark-11, by

1. Running informal test-cases to generate feedback from the expert,

2. Releasing Mark-I1 prototype to friendly users and soliciting their

3. Revising system on the basis of that feedback, and iterating pre-

resulting in refined Mark-I1 prototype,

feedback,

vious step.

Evaluation of performance: structured evaluation of the competence of
the system.

Evaluation of acceptability: structured evaluation of acceptability of the
system in its intended environment.

84 Chapter 7. Issues in Evaluating the Behavior of AI Software

Prototype service: experimental use of the system in its intended envi-
ronment for extended periods.

Follow-up: evaluate system’s performance and impact in intended environ-
ment.

Revision: modify system to correct deficiencies discovered in previous step.

Release: market the system, with commitment to updates and mainte-
nance.

The testing and experimentation that are undertaken as part of the re-
finement phase have a quite different character and purpose-and, most
importantly, a different audience-than those undertaken during the later
evaluation phases. Gaschnig et al. [69] point out that it is important to com-
plete each phase of the development and evaluation before proceeding to the
next. For example, the fourth phase is intended to establish that the system
is performing at an expert level of competence, whereas the fifth phase is
concerned with its acceptability to the user. If the fourth phase has not been
completed satisfactorily before the fifth is started, then it will not be clear
whether the user’s failure to accept the system results from inadequacies in
its competence or in its human factors. The purpose of the different phases
of evaluation is to systematically eliminate the variables that can lead to
the user’s failure to accept the system. Thus the developers of MYCIN did
not attempt to assess its clinical utility until they had established that its
decision-making was at the level of an expert in the field. In this way, they
could be sure that any subsequent failure of acceptance by physicians was
due to human-engineering problems, rather than to decision-making errors.

7.3.2 Involving the User

Users may reject an AI system even though its competence has been es-
tablished. Particularly in the case of decision-aids, it is important that the
user should have some basis for evaluating the advice offered by the AI sys-
tem. An “explanation system” is the usual method provided for doing this.
Typically, the knowledge-engineer provides a natural-language explanation
or justification for each rule in the rule-base, and the explanation system
uses these to generate a trace of the rules that fired in the course of the
system’s deliberations. Recently, more sophisticated notions of explanation
have been developed [180, 1401 and it has also been proposed [193] that

7.3. Acceptance of AI Systems 85

the man-machine interaction is best considered as a single system, and the
machine component designed accordingly.

Bell [16] points out that a user’s confidence in the advice offered by a
system may be affected by knowing what information the system has used
or not used in reaching its decision. For example, if an AI system responds
“I recommend action X, and I used information A and B, but not C in
reaching that conclusion”, then the user may be cautious about accepting
the recommendation if information C seems significant to him: the failure
to use item C may indicate a gap in the system’s knowledge base. A variant
of this situation arises when information C is used, but does not affect the
outcome. The explanation facilities of current AI systems do not provide
this kind of insight into the system’s decision making process; they serve
more to justify the decisions actually made than to alert the user to possible
weaknesses in the decision-making process.

7.3.2.1

The real question of importance for much AI software, especially decision
aids, is ‘(does it help the user accomplish his task”. Note that it is not the
responsibility of a decision aid to make decisions, and so it should not be
evaluated as if it were an autonomous system-it is its ability to assist its
user (e.g. by enabling him to carefully evaluate alternative courses of action)
that is relevant. Thus, the competence of a decision aid will be one factor
that needs to be evaluated, but it may not be the most important.

Systematic evaluation of the performance’ of decision aids depends on
a model of the decision maker’s “value function”. Multi-Attribute Utility
Theory (MAUT), developed by Keeney and Raiffa [loa], is employed by the
“DAME” methodology [23] that has been applied to at least one military
decision aid. Additional discussion of these topics can be found in a recently
issued report [183] and in a paper by Liebowitz [123].

Although skill in the performance of its intended function will be a pri-
mary determinant of the utility of a knowledge-based system, it may not be
the only one, and some benefits may be realized with even a relatively in-
expert knowledge-based system. Moninger et al. [133], for example, suggest
such benefits as a more consistent (even if occasionally less skilled) perfor-
mance of the task than is provided by human experts, and improvement
in the performance of the human experts themselves. This latter benefit

Performance Evaluation of AI Software

2UUtility” might be a better term, but we use “performance” in order to be consistent
with the existing literature.

86 Chapter 7. Issues in Evaluating the Behavior of AI Software

may be achieved because the process of knowledge engineering provides a
structure in which to organize thinking about the problem and results in
improved understanding, or because the knowledge-based system can serve
a tutorial function during the training of human experts.

Chapter 8

Testing of AI Systems

In this chapter we consider the application to AI software of the testing
techniques and strategies described in Chapter 5 (page 29). We assume the
testing is being performed during later stages of system development for the
purpose of evaluating competence.

8.1 Dynamic Testing

In Chapter 7 (page 74) we discussed the feasibility of dynamic testing for
AI software and we argued that, with care, it should be possible to remedy
the usual lack of explicit specifications for AI software and to subject it to
systematic test and evaluation.

We saw in Section 5.4 (page 58) that, in the case of conventionalsoftware,
the most effective dynamic testing strategies are random testing, functional
testing, and path testing-in that (descending) order. However, all three
methods complement each other, and each should form part of a compre-
hensive testing strategy. Functional testing requires detailed requirements
and specification documents and these may not be available for the desired
competency requirement of an AI system.l However, the whole point of
our proposal that the expectations placed on AI systems should be parti-
tioned into service requirements and into minimum and desired competency
requirements is to ensure that it is only the desired competency requirement
that presents this difficulty. Notwithstanding this difficulty, it is surely rea-
sonable to expect that some attempt should be made to test the desired

'Random testing also requires some such documents in order to specify the expected
operational profile.

87

88 Chapter 8. Testing of AI Systems

competency requirement across its operational profile. O’Keefe [1451 , for
example, suggests that a fair cross-sectional validation should include ran-
dom test data selection, selecting some obscure or complex test cases that
even experts find difficult, and having experts synthesize test cases in situa-
tions where data is lacking. Though the number of successful tests tends to
increase confidence, “. . . the issue is not the number of test cases, it is the
coverage of the test cases-that is, how well they reflect the input domain.”

The notion of path testing requires some modification in the case of
rule-based software. Such programs lack an explicit flow of control and
so the notion of path has no meaning. However, path testing is merely
a particular form of structural testing, and it is fairly easy to construct
appropriate structural testing criteria for rule-based systems. A minimum
requirement is surely that every rule should be exercised during testing
(this corresponds to the all-nodes criterion for conventional programs), and
a more stringent requirement, is that every outcome (i.e. firing or not) of
every rule should be exercised (c.f. the all-edges criterion for conventional
software). Beyond those simple criteria, we enter the realm of research:
it would certainly be interesting and worthwhile to develop notions and
measures for testing combinations of rules and outcomes in the spirit of
path testing for conventional software.

It is an obvious point, and one widely accepted in the case of conven-
tional software, that systematic testing strategies require very large numbers
of test cases. This generally presents little difficulty in the case of conven-
tional software, where test cases are usually straightforward to generate and
evaluate and where failures are often manifest as outright crashes, but may
do so in the case of AI software where one is looking for more subtle kinds
of failure, and where evaluation of the output produced may be more dif-
ficult. Evaluation against human experts is unavoidably expensive2 and,
perhaps for this reason, AI software often seems t o be subjected to very
small numbers of formal test cases (e.g. the mere 10 test cases used in the
evaluation of MYCIN, and 50 in the evaluation of Rl). As a consequence,
the purpose of such tests seems to be to demonstrate that the system is
capable of expert performance, rather than to demonstrate that it is rea-
sonably free of faults (that is, the aim is to show that the system can work
well, not to find out how often it works badly). However, if we view the
goal of systematic testing of AI software as a search for circumstances which

aThough recall the possibility, suggested in Section 7.2.3 (page 80), that linear models
could mitigate this in certain situations.

8. I . Dynamic Testing 89

cause the software to behave badly, then it may be possible to adequately
evaluate the output of large numbers of systematic tests relatively cheaply:
we will be looking for inplausible or suspicious results, rather than carefully
examining the quality of fairly good results. The explanation facility may
be helpful in determining the plausibility of results. The technique of Ince
and Hekmatpour [99] (Section 5.1.5, page 38), which uses random test data
to construct reasonably small test sets providing extensive coverage, may
be worth exploring. Some special considerations that arise in the dynamic
testing of AI systems are discussed below.

8.1.1 Influence of Conflict-Resolution Strategies

Testing combinations of rules (or even individual rules) will generally be dif-
ficult because the conflict-resolution strategy of the underlying interpreter
(inference engine) can make it very difficult to predict the sequence of rules,
or even the identity of the rules, that will be exercised. Furthermore, since
the sequencing of rules can affect the outcome, it is highly desirable that
different sequences should be tested. Thus, we propose that during testing,
a second evaluation mode should be made available by the underlying in-
ference engine-namely, a mode in which all successful paths are explored,
not merely the first to be found. The inference engines of current expert
system shells do not provide such a mode-however, some do allow a choice
of conflict resolution strategy, and a weak form of the testing we propose
may be accomplished by repeating each test under all the available strate-
gies. Obviously, investigation should be undertaken if it is discovered that
any test can generate more than one outcome-such different outcomes may
indeed be what is intended and each may be equally acceptable, but this
must be determined with care.

8.1.2 Sensitivity Analysis

The previous section recommended checking whether the same input can
produce different outputs. It is equally important to determine whether
very similar inputs can produce wildly different outputs-it is this potential
for “instability” or “fragility” that underlies many of the concerns expressed
about AI software. We recommend that the basic test scenarios suggested
by random, functional, and structural testing should be systematically per-
turbed in order to determine whether the outputs produced are subject to
major variation. If the system concerned permits the user to attach measures

90 Chapter 8. Testing of AI Systems

of certainty to input values, then these measures should be systematically
perturbed as well as the values themselves. A related technique would vary
the confidence factors embodied in the rules themselves, in order to ensure
that the behavior of the system was not unduly influenced by the precise val-
ues chosen (unless there was a good reason for being precise about a value).
MYCIN’s developers performed this type of sensitivity analysis for confi-
dence factors [69]; they found that exact values assigned to the confidence
factors made little difference.

from competency evaluations performed using human experts. Such evalu-
ations are usually expensive to perform and only a few test cases may be
available. By considering perturbations of these test cases, additional infor-
mation may be obtained at little additional cost. Of course, this method of
evaluation has a built-in predisposition in favor of continuity: it assumes that
small variations in input should produce correspondingly small variations in
output. This assumption may, of course, be dangerous in some situations
where, for example, superficially similar symptoms should produce very dif-
ferent diagnoses. Even in these cases, however, one would expect that some
additional corroborating evidence should be required.

We note that sensitivity analysis may be a good way to get extra “mileage”

8.1.3 Statistical Analysis and Measures

A special consequence of the problem domains addressed by AI systems is
that there may be no single ‘(correct” result. Consequently, when an AI
system is evaluated against human experts the outcome may not be clear
cut and it may be desirable to use statistical techniques to provide q u a n t i h
tive measures of relative performance. O’Keefe [145] describes some of the
appropriate techniques: paired t-tests, Hotelling’s T2 test, and simultaneous
confidence intervals.

O’Keefe proposes using paired t-tests to compare the difference between
observed test results: the difference between a knowledge-based system and
human performance may be represented as Dj = Xi - Yi, where the Xi
are system results, and Y; are known results or results from human experts.
Given n test cases there will be observed differences Di to D, from which
O’Keefe defines the following confidence interval:

where d is the mean difference, s d the standard deviation, and tn-l,a/2 is
the value from the t distribution with n degrees of freedom. If zero lies in

I 8.2. Static Testing 91

I

the confidence interval then the system’s performance may be considered
acceptable.

O’Keefe recommends that systems which produce multivariate, rather
than single, results should be evaluated using Hotelling’s one-sample T2
test. If each input produces k measurable outputs, then we can construct a
vector of the k differences between the system and human expert responses
for each input. Repeating this for different inputs we obtain a set of vectors
of differences and the one-sample T2 test can then be used to determine if
the means of the difference vectors are significantly different from zero.

It is often useful to derive a single statistic that represents “skill” in the
performance of a task. Correlation coefficients measuring the correlation
between the performance of a knowledge-based system and that of human
experts (or the objective facts if these are known) are often used. Correla-
tions measure discrimination but are insensitive to the scaling of responses;
the mean square error statistic, which is also widely used, suffers from the
opposite deficiency. The relative operating characteristic (ROC), which has
its origin in signal detection theory [181], is an effective graphical approach
to the presentation of skill. It plots the probability of a “hit” (1 minus the
probability of a Type I1 error) against the probability of a false alarm (prob-
ability of a Type I error) as the decision criterion varies. The area under
the ROC curve can be used as an indicator of skill [133].

8.1.4

AI systems may undergo considerable modification throughout the test and
refinement phase of their development, and even through the evaluation
phase. It is therefore important to perform regression tests (recall Sec-
tion 5.1.2 on page 32) in order to ensure that modifications do not adversely
change the system’s behavior on examples encountered previously. Auto-
mated support for running and checking these test cases is clearly desirable;
Scambos [164] describes such a tool.

Regression Testing and Automated Testing Support

8.2 Static Testing

The experimental data cited in Section 5.4 (page 58) showed that anomaly
detection was among the most effective testing strategies for conventional
software. In the following section we consider the application of such tech-
niques to AI software. Later, we examine the possible application of math-
ematical verification and of structured walk-throughs to such software.

92 Chapter 8. Testing of AI Systems

8.2.1 Anomaly Detection

Anomaly detection depends crucially on the presence of redundancy in pro-
grams. An anomaly in a program is nothing more than an apparent conflict
between one indication of intent or purpose and another: for example, a
programmer declares a variable as an integer, but assigns a string value to
it. The effectiveness of anomaly detection is essentially determined by the
degree of redundancy and structure in the programming language employed.
Thus, when AI software is written in a conventional, imperative program-
ming language (e.g. C, or Ada), the techniques of anomaly detection can be
employed just as they can with conventional programs. Much AI software,
however, is written in languages that contain very little redundancy. Many
functional languages (such as Lisp) and logic programming languages (such
as Prolog) have no typing mechanism, for example, and few or no facilities
for control and data structuring. Rule-based systems are usually even worse
in this respect-almost any collection of syntactically correct rules is a plau-
sible knowledge base. One obvious recommendation for future work is the
development of more structured languages for rule-based systems. Strongly
(though often polymorphically) typed functional languages are now com-
monplace, and similar proposals have been made for logic programming
languages.

In the present section, we will concentrate on the limited anomaly de-
tection that can be performed on rule-based systems built on current expert
system shells. Existing work in this area focuses on methods for testing
rules-bases for consistency and completeness, and is closely related to tech-
niques for debugging and maintaining knowledge-bases. We will concentrate
on the testing angle here; use of similar techniques in “comprehension aids”
and for knowledge-base maintenance is discussed in Section 8.2.4 (page 105).

TEIRESIAS [52] was the first attempt at automating the process of
debugging knowledge bases; it was applied reasonably successfully to Short-
liffe’s MYCIN system [171]. TEIRESIAS examined the MYCIN rule-base
and built models that revealed a number of patterns such as what attributes
were used to deduce other attributes. When the rule-base was extended,
TEIRESIAS would check that the new rules were consistent with its pat-
terns and, if not, would interject comments such as: “Excuse me, doctor, but
all rules mentioning z and y have also mentioned patient age as a relevant
parameter; are you sure you don’t want to add some clause about patient
age?” Wilkins and Buchanan [189] discuss some of the problems that arise

8.2. Static Testing 93

when debugging heuristic rule sets and show that the techniques used in
TEIRESIAS do not always lead to the best set of rules.

Suwa, Scott and Shortliffe [179] describe another early program for check-
ing the rule-base of an expert system. Their program, which was used in
the development of the ONCOCIN expert system, first partitions rules into
disjoint sets based on the attribute that is assigned a value in the conclusion.
It then makes a table, displaying all possible combinations of attributes used
in the antecedents and the corresponding values that will be concluded in
the conclusion of the rule. The table is checked for conflicts, redundancy,
subsumption, and missing rules (see below). The rule checker assumes there
should be a rule for each possible combination of values of attributes that
appear in the antecedent; the checker hypothesizes missing rules based on
this assumption. The CHECK program described by Nguyen [142] is an ad-
junct to the “Lockheed Expert System” shell (LES) [116] that extends the
rule-base checks used in the ONCOCIN project. The following paragraphs
describe some of the checks performed by the CHECK program.

Situations that are considered likely to indicate problems of consistency
in goal-driven rules are:

Redundancy: two rules have the same antecedent, and the conclusions of
one subsume those of the other (e.g. x + y and z -+ y A z) .

Conflict: two rules have the same antecedent, but their conclusions are
contradictory (e.g. x 4 y and z + iy).

Subsumption: two rules have similar conclusions, but the antecedent of
one subsumes that of the other (e.g. z -+ y and x A z + y).

Unnecessary IF rules: two rules have the same conclusions, and their
antecedents contain contradictory clauses, but are otherwise the same
(e.g. x A z -+ y and x A 11 + y).

Circularity: a set of rules forms a cycle.

Situations that are likely to indicate problems of completeness in goal-
driven rules are:

Unreferenced attribute values: some values in the set of possible values
for an object’s attribute are not covered in the set of rules.

Illegal attribute values: a rule refers to an attribute value that is not in
the set of legal values.

94 Chapter 8. Testing of AI Systems

Unreachable conclusions: the conclusion of a rule should either match a
goal or an if condition in some other rule.

Dead-end goals and dead-end IF conditions: either the attributes of
a goal must be askable (the system can request information form the
user) or the goal must match the conclusion of a rule. Similar consid-
erations apply to the IF conditions in each rule.

Similar considerations to those given above can be used for consistency
and completeness testing of data-driven rules and numerical certainty factors
can also be accommodated. Stachowitz et al. [176, 1751 describe develop-
ments along these lines.

A problem with all these rule-checking systems is that they incorporate
rather limited, local, interpretations of completeness and consistency: in-
consistency, for example, is considered as a property of pairs of rules. That
this is insufficient may seen by considering the following example:

P V Q + A
Q V R + B
A A B -+ T

A + D
B --+ 1 D

This rule-set is inconsistent: if Q is asserted, then both A and B will
be asserted, and therefore both D and Y D . But no pair of rules in this
example exhibits any of the problems detected by the Nguyen’s CHECK
program [142], or any of the other similar tools mentioned above. This
weakness has been identified by both Ginsberg [76] and by Bellman and
Walter [19, 181. They point out that redundancy and inconsistency are
properties (possibly large) sets of rules.

Bellman and Walter describe techniques for detecting various kinds of
incompleteness and inconsistency in a rule-base. Essentially, their technique
for inconsistency would analyze the example above by first determining that
D will be asserted true if PVQ and false if QV R. Since D cannot be both true
and false, the conjunction (P V Q) A (Q V R) should be unsatisfiable. Since it
is not, we conclude that D can be asserted to two different values and that
the rule-base is therefore inconsistent. Bellman and Walter’s description
is somewhat hard to follow since they describe their method in terms of
boolean algebra-whereas what they are really doing is testing formulas in

8.2. Static Testing 95

propositional calculus (or, in more complicated cases, propositional calculus
with Presburger arithmetic) for ~nsatisfiability.~ Expressed in more familiar
terminology, Bellman and Walter’s procedure for testing consistency can be
described as follows:

!

1. For each distinct attribute value, form the disjunction of the an-
tecedents of the rules that assert that value (call this disjunction the
“combined antecedent” for that attribute value).

2. For each incompatible pair of attribute values, show that the conjunc-
tion of their combined antecedents is unsatisfiable.

Similarly, Bellman and Walter’s test for “current conditions” is equiv-
alent to checking that the disjunction of the combined antecedents corre-
sponding the set of all possible values for an attribute is tautological. For
example, their paper [19, pages 17-20] considers the case of an object (vari-
able 418) with three possible attribute values: high, medium, and fa lse .
The combined antecedents for these values are, respectively:

(A A ~ 1 2 4 1 35) v (A A ~ 1 2 4 < 35 A 11x24 > 10) v (’A A ~ 1 2 4 > 20)

1 A A v i 2 4 > 6 A 21124 5 20

(A A v i 2 4 5 10) V (’A A ~ 1 2 4 < 6).

The disjunction of these formulas is not tautological (it is falsified by
TA A v i 2 4 = 6), and so we conclude that variable 418 is not always deter-
mined by the current values of its “inputs”.4 Readers who work through
the several pages of boolean algebra that Bellman and Walter [19, pagesl7-
201 require to reach this conclusion, might be interested in the input to the
EHDM verification environment [87] shown in Figure 8.1, which contains all
that is needed to establish that the disjunction given above is not tauto-
logical. The LEMMA merely declares the formula of interest, while the PROVE
command invokes the theorem prover-which then fails to prove the formula
without further ado! Since the theorem prover of EHDM contains a com-
p l e t e decision procedure for the combination of propositional calculus and

3Similarly, their suggestion that an algebraic simplification system such as Macsyma
could be used to automate some of the analysis could profitaBly be replaced by the obser-
vation that the appropriate tool is a decision procedure or simplifier for this combination
of theories (e.g. Shostak’s [173, 1721 or that of Nelson and Oppen [141]).

*If the final inequality is changed to vi24 5 6, then the disjunction does become a
tautology-thereby suggesting a plausible correction.

96 Chapter 8. Testing of AI Systems

v418test: MODULE

THEORY
A : boolean
v124: integer

lemmal: LEMMA
(A AND v124>=35) OR
(A AND v124C35 AND v124>10) OR
((NOT A) AND v124>20) OR
((NOT A) AND v124>6 AND v124<=20) OR
(A AND v124<=10) OR
((NOT A) AND v124C6)

PROOF

prove-lemmal: PROVE lemmal

END v418test

Figure 8.1: EHDM Input for “Current Conditions” Check

C-&

8.2. Static Testing 97

Presburger arithmetic5, this is sufficient to establish that the LEMMA is not
tautological; the system does prove the LEMMA (in a couple of seconds) when
its final inequality is changed to v124<=6.

Like Bellman and Walter, Ginsberg [75, 761 considers more subtle forms
of incompleteness and inconsistency than those examined by Nguyen. He
gives an algorithm, based on “knowledge-base reduction,” for detecting these
more complex forms of inconsistency and redundancy (though only for the
propositional case) which seems more sophisticated than the techniques of
Bellman and Walter, and he rightly points out that the analysis must con-
sider the characteristics of the inference engine used by the expert system-it
is not usually valid to interpret the rules as a collection of axioms in some
standard logic, since the inference engine may not provide the standard
semantics. Ginsberg, in fact, goes to some lengths to deal with the issues
raised by the “closed world assumption” (CWA). The CWA is a simple form
of nonmonotonic reasoning (see [72, Chapter 61 or [159] for elegant accounts
of nonmonotonic reasoning; [160] explains its connection to fault diagnosis).
The CWA asserts the negation of a ground term whenever the term itself
cannot be deduced (e.g. if you cannot deduce that alligators are vegetarians,
assume they are not). More elaborate forms of nonmonotonic reasoning in-
clude “default theories” , “predicate completion” and “circumscription” [72,
159, 1271. Theorems are known which assert that if a theory is consistent in
conventional logic, then under suitable conditions, its augmentation in cer-
tain forms of nonmonotonic logic will also be consistent. For example, if the
clause form of a theory is Horn and consistent, then its CWA augmentation
is consistent [72, Chapter 61. Thus, some parts of Ginsberg’s algorithm may
be unnecessary-but only if the standard logical notion of inconsistency co-
incides with the interpretation appropriate to the deductive mechanism of
the expert system concerned.

In general, the notions of inconsistency employed in logic and in rule-
based expert systems do not coincide. In (propositional) logic, an incon-
sistent set of formulas is one that has no model; as long as there is some
assignment of truth values to propositional symbols (Le., an interpretation)
that evaluates each formula to true, the theory is consistent. Thus the

‘Strictly, the method is incomplete since it uses Gomory’s method for integer feasibility.
However, Gomory’s method is incomplete only in that it is not guaranteed to terminate-
and this proof does terminate.

98 Chapter 8. Testing of AI’Systerns

following set of propositions is logically consistent

since both formulas evaluate to true in any interpretation that assigns f alse
to p . Interpreted as rules, however, these two formulas are surely inconsis-
tent, since both q and l q will be asserted if p and r are simultaneously
true.

While this example (from Ginsberg [75]) clearly demonstrates that the
notion of consistency employed in propositional logic is different from that
used for rule-bases, none of the completeness and consistency tests described
in this section give formal definitions for their notions of “consistency” and
“completeness” (though Ginsberg [75] does identify his notion of “redun-
dancy” with that of independence in logic). This is a serious omission; the
weaknesses and uncertainties attending existing completeness and consis-
tency tests for production rule systems may largely be attributed to the
lack of a clear semantics for the notations employed and a corresponding
lack of rigorous definitions for the properties being tested. The develop-
ment of an appropriate semantic foundation in which to pose the problems
of completeness and consistency for production rule systems with accept-
able rigor is therefore a prerequisite for the creation of good algorithms for
completeness and consistency checking. Such a foundation might also make
it possible to develop techniques for establishing that a rule-based system
terminates.

Despite their rather shaky foundations, completeness and consistency
checking tools do seem to identify a significant number of problems in “typ-
ical” rule-bases. The proponents of such tools argue that this demonstrates
that they are appropriate and effective; an alternative interpretation, how-
ever, is that it merely demonstrates that rule-bases are a dangerously un-
structured and unreliable form of knowledge representation. If tools as crude
as these detect problems, then how many deeper problems must remain un-
detected? Some experimental evidence for this latter position is provided
by Pearce [1531 who describes two knowledge-based systems for diagnosis
of the electrical power system in a satellite. The first system was a con-
ventional hand-crafted rule-based expert system. When this system was
analyzed by the KIC rule-base checking program [154] (this is comparable
to Nguyen’s CHECK program), seven problems were found among its 110
rules. And when it was tested against a simulator for the satellite system

I

8.2. Static Testing 99

concerned, it correctly diagnosed only 72% (10 out of 14) simulated failures.
In contrast, the second system, which was produced mechanically from a
qualitative model of the satellite electrical subsystem, contained only 75
rules, triggered no warnings from KIC, correctly diagnosed all 14 test cases,
and required only half the development time needed for the hand-crafted
rule-base. Furthermore, validation of the second system could also consider
the qualitative model underlying its rule-base-a higher level and more per-
spicuous representation than the rule-base itself. In essence, the rule-base in
the second of these systems may be regarded as compiled code; verification
and validation can be directed to the qualitative model that constitutes its
“source code”. This seems a very promising approach and could well be
the precursor of a new and more sophisticated and reliable approach to the
construction of rule-based expert systems. In contrast, completeness and
consistency checkers seem to address only the symptoms, rather than the
causes of unreliability in rule-based systems.

8.2.2 Mat hematical Verification

There has been little prior work on the application of mathematical verifica-
tion to AI software6 The absence of formal specifications for most AI soft-
ware certainly presents an immediate difficulty for mathematical verification
and we concede that it may not be feasible to perform formal verification of
full functional correctness for other than a small class of knowledge-based
systems. We do not see this as a serious drawback, however; even for con-
ventional software, it has recently become recognized that the expense and
power of mathematical verification are such that it may best be applied
to the verification of critical properties (such as security, fault-tolerance, or
safety) rather than to the full function of the software. Instead of using for-
mal verification to prove that things work right, we can use it to prove that
things cannot go badly wrong. Using the terms introduced in Section 7.1.2
(page 75), we believe that it may be feasible to mathematically verify cer-
tain minimum competency requirements. For example, the AALPS system
described in Section 7.1.2, has a minimum competency requirement that the
aerodynamic trim of the aircraft must remain within certain limits during
unloading in flight. We described how this requirement could be tested by
another computer program that would examine the output of AALPS and
compute the location of the center of gravity during all stages of unloading.

6Castore [37], who proposes using a modal logic for reasoning about knowledge-based
control systems (but presents no details), is an exception.

100 Chapter 8. Testing of AI Systems

Mathematical verification of this requirement, if feasible, would guarantee
the safety (though not the optimality) of any loading plans produced by
AALPS once and for all.

AALPS and other design and optimization systems tackle problems for
which it is relatively easy to specify how to recognize an acceptable solution
when you see it. The minimum competency requirement for such a system
can therefore specify what constitutes an acceptable solution and verifica-
tion will be concerned to prove that the system generates only acceptable
solutions.

Other classes of knowledge-based systems tackle problems in which it
may not be feasible to specify precisely what constitutes an acceptable so-
lution. Classification problems, for example, often have this characteristic.
Such a system might consider the known information about an aircraft and
classify it as being either friendly or hostile. Everything that is known about
how to perform this classification will be encoded in the rule-base and there
will be no independent specification against which its ability to produce cor-
rect analyses can be verified. Even here, however, although it may not be
feasible to specify what constitutes a correct identification or classification,
it may be possible to specify certain partial specifications to exclude the
possibility of things going badly wrong. In the threat-identification case,
for example, a safety rule might be that if an aircraft’s fire-control radar is
locked on you then it is hostile, whatever other indications there may be.’
Mathematical verification could then be used to ensure that this partial
safety specification is satisfied.

As well as specifications concerning the external behavior of the system,
it is possible to contemplate “safety” specifications concerning the allowable
internal states of the rule and fact bases of a knowledge-based system. For
example, we could specify that no radar track should ever be classified, even
transiently, as belonging to both a ship and a plane. This specification
establishes an invariant for the knowledge-base which could be formally
verified.

The following example is intended to illustrate how formal reasoning may
be of value in verification of knowledge-based systems. Winston [192, page
1691 discusses a toy expert system for bagging groceries in a supermarket,
which knows the following information about items within the store:

‘It is claimed that during the war with Argentina over the Falkland Islands, British
ships’ radar did not classify incoming Exocet missiles as hostile because the radar signature
of the Exocet identified it as belonging to an allied NATO country (France).

8.2. Static Testing 101

Item Container Type Size Frozen?
Bread Plastic Bag Medium No
Glop Jar Small No
Granola Cardboard box Large No
Ice cream Cardboard carton Medium Yes
Pepsi Bottle Large No
Potato chips Plastic bag Medium No

Winston then defines a number of rules. We have selected a subset of
these rules for the purposes of illustration. Our subset is:

B4

B8

B12

If

then

If

then

If

then

the s t ep i s bag-large-items
there i s a large i t e m t o be bagged
there is an empty bag or a bag with large items
the bag is not yet f u l l
put the large item i n the bag

the s t ep is bag-medium-items
there is a medium item t o be bagged
there is an empty bag or a bag with medium items
the bag is not yet f u l l
put the medium item i n the bag

the s tep i s bag-small-items
there is a small i t e m
there is a bag tha t is not yet f u l l
put the small item i n the bag

First, let us define “full”, which Winston uses without definition in the
preceding rules, to be a predicate which is true if a bag contains 6 large
items, 12 medium items or 24 small items (Le., a large item is twice as big
as a medium item, and a medium item is twice as big as a small item, and
each bag may hold a maximum of the equivalent of 6 large items), and false
otherwise.

Now, let us suppose for a moment that we are interested in safety in
this context, which we define as not overloading the bags to the point where

102 Chapter 8. Testing of AI Systems

they might break. The particular bags in use may break if loaded with 30
lbs. or more. Let us further suppose that we do not know how much each
individual item weighs, but we do know something about each category. We
know that the heaviest large item is 4 lbs, and that the heaviest small and
medium items are both 2 lbs. What we are interested in showing, of course,
is that these rules will never produce a situation in which a bag is in danger
of breaking.

Exhaustive testing, even of this three rule subset, is quite impossible. For
each grocery order of r items, there are 6' possible combinations. Therefore,
to exhaustively test the three rules given above, it would be necessary to
run:

00

C6'
r=O

test cases. Even with an operational constraint placed on the number of
items one could possibly purchase (let's say 100)) one would run:

E 6' = 7.8398233 + 77
r=O

test cases. In order to assure ourselves that this system is safe, we must
appeal t o formal methods.

We begin by satisfying ourselves that the system begins in a safe state,
that is, we show that the initial state conforms to the criterion of our state
invariant (our safety property), which is that all bags should contain strictly
less than 30 lbs. It is easy to see that when all bags are empty, the weight
in any given bag is less than 30 lbs. Therefore, our initial state is safe.

Next, we assume the system is in some arbitrary state which conforms
to our safety property (where the weight in each bag is less than 30), and
attempt to show that we cannot reach an unsafe state through the applica-
tion of any of the rules. We assume the given rules exhaustively define all
state transitions which may occur relative to the state-space of our problem
domain. Therefore, if we can show that for each of the above three rules,
application of the rule in an arbitrary safe state leads only to another safe
state, then we can appeal to induction, and conclude that the above system
is safe for all reachable states.

Rule B4 can only cause a large item to be put into a bag if the bag
is empty or if the bag holds only large items and is not yet full. By the
definition of full, this means fewer than 6 large items. Therefore, since the
heaviest large item weighs 4 lbs, the most a bag could weigh prior to the

8.2. Static Testing 103

transition of rule B4 is 5 * 4 = 20 lbs. Further, since the heaviest object
which rule B4 could cause to be added also weighs 4 lbs, we can conclude
that the heaviest a sack could weigh after execution of rule B4 is 6 * 4 = 24
lbs. Therefore, rule B4 is safe according to our definitions.

Rule B8 can only cause a medium item to be added to a bag which is
empty or which holds exclusively medium items and is not yet full. There-
fore, by the definition of full, there must be fewer than 12 items in a bag
to meet the antecedent of rule B8. Since the heaviest medium item weighs
2 lbs, the heaviest a medium sack could weigh before execution of B8 is
11 * 2 = 22 lbs. Again, since the heaviest item B8 could add is also 2 lbs,
the heaviest a sack could weigh following the execution of B8 is 12 * 2 = 24
lbs. Therefore, rule B8 is also safe according to our definitions.

Rule B12 may place small items in any bag which is not full. Therefore,
the most a sack could weigh prior to execution of B12 (and still conform to
our safety criterion) is 14 * 2 = 28 lbs. Since the heaviest item which B12
can cause to be added weighs 2 lbs, it is possible for a sack to weigh 30 lbs
after the execution of B12. Thus, B12 violates our safety criterion and our
knowledge-based system is not safe. We must either get stronger sacks, or
put additional constraints on the execution of rule B12 to make it conform
to our definition of safety.

Any approach to formal rule-base verification, such as that suggested
here, and also the systematic checks for rule-base inconsistencies and redun-
dancies described in the previous section, will treat the rule-base as a formal
object, and will therefore require that it is defined in some language hav-
ing a tractable formal semantics. However, the multiple and weak notions
of “inconsistency” in rule-bases that were described in Section 8.2.1 (page
92), and the lack of definitive algorithms for detecting such inconsistencies
(or proofs that the problem is undecidable), both indicate the lack of clear
semantic characterizations for the languages in which such rule-bases are
expressed. In contrast, languages such as OBJ [68], which have a firm se-
mantic characterization based on a standard logic (equational logic in the
case of OBJ), can appeal directly to the notion of ‘(consistency” as it is used
in logic.

Although many programming environments for AI systems permit the
description of rules that bear resemblance to sentences in a formal logic (for
example, Horn clauses in the case of Prolog), the interpretation ascribed to
these sentences by the “inference engine” generally does not coincide with
the standard semantics of first-order logic (for example, in the treatment of
negation), and extra-logical, quasi-imperative features (such as “cut”) may

104 Chapter 8. Testing of AI Systems

be present 1551. There has been little work on developing formal seman-
tics for production-rule systems, and little consideration given to developing
languages and corresponding inference mechanisms that permit a clean se-
mantic characterization. In fact, the programming notations used for AI
systems (including those provided by expert system shells) seem to be at
a stage of development comparable to that of conventional programming
languages in the 1960s) where “power” , “features” and “convenience” were
considered more important than a formal semantic foundation. Thus de-
velopers of AI system architectures (commonly referred to as ‘(shells”) have
paid little or no attention to mathematical rigor in the construction of the
underlying reasoning methods upon which these systems are based.

Progress in systematic anomaly detection and in mathematical verifica-
tion for AI systems will require that this attitude toward the programming
notations used to describe AI systems is replaced by one that shows more
concern for the desirability of constructs that have clean and tractable se-
mantic characterization.

8.2.3 Structured Walk-Throughs

As described for conventional software in Section 5.2.2 (page 41)) structured
walk-throughs entail an informal, but highly detailed, manual examination
of program code, specifications or requirements. Insofar as AI software is
software, and is expressed in some programming notation or other, the tech-
nique of structured walk-throughs may be carried over directly and may be
expected to yield benefits comparable to those experienced in the case of con-
ventional software. The participants in a walk-through of AI software should
probably be different than for conventional software: instead of Moderator,
Designer, Implementor and Tester, we may choose to substitute Moderator,
Domain Expert, Knowledge Engineer and Tester.

However, since AI software is usually founded upon some explicit or im-
plicit model of the domain of interest, the real benefits of structured walk-
throughs may best be obtained by examining this model, rather than (or
as well as) its representation in the form of rules, or Lisp code. We have
noted that systems based on “deep knowledge” generally contain an explicit
model of the domain of interest, whereas those based on “surface knowl-
edge” general consist simply of “rules”. Yet these rules can be regarded its
the encoding of some (implicit) model, and we hypothesize that substantial
benefit may be obtained by extracting this model and making it explicit and
subject to scrutiny.

8.2. Static Testing 105

Production-rules may best be likened to assembly language in conven-
tional programming: a notation for instructing a machine (or an interpreter),
not for expressing our thoughts. Just as conventional programmers now
express themselves in, and perform analysis at the level of, high-level pro-
gramming languages, so AI programmers may move away from rule-based
encodings, towards notations that provide for the explicit representation of
models. Indications of this development may be found in constraint pro-
gramming languages [119] and in the work of Chandrasekaran [41] and of
Neches and Swartout [140].

8.2.4 Comprehension Aids

Given the unstructured, assembly-language character of rule-based nota-
tions, programmers have understandably found the development, and more
particularly the maintenance, of rule-based systems to be hazardous. The
principle difficulty seems to lie in comprehending the global effect of a pro-
posed modification, and several tools and methodologies have been devel-
oped to mitigate this problem. The techniques for anomaly detection de-
scribed in Section 8.2.1 (page 92) can also be viewed from this perspective.

The simplest comprehension aids are cross-references between the places
where attribute values are assigned, and those where they are used. Such
cross-reference tables underlie the checking for circular rule chains in the
Lockheed CHECK program [142], and also provide the basis for various
forms of scrutiny advocated by Bellman and Walter [19].

Froscher and Jacob [67,100,101] and also Lindenmayer, Vick and Rosen-
thal (1241 describe techniques for measuring the “coupling” between sets of
rules, and propose methods for automatically partitioning rules into clus-
ters of tightly related rules. Froscher and Jacob describe their motivation as
being “to reduce the amount of information that each single knowledge engi-
neer must understand before he or she can make a change to the knowledge
base” [loo]. They divide the rules into groups and then attempt to both
“limit and formally specify the flow of information between these groups”.
In their method, each fact (an attribute-value pair) is characterized as being
produced and used entirely within a single group (a local or intragroup fact),
or as being produced or used by more than one group (an intergroup fact).
Developers of groups that produce intergroup facts must provide assertions
describing them. Froscher and Jacob [loo, Page 51 claim that:

“After a knowledge base is developed in this fashion, the knowl-
edge engineer who wants to modify a group must understand

106 Chapter 8. Testing of AI Systems

the internal operations of that group, but not the rest of the
knowledge base. If he or she preserves the correct functioning of
the rules within the group and does not change the validity of
the assertions about its intergroup facts, the knowledge engineer
can be confident that the change that has been made will not
adversely affect the rest of the system. Conversely, if the knowl-
edge engineer wants to use additional intergroup facts from other
groups, he or she should rely only on the assertions provided for
them.”

The motivation here is identical to that underlying the precept of “informa-
tion hiding” [150, 1511 in conventional software engineering.

Froscher and Jacob describe algorithms [67, 1001 for taking a knowledge
base not developed according to their methodology, and dividing i t up into
groups that are then suitable for maintenance in the manner described. The
algorithm they favor [loo] is based on cluster analysis. They also suggest
metrics for evaluating the “cohesiveness” within groups and the “coupling”
between groups, and describe planned experiments to evaluate the utility
of their methodology. Lindenmayer, Vick and Rosenthal [124] describe an
approach that is similar and motivation and technique to that of Froscher
and Jacob.

t

Chapter 9

Reliability Assessment and
Metrics for AI Systems

Chapter 3 (page 8) introduced the topic of software reliability modeling
for conventional software. If AI systems are to be used in situations that
require high and quantifiable degrees of reliability, then a similar body of
measurement and modeling must be developed for AI software. At present, it
seems that no systematic failure data is available for any AI software, and in
the absence of such experimental data, it would be rash to estimate whether
conventional software reliability models-such as the basic execution time
model-will have any predictive validity for AI software.

Chapter 4 (page 19) described several of the metrics that have been
developed for conventional software. The most useful of these seem to be
the simplest, such as number of lines of code (SLOC). Similar simple mea-
sures, such as the number of rules, can easily be identified for AI systems.
Buchanan [34] notes that rules are not the only measurable quantity in a
knowledge base. Each rule mentions objects, their attributes, and the values
those attributes may take. Buchanan suggests that the sum of these three
could be considered as a measure of the “vocabulary” of a knowledge base.
He notes that attributes that can take continuous values (such as weight)
present difficulty in this scheme but gives values for the vocabularies of five
well known expert systems (for example, 715+ for MYCIN, 4674 for IN-
TERNIST). Other metrics mentioned by Buchanan include size of solution
space (estimated at lo9 for MYCIN’), and complezity of solution space.

‘Computed as the number of combinations of from 1 to 6 organisms from a list of 120
potential organisms

107

108 Chapter 9. Reliability Assessment and Metrics for AI Systems

Buchanan suggests that the latter can be quantified as bd, where d is the
average depth of search and b is the average branching factor. Buchanan
estimates these quantities for MYCIN as b = 5.5 and d = 4, giving a com-
plexity of about 1000 (5.54) nodes in the average search space. Buchanan
also refers to experiments (e.g. by Greiner [80]) in which parts of a program
are systematically excised and the subsequent failures analyzed. However,
as Buchanan [34, Page 331 observes: “it is not easy to know which are the
meaningful experiments, nor how to interpret the results”.

These latter metrics and experiments resemble the more exotic metrics
proposed for conventional software (such as Halstead’s, and those that pur-
port to estimate “complexity”). Such metrics seem to have little practical
utility in the case of conventional software, and it seems unlikely that similar
efforts will be of any greater value for AI software. Efforts to measure the
“complexity” of such systems might be better directed towards “compre-
hension aids” that enable designers to control and cope with the complexity
of their creations (see Section 8.2.4 on page 105).

The main value of program metrics is their use as predictors for devel-
opment cost and failure intensity. In the absence of experimental data for
AI software, it would be dangerous to assume that the empirical relation-
ships observed in conventional software, for example that between SLOC and
faults, will carry over to AI software. Empirical data will need to be gath-
ered in order to suggest and validate useful relationships among metrics for
AI software. It is unlikely that simple counts of the number of statements or
rules in an AI system’s knowledge base will yield useful information regard-
ing its competence (the content of the rules may be more important than
their number), but they may give a good indication of its computational re-
quirements. Niwa et al. [143] conducted experiments along these lines. For
each of four classes of AI system architectures (simple production system,
structured production system, frame system, and logic system), they im-
plemented two small prototype expert systems (one using forward chaining
and one using backward chaining) to solve the same task. They measured
several static attributes of each program, such as the size of the knowledge
base, and also some dynamic attributes, including average inference time.
In particular, they measured the time taken to solve three problems for each
of three sizes of knowledge-base (500,200, and 100 rules or axioms). The re-
sults showed an almost linear relationship between inference time and size of
the knowledge base, though the constants of proportionality varied greatly
across the different architectures considered.

I

Part I11

Conclusions and
Recommendations for

Research

109

110

Chapter 10

Conclusions

AI software differs from conventional software in two significant ways: it
generally addresses different kinds of problems, and it generally works in a
different way, than does conventional software. On the other hand, AI soft-
ware has much in common with conventional software: indeed, the majority
of the software in the system will actually be of the conventional variety (for
example, I/O-almost always the largest single component in any system-
and the “inference engine” itself).

We believe that the best way to develop credible and effective quality
assurance and evaluation techniques for AI software will be to identify the
facets of such software that are inherently, or essentially, different from con-
ventional software, and to distinguish them from those facets that are only
accidentally or inessentially different. Inherent differences demand the de-
velopment of new techniques; accidental differences-those due simply to
culture, history and bias-require only the adaptation of established tech-
niques (and possibly the elimination or reduction of those differences).

Principal among the accidental differences is the (apparent) lack of con-
cern for life-cycle issues in AI software development, and the concomitant
absence of a systematic software engineering methodology for AI systems. It
is taken as axiomatic that AI software is developed incrementally, and relies
heavily on rapid prototyping-but this should not be an excuse for rejecting
such useful software engineering notions as requirements documentation and
review, verification and validation, and systematic testing. The benefits of
rapid prototyping and incremental development are recognized for conven-
tional software as well as for AI software [28, 331-but recognizing the value
of prototypes does not sanction their release as products!

111

PRECEDING PAGE BLANK NOT FILMED

112 Chapter 10. Conclusions

Refinement of requirements is one of the accepted purposes of prototyp-
ing: sometimes it is only through experiment that the best way of applying
computers to a particular task can be found, or an acceptable method of
solution discovered to a particular problem. There are instances where pro-
totyping using AI software has led to sufficient clarification of issues and
identification of potential solutions that the final system can be built as
conventional software.

For other problems, an AI-based system will remain the preferred ap-
proach. Such problems generally have notions of success and failure that are
less than clear-cut. At the ‘(softest” extreme, we may have systems whose
purpose is to provide ‘(interesting” or “provocative” results. At the other
extreme, an autonomous fault diagnosis system may have requirements that
can be specified as rigorously as those for an accounting system (though
achieving those requirements may be far more difficult). Somewhere in be-
tween come “decision aids” whose purpose is to assist a user to make correct
decisions. In all cases, an attempt should be made (possibly by prototyping)
to sharpen the requirements for the system. We suggest that our proposal
to distinguish service from desired and minimum competency requirements
could be useful in accomplishing this.

It seems plausible that those systems with the most rigorous QA de-
mands (e.g. autonomous systems) are also likely to be those for which the
most specific requirements statements can be produced. Minimum require-
ments for such systems are likely to include consistency (which for these pur-
poses can loosely be identified with the notion that equivalent inputs should
produce equivalent outputs) and completeness (all inputs should produce
some output). One might then ask to what extent genuine AI software can
achieve such requirements. Purists argue that AI software should not be
limited by requirements for consistency and completeness-because that’s
not how people behave. While this may be a valid argument in the con-
text of AI research, it is surely unacceptable when considering systems to
be used in serious situations (e.g. advising pilots coping with emergencies).
We seem to be led to the conclusion that software with the most stringent
requirements should exhibit the least “AI-like” behavior.

The question then becomes, how can we best construct systems that ex-
ploit AI techniques, without incurring the frailties of (‘AI-like” behavior? It
seems that this problem needs to be tackled on two levels: consideration of
the knowledge base itself, and of its representation in a form that permits ef-
ficient deduction. In conventional knowledge engineering for expert systems,
these two levels are inextricably intertwined. In crude terms, knowledge en-

113

gineering begins by selecting some knowledge representation and associated
deductive mechanism. Knowledge about the problem domain elicited from
an expert is encoded in the selected representation and the resulting proto-
type is tried on small examples. By a process of experimentation with the
prototype and interaction with the expert, the knowledge base and its r e p
resentation are augmented and refined until the system seems to be working
adequately. Now how can one argue for the correctness, completeness and
consistency of the system so constructed?' How can one even extrapolate
from behavior on test cases to the general case? How does one argue for the
appropriateness of the set of rules actually constructed, rather than some
other set?

Knowledge and Models

The basic problem, we submit, is that production rules, and other repre-
sentations that permit reasonably effective deduction, are optimized for the
efficient use of knowledge, not for supporting its scrutiny and examination.
Production-rules and other knowledge representations used in much AI soft-
ware may be likened to assembly language in conventional programming: a
notation for instructing a machine (or an interpreter), not for expressing our
thoughts.

In the early days of conventional software development, programmers
may have actually created their programs directly in assembler or other
low-level languages permitting efficient execution. Later, they recognized
the value of high-level languages, of pseudo-code, and of both informal and
formal specification languages as vehicles for expressing algorithms and sys-
tem designs; programs might still be optimized and translated into lower-
level notations for efficient execution, but most of the conception and the
arguments for correctness, completeness, and consistency would consider the
more abstract representations, rather than the program itself.

A similar development in techniques for representing knowledge is surely
needed if trustworthy AI software is to become feasible. For critical tasks,
knowledge engineering should best be considered as the incremental discov-
ery and creation of a model2 for the domain of interest and so one should
seek representations that provide for the explicit representation of such mod-

'Especially when the knowledge base is large-there are production rule systems in
use with over 5000 rules!

'Model: a simplified representation or description of a system or complex entity, es-
pecially one designed to facilitate calculations or predictions (Collins English Dictionary).

114 Chapter 10. Conclusions

els. Suitable notations might include higher order logic and set theory. It is
unlikely that a model represented in such a notation would permit usefully
efficient deduction, but it would possess an internal coherence and permit
causal explanations of behavior that are not possible for haphazard collec-
tions of rules. Knowledge engineering of a different form than that generally
practiced would then seek to elaborate the representation of such a model
into a form that would permit efficient deductions-in just the same way that
conventional software engineering elaborates specifications written in very
abstract form into executable programs. Indications of this sort of approach
applied to AI may be seen in qualitative reasoning techniques [24], in con-
straint satisfaction systems [119], and in the work of Chandrasekaran [41],
Neches, Swartout and Moore [140], and Abbott [3].

In our opinion, the explicit construction and scrutiny of models is an
essential component of the knowledge engineering process for trustworthy
AI systems. It is unlikely that users will trust an AI system, no matter how
impressive some of its demonstrations of competence may be, without some
causal explanation of its behavior. It is the underlying model, rather than
its accidental representation in terms of rules, frames or other notations,
that ultimately determines the competence and believability of the system,
as well as its ability to explain its actions. The fact that human experts
often do not have an explicit model of their domain of excellence is not an
argument against our position: humans bring other attributes (e.g. common
sense, self-awareness) to bear on their problem solving in addition to their
“rule-base” and are, in any case, permitted a degree of fallibility that is not
countenanced for machines that perform serious functions. Systems which
address domains that are so ill-understood that the only source of guidance
is an unstructured knowledge base extracted from expert’s “war stories” may
represent interesting AI research but they are not ready for deployment in
serious situations,

Knowledge Representat ion

To be useful, knowledge needs to be organized and represented in such a way
that it can be used to solve problems. The detailed design and representation
of a knowledge base has much in common with conventional programming
and requires support similar to that provided for software engineering [155].
Bobrow et al. [25] quote experienced knowledge engineers as follows:

“Knowledge engineering is more than software engineering . . .but
not much more.”

115

Given this perspective, the lack of support in many AI programming
systems for modern software engineering practices stressing strong typing,
modularity, and information hiding is inexcusable, as is the lack of a formal-
or even a precise-semantics. Given decent programming notations, there
seems no good reason why the standards expected of conventional software
at the program code level should not be extended to AI software. We be-
lieve that the determining factor in the deployment of AI software for serious
applications may not be the informal evidence of how well it is able to per-
form, but the extent to which formal guarantees can be given on how badly
it can perform-for example “the system generally seems to get as much
material on the plane as an experienced quartermaster, but it is guaranteed
never to load the plane in such a way that its center of gravity is outside
the allowed range.” Our proposal that the minimum competency require-
ment of a system should be distinguished from its desired competency level
is intended to make feasible the construction of testable, verifiable, spec-
ifications of how “badly” a system is allowed to perform. Given precise
minimum competency requirements, many design and assurance techniques
from conventional software become available to AI software-for example,
systematic testing, reliability analysis, fault-tolerance, design for safety, and
mathematical verification.

Analysis of a knowledge base requires a semantics for the language in
which it is represented. Technical issues such as the completeness and con-
sistency of a knowledge base require a formal semantics if they are to be
addressed with any rigor. And, of course, the formal semantics ascribed to
the language must coincide with the operational semantics provided by its
interpreter or inference engine. While one would expect an inference engine
to be sound, it is quite likely to be incomplete in general.

Alternatives to AI-Based Approaches

In some domains, it may be possible to use conventional software to solve
problems previously thought to require AI approaches. The activities of
knowledge acquisition and prototyping may lead to a sufficiently improved
understanding of requirements or solutions that a production-quality system
can be built as conventional software. Given the more developed state of
SQA for conventional software, this may be an advantage. Alternatively,
the improved understanding resulting from prototyping may allow a shallow
rule-based system to be replaced by one based on an explicit causal model.

116 Chapter 10. Conclusions

When dealing with very ill-understood domains, however, there generally
seems no alternative to shallow rule-based systems. Surprisingly, this may
not be so. For a certain, limited class of problems, there is some evidence
that expert levels of performance can be achieved using simple linear models.
These models were discussed in Section 7.2.3 (page 80), and it was noted that
psychologists had suggested, long before knowledge-based expert systems
were mooted, that human experts might be replaced by linear models of their
behavior. This process was called “bootstrapping” and its primary purpose
was to improve the quality and consistency of decision making beyond that
provided by human experts.

There is evidence that linear models can sometimes perform extremely
well (see, for example, Dawes and Corrigan [53]), but very little data is
available concerning their performance relative to knowledge-based systems.
Carroll [36] gives a thoughtful discussion of the issues but cites no head-to-
head comparisons. The only such comparison known to us concerns the pre-
diction of hailstorm severity from radar images and is reported by Moninger
et al. [133]. Linear regression models based on 75 data points were con-
structed for each of seven human forecasters. On comparing the predictions
of the forecasters and their models to the known storm severities for these 75
cases, it was found that three of the seven forecasters were outperformed by
their regression models, and that the models trailed the human forecasters
only slightly in the other four cases. All but one of the seven regression mod-
els outperformed an expert system constructed to perform the same task,
and the expert system was also outperformed by its own regression model!
When a larger set of 453 test cases was considered, the expert system out-
performed all the regression models, but an optimal regression model (fitted
to the known outcomes of the 75 “training cases”) came very close to the
expert ~ y s t e m . ~

Linear regression models can be perturbed by just a few outliers among
the data points, and it is possible that the performance of the linear models
in the experiment cited above could be improved using techniques, such as
U R ~ ~ ~ ~ ~ ” [65], for reducing their effects. Even without speculating upon
possible improvements, the experiment described above certainly suggests
that the performance of linear models might be competitive with that of
expert systems for certain tasks-at a tiny fraction of the cost. Of course,

‘The skill measure (serial correlation coefficient) for the expert system was 0.38, that
for the optimal linear model was 0.36, and those for the other linear models ranged from
0.32 to 0.34.

10.1. Recommendations for Research 117

linear models have obvious disadvantages when compared with knowledge-
based systems-no explanation facility, and no recognition of exceptional
cases, for example. An intriguing possibility would be to attempt to combine
the good features of both paradigms. The fact that their failure modes seem
complementary makes this a particularly attractive line of investigation.

10.1 Recommendations for Research

Given the perspective described in this chapter, we recommend the initiation
of a vigorous program of research and development on the topic of quality
assurance and measurement for AI systems. The program should consider
both the application and adaptation of suitable techniques from conventional
software engineering, as well as the development of new techniques that
address the unique characteristics of AI software. Some of the research
areas that seem to warrant study over the near and middle term include:

Near Term

0 For critical applications at least, abandon the use of rule-based expert
systems whose rule sets are unsupported by causal models.

0 Explore the value of the distinction between service and competency
requirements, and between minimum and desired competency require-
ments for AI software. Study the construction of precise, testable
specifications for service and minimum competency requirements.

0 Develop a basis for the systematic dynamic testing of AI software.
In particular, develop structural testing methods comparable to path
testing for conventional software, and develop methods for functional
and random testing of AI software. Develop test-case generation al-
gorithms and evaluate them in practice. Investigate the potential of
model-based adversaries for test case generation and evaluation. In-
vestigate the value of sensitivity analysis.

0 Investigate the general applicability and performance of linear and
other simple mathematical models. Study the utility of such models
as adversaries in the systematic testing of AI systems. Explore the
possibility of hybrid systems with both knowledge-based and linear
model based components.

118 Chapter 10. Conclusions

0 Develop realistic life-cycle approaches to the development and acqui-
sition of AI software. Develop practical, if modest, quality assurance
methodologies based on available techniques.

Longer Term

0 Develop methodologies and notations in support of knowledge engi-
neering as an explicit model-building activity. Investigate the feasi-
bility of “compiling” certain classes of models into production rules
(or other efficient representations), or of verifying a set of production
rules against an explicit model.

0 Develop techniques for integrating explanation more closely into the
development and maintenance of AI software.

0 Develop improved languages for knowledge representation-languages
with a sound semantics.

0 Develop software engineering practices and tools for AI systems. For
example, establish a sound theoretical basis for rule coupling metrics,
and rule partitioning algorithms. Develop good algorithms for these
and also tools for aiding rule-comprehension. Evaluate in practice.

0 Establish a sound theoretical basis for completeness and consistency
checking of rule-bases. Develop good algorithms and evaluate them
in practice. Investigate the problem of establishing termination for
rule-based systems.

0 Investigate the influence of conflict resolution strategies; study the
feasibility and utility of a test mode in which all successful inference
paths are followed.

0 Investigate system structures to guarantee certain minimum compe-
tency (safety) requirements.

0 Collect empirical reliability data; study the applicability of established
reliability growth models; develop new models if necessary, and vali-
date them in practice.

0 Identify useful metrics for AI based software and validate their value
as predictors of important cost, performance and reliability measures.

10.1. Recommendations for Research 119

Closing Remarks

Until very recently, knowledge-based systems were an exploratory research
topic and little attention was paid to their quality assurance. Now that
some knowledge-based systems, especially those known as “rule-based expert
systems”, are being placed into operational environments, it is important to
develop a software quality assurance methodology for such systems.

In this report, we hope to have shown how some of the quality assur-
ance and measurement techniques developed for conventional software can
be adapted and applied to knowledge-based systems. However, while such
adaptations of existing techniques would be beneficial and important, they
tend to focus on representational and implementation issues-whereas it is
the knowledge encoded in the system that ultimately determines its quality
of performance. It is entirely feasible to implement a knowledge-based sys-
tem as a program in BASIC-but to evaluate that system as simply a BASIC
program surely misses the point. It is the knowledge that it embodies, as
much as its representation in BASIC, that needs to be examined. Thus, the
way to focus on the distinctive problems of quality assurance for AI software
may be through the development of techniques for describing, evaluating,
and manipulating knowledge in ways that are abstracted from the concrete
details of a particular representation, in much the same way as algorithms
are abstracted from programs. This represents an exciting challenge for the
future.

Bibliography

[l] Kathy H. Abbott. Robust operative diagnosis as problem solving in
a hypothesis space. In Proceedings, A A A I 88 (Volume 1)) pages 369-
374, Saint Paul, MN., August 1988.

[2] Kathy H. Abbott, Paul C. Schutte, Michael T. Palmer, and Wendell R.
Ricks. Faultfinder: a diagnostic expert system with graceful degrada-
tion for onboard aircraft applications. In Proceedings, 14th Symposium
on Aircraft Integrated Monitoring Systems, Friedrichshafen, W. Ger-
many, September 1987.

[3] Russell J. Abbott. Knowledge abstraction. Communications of the
A CM, 30(8):664-671, August 1987.

[4] Maryam Alavi. An assessment of the prototyping approach to informa-
tion systems development. Communications of the A C M , 27(6):556-
563, June 1984.

[5] M. W. Alford. A requirements engineering methodology for real-time
processing requirements. IEEE Transactions on Software Engineering,
SE-3(1):60-69, January 1977.

[6] M.W. Alford. SREM at the age of eight; the distributed computing
design system. IEEE Computer, 18(4):3&46, April 1985.

[7] Debra Anderson and Charles Ortiz. AALPS: a knowledge-based sys-
tem for aircraft loading. IEEE Expert, 2(4):71-79, Winter 1987.

[8] T. Anderson, P.A. Barrett, D.N. Halliwell, and M.R. Moulding. An
evaluation of software fault tolerance in a practical system. In Digest
of Papers, FTCS 15, pages 140-145, IEEE Computer Society, Ann
Arbor, MI., June 1985.

120

i

Bibliography 121

[9] T. Anderson and P.A. Lee. Fault- Tolerance: Principles and Practice.
Prentice-Hall International, 1981.

[lo] T. Anderson and R.W. Witty. Safe programming. BIT, 18:l-8, 1978.

[ll] Dorothy M. Andrews and Jeoffrey P. Benson. An automated program
testing methodology and its implementation. In Proceedings, 5th In-
ternational Conference on Software Engineering, pages 254-261, San
Diego, CA., March 1981.

[12] Geoff Baldwin. Implementation of physical units. SIGPLA N Notices,
22 (8) ~45-50, August 1987.

[13] Sheldon Baron and Carl Feehrer. A n Analysis of the Application of
A I to the Development of Intelligent Aids for Flight Crew Tasks. Con-
tractor Report 3944, NASA Langley Research Center, Hampton, VA.,
October 1985.

[14] V.R. Basili and B.T. Perricone. Software errors and complexity: An
Communications of the A C M , 27(1):42-52, empirical investigation.

January 1984.

[I51 Farokh B. Bastani and S. Sitharama Iyengar. The effect of data struc-
tures on the logical complexity of programs. Communications of the
A CM, 30(3):250-259, March 1987.

[16] Michael Z. Bell. Why expert systems fail. Journal of the Operational
Research Society, 36(7):613-619, 1985.

[17] T.E. Bell, D.C. Bixler, and M.E. Dyer. An extendable approach to
computer-aided software requirements engineering. IEEE Transac-
tions on Software Engineering, SE-3(1):49-59, January 1977.

[18] Kirstie L. Bellman. Testing and correcting rule-based expert systems.
In Proceedings of the Space Quality Conference, NSIA/AIA (Space
Division) and NASA, April 1988. Published by NSIA, Washington,
D.C.

[19] Kirstie L. Bellman and Donald 0. Walter. Testing rule-based expert
systems. December 1987. Course Notes for “Analyzing the Reliability
and Performance of Expert Systems”, UCLA Extension.

122 Bibliography

[20] Jean-Fransois Bergeretti and Bernard A. Carrd. Information-flow and
A C M Transactions on Pro- data-flow analysis of while-programs.

gramming Languages and Systems, 7(1):37-61, January 1985.

[21] Gerald M. Berns. Assessing software maintainability. Communica-
tions of the A C M , 27(1):14-23, January 1984.

[22] R.E. Berry and B.A.E. Meekings. A style analysis of C programs.
Communications of the A C M , 28(1):80-88, January 1985.

1231 J. Bliss, P. Feld, and R.E. Hayes. Decision aid measurement and evalu-
ation (DAME). In Proceedings, International Conference on Systems,
Man, and Cybernetics, pages 126-130, IEEE, Atlanta, GA., October
1986.

[24] Daniel G. Bobrow, editor. Qualitative Reasoning about Physical Sys-
tems. The MIT Press, Cambridge, MA., 1986.

[25] Daniel G. Bobrow, Sanjay Mittal, and Mark J. Stefik. Expert sys-
tems: perils and promise. Communications of the A C M , 29(9):880-
894, September 1986.

[26] Barry W. Boehm. Software Engineering Economics. Prentice-Hall,
Englewood Cliffs, NJ., 1981.

[27] Barry W. Boehm. Software engineering economics. IEEE Transac-
tions on Software Engineering, SE-10(1):4-21, January 1984.

[28] Barry W. Boehm. A spiral model of software development and en-
hancement. IEEE Computer, 21(5):61-72, May 1988.

[29] Barry W. Boehm. Verifying and validating software requirements.
IEEE Software, 1(1):75-88, January 1984.

[30] Barry W. Boehm, Terence E. Gray, and Thomas Seewaldt. Prototyp-
ing versus specifying: a multiproject experiment. IEEE Transactions
on Software Engineering, SE-10(3):290-303, May 1984.

1311 R.S. Boyer, B. Elspas, and K.N Levitt. SELECT: a formal system for
testing and debugging programs by symbolic execution. In Proceed-
ings, International Conference on Reliable Software, pages 234-245,
IEEE Computer Society, Los Angeles, CA., April 1975.

Eli bliograph y 123

[32] S.S. Brilliant, J.C. Knight, and N.G. Leveson. The consistent com-
parison problem in N-version software. A CM Software Engineering
Notes, 12(1):2%34, January 1987.

[33] Frederick P. Brooks, Jr. No silver bullet: essence and accidents oi
software engineering. IEEE Computer, 20(4):10-19, April 1987.

[34] Bruce G. Buchanan. Artificial Intelligence as an Experimental Sci-
ence. Technical Report KSL 87-03, Knowledge Systems Laboratory,
Stanford University, Stanford, CA., January 1987.

[35] T.A. Budd, R.A. De Millo, R.J. Lipton, and F.G. Sayward. Theo-
retical and empirical studies on using program mutation to test the
functional correctness of programs. In Proceedings, 7th A CM Sympo-
sium on the Principles of Programming Languages, Las Vegas, NV.,
January 1980.

[36] Barbara Carroll. Expert systems for clinical diagnosis: are they worth
the effort? Behavioral Science, 32:274-292, 1987.

[37] Glen Castore. A formal approach to validation and verification for
knowledge-based control systems. In First Annual Workshop on Space
Operations, Automation, and Robotics (S O A R 87), pages 197-202,
NASA Conference Publication 2491, Houston, TX., August 1987.

[38] J. Celko, J.S. Davis, and J. Mitchell. A demonstration of three re-
quirements language systems. SIGPLAN Notices, 18(1):9-14, January
1983.

[39] S. Cha, N.G. Leveson, T.J. Shimeall, and J.C. Knight. An empirical
study of software error detection using self-checks. In Digest of Papers,
F T C S 17, pages 156-161, IEEE Computer Society, Pittsburgh, PA.,
July 1987.

[40] Fun Ting Chan and Tsong Hueh Chen. AIDA-a dynamic data flow
anomaly detection system for Pascal programs. Software-Practice
and Ezperience, 17(3):227-239, March 1987.

[41] B. Chandrasekaran. Generic tasks in knowledge-based reasoning:
IEEE Expert, high-level building blocks for expert system design.

1(3):23-30, Fall 1986.

124 Bibliography

[42] B. Chandrasekaran. On evaluating AI systems for medical diagnosis.
A I Magazine, 4(2):34-37, Summer 1983.

[43] M. Cheheyl et al. Verifying security. Computing Surveys, 13(3):279-
339, September 1981.

[44] L. Chen and A. Avizienis. N-version programming: a fault-tolerance
approach to reliability of software operation. In Digest of Papers,
FTCS 8, pages 3-9, Toulouse, France, June 1978.

(451 William F. Clocksin and Christopher S. Mellish. Programming in Pro-
log. Springer-Verlag, New York, NY., 1981.

[46] Robert F. Cmelik and Narain H. Gehani. Dimensional analysis with
C++. IEEE Software, 5(3):21-27, May 1988.

1471 S.D. Conte, H.E. Dunsmore, and V.Y. Shen. Software Engineering
Mettics and Models. Benjamin/Cummings, Menlo Park, CA., 1986.

(481 Nancy M. Cooke and James E. McDonald. A formal methodology
for acquiring and representing expert knowledge. Proceedings of the
IEEE, 74(10):1422-1430, October 1986.

[49] Chris Culbert, Gary Riley, and Robert T. Savely. Approaches to ver-
ification of rule-based expert systems. In First Annual Workshop on
Space Operations, Automation, and Robotics (SOAR 87)) pages 191-
196a, NASA Conference Publication 2491, Houston, TX., August
1987.

[50] P. Allen Currit, Michael Dyer, and Harlan D. Mills. Certifying the
reliability of software. IEEE Transactions on Software Engineering,
SE-12(1):3-11, January 1986.

[51] C.G. Davis and C.R. Vick. The software development system. IEEE
Transactions on Software Engineering, SE-3(1):69-84, January 1977.

Teiresias: Applications of Meta-Level Knowledge to the
Construction, Maintenance, and Use of Large Knowledge Bases. PhD
thesis, Computer Science Department, Stanford University, CA., 1976.
Reprinted with revisions in “Knowledge-Based Systems in Artificial
Intelligence”, R. Davis and D.B. Lenat, eds., McGraw-Hill, New York,
NY., 1980.

[52] R. Davis.

Bibliography 125

[53] Robyn M. Dawes and Bernard Corrigan. Linear models in decision
making. Psychological Bulletin, 81(2):95-106, February 1974.

[54] Richard A. De Millo, Richard J. Lipton, and Alan J. Perlis. Social
processes and proofs of theorems and programs. Communications of
the ACM, 22(5):271-280, May 1979.

[55] Saumya K. Debray and Prateek Mishra. Denotational and opera-
tion semantics for Prolog. Journal of Logic Programming, 5(1):61-91,
March 1988.

[56] D. E. Denning and P. J. Denning. Certification of programs for secure
information flow. Comrn. A CM, 20(7):504-513, July 1977.

[57] Peter J. Denning. Towards a science of expert systems. IEEE Ezpert,
1(2):80-83, Summer 1986.

[58] Department of Defense Trusted Computer System Evaluation Criteria.
Department of Defense, December 1985. DOD 5200.28-STD (super-
sedes CSC-STD-001-83).

[59] Thomas Downs. An approach to the modeling of software testing
with some applications. IEEE Transactions on Software Engineering,
SE-11(4), April 1985.

[60] Joe W. Duran and Simeon C. Ntafos. An evaluation of random testing.
IEEE Transactions on Software Engineering, SElO(4) ~438-443, April
1984.

[61] M.E. Fagan. Design and code inspections to reduce errors in program
development. IBM Systems Journal, 15(3):182-211, March 1976.

[62] Michael E. Fagan. Advances in software inspection. IEEE Transac-
tions on Software Engineering, SE-12(7):744-751, July 1986.

[63] M. A. Fischler and 0. Firschein. A fault-tolerant multiprocessor archi-
tecture for real-time control applications. In First Annual Symposium
in Computer Architecture, pages 151-157, December 1973.

[64] M. A. Fischler, 0. Firschein, and D.L. Drew. Distinct software: an
approach to reliable computing. In Second Annual USA-Japan Com-
puter Conference, pages 27-4-1-27-4-7, Tokyo, Japan, August 1975.

126 Bibliography

[65] Martin A. Fischler and Robert C. Bolles. Random sample consensus:
a paradigm for model fitting with applications to image analysis and
automated cartography. Communications of the A C M , 24(6):381-395,
June 1981.

[66] L.J. Fraim. SCOMP: a solution to the multilevel security problem.
IEEE Computer, 16(7):26-34, July 1983.

[67] Judith N. Froscher and Robert J.K. Jacob. Designing expert sys-
tems for ease of change. In Proceedings, First Annual Expert Systems
in Government Symposium, pages 246-251 , IEEE Computer Society,
1985.

[68] Kokichi Futatsugi, Joseph Goguen, Jean-Pierre Jouannaud, and Josd
Meseguer. Principles of OBJ2. In Brian K. Reid, editor, Proceedings
of 12th ACM Symposium on Principles of Programming Languages,
pages 52-66, Association for Computing Machinery, 1985.

[69] John Gaschnig, Philip Klahr, Harry Pople, Edward Shortliffe, and
Allan Terry. Evaluation of expert systems: issues and case studies.
In F. Hayes-Roth, D.A. Waterman, and D.B. Lenat, editors, Building
Ezpert Systems, chapter 8, Addison- Wesley, Reading, MA., 1983.

[70] James R. Geissman and Roger D. Schultz. Verification and validation
of expert systems. AI Expert, 26-33, February 1988.

[71] David Gelperin and Bill Hetzel. The growth of software testing. Com-
munications of the A C M , 31(6):687-695, June 1988.

[72] Michael R. Genesereth and Nils J. Nilsson. LogicaI Foundations of
Artificial Intelligence. Morgan Kaufmann Publishers Inc., Los Altos,
CA., 1987.

[73] Michael P. Georgeff. Planning. In Joseph F. Traub, Barbara J. Grosz,
Butler W. Lampson, and Nils J. Nilsson, editors, Annual Review of
Computer Science, Volume 2, pages 359-400, Annual Reviews, Inc.,
Palo Alto, CA., 1987.

[74] S. German. Automating proofs of the absence of common runtime
errors. In Proceedings, 5th ACM Symposium on the Principles of Pro-
gramming Languages, pages 105-118, Tucson, AZ., January 1978.

Bibliography 127

[75] Allen Ginsberg. Knowledge-base reduction: a new approach to check-
ing knowledge-bases for inconsistency and redundancy. In Proceedings,
A A A I 88 (Volume Z), pages 585-589, Saint Paul, MN., August 1988.

A new approach to checking knowledge bases for
inconsistency and redundancy. In Proceedings, Third Annual Expert
Systems i n Government Symposium, pages 102-111, IEEE Computer
Society, Washington, D.C., October 1987.

[77] John B. Goodenough and Susan L. Gerhart.

[76] Allen Ginsberg.

Toward a theory of
test data selection. IEEE Transactions on Software Engineering, SE-
1(2):156-173, June 1975.

[78] Mary Ann Goodwin and Charles C. Robertson. Expert system verifi-
cation concerns in an operations environment. In First Annual Work-
shop on Space Operations, Automation, and Robotics (S O A R 8?),
pages 203-207, NASA Conference Publication 2491, Houston, TX.,
August 1987.

[79] Christopher J.R. Green and Marlene M. Keyes. Verification and vali-
dation of expert systems. In Proceedings, Western Conference on Ez-
pert Systems, pages 38-43, IEEE Computer Society, Anaheim, CA.,
June 1987.

[80] Russell Greiner. Learning by Understanding Analogies. PhD thesis,
Computer Science Department, Stanford University, CA., 1985. Is-
sued as Stanford Technical Report CS-85-1071.

[81] J.V. Guttag and J.J. Homing. The algebraic specification of abstract
data types. Acta Injorrnatica, 10(1):27-52, 1978.

[82] M.H. Halstead. Elements of Software Science. Elsevier North-
Holland, New York, NY., 1977.

[83] Paul Harmon and David King. Ezpert Systems: Artificial Intelligence
i n Business. John Wiley and sons, New York, NY., 1985.

[84] Warren Harrison and Curtis R. Cook. A note on the Berry-Meekings
style metric. Communications of the A CM, 29(2):123-125, February
1986.

[85] Ian Hayes, editor. Specification Case Studies. Prentice-Hall Interna-
tional, Hemel Hempstead, UK, 1987.

128 Bibliography

[86] Ian J. Hayes. Specification directed module testing. IEEE Transac-
tions on Software Engineering, SE-12(1):124-133, January 1986.

[87] F. W. von Henke, J.S. Crow, R. Lee, J.M. Rushby, and R.A. White-
hurst. The EHDM verification environment: an overview. In Proc.
11th NationaZ Computer Security Conference, NBS/NCSC, Baltimore,
October 1988.

[88] F.W. von Henke and D.C. Luckham. A methodology for verifying pro-
grams. In Proceedings, International Conference on Reliable Software,
pages 156-164, IEEE Computer Society, Los Angeles, CA., April 1975.

[891 S. Henry and D. Kafura. The evaluation of software systems’ structure
using quantitative software metrics. Software-Practice and Experi-
ence, 14(6):561-573, June 1984.

[go] S. Henry and D. Kafura. Software structure metrics based on informa-
tion flow. IEEE Transactions on Software Engineering, SE-7(5):510-
518, September 1981.

[91] Paul N. Hilfinger. An Ada package for dimensional analysis. ACM
Transactions on Programming Languages and Systems, 10(2):189-203,
April 1988.

[92] William E. Howden. An evaluation of the effectiveness of symbolic
testing. Software-Practice and Experience, 8:381-397, 1978.

[93] William E. Howden. A functional approach to program testing and
analysis. IEEE Transactions on Software Engineering, SE-12(10):997-
1005, October 1986.

(941 William E. Howden. Functional program testing. IEEE Transactions
on Software Engineering, SE-6(2):162-169, March 1980.

(951 William. E. Howden. Software validation techniques applied to sci-
entific programs. A C M Transactions on Programming Languages and
Systems, 2(3):307-320, July 1980.

[96] William E. Howden. Symbolic testing and the DISSECT symbolic
evaluation system. IEEE Transactions on Software Engineering, SE-
4(1):70-73, January 1977.

Bi bliograpb y 129

I971 William E. Howden. Weak mutation testing and completeness of test
sets. IEEE Transactions on Software Engineering, SE-8(4):371-379,
July 1982.

[98] D.C. Ince. The automatic generation of test data. Computer Journal,
30(1):63-69, February 1987.

[99] D.C. Ince and S. Hekmatpour. An empirical evaluation of random
testing. Computer Journal, 29(4):380, August 1986.

[loo] Robert J.K. Jacob and Judith N. Froscher. Developing a Software En-
gineering Methodology for Knowledge-Based Systems. Technical Re-
port 9019, Naval Research Laboratory, Washington, D.C., December
1986.

[loll Robert J.K. Jacob and Judith N. Froscher. Software engineering for
rule-based systems. In FJCC, pages 185-189, 1986.

[lo21 Cliff B. Jones. Software Development: A Rigorous Approach.
Prentice-Hall, Englewood Cliffs, NJ., 1986.

[lo31 T.C. Jones. Programming Productivity. McGraw Hill, New York, NY.,
1986.

[lo41 D. Kapur and D.R. Musser. Proof by consistency. Artificial Intelli-
gence, 31(2):125-157, February 1987.

[lo51 Deepak Kapur and Mandayam Srivas. Computability and imple-
mentability issues in abstract data types. Science of Computer Pro-
gramming, 10:33-63, 1988.

[lo61 M. Karr and D.B. Lovemann 111. Incorporation of units into program-
ming languages. Communications of the A C M , 21(5):385-391, May
1978.

[1071 Joseph K. Kearney, Robert L. Sedlmeyer, William B. Thompson,
Michael A. Gray, and Michael A. Adler. Software complexity mea-
surement. Communications of the ACM, 29(11):1044-1050, November
1986.

I1081 R.L. Keeney and H. Raiffa. Decision with Multiple Objectives. Wiley,
1976.

130 Bibliography

[lo91 Chris F. Kemerer. An empirical validation of software cost estimation
models. Communications of the A C M , 30(5):416-429, May 1987.

[110] Richard A. Kemmerer. Testing formal specifications to determine de-
sign errors. IEEE Transactions on Software Engineering, SE-l1(1):32-
43, January 1985.

[lll] Richard A. Kernmerer. Verification Assessment Study Final Report.
Technical Report C3-CR01-86, National Computer Security Center,
Ft . Meade, MD., 1986. 5 Volumes. US distribution only.

[112] J.C. King. Symbolic execution and program testing. Communications
of the A C M , 19(7):385-394, July 1976.

[113] J.C. Knight and N.G. Leveson. An empirical study of failure prob-
abilities in multi-version software. In Digest of Papers, F T C S 16,
pages 165-170, IEEE Computer Society, Vienna, Austria, July 1986.

[114] J.C. Knight and N.G. Leveson. An experimental evaluation of the as-
sumption of independence in multiversion programming. IEEE Trans-
actions on Software Engineering, SE-12(1):96-109, January 1986.

[115] D.E. Knuth and P.B. Bendix. Simple word problems in universal
algebras. In J. Leech, editor, Computational Problems i n Abstract
Algebra, pages 263-293, Pergamon, New York, NY., 1970.

[116] Thomas J. Laffey, Walton A. Perkins, and Tin A. Nguyen. Reasoning
about fault diagnosis with LES. IEEE Ezpert, 1(1):13-20, Spring 1986.

[117] L. Lamport and P.M. Melliar-Smith. Synchronizing clocks in the pres-
ence of faults. JACM, 32(1):52-78, January 1985.

[118] N.E. Lane. Global issues in evaluation of expert systems. In Pro-
ceedings, International Conference on Systems, Man, and Cybernetics,
pages 121-125, IEEE, Atlanta, GA., October 1986.

[119] Wm Leler. Constraint Programming Languages: Their Specification
and Generation. Addison-Wesley, Reading, MA., 1988.

[120] Nancy G. Leveson. Software safety: Why, what and how. A C M
Computing Surveys, 18(2):125-163, June 1986.

[121] N.G. Leveson. Software safety in computer controlled systems. IEEE
Computer, 17(2):48-55, February 1984.

Bibliography 131

I

[122] N.G. Leveson and P.R. Harvey. Analyzing software safety. IEEE
Transactions on Software Engineering, SE-9(5):569-579, September
1983.

[123] Jay Liebowitz. Useful approach for evaluating expert systems. Expert
Systems, 3(2):86-96, April 1986.

[124] Kelly Lindenmayer, Shon Vick, and Don Rosenthal. Maintaining an
expert system for the Hubble space telescope ground support. In
Proceedings, Goddard Conference on Space Applications of Artificial
Intelligence and Robotics, pages 1-13, NASA Goddard Space Flight
Center, Greenbelt; MD., May 1987.

[125] Robert Mandl. Orthogonal Latin squares: an application of ex-
periment design to compiler testing. Communications of the A C M ,
28(10):1054-01058, October 1985.

[I261 Thomas J. McCabe. A complexity measure. IEEE Transactions on
Software Engineering, SE-2(4) :308-320, December 1976.

[127] Drew V. McDermott. Logic, problem solving and deduction. In
Joseph F. Traub, Barbara J. Grosz, Butler W. Lampson, and Nils J.
Nilsson, editors, Annual Review of Computer Science, Volume 2,
pages 187-229, Annual Reviews, Inc., Palo Alto, CA., 1987.

[128] J. McDermott. R1: the formative years. A I Magazine, 2(2):21-29,
Summer 1981.

[1291 P.M. Melliar-Smith and R.L. Schwartz. Formal specification and ver-
ification of SIFT: a fault-tolerant flight control system. IEEE Trans-
actions on Computers, C-31(7):616-630, July 1982.

[1301 Bertrand Meyer. On formalism in specifications. IEEE Software,
2(1):6-26, January 1985.

[131] R.A. De Millo, R.J. Lipton, and F.G. Sayward. Hints on test data
selection: help for the practicing programmer. IEEE Computer,
11(4):34-41, April 1978.

[132] Harlan D. Mills, Michael Dyer, and Richard Linger. Cleanroom soft-
ware engineering. IEEE Software, 4(5):19-25, September 1987.

132 Bibliography

I1331 William R. Moninger, Thomas R. Stewart, and Patrick McIntosh.
Validation of knowledge-based systems for probabilistic forecasting.
In Proceedings of A A A I 88 Workshop on Validation and Testing
Knowledge-Based Systems, Saint Paul, MN., August 1988.

[134] M. Moriconi and D.F. Hare. The PegaSys system: Pictures as formal
documentation of large programs. A C M Transactions on Program-
ming Languages and Systems, 8(4):524-546, October 1986.

[135] L. Moser, P.M. Melliar-Smith, and R. Schwartz. Design Verification
of SIFT. Contractor Report 4097, NASA Langley Research Center,
Hampton, VA., September 1987.

[136] John D. Musa, Anthony Iannino, and Kazuhira Okumoto. Software
Reliability-Measurement, Prediction, Application. McGraw Hill, New
York, NY., 1987.

[137] David R. Musser. Abstract data type specification in the AFFIRM
system. IEEE Transactions on Software Engineering, SE-6(1):24-32,
January 1980.

[138] G.J. Myers. A controlled experiment in program testing and code
walkthroughs/inspections. Communications of the A C M , 21(9):760-
768, September 1978.

[1391 Peter Naur. Formalization in program development. BIT, 22:437-453,
1982.

[140] Robert Neches, William R. Swartout, and Johanna D. Moore. En-
hanced maintenance and explanation of expert systems through ex-
plicit models of their development. IEEE Transactions on Software
Engineering, SE-11(11):1337-1351, November 1985.

[141] Greg Nelson and Derek C. Oppen. Simplification by cooperating deci-
sion procedures. A C M Transactions on Programming Languages and
Systems, 1(2):245-257, October 1979.

[142] Tin A. Nguyen, Walton A. Perkins, Thomas J. Laffey, and Deanne
Pecora. Knowledge base verification. A I Magazine, 8(2):65-79, Sum-
mer 1987.

Bibliography 133

[143] K. Niwa, K. Sasaki, and H. Ihara. An experimental comparison of
knowledge representation schemes. A I Magazine, 5(2):29-36, Summer
1984.

[144] Simeon C. Ntafos. A comparison of some structural testing strategies.
IEEE Transactions on Software Engineering, SE-14(6):868-874, June
1988.

[145] Robert M. O’Keefe, Osman Balci, and Eric P. Smith. Validating ex-
pert system performance. IEEE Expert, 2(4):81-90, Winter 1987.

[146] L.J. Osterweil and L.D. Fosdick. DAVE-a validation error detection
and documentation system for Fortran programs. Software-Practice
and Experience, 6:473-486, October-December 1976.

[147] Thomas J. Ostrand and Marc J . Salcer. The category-partition
method for specifying and generating functional tests. Communica-
tions of the A C M , 31(6):676-686, June 1988.

[148] Michael T. Palmer, Kathy H. Abbott, Paul C. Schutte, and Wen-
dell R. Ricks. Implementation of a research prototype onboard fault
monitoring and diagnosis system. In Proceedings, A I A A Computers
i n A erospace Conference, Wakefield, MA., October 1987.

I1491 David L. Parnas. Software aspects of strategic defense systems. Amer-
ican Scientist, 73(5):432-440, September-October 1985.

[1501 D.L. Parnas. Information distribution aspects of design methodology.
In IFIP Congress Proceedings, Ljubljana, Yugoslavia, 1971.

[151] D.L. Parnas. On the criteria to be used in decomposing systems into
modules. Communications of the A CM, 15(12):1053-1058, December
1972.

[1521 L.F. Pau. Prototyping, validation and maintenance of knowledge
based systems software. In Proceedings, Third Annual Expert Systems
in Government Symposium, pages 248-253, IEEE Computer Society,
Washington, D.C., October 1987.

[153] D.A. Pearce. The induction of fault diagnosis systems from qualitative
models. In Proceedings, A A A I 88 (Volume 1), pages 353-357, Saint
Paul, MN., August 1988.

134 Bibliography

[154] D.A. Pearce. KIC: A Knowledge Integrity Checker. Technical Re-
port TIRM 87-025, The Turing Institute, Glasgow, Scotland, 1987.

[155] C.V. Ramamoorthy, Shashi Shekhar, and Vijay Garg. Software de-
velopment support for AI programs. IEEE Computer, 20(1):3040,
January 1987.

[156] Sandra Rapps and Elaine J. Weyuker. Selecting software test data
using data flow information. IEEE Transactions on Software Engi-
neering, SE-11(4):367-375, April 1985.

[157] K.A. Redish and W.F. Smyth. Evaluating measures of program qual-
ity. Computer Journal, 30(3):228-232, June 1987.

[158] K.A. Redish and W.F. Smyth. Program style analysis: a natural
by-product of program compilation. Communications of the A CM,
29(2):126-133, February 1986.

[159] Raymond Reiter. Nonmonotonic reasoning. In Joseph F. Traub, Bar-
bara J. Grosz, Butler W. Lampson, and Nils J . Nilsson, editors, An-
nual Review of Computer Science, Volume 2, pages 147-186, Annual
Reviews, Inc., Palo Alto, CA., 1987.

[160] Raymond Reiter. A theory of diagnosis from first principles. Artificial
Intelligence, 32:57-95, 1987.

[161] Wendell R. Ricks and Kathy H. Abbott. Traditional Versus Rule-
Based Programming Techniques: Application to the Control of Op-
tional Flight Information. NASA Technical Memorandum 89161,
NASA Langley Research Center, Hampton, VA., July 1987.

[162] G-C. Roman. A taxonomy of current issues in requirements engineer-
ing. IEEE Computer, 18(4):14-21, April 1985.

[163] W. W. Royce. Managing the development of large software systems.
In Proceedings WESCON, August 1970.

[1641 E.T. Scambos. A scenario-based test-tool for examining expert sys-
tems. In Proceedings, International Conference on Systems, Man, and
Cybernetics, pages 131-135, IEEE, Atlanta, GA., October 1986.

[165] P.A. Scheffer, A.H. Stone 111, and W.E. Rzepka.
SREM. IEEE Computer, 18(4):47-54, April 1985.

A case study of

Bibliography 135

[166] Paul C. Schutte and Kathy H. Abbott. An artificial intelligence ap-
proach to onboard fault monitoring and diagnosis for aircraft appli-
cations. In Proceedings, A IA A Guidance and Control Conference,
Williamsburg, VA., August 1986.

[167] Paul C. Schutte, Kathy H. Abbott, Michael T. Palmer, and Wendell R.
Ricks. An evaluation of a real-time fault diagnosis expert system for
aircraft applications. In Proceedings, 26th IEEE Conference on Deci-
sion and Control, Los Angeles, CA., December 1987.

[168] Richard W. Selby, Victor R. Basili, and F. Terry Baker. Cleanroom
software development: an empirical evaluation. IEEE Transactions
on Software Engineering, SE-13(9):1027-1037, September 1987.

[169] N. Shankar. A mechanical proof of the Church-Rosser theorem. Jour-
nal of the ACM, 35(3):475-522, July 1988.

[1701 Vincent Shen. Editor’s introduction to “Quality Time” department.
IEEE Software, 4(5):84, September 1987.

[171] Edward Hance Shortliffe. Computer-Based Medical Consultations:
MYCIN. ELSEVIER, New York, N.Y., 1976.

[172] Robert E. Shostak. Deciding combinations of theories. Journal of the
ACM, 31(1):1-12, January 1984.

[173] Robert E. Shostak. A practical decision procedure for arithmetic with
function symbols. Journal of the ACM, 26(2):351-360, April 1979.

[174] J.M. Silverman. Reflections on the verification of the security of an
operating system. In Proc. 9th A CM Symposium on Operating System
Principles, pages 143-154, October 1983.

[175] R.A. Stachowitz, C.L. Chang, T.S. Stock, and J.B. Combs. Build-
ing validation tools for knowledge-based systems. In First Annual
Workshop on Space Operations, Automation, and Robotics (S O A R
871, pages 209-216, NASA Conference Publication 2491, Houston,
TX., August 1987.

[176] Rolf A. Stachowitz and Jacqueline B. Combs. Validation of expert
systems. In Proceedings, Hawaii International Conference on Sys tem
Sciences, Kona, HI., January 1987.

136 Bibliography

[177] M.E. Stickel. A prolog technology theorem prover. In Proceedings og
the 8th International Conference on Automated Deduction, pages 573-
587, Oxford, England, July 1986.

[178] R.E. Strom. Mechanisms for compile-time enforcement of security.
In Proceedings 10th Symposium on Principles of Programming Lan-
guages, pages 276-284, Austin, TX., January 1983.

[179] Motoi Suwa, A. Carlisle Scott, and Edward H. Shortliffe. An approach
to verifying completeness and consistency in a rule-based expert sys-
tem. AI Magazine, 3(4):16-21, Fall 1982.

[180] William R. Swartout. XPLAIN: a system for creating and explaining
expert consulting programs. Artificial Intelligence, 21 :285-325,1983.

I1811 John A. Swets. The relative operating characteristic in psychology.
Science, 182:990-1000, 1973.

[182] E.L. Thorndike. Fundamental theorems in judging men. Journal of
Applied Psychology, 2:67-76, 1918.

[183] Richard M. Tong, Neville D. Newman, Gary Berg-Cross, and Fred
Rook. Performance Evaluation of ArtificiaI Intelligence Systems.
Technical Report ADS TR-3154-01, Advanced Decision Systems,
Mountain View, CA., August 1987. Available from DTIC as num-
ber AD-A184 054.

[184] A.M. Turing. Computing machinery and intelligence. Mind, 59, 1950.
Reprinted in “Computers and Thought”, Feigenbaum and Feldman,
eds., McGraw-Hill, New York, NY., 1963.

[185] Leslie J . Waguespack, Jr. and Sunil Badlani. Software complexity as-
sessment: an introduction and annotated bibliography. A C M Software
Engineering Notes, 12(4):52-71, October 1987.

[186] Elaine J. Weyuker. The evaluation of program-based software test
data adequacy criteria. Communications of the A CM, 31(6):668-675,
June 1988.

[187] Elaine J. Weyuker. On testing non-testable programs. Computer
Journal, 25(4):465-470, April 1982.

Bibliography 137

[188] Elaine J. Weyuker and Thomas J. Ostrand. Theories of program test-
ing and the application of revealing subdomains. IEEE Transactions
on Software Engineering, SE-6(3):236-246, May 1980.

[189] David C. Wilkins and Bruce G. Buchanan. On debugging rule sets
when reasoning under uncertainty. In Proceedings, A A A I 86 (Volume
I), pages 448-454, Philadelphia, PA., August 1986.

[190] C. Wilson and L.J. Osterweil. Omega-a data flow analysis tool for
the C programming language. In Proceedings C O M P S A C , pages 9-18,
1982.

[191] Jeannette M. Wing. A study of 12 specifications of the library prob-
lem. IEEE Software, 5(4):66-76, July 1988.

[192] Patrick Henry Winston. Artificial Intelligence. Addison- Wesley,
Reading, Massachusetts, second edition, 1984.

[193] David D. Woods. Cognitive technologies: the design of joint human-
machine cognitive systems. A I Magazine, 6(4):86-91, Winter 1986.

[194] V.L. Yu et al. Antimicrobial selection by a computer: a blinded eval-
uation by infectious disease experts. Journal of the American Medical
Association, 242:1279-1282, 1979.

Report Documentation Page

1. Report No.

NASA CR-4187

2. Government Accession No.

7. Author(s1

John Rushby

I ,>-
19. Security Classif. lof this report) 20. Security Classif. (of this page) 21. No. of pages 22. Price

136 A0 7 Unc 1 ass i f i ed Uncl a s s i f i ed

9. Performing Organization Name and Address

SRI International
333 Ravenswood Ave
Menlo Park, CA 94025

17. Key Words (Suggested by Author(s))

12. Sponsoring Agency Name and Address

18. Distribution Statement

National Aeronautics and Space Administration
Langley Research Center
Hampton, VA 23665-5225

15. Supplementary Notes

3. Recipient's Catalog No.

5. Report Date

October 1988
6. Performing Organization Code

8. Performing Organization Report No.

SRI 4616
10. Work Unit No.

505-67-0 1
11. Contract or Grant No.

NAS1-17067
13. Type of Report and Period Covered

Contractor Report
14. Sponsoring Agency Code

Langley Technical Monitors:
Final Report - Task 5

Wendell R . Ricks (Task) and Ricky W . Butler (Pro jec t)

16. Abstract

This report i s concerned w i t h the application of software qua l i ty and evaluation
measures t o AI software and, more broadly, w i t h the question of qua l i ty assurance
f o r AI software.
f i e l d of Art i f ic ia l Intel l igence. (Genesereth and Nilsson (66) give an excel lent
modern introduction t o such techniques; Harmon and King (76) provide a more
elementary overview.)
aspect of software qual i ty , b u t a l s o methodologies and techniques (such as systemati '
testing) t h a t attempt t o improve some dimension of qua l i ty , without necessar i ly
quantifying the extent of the improvement. The bulk of the report i s divided in to
three parts. In Part I we review exis t ing software qua l i ty measures-those t h a t
have been developed fo r , and applied to , conventional software. In Par t 11, we
consider the charac te r i s t ics o f AI software, the app l i cab i l i t y and potential u t i l i t y
of measures and techniques ident i f ied i n the f i r s t par t , and we review those few
methods tha t have been developed spec i f i ca l ly for AI software.
t h i s report , we present ou r assessment and recommendations f o r the further
exploration of t h i s important area.

By AI software we mean software tha t uses techniques from the

We consider not only metrics t ha t attempt t o measure some

In Part I11 of

Ar t i f i c i a l Intel 1 igence
Eva1 ua t i on
Verification
Validation

Unclassified - Unlimited

Subject Category 61

I I I
YASA FORM 1828 OCT e6 NASA-Langley, 19

For sale by the National Technicd Information Service, Springfield, Virginia 22101-2171

