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SUMMARY

A three-dimensional laminar and turbulent boundary-layer method is devel-

oped for compressible flow over swept wings. The governing equations and cur-
vature terms are derived in detail for a nonorthogonal, curvilinear coordi-
nate system. Reynolds shear-stress terms are modeled by the Cebeci-Smith
eddy-viscosity formulation. The governing equations are descritized using the
second-order accurate, predictor-corrector finite-difference technique of
Matsuno, which has the advantage that the crossflow difference formulas are
formed independent of the sign of the crossflow velocity component.

The method is coupled with a full potential wing-body inviscid code
(FLO-30) and the inviscid-viscous interaction is performed by updating the
original wing surface with the viscous displacement surface calculated by the
boundary-layer code. The number of these "global" iterations ranged from five
to twelve depending on the Mach number, sweep angle, and angle of attack.
Several test cases are computed by this method and the results are compared
with another inviscid-viscous interaction method (TAWFIVE) and with

experimental data.
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INTRODUCTION

To obtain accurate flow field calculations over wings and wing-body
combinations, the effects of viscosity must be accounted for in the
solution. This may be accomplished by either solving some form of the Navier-
Stokes equations or by interacting an inviscid code with a viscous boundary-
layer method. The solution of the three-dimensional Navier-Stokes equations
requires extremely large computer storage in order to resolve the various
length scales and thus, also requires very long calculation run times.
Therefore a great deal of attention has been focused on the more economical
inviscid-viscous interaction procedure.

The interaction is performed by updating the inviscid solution by either

a displacement surface or transpiration velocity component calculated by the

boundary-layer code and then rerunning the inviscid code. This procedure is

repeated until successive viscous updates are less than some specified
tolerance. The methods of Streett [1] and McLean and Randall [2] interact a

full potential inviscid code with a three-dimensional boundary-layer method by

use of the displacement surface. A code in which the interaction is performed

by the transpiration velocity component was developed by Wai, et al. [3].

Each of these methods requires the solution of some form of the three-

dimensional boundary-layer equations.

Streett [I] and Wai [3] chose to solve the boundary-layer equations in

the integral form, where the governing partial differential equations have

been integrated in the normal direction. Swafford and Whitfield [4] developed

a time-dependent integral method for the three-dimensional boundary-layer

equations but did not perform the inviscid-viscous interaction. A drawback of

the integral approach is that one must choose, a priori, the shape of the

velocity profiles. For example, in Streett's method the crossflow velocity

profile cannot predict a crossflow profile with velocity crossover, a
situation which occurs quite often for three-dimensional flows. Also,

integral methods are generally less flexible than differential methods.

The method of McLean and Randall [2] solves the boundary-layer equations

in the differential form for a body-oriented curvilinear coordinate system.

However, the coordinate system they used is orthogonal with one surface

coordinate along the constant chord lines and the other perpendicular to

them. This type of coordinate system requires a large clustering of grid

points in the trailing edge region to resolve the outboard portion of a swept

and tapered wing. Further, the wing root- and tip-chord lines do not lie

along grid lines so the solution may not be determined along these lines. The

use of a nonorthogonal coordinate system alleviates these problems.

Viscous methods which solve the three-dimensional boundary-layer equa-

tions in a nonorthogonal coordinate system have been developed by Cebeci,

et al. [5], Matsuno [6], and Van Dalsem and Steger [7]. However, none of
these methods were interacted with an inviscid code. In this paper, a three-

dimensional laminar and turbulent boundary-layer method is developed for

compressible flow over arbitrary swept wings and coupled to a full potential

inviscid code through a displacement surface calculation. The inviscid

solution procedure used to drive the boundary-layer method is the FLO-30 code



developed by Caugheyand Jameson[8] which solves the full-potential equation
in a conservative, finite-volume form for flow over wing-fuselage combin-
ations. The wake is treated as a contact discontinuity across which the
pressure is continuous but the tangential velocity componentis discontinuous.
This inviscid code was also employed by Streett [1,9] to interact with an
integral boundary-layer method to develop a code called TAWFIVEand further
details of the procedure are provided in references 8 and 9.

For the present method, viscous effects are only determined on the wing.
The inviscid-viscous interaction is performed by running the inviscid code and
using the inviscid velocity distribution to drive the boundary-layer code.
The viscous displacement surface calculated by the boundary-layer code is
added to the original wing surface and the inviscid solution is then deter-
mined for the newwing surface (wing plus displacement thickness). The dis-
placement surface updates are slightly under-relaxed to minimize oscillations.
The numberof these "global" iterations varied from about five to twelve
depending on the Machnumber, sweepangle, and angle of attack.

GOVERNINGBOUNDARY-LAYEREQUATIONS

The nonorthogonal curvilinear coordinate system is illustrated in figures
1 and 2 and the unit vectors and metric coeffifients for this body-oriented
system are derived in Appendix A. The independent surface variables are sr
and Yle where sr refers to s measuredalong the root-chord line and
Yle refers to y measuredalong the wing leading edge. The angle e
is the angle between the s- and y-coordinate lines. The three-dimensional
laminar and turbulent boundary-layer equations are derived in detail for this
coordinate system in Appendix B. For convenience, they are simply listed here
as:

continuity equation,

(puh2sine) + _ (pVhlsine) + _n (_ hlh2sine) : 0 (i)

streamwise momentumequation,

pv Bu -- _u u2 2
+F22y_7_-le+ pw_-n-- pKI cote + pK2 csce v

+pK Ue BUe+ Ve BUe 2
12 : K1c°t ue

+ K2csce Ve2 + K12 Ue Ve] + _n (I__-PBu _-_-_7) (2)



spanwise momentum equation,

pv 5v + p_ 5v v2 2
+F22 y_le _-_ - p K2 cote + p K1 csc8 u

ue 5ve

+ P K21uv : Pe [_11

ve 8Ve 2

+ _22 Y_le - K2c°tE) v e

2

+ K1 cscO ue + K21UeVe ] + _n (" 8v T'w")_-_-P
(3)

energy equation,

pu 5H + pv 5H + p-_ 5H

2

8 5H UT
:

(4)

where hI and h2 are the metric coefficients, K1 and K2 are the

geodesic curvatures of the curves Yle = constant and sr = constant,

respectively, and K12 and K21 are geometric parameters which are functions

of the metric coefficients and geodesic curvatures. Their explicit values are

provided in the Appendices.

The boundary conditions on the above equations are:

n = 0 , u : v : w : 0 , (8_-n) : 0 or T = Tw
W

n = = , u = ue , v : ve , H = He
(5)

In order to close the system of equations, some assumptions for the

Reynolds stresses must be made. For the present study, the Cebeci-Smith [10]

eddy-viscosity model is employed. This relates the turbulent stresses to the

mean velocity and total enthalpy profiles by,

_V
8u _ : p Em ___

_ p _-'-_ = p Em_6_ , - p

(6a)

E
m 8H

_ p =

(6b)



where Prt is the turbulent Prandtl numberand the eddy-viscosity coefficient
is defined in the inner layer by [5],

. (bu_2 bv 2 ]1/2(_m) : L2 [_-6' + (_-h-) + 2 cose (_-_) (_nv) (7a)1

and in the outer layer by [5],

(_m) = 0.0168 Jf (UTe - uT) dn J {7b)
o o

where,

L = 0.4 n [I - e-{n/A)]

A = 26 v (-_w)i/2

2
_Tw Pw L_-6)w W W W

In order to solve eqs. (1)-(4) an inviscid solution has to be provided,

either by an inviscid code or experiment, and both initial and side boundary

conditions must be determined since the equations are of the parabolic type.

The initial conditions will be the flow along the attachment line of the wing
and the side boundaries will be the flow along the root- and tip-chord

lines. For the flow along the wing tip an infinite swept wing assumption is

made whereby the flow variables are assumed to be independent of the spanwise
coordinate. Therefore, along the wing tip the governing equations reduce to:

continuity equation,

(puh2 sine) +_n {_-_ hlh2 sine) = 0
_sr

streamwise momentum equation,

pu au m _u u2 v2
_11 _-Tr-r+ pw,6_-- p KI cote + p K2 csce + p KI2 uv

Ue _)Ue 2

: Pe[_ll s_T_r - KlCOte u e + K2csce Ve2 + Kl2UeVe]

(8a)

(8b)

(8c)

(g)

_) _)u

(10)



spanwise momentum equation,

pu _v

hI 5s r
_v v2 csc@ u2 + K21uv+ pw_- - pK2 cote + pKI

ue aVe 2 + K

= Pe[FII _6_r- K2c°tOve
1 csce Ue 2 + K21UeV e]

_n _v pT'T')+ (_-fi -
(II)

energy equation,
2

uT--5H 5 [_r 5H + p(1 - ) (T) _ pw---IT7] (12)pu 5H + PwT6 =_6-E _-_
hI 5sr

The boundary conditions for the infinite-swept-wing equations are the same as

those given for the general equations.

The root chord line of the wing is assumed to be a line of symmetry where

the spanwise derivatives of all the flow variables except v are zero. Along
this line v = 0, and to the boundary-layer approximation, the spanwise
momentum equation is singular. However, differentiating the spanwise momentum

equation with respect to Yle yields a nonsingular equation. Therefore,
along the root-chord line the governing equations become:

continuity equation,

5

S_r (puh2sin0) + p hI sinE) Vy
+ _ (-p-_hlh 2 sinE)) : 0

streamwise momentum equation,

pu 5u

hI 5sr

5u _ u2 Ue Sue
+ pwTE p K1 cote = Pe [_1 S_r- KI cote Ue2]

+ ( au_-_- P

(13)

(14)

spanwise momentum equation,

2 5v

pu 5Vy pVy + _ __ + PU2 (K1 cscC)) P u VyR  Tqr÷T2 + K21



ue aVye v e2

: Pe [_TTI_ + _ + He2 _) (K I cscc)) + K21 ue Vye]

+_n["_Vy
n_- p (-v-*"w'_)y]

energy equation,

pu _H _)H _) _H _r _n __ -_S r

where Vy means the derivative of v with respect to Yle" The boundary
conditions for the above equations are:

(15)

(16)

= w = o (_T_)n=0 ,U=Vy , =0
W

n=_ u:u v :v H=H
e Y ye ' e (17)

The initial conditions are obtained by applying eqs. (I)-(4) along the

attachment line of the wing. However, along the attachment line, u = 0, and
to the boundary-layer approximation, the streamwise momentum equation is

singular. It is therefore necessary to differentiate it with respect to sr
to obtain a nonsingular equation. Thus, along the attachment line the
governing equations become:

continuity equation,

+_) _n
Ph2sinE) Us Y_Ie (pVhlsinC)) + (p-vThlh2sinC)) = 0

streamwise momentum equation,

2

PUs pv _Us _us

+ ÷ + (K2 K12 Us v

(18)

2

v _)Use
: pe[Use + e 2

hl __+ ve _ (K 2 cscO) + KI2 Use Ve]

_)Us

+ _n ["_ - p (T';')s]
(19)



spanwise momentumequation,

pv _V

F22 _Yle

ibv _ v2 Ve _ve
__+ pwTE p K2 cote = Pe [_22Y_le- K2 cote Ve2]

_-_-P

(2O)

energy equation,

pv _H
+ pw Tfi= T6

2

where us means the derivative of u with respect to

conditions for the attachment-line equations are:

sr. The boundary

n : 0 , us : v : w = o , (m_n) = o
W

(21)

n = - , Us = Use , v = ve , H = He

(22}

TRANSFORMATION OF THE GOVERNING EQUATIONS

Before proceeding to descritize the governing three-dimensional boundary-

layer equations, it is convenient to introduce a non-dimensional parameter
which scales the growth of the boundary layer. A variable _ is defined by

the transformation,

S r½n
U e

q : (-_es) S P---dn , s : S hI dsro Pe o

(23}

Two stream functions are also defined by,

ibQ pVhlsine = _¢puh2sine =_-E ' _ '

p_ hlh2 sinE) = - [_sr +

(24)



which automatically satisfies the continuity equation. In addition, the
parameters f(Sr,Yle,_ ) and g(Sr,Yle,_) are defined by the relations,

¢ = (Pe % Ue s_/2h2 sinE)f
(25)

¢ (.Pe_e s 1/2
= )

Ue Uref hI sine g (26)

where Uref is a constant (usually chosen as the freestream velocity, u ).
Using eqs. (23), (25), and (26) in eq. (24) yields,

u _f

ue T_ F (Sr,Yle,_) (27)

v _ _g

ref _-_ = G (Sr,Yle,q) (28)

With eqs. (23)-(28), the governing three-dimensional boundary-layer equationsbecome:

streamwise momentum equation,

_) [b _)F _)F _g _)F _F
()--_ T_ ] + _2 + m7 ( - G )

_f _F _F F2 G2
+ ml0 [ S._r _-_- F s-_-_-r) : m2 + m5 FG + m8 _ mll c2 (29)

spanwise momentum equation,

[b _)G _)G (_gle _)G _le )_--_ _'_] + _2 + m7 - GT5

_f _G _G F2 G2
+ ml0 (S_r _-_- F S-_r ) = m9 + m4 FG + m3 - m12 c2 (3O)

energy equation,

aE 6E _g _E _E

[°1 _] + 02 + m7 ( - G y_-_-_-le)
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133 IB1134

mll : _T1 + _ + s (-K 1 cotE) + K2 cscE) 1312+ K12 (31)

135 131136 s 2

m12 =_11 + -_2 + _2 C-K2 cote (31 + K1 csc(9 + K21 131)

and the coefficients oi-o 5 are defined as,

Cl + Pr
oi :l_-r-C1 + )T

o2 = mI f + m6 g

2
cI ue

o3 =-_ CI-_r)
e

o4 = o3 (F + G cosE) (32)

(33)

°5 = °3 (32 (G (32+ F cosE))

where _1-_8 are the inviscid parameters,

ve Ure f

_1 = -_e _2 - ue

s _Ue s _Ue

_3 - ue _sr (34 - ue _Yle

s _Ve s BVe

(35 - (36 - ByUref bTr Uref ]e

(34)

_7 - s _ _ s
Pete _ (Pete) Be Pete _ (Pete)

Next, define the vectors Z and _ by,

(35)

z:[ G] , _: (36)

Then, using eq. (36), eqs. (27) and (28) may be combined and rewritten as the
vector equation,

10



_ (37)
Z =_-5

Also, eqs. (29) and (30) may be combined and written as,

[b _Z _Z _g _Z _Z )

_f _Z
+ mlO (T_._ _-

r

_Z F2F s_7) = £1 + £2 FG + £3 G2 - £4 c2
r

(38)

where,

m 5 m8
= [ mll]

£i: [_29] £2 : [m4] £3 : [m 3] ' £4, , m12

(39)

The boundary conditions for eqs. (37) and (38) are,

_:o : z:c:[ °]

_I = qe : Z = [ve/luref]

(_)w = 0

, E = i
(40)

Along the wing tip the spanwise derivatives of the flow variables are set

equal to zero. Thus, the inviscid and geometric terms which are different

from the general three-dimensional case are:

_4 = _6 : B8 = 0

m 5 = s KI2 132

62

m6 _T2 [½ BS
+ s (cote 5e I _hl+ )]

63

m11 =_11 + s (- KI cote + K2 csce 612 + K12 61)

65 s 2

ml 2 =_11+]_2 (- K2 cote 61 + K1 csce + K21 61 )

and the governing equations reduce to,

(41)

11



5 [b 5Z _Z 5f 5Z 5Z+ o2 + - Fm10
r r

= I"1 F2 + r 2 FG + r 3 G2 - i"4 c 2 (42)

5 5E 5E 5f 5E 5E
_-_ [oI E_] + o2 + - F_-n mlO (s_E-_ s_'E-)

r r

(43)

The boundary conditions for the above are the same as those given by
eq. (40).

For the flow along the root-chord line, the same transformation as that

used for the general case will be employed. However, the stream functions are
defined in a slightly different manner,

puh2sinO = 5_T_ ' Phlsine Vy :_-E ' _-_ hlh2sine = - (s_ + ¢)
r

(44)

so that eq. (13) is satisfied identically. Using eqs. (23), (25) and (26) in

the above yields the velocity profiles for the flow along the root-chord line,

u 5f

Ue - _ = F (45)

V

Y:Sg_ G
Ure f _ - (46)

The governing equations along the root-chord line may be written as eqs. (42)
and (43) provided that,

m3 = s _2/h2

m5 = m8 = 0

m6 = m3

mg= s 5 cscO)

mll = m2

12



2

_ s 1 _)Vye + i Vye

m12 Uref [_II _ _22 _ + K21 vye
+ Ue Y'_]e {K1 csce)]

(47)

where the boundary conditions are now given by,

_=0 : Z=_= , =0
W

: _e : Z : Iv 1 ] , E : 1 (48)
ye/Uref

Along the attachment line of the wing both s and ue are zero. There-

fore, the governing attachment-line equations are transformed by defining

as,

1/2 n (49)
r use _ P dn

0

and ¢ and ¢ are now given by,

¢ = (Pe Pe Use h1_/2h2 sinO f
(5O)

1/2 (5t)
¢ = (pe_ehl) Ure f hI sine g

Use

For the flow along the attachment line the stream functions must satisfy the

relations,

Be pVhlsine = _¢Ph2sine Us =_6-6 ' _ '

)
p-_ hlh 2 sine = - (¢ + _e

Using eqs. (49)-(51) in eq. (52) yields the velocity profiles for the flow

along the attachment line as,

(52)

13



u
s _f

Use - _ : F (53)

(54)

With the above, the governing (laminar) attachment-line equations become,

b [cI bZ bZ bg bZ bZb-_" _-_] + (_2 + m7 ( - G )

: FI F2 + F2 FG + F3 G2 - F4 c2 (55)

b bE bE bg BE BE _ bG[°I _] + _2 + m7 ( - G ) + [°5 : o

The boundary conditions for the attachment-line equations are the same as

those for the general case. The inviscid and geometry coefficients are now
given by,

mI = m2 --I

(56)

m3 = - hi K2 Y2 cotO

m4 = m9 = 0

Y2Y3

m5 =_+ hl K12 Y2

hl bO
m6 = Y2 [_ cotO

E

hlY 2

m7 =_

3 bhl + i

2b

m8 = hlY 2 s_T_r (K2 cscO)

14



YIY3 I+ hlY12 _)mll = 1 +-}_-2 + h1K12Y _ (K2 cscO)

YIY4
ml2 =T2- hlK 2 cotO y12/_2

(57)

c1

_1 = l_

2

ci Uref (i - l_r)
_3- H

e

_5 = _3 G

(58)

where the terms YI - Y5 are,

Uref
V e

Y1 - Y2
Use ' Use

hI BUse hl Bve

Y3 - ' Y4 -
Use BYle Uref

h I _ (PePe)
Y5 - PeUe

Applying the transformation given by eqs. (23)-(28) to the eddy-viscosity

formulas given by eq. (7) yields,

v I [0.4 S c2 d_] 2 [1 - exp (- _)]2+ =IT o(Em) i

,Fc_F_ 2 F_G12 2 62 cOSO _F _G_/2
L_-_J + 622 _-_) + _-_-_J

(59)

(60a)

if_e+ : (T_)_ (o.o168) c2 [tl+ 612
(_m)o o

+ 261 cosO
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m

- /F2 + (_2G) 2 + 2 _2 cosO FG ] dnl

where Re is a local Reynolds number and,

V

c2( )ReV41A

o

(_Fl 2 _G 2

c2 dn [_Jw + _22 (_)w

+ 2 I32 cosO(()_-)w6G ]i/4(_)w

(6Ob)

(61)

FINITE-DIFFERENCE TECHNIQUE

The transformed governing equations are differenced using a second-order

accurate predictor-corrector scheme originally developed by Matsuno [6]. The
scheme is implicit in the normal direction and explicit in the spanwise

direction. It was demonstrated by Woodson and DeJarnette [11] to yield

accurate numerical results when compared to the exact solution of the three-

dimensional boundary-layer equations for parabolic flow over a moving flat
plate. An advantage of this method over other methods used to solve the

three-dimensional boundary-layer equations [2,5] is that the crossflow deri-

vatives are Formed independent of the sign of the crossflow velocity
component. The finite-difference cell is illustrated in figure 3.

The notation Zi,j, k = Z (Sri,Ylej,nk) is employed, where,

= S +As
Sri+ 1 ri ri i = 1,2,...IMAX

= +

Ylej+ I Ylej AYle
J = 1,2,...JMAX

"qk+l = nk + Ank
, k : 1,2,...KMAX (62)

A coordinate stretching procedure developed by Blottner [12] is used in the

normal direction so that the mesh is clustered near the surface of the wing.
Central difference operators are defined by the relations,

6n Zi,j,k = (Zi,j,k+ 1 - Zi,j,k_1)/(A_k + Ank_ 1) (63)

6y Zi,j, k = (Zi,j+1, k _ Zi,j_1,k)/2AYle (64)
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A , k] :0
+ A [_5i+ 112,j,k _ Gi+ 112 j'

The inviscid and geometry parameters are evaluated at the (i+1/2,j) station

for both the predictor and corrector steps. After performing the indicated

operations, eqs. (70)-(75) may be written as a set of linear algebraic

equations,

A_k- 1

_j,k = _j,k-1 +---2--- [ZJ,k + ZJ, k-l)

(75)

(76)

- am Zj,k_ 1 + bm Zj, k - cm Zj,k+1 + dm _j,k = em

(771

- ae Ej,k-1 + be Ej,k - ce Ej,k+1 = de

where am, cm, ae, be,

(78)

Ce, and de are scalars, bm and dm are 2 by 2

coefficient matricies and em is a vector. Their values are provided in

Appendix C. Equations (76) and (77) are block tridiagonal equations and
can be solved using a block form of the Davis modified tridiagonal algorthim

[13]. Equation (78) is a linear tridiagonal equation and may be solved by the

Thomas algorithm [14].

The infinite-swept-wing equations, root-chord line equations and

attachment-line equations may each be written in the form of eqs. (76)-(78).

They produce a set of coefficients which are subsets of the ones given in

Appendix C so their values are not listed here.

The character of the three-dimensional boundary-layer equations was shown

by Raetz [15] to be of a parabolic nature with secondary hyperbolic-like

properties. This led Raetz to formulate the well-known zones of influence and

dependence concept. The concept simply stated is that a disturbance at a

point p is instantly felt by all points on a vertical line passing through

p and then convected downstream along all streamlines passing through that

point. Since the direction of the streamlines varies across the boundary
layer, it is possible to identify the regions of influence and dependence of a

particular point. The effect of the zone of dependence on the numerical
calculations is to limit the allowable marching step size. Before the

solution can be advanced from one streamwise plane to the next, the maximum

step size must be determined from the relation [16],

h2 (79)
u }

Minimum {AYleT_TF11
ASr all j,k

For the present method, the spanwise step size is chosen to be a constant and

the marching step size is calculated along with the viscous solution. The

solution begins at the root-chord of the wing and proceeds spanwise, along the

attachment line, from the root to the tip using the attachment-line equations.
19



With an initial solution thus provided, the fully three-dimensional equations
are marched streamwise from the attachment line, around the leading edge, to
the upper surface trailing edge, and then from the attachment line to the
lower surface trailing edge. The solution along the root- and tip-chord lines
is obtained in the samemannerby solving the root-chord line equations and
infinite-swept-wing equations, respectively, and provides the side boundary
conditions for the three-dimensional equations.

BOUNDARY-LAYERPARAMETERS

Whenthe viscous solution has been determined, skin-friction coeffi-
cients, inviscid and viscous streamlines, and the three-dimensional displace-
ment surface are calculated. A streamwise skin-friction coefficient isdefined by,

2

Cf = S

S Pm U

and a spanwise skin-friction coefficient by,

2

Cf = yZ
Y p® u

(80a)

(80b)

Using the transformation given by eqs. (23)-(28) the skin-friction coef-
ficients become,

2Clw Pe (Uel2
cf :_ (_) ._. _Fs tR_ (_)w (81a)

2Clw Pe Ue

Cf :_ (_-__)(., Uref I _)Gy VRT u 2 -,(_)w (81b)

The limiting streamline angle, _w, is defined as

_w : tan-I (Cf /Cf )
Y s

Therefore, the equation for the surface streamlines in the (s,y)-plane is
given by

(82)

(_sy) : tan _w
W (83a)
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so that in the (-x,_)-plane the above becomes

(dT)__: rcos cosA1 tan
- _-_sE J w

dx
w

A streamwise and a spanwise velocity integral thickness are defined as,

(83b1

s =I [i PU)dn
s o PeUe

(84a)

* pv
8 :f (1 )dR
Y O PeVe

(84b)

In transformed coordinates the velocity integral thicknesses become,

* S
8 -
s VIT6

[f_e__ c2dT}- f(_)e)]
(85a)

[f_e Uref
By* - _s o c 2 d_ - v---_-g (qe)]

The three-dimensional displacement surface,

be the solution of the equation,

(85b)

A*, was defined by Moore [17] to

%/ [Pe _• VeA -_
O

(Pe _e - p_) dn] = 0

[Pe Ue h2 sin C) (A - 8 )]
_)sr s

[Pe Ve hl sin e (A - By)] : 0 (86)

When the displacement surface has been calculated for both the upper and lower
surfaces of the wing, a new wing surface is defined by adding the displacement

surface to the original wing coordinates, and the inviscid solution is then

determined for the new wing surface. The displacement surface is not

smoothed, but is slightly under-relaxed during the first few viscous updates.

This procedure (global iteration) is repeated until the viscous updates are
less than some user-specified tolerance. On the plane of symmetry the

boundary-layer parameters are given by,

2

2Clw Pe Ue _F (87a)

Cfs- _ee (_) (_) (_)w
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Cf = 0
Y

* s ne

6s =_ [fo c2 d_)- f(_e )]

* s _e Uref

6y =_ [fo c2 dn - _Vye g(_e )]

(87b)

(88a)

(88b)

and along the attachment line they are given by,

Cf = 0
S

(89a)

Cu
Cf = 2 Clw CUse_l ) (p_p_) ref2Use ) (_6__)

Y U w

. cVe hlC/2 [fqe
6s = .--_----, c2 d_ - f(_e) ]

se o

½
* Ve hl _e Uref
6y = C--u----) [ c2 d_ - _ g (_e)]

se 0 Ve

(89b)

(90a)

(90b)

DISCUSSION OF RESULTS

The inviscid solution is determined on a grid which consists of 160 grid
points in the streamwise direction, 32 points spanwise and 24 points normal to

the wing-fuselage surface. For the viscous solution a total of 110 streamwise

and 31 spanwise grid points are used for both the upper and lower surfaces of

the wing. The number of grid points across the boundary layer varies from 26
at the attachment line to about 75 at the trailing edge. Each of the

calculations presented here was performed on a Gould PN 9005 computer which
has an operating speed of 0.8 MFLOPS.

As a test case for the present method, a solution was calculated for flow

over a swept and tapered wing attached to a cylindrical fuselage. The wing
has a aspect ratio of eight and a NACA 0012 cross-section, without twist. The

planform is given in figure 4 and has a taper ratio of 0.5 and a leading-edge
sweep angle of 20 degrees. The solution was determined for a Mach number of

M® = 0.85 with the wing at an angle of attack of two degrees and a Reynolds
number based on the mean aerodynamic chord of nine million. The results of
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the present method are comparedto those obtained using the TAWFIVEcomputer
code developed by Streett and Melson [9], and to the inviscid results from
FLO-30. For simplicity, the present method will henceforth be referred to by
the acronym TIBLT (for Transonic Interactive Boundary-Layer Theory).

In order to directly comparethe two inviscid-viscous interaction
methods, the boundary layer was assumedto transition from laminar to
turbulent flow at the first marching step beyond the attachment line. Both
methods employ
FLO-30as the inviscid solver, but the viscous routine in TAWFIVEis an
integral method while TIBLT solves the boundary-layer equations in the
differential form. Twelve viscous updates were performed by both interaction
methods and the numberof inviscid iterations was the samefor all three
calculations.

Figure 5 comparesthe streamwise distribution of the pressure coefficient
determined by the three calculation methods. The effect of the boundary layer
movesthe location of the upper surface shock wave towards the leading edge,
reduces the strength of the shock, and decreases the static pressures in the
trailing-edge region. The location of the shock wavemoves forward as the
wing tip is approached and near the tip the shock location is nearly identical
for both of the interaction methods. This maybe due to the fact that both
methods makean infinite-swept-wing assumption at the wing tip. Dueto the
location of the shock wave, upper surface boundary layer separation was
predicted at _ = 0.505 for the TAWFIVE calculation and at _ = 0.510 for TIBLT.

The determination of boundary layer separation is different for the two

interaction methods. Since TAWFIVE is an integral boundary-layer method, the

criterion for separation is when the compressible shape factor reaches a
critical value of 2.8 [9]. On the other hand, in TIBLT separation is indi-

cated when the streamwise skin-friction coefficient goes through zero.

Neither criteria can be said to be the absolute definition of three-

dimensional boundary-layer separation, however, they may be thought of as

indicators that separation is imminent [18-21]. When separation is
encountered in the TIBLT calculation the displacement surface is calculated

from the separation line to the trailing edge by assuming the terms in the

brackets in eq. (85) to be constant and equal to their values at separation.

The lift and drag coefficients computed by each of the calculation methods is

presented in table i. Both the lift and drag were slightly larger for the
TIBLT calculation than for the TAWFIVE calculation.

Table 1- Lift and Drag Coefficients for NACA 0012 Wing

FLO-30 TAWFIVE TIBLT

CL 0.302 0.248 0.275

CD 0.0172 0.0175 0.0181
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As a further test for TIBLT, a subcritical and a supercritical Mach
numbersolution were calculated for the ONERAM6wing for which experimental
results are available [22]. In both cases the angle of attack was 3.06
degrees and the freestream Reynolds numberwas 11.7 million, based on the mean
aerodynamic chord. The M6wing has an aspect ratio of 3.8, a taper ratio of
0.56, and a leading edge sweepangle of 30 degrees. The planform is shown in
figure 6. The subcritical Machnumberwas M = 0.699 and a comparison of
the streamwise distribution of the pressure _oefficient determined by TIBLT
and TAWFIVEwith the experiment of reference 22 is given in figure 7. Viscous
effects are moderate for this case and both interaction methods compare
favorably with the measuredvalues.

Five viscous updates were performed by both interaction methods. The
computer run time for the TAWFIVEcalculation was 5.64 CPU-hourswhile the run
time for the TIBLT calculation was 21.87 CPU-hours, approximately 3.9 times
that of TAWFIVE. This difference maybe accounted for by noting that in the
integral method the shape of the velocity profiles is assumeda priori, while
in the differential method they are determined as part of the solution. The
additional calculations performed across the boundary layer at each marching
step for the differential method results in the longer run times.

Typical velocity and total enthalpy profiles from the TIBLT calculation
are provided in figure 8. The spanwise velocity profile exhibits velocity
crossover; the velocity component is positive near the wing surface and
negative at the edge of the boundary layer. This type of velocity profile can
not be modeled by the TAWFIVEcode, nor by most integral methods and illus-
trates an advantage of differential methodsover integral methods. The
locations where this type of spanwise profile occurs on the upper surface of
the wing is shown in figure 9. The dark triangles in the figure are the
places where the spanwise profile exhibits velocity crossover. The majority
of the spanwise profiles along the root chord line have velocity crossover.
The chordwise extent of this type of profile diminishes as the wing tip is
approached, and the locations are concentrated near the trailing edge.

The supercritical solution was for a freestream Machnumberof M = 0.84
.

and a comparison of the streamwise distribution of the pressure coefflclent is
presented in figure 10. Both interaction methods predict a weaker shock wave

than the experiment and the computed locations of the shock are slightly

forward of the experimentally observed location. The TIBLT code predicted a

shock location somewhat closer to the experiment than the TAWFIVE code, except
near the wing tip where, as in the NACA 0012 solution, the shock location is

nearly identical for both interaction methods. Surprisingly, the TAWFIVE code

predicted upper surface boundary-layer separation at _ = 0.209, while no

separation was predicted by the TIBLT code nor was there any indication of
separation in the experiment.

Ten viscous updates were performed by both interaction methods and the
computer run times were 7.82 and 44.53 CPU-hours for the TAWFIVE and TIBLT

codes, respectively. Figure 11 shows the locations where the spanwise

velocity profile has velocity crossover for the upper surface of the wing.
Figure 11 is very similar to figure 9 except that the chordwise extent of the

crossover profiles is smaller for the higher Mach number case. The angle of
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attack and the Reynolds number were the same for both cases, thus the
effect of increasing the Mach number does not change the distribution of the
crossover profiles but does reduce the number of such profiles.

The present method was also applied to a Douglas Aircraft Company (DAC)

wing-fuselage semispan model which was tested by Spaid and Roos [23,24] at the
NASA-Ames Research Center 14-Foot Transonic Wind Tunnel. The wing has an

aspect ratio of 6.8, a taper ratio of 0.3 and a quarter-chord sweep angle of

35 degrees. It employs 11.71 degrees of twist and the planform is shown in

figure 12. Two experiments were conducted. The first was for a subcritical
Mach number of M = 0.5, an angle of attack of six degrees, and a Reynolds

number based on The mean aerodynamic chord of 3.4 million. The second test

was for a Mach number of M = 0.825, an angle of attack of four degrees, and a

Reynolds number of 4.5 million. A total of 378 static pressure orifices were
located at nine spanwise stations on the primary wing. An auxiliary wing with

a two-degree-of-freedom probe traversing unit was attached to the fuselage
downstream of the primary wing. The probe traversing unit could be installed

at any one of the nine spanwise locations on the auxiliary wing, thus allowing

boundary-layer profiles to be obtained along each row of static pressure

orifices. Spaid defined a local skin-friction coefficient and an inviscid

yaw-plane flow-direction angle as,

2
s (91)

Cf- _r
PeUTe

_e: tan-I [-Ve/U-e ]
(92)

Thus, if Pe is positive, the inviscid flow is moving outboard towards the wing
tip. It was intended to compare the results of both TAWFIVE and TIBLT with

the experiment, however, the TAWFIVE code computed the displacement thickness
on the lower surface of the wing to be unrealistically high and the solution

became unstable. The TIBLT code had no difficulty in computing a solution for

either Mach number and the results are presented below.

A comparison of the calculated and experimental upper surface pressure
coefficient for the subcritical Mach number is given in figure 13. There is a

very sharp pressure peak near the leading edge at the inner span stations.

These large inviscid gradients had to be smoothed out slightly during the
first few boundary-layer calculations to keep the surface flow attached. A

total of five viscous updates were performed for this case and required 24.42

CPU-hours to run. The inviscid flow-direction angle is compared in figure 14

which shows the inviscid flow is moving inboard towards the wing root over 98%

of the chord due to the wing twist. Figure 15 is a comparison of the local

skin-friction coefficient and figure 16 compares the streamwise velocity

integral-thickness distributions. The experimental skin-friction coefficient
was determined by the Clauser chart technique [25] and the integral thickness
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from the measuredstreamwise velocity profiles. The agreement between the
calculated and experimental skin-friction coefficients is excellent at each of
the span stations. The calculated streamwise velocity integral thickness
agrees very well with the experiment near the wing tip, however, at the more
highly loaded mid-semispan stations it is significantly under-predicted. This
trend was also observed by Spaid [26] whenhe comparedhis experimental
results to various two- and three-dimensional boundary-layer calculations.
Figure 17 is a reproduction of figure 7 from reference 26 which shows the
comparison of the experimental streamwise velocity integral thickness with the
three-dimensional boundary-layer method of Cebeci, et al. [5]. The solid line
in figure 17 is Cebeci's three-dimensional calculation and n is the percentage
of the semispan. Cebeci used the experimental pressure distribution to drive
his boundary-layer code but still under-predicted the experimental integral
thickness at the mid-semispan station. The difference between the experiment
and the boundary-layer methods is probably due to the transition location
along the span and flow unsteadiness in the experiment.

In a recent paper, Cebeci and his co-workers [27] showedthat moving the
transition location has a significant effect on the displacement thickness
distribution near the trailing edge. For the present method, the flow
was assumedto be fully turbulent just prior to the location of the upper
surface pressure peak, which occurs at about _ = 0.015. Cebeci's calculation

determined the transition location to be at _ = 0.025. A challenge for
three-dimensional boundary-layer methods is to properly account for the

spanwise variation of the attachment line and transition location. At

present, TIBLT determines an average constant-chord attachment line and

assumes transition location. In the experiment, a boundary-layer trip was

located on the upper surface at _ = 0.06, which is aft of the sharp pressure

peak so that they may have been trying to trip an already turbulent boundary
layer. The precise location of the experimental transition line and its

spanwise variation is not known, and may account for some of the observed

difference between the boundary-layer methods and the experiment. Also, there

was some flow unsteadiness in the experiment due to the mixing of the tunnel
flow with the outside air which produced some probe vibrations on the
auxiliary wing [23,28].

The locations where the spanwise velocity profile has velocity crossover

on the upper surface of the wing is illustrated in figure 18. Once again the
majority of the spanwise profiles near the root chord are of this type and as
the wing tip is approached their chordwise extent diminishes and is

concentrated near the trailing edge. The calculated inviscid and surface

streamlines for the upper surface of the wing are presented in figure 19. The

inviscid flow moves inboard as it goes over the wing due to the wing twist.
The surface flow also moves inboard until just aft of the mid-chord line where

it then begins to move slightly outboard, except near the root and tip where
it continues inboard.

A comparison of the upper surface pressure coefficient for the super-
critical Mach number is provided in figure 20. The shock location calculated

by TIBLT is slightly forward of the experimental location at the inner span

stations. At the outer span station no shock wave is present, probably due to

the wing twist and to tip effects. A total of ten viscous updates were
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performed and the calculation took 43.43 CPU-hours. The inviscid flow-
inclination angle, skin-friction coefficient, and streamwise velocity integral
thickness distributions are comparedin figures 21, 22, and 23, respectively.
The results for this supercritical case are very similar to those from the
subcritical case. The locations where the spanwise velocity profile has
velocity crossover on the upper surface of the wing is presented in figure
24. The numberof these profiles is less than those for the subcritical case,
but their distribution is similar. The calculated inviscid and surface
streamlines for the upper surface are given in figure 25. The streamline
patterns look the sameas those from the subcritical case except for the
surface flow near the wing root, which is moving farther inboard.

CONCLUSIONS

A method for determining the three-dimensional, laminar and turbulent
boundary-layer flow over arbitrary swept wings was developed. The effect of
the boundary layer on the inviscid solution is accounted for through a
displacement surface interaction. The numberof inviscid-viscous interactions
required to obtain a converged solution varies depending on the flow
conditions. Based on the results of the present study the following
conclusions are drawn:

(1) The method is very general and maybe applied to a wide variety of
wing planforms provided the leading-edge sweepangle and taper ratio are not
too severe, due to limitations of the inviscid grid.

(2) The finite-difference technique used to solve the three-dimensional
boundary-layer equations has the advantage over other finite-difference
schemesin that the crossflow difference formulas are formed independent of
the sign of the crossflow velocity component.

(3) The method comparedfavorably with another inviscid-viscous
interaction method and with experimental results for both subcritical and
supercritical Machnumbers.

(4) In each of the cases considered, the spanwise velocity profile
exhibited velocity crossover somewherein the solution. The locations where
this type of velocity profile occurs for a given wing planform are dependent
on Machnumber, Reynolds number, and angle of attack. An advantage of the
present method over integral methods is that this type of spanwise velocity
profile maybe obtained as part of the solution without any special
accommodation.
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APPENDIXA. DERIVATIONOFTHEUNIT VECTORSANDMETRICCOEFFICIENTS

In order to write the governing boundary-layer equations in a body-
orientated coordinate system, it is necessary to relate the curvilinear
coordinates to a reference orthogonal coordinate system. This will yield
expressions for the curvilinear unit vectors and metric coefficients. A
constant-chord line (figure I) is defined as,

m m

x - Xle
c

(A1)

In gen_eral, the wing sweep and cross-sectional shape are functions of
and y . It can be shown that the differential of eq. (A1), holding

= constant, yields,

tan A = tan Ale - _A (A2}

where,

A = tan Ale - tan Ate (A3)

The equation for the wing surface is given by,

F(-£,_,_) = z - cf(_,_) = 0 (A4)

Therefore,

_x _y az

: [-c __f _--_]_{ - [_ __+ c (_ _7_--_+ _7_--f)]] +

: [- tan K] I + [_A + tan /% tan K - c {)-_f]i +

_y

(A5}

and
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IvTl : sec K {i + [tan A sin K + cos K (f--A - c _-_-f}]2
_y

(A6)

Define an angle F such that,

tan F = tan A sin K + cos K (_A - c _ ) (AT}
_y

Then a unit vector which is normal to the surface of the wing is defined by

the equation,

A

-^ VF = -cos F sin K + sin F + cos r cos K k (A8)

en = -_T

Referring to figure 1, a streamwise unit vector which is orthogonal to

defined by,

A

en

A
^ A

es = cos K i + sin K k

A

Next, define a unit vector e o
the T = 0 plane (figure 2_ b_,

which is tangent to an

Then
the

is

= constant line in

A

ey° = sin A + cos A j
A

spanwise unit vector which is octhogonal to e_ with its component in
z = 0 plane in the direction of ey o may be defVned by the relation,

(Ag)

^ ^

ey eyo cos C_

(AI0}

(A11)

Thus,

A
A

^ = cos Q e - sin Q k
ey yo

A

= cos Q sin A _ + cos Q cos A j - sin Q k
(A12}

^

Since e was defined to be normal to

which yields,

in, their dot product must equal
zero
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tan _ = cos A sin F - sin A cos F sin
COS F COS <

^

A

Note that both es and ev are perpendicular to en. Howeverx the

coordinate system is nonor_hogonal because the dot product of es andnot zero and is given by,

^

e is
Y

CA13)

^ ^

cos 0 = es • ey = cos _ cos Q (sin A - tan < tan 9) (A14)

The position vector of a point (_-,_,_) in Cartesian coordinates is given by,

(A15)

The same point may be represented in the curvilinear coordinate system by

(s,y,n). However, since s and y vary along the wing it is more convenient

to choose as independent variables {Sr,Yle,n ) where sr refers to s along

the root chord and Yle refers to y along the wing leading edge. Thus any

point (_,_,z-) may be uniquely described by (Sr,Yle,n). Then the differential

of the position vector on the surface of the wing is given by,

d_ : (_-_dSr+ _)_- 87 _)_
dYle ) 1 + [S,_r ds + dYle ) J

r r Y_le

_z _z
+ (S_-S--ds +

r r _ dYle) _(

A
^

+ h2 ey= hl dSr es dYle (A16)

where hI and h2 are the metric coefficients which relate any point on the

wing (s,y,O) to the independent surface variables {Sr,Yle,O ) From eq. (A16)one may obtain,

hI es =_-_-- l + s_ s_
r r r

h2 e =
Y Y_-_Ie l (A17)

Performing the indicated differentiation gives,
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--( )cosKr
(A18a)

m

5y = 0 (A18b)

_z _ (c) cos Kr
5S r Cr

tan < (AI8c)

and

5x

_Yle
- tanh coSQle coShle

(A19a)

D

5y =

coSQle coSAle

(Al9b)

_)z

_Y Ie
- -tanQ coSQle coShle/COSA

(Al9c)

Thus, the solution of eq. (A17) yields the metric coefficients as,

hI -

C COS
r

cr cos K

(A20)

cos Ale cos Qle

h2 = cos A cos Q
(A21)
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APPENDIX B. DERIVATION OF THE NONORTHOGONALBOUNDARY-LAYER EQUATIONS

With expressions for the unit vectors and metric coefficients in the
curvilinear coordinate system the conservation equations may be derived.
velocity vector is given by,

The

A A ^

: u es + v ey + w en
(B1)

where u, v, and w are the velocity components streamwise, spanwise and
normal to the wing surface, respectively. The substantial derivative of the
velocity vector is therefore,

ou;l)-'_": l_l[ + + e

^ A

Des Dey Di n
+ u ITt--+ v TC- + w iTt--

(B2)

Thus, in order to calculate the derivative of the velocity vector, one must
first determine the derivatives of the curvilinear unit vectors. To obtain a
unit vector along any coordinate line, differentiate the position vector (eq.
(AI5)) with respect to the particular coordinate and divide by its
magnitude. Thus,

e
s

i

½
_J_ B'x 2 B'_ 2 _ 2]

: -,6T-I h1
r

(B3a)

In a similar manner,

ey = _ / h2
(B3b)

Differentiating eq. (B3a) with respect to Yle and eq. (B3b) with respect
to s r yields,
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_Yle _Sr
= _ Chl es) =

_2_

"_r (h2 ey) = _s r i)Yle

(B4)

Then it follows that,

A

_es i)h2 _ey_hI ^ : +

es + hl Y'_le S'_r eY h2 S'_r

Taking the dot product of each term in eq. (B5) with

A

es gives,

(B5)

_ey o 1 _hl _h2

_qr e_=E Cy_3_e-_o_o_qr)

^ d ^
where eq. (A14) was used for the dot product of es an ey.

dot product of each term in eq. (B5} with ey to get,

(B6)

Next, take the

^

_e s

i_y le

1 _h2 _hl

•ey=_ (_qr-cosoy_le)

Differentiating eq. (A14} with respect to

^
^

^ ae ^ _e s _0

• Y + ey • s_T_r= - sin ° s_-_res

Sr yields,

(B7)

(BS)

and using eq. (B6) in eq. (BS} one may obtain,

^

bes . 1

ey=_ [_T_r ("2 cos

Similarily differentiating eq. (A14} with respect to

^
^

^ _)ey ^ _es = _ _0

e_ "Y_-_le+ ey._ _i_o y_-E1_

Yle gives,

(Bg)

(BI0)
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and using eq. (B7) in eq. (BI0) one may obtain,

Y , ^ : 1 _) (h cos 0) - bh2
es _'TI [ Y_le i s_-_-]

r (Bll)

A

Now consider the derivative of es
{q = Sr,Yle,n) which may be written as,

^

_e
S A A ^

= as es + bs ey+ cs en

with respect to some argument, q

{B12)

Taking the dot product of each :erm in the above with es and then taking the

dot product of each term with e will yield expressions for as and bswhich are, Y

^

ae s ,,
bs : csc20 Cq_-_- " ey]

A

Bes ^
as : - cot0 csc0 (q-_-- • ey) (BI3)

Substituting eq. (B13) into eq. (B12) yields,

^ A

ae s ae s ^ ^

= (a-_-- " ey) [-cot 0 csc 0 e s
^

+ csc20 ey] + c s en

A

Following a similar procedure for the derivative of e
Y

^

_e _e .es)[csc2oes_ coto cscoey]+Cyen
= ^

(B14)

it can be shown that,

(B15)

The terms cs and Cy only contribute to the normal momentum equation and

their explicit values need not be determined under the thin boundary-layer
assumption. Using eqs. (B7) and (B9) in eq. (B14) yields,
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A

_)h1

be s : E1 [_s_r (h 2 cosO) - Y_le](-cote cscO es + csc2O ey)

A

+ c s en
(B16a)

^

_)es I _)h2 _hl

: _ [_Tr cosey_y-_ele]CCotecsce^ csc2e ^y)e s + e

^

+ c s en
(B16b)

and using eqs. (B6) and (Bll) in eq. (B15) gives,

^

_e__j_y= I _hl Bh2 2 ^

0Sr T_2 [ Y'_le - cose s_-s-]CCSCr 0 es
cotecsceey)

^

+ Cy en
(B17a)

^

bey

_)Yle

_ 1 _ cosO) - _)h2[_le (hl _T_r](csc2ees- cotecsceey)

+ Cy en

The substantial derivative for steady flow in the curvilinear coordinate

system is given by,

(B17b)

ITE: u_-g+ v +w _)--_

u _ v
m+ W_- E

(B18)

Substituting eqs. (B16) and (BI7) into the above yields,
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A

Des ,, ,, Oes ^

tl_--= K1 u (-COtO es + CSCO ey) + [CS(_l + _-2-2)+ w _-6-] en

v _h2 _hl ^

[ S_ r - COSO y_le]C-cotO es

A

+ cscO ey.) (B19)

and

Dey u _hl Bh2 ^

tTTt--:_--_-TT_ [ Y_le - c°s° s_0T] (csco es - coto ey)r

^

^ ^ _e ^
U V

+ K2 v (cscO es - cotO ey) + [Cy (_I +_22 ) + w n_ ] en
(B20)

where KI and K2 are the geodesic curvatures of the curves Yle = constant,
and sr = constant, respectively, and are given by,

: I ("Z cosO) 8"IK1 h I h 2 sinO - Y_le ]
(B21)

1 _ ()h2

K2 : hI h2 sinO [Y_le (hl cosO) -s_T_r]
(B22)

Using eqs. (B19) and (B20) in eq. (B2) gives the substantial derivative of the

velocity vector as,

AD_ 2 uv] esI_ = [ - KI cotO u2 + K2 cscO v + KI2

+ [ - K2 cotE) v2 + K1 cscE) u2 + K21 uv] ey

^ aey_)es ^

+ [ _+ w (_-n--+_6_--)+ (cs + Cy)(_-I +_-2-2)] en

(B23)

where the parameters K12 and K21 are given by,
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_h I bh 2

I [ _ (i + cos20) - 2 cOSO _T_r]
KI2 hl h2 sin 2E)

(B24)

_ I bh2

K21 hl h2 sin20 [_6_r (I

_h1
+ cos2e) - 2 cosE),,_-c---]

VJle

(B25)

Next, consider the gradient of a scalar, p, which may be written as,

^ ^ A

Vp = Ps es + PY ey + Pn en

(B26)

The differential of a scalar is given by,

dp = vp • dR
(B27)

where the differential of the position vector is,

A A A

dR = hI dsr es + h2 dYle ey + dn en

(B28)

Using eqs. (B26) and (B28) in eq. (B27) yields,

dp = (Pshl + pyhlCOSE)) dsr + (Psh2 c°se + pyh2) dYle + Pndn

(B29)

However, dp may also be written as,

_p bp bp dn

dp =_6_r ds r + y_le dYle +_-_

(B30)

Equating eqs. (B29) and (B30) and solving for Ps and py gives,

csc2E) _p cotO cscO bp (B31a)

csc2E) _p cotE) cscE) Bp

Py =---_-2 _le hI s_ r

(B31b)
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With eq. (B31), eq. (B26) becomes,

cote csco _p

h2 ] es

cote csco _)p ^ _P e
hi s-6-_-r] ey + _ n (B32)

The steady Navier-Stokes and Energy equations written in tensor notation
[14] are (neglecting body forces),

D_ _ij
PITt- = -Vp + x'6R-7-.' i,j,k = 1,2,3

J
(B33)

a [puj H

2
[) uT

-l_-f_ (H -T) - ui _ij ] = 0 (B34)

where H is the total enthalpy, p is the dynamic viscosity coefficient,

Pr is the Prandtl number, uT is the magnitude of the total velocity,

UT2 = u2 + v2 + 2 uv cose
(B35)

and _ij is the stress tensor which is given by,

i)ui _)uj _)uk

J x_Ti ) J (B36)

The boundary-layer assumption is that the boundary layer consists of a

thin viscous layer very close to the surface of the wing [14,29]. Therefore

the variation of the pressure and the unit vectors across the boundary layer

are assummed to be negligible. However, since the velocity components range
from the inviscid values at the outer edge of the boundary layer down to zero

at the wing surface, the velocity gradients normal to the wing are much larger
than those parallel to the surface. Thus, in the viscous and heat-conduction

terms, only the normal derivatives are retained. This produces a parabolic
set of equations which may be solved by a streamwise marching procedure.
Substituting eqs. (B23) and (B32) in eq. (B33) yields for the streamwise
momentum equation,

pu _u pv _)u _)u u2 v2+ KI
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_U
csc20 i)p + cote csce _p + _n {_ _-6}

+ p KI2 uv - _ _ h 2

and for the spanwise momentum equation,

pu _v + pv _v _v cote v 2 + pK csc@ u2
+ PW_- 6 - PK2 i

(B37)

(B38)

Using eq. (BI8) in eq. (B34) gives the energy equation as,

pu 5H + pv _)H + pw BH

2

=

Now consider a line element, d_, which in the tensor notation [30] is given

by,

3 3

d_2 = _ _ gij dxi dxj
i:l j:l

The quantities gij are the components of a covariant tensor of rank two
called the fundamental tensor. The line element may also be written as,

d_ 2 = d_ • d_ = h 2 dSr 2 + h 2I 2

+ 2hlh 2 cos (i)ds

dYle 2

r dYle + dn2

Comparison of eqs. (B40) and (B41) gives the elements of gij,

gij lh h12 hlh22c°sC) il

lh2oC°SC) h20

Therefore, gij
is a symmetric tensor whose determinant is given by,

(B39)

(B40)

(Bal)

(B42)
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Igl = h12 h22 sin20
(B43)

The divergence of a vector V, in a general coordinate system is given in thetensor notation [30] as,

v._= I
vi] , i: 1,2,3 (B44)

where Vi is the contravariant velocity vector,

i vi/g  TT: v ]Tw (B45)

With eqs. (B44) and (B45) the steady continuity equation may be derived,

v • (p_): o

VixT_T [/gp ] : 0
1

(puh2 sin@) + _ (pVhlsinO) + _-n (pWhlh2sine) = 0 (B46)

Equations (B46), (B37), (B38), and (B39) are the governing nonorthogonal
boundary-layer equations for a laminar, compressible flow. To obtain the

governing turbulent equations, the flow variables are defined as the sum of an
average plus a fluctuating quantity and then substituted back into the

original equations which are then time averaged [14]. However, the magnitude

of the fluctuating flow variables is small compared to the average values, and
under the boundary-layer approximation, only the fluctuating quantities which

are multiplied by the normal velocity component need to be retained. This is
because across the boundary layer, the average of the normal velocity

component is of the same order of magnitude as its fluctuating component [14,
29]. Therefore a mass averaged normal velocity component is defined as,

pW = pW +

(B47)

and the governing equations become for a turbulent flow:

continuity equation,

Cpuh2sinE)) + _ (pVhlsinE)) + _n (_ hlh2sin(9) = 0 (B48)
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streamwise momentum equation,

pu 5U + pv 5u

2
-- 5u cotO u2 + pK cscO v

+ pw_-_ - PK I 2

ue 5ue

+ p K12 uv = Pe [_11s_T_r

ve i)ue 2

+ _22 _- KIc0tE) Ue

2

+ K2cscO ve
+ KI2 ue v e] +_n [_ 5u

_ p

spanwise momentum equation,

pu 5v + pv 5v _ 5v v2

ue _ve

+ P K21 uv = Pe [_ii s_Trr

ve 5ve 2

+ K2c°t v 

+ KI CSC0 Ue2 + K21UeVe ] +_n (_ 5v T_-p)_6_-P

2
csce u

(B49}

(B50)

energy equation,

pu 5H + pv 5H + p_ bH

2

=

s (B49) and (B50) the pressure gradient terms have been replaced with
In eq • . ..... _^_it" _radient terms by applying eqs. (B37) and (B38) at
their equlvalent w,u_ j
the edge of the boundary layer.

(B51)
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APPENDIX C. COEFFICIENTS OF THE TRANSFORMED EQUATIONS

The coefficients for the three-dimensional boundary-]ayer equations in
transformed variables are given below. The flow variables without an i

subscript are evaluated at {i) for the predictor step and at (i + I/2) for the
corrector step. The parameter N has the value of one at the predictor step
and two at the corrector step. The terms bm, dm, and em are defined by,

bm : I_j _ml ' dm = lJ_ J_I ' em =leemm_I (CI)

The coefficients for the momentum equations are given by,

am : bj,k_ 1/2/A_k_ I

c m = bj,k+l/2/A_k

bml = bm4 = am
+ cm + (A_ k + A_k_ I) m10 Fj,k/AS r

bm2 = bm3 = 0
{C2)

dml = _ m10 IFj,k+ I - Fj,k_1)/As r

dm2 = _ mlO (Gj,k+ I - Gj,k_l)/As r

dm3 = dm4 = 0
(C3)
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t2 = _ m7 (gj+l,k - gj-l,k )/Ayle

t3 = _ m10 fi,j,k/Asr

t4 a = (tI + t2 + t3 ) * (Fj,k+ 1- F j,k_l )

t4b = (tI + t2 + t3) * IGj,k+ 1 - Gj,k_ I)

t5a = ml0 (A_k + A_k_ 1) Fj,k Fi,j,k/Asr

t5b = ml0 IA_k + A_k_ 1) Fj,k Gi,j,k/Asr

N + A_k_1) Gj (Fj+I,k - Fj_I,k)/AYlet6a = - T m7 (A_k ,k

N (A_k + A_k_l) Gj,k (Gj+I, k - Gj_I,k)/AYle
t6b = - T m7

t7a m2 F2: j,k + m5 Fj,k Gj,k

2

+ m8 Gj,k - mll c2j, k

t7b = m9 F2 + m4 Fjj,k ,k Gj,K

2
+ m3 Gj,k - m12 c2j, k

(C4)

N (Aqk + A_k_l) t7 a
era1 = t4a + t5a + t6a -

em2 = t4b + t5b + t6b -7 -I t7b

(C5)

At the corrector step the em vector has the additional terms,
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eml : eml + cm (Fi,j,k+ I - Fi,j, k) - am (Fi,j, k - Fi,j,k_l)

em2 : em2 + cm (Gi,j,k+ I - am (Gi,j, k - Gi,j,k_ I ) (C6)

For the solution of the energy equation the term f" k means fi+I/2,j,k at
the predictor step and fi+l,j,k at the corrector _ep. The energy equation
coefficients are defined by,

ae = aI /
j,k- I/2 A_k-I

ce = oI . /
J, k+ I/2 Ank

be : ae + ce + ml0 (A_ k + A_k_l) Fj,k/AS r (C7)

t9 : ml0 (fj,k - fi,j,k)/Asr

N
tl0 : 7[ m7 (gj+l,k - gj_l,k)/Ayle

tll : [t8 + t9 + tl0) * (Ej,k+ 1 - Ej,k_l)

N

t12 : - T m7 Gj,k (ATIk + A_k_ 1)(Ej+I, k - Ej-I,k)/AYle

t13 : N o4j,k_1/2 (Fj,k_ 1 _ Fj,k)/A_ik_l

t14 : N 04. _ Fj,k)/AT)kj,k+ i/2 (FJ,k+1
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x

X-Xle
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Figure i. Nonorthogonal curvilinear coordinate system.
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%

eyo

= constant line

Figure 2. Definition of the spanwise unit

_J

vector.
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• • known point

O_ unknown point

I
Z_

(i,j,k)

(i,j-l,k)--" J'

4

(i,j+1 ,k)

8

(i+½,j,k)
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Figure 4. Planform of the NACA 0012 wing.
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Figure 5. Pressure coefficient distributions for the NACA 0012 wing,
M= : 0.85.
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Figure 6. Planform of the ONERA M6 wing (ref. 22).
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Figure 7. Pressure coefficient distribution for the M6 wing, M = 0.699.
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Figure 9.
Locations of velocity crossover on the upper surface of the
M6 wing, M = 0.699.
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Figure ii. Locations of velocity crossover on the upper surface of the
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Figure 12. Planform of the DAC wing (ref. 23).
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Figure 15. Skin-friction coefficient distribution for the DAC wing, M= = 0.5.
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Figure 16. Streamwise velocity integral thickness distribution for the
DAC wing, M= = 0.5.
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Figure 18.
Locations of velocity crossover on the upper surface of the

DAC wing, M = 0,5.
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Figure 19.- Inviscid and viscous streamlines for the DAC wing, M® : 0.5.
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Figure 20. Upper surface pressure coefficient distribution for the DAC wing,
M = 0.825.
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Figure 21. Inviscid flow-d_rection angle for the DAC wing, M® = 0.825.
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Figure 22. Skin-friction coefficient distribution for the DAC wing,
M® = 0.825.
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Figure 24. Locations of velocity crossover on the upper surface of the

DAC wing, M = 0.825.
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