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SUMMARY

A three-dimensional laminar and turbulent boundary-layer method is devel-
oped for compressible flow over swept wings. The governing equations and cur-
vature terms are derived in detail for a nonorthogonal, curvilinear coordi-
nate system. Reynolds shear-stress terms are modeled by the Cebeci-Smith
eddy-viscosity formulation. The governing equations are descritized using the
second-order accurate, predictor-corrector finite-difference technique of
Matsuno, which has the advantage that the crossflow difference formulas are
formed independent of the sign of the crossflow velocity component.

The method is coupled with a full potential wing-body inviscid code
(FLO-30) and the inviscid-viscous interaction is performed by updating the
original wing surface with the viscous displacement surface calculated by the
boundary-layer code. The number of these "global" iterations ranged from five
to twelve depending on the Mach number, sweep angle, and angle of attack.
Several test cases are computed by this method and the results are compared
with another inviscid-viscous interaction method (TAWFIVE) and with
experimental data.
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parameters in eq. (B12)
parameter defined by eq. (8b)
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parameters defined by eq. (32)
chord length,

Xte ~ X9

skin-friction coefficients, egs. (80), (81)

e

local skin-friction coefficient, eq. (91)

pressure coefficient, C, = 2(p - pw)/pwum2

differential line element, egs. (B40), (B41)

substantial derivative, eq. (B18)
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P pressure
PssPysPp parameters in eq. (B26)
Pr Prandt1 number, Pr = (.72
Prt turbulent Prandtl number, Prt = 0.90
q dummy argument, eq. (B12)
R position vector, eq. (Al5)
Re local Reynolds number, Re = ues/ve
S,y,n nonorthogonal curvilinear coordinates
t1-tyy coefficients defined by eqs. (C4), (C8)
T temperature
U,v,w curvilinear velocity components
U,V,W Cartesian velocity components
Upef constant reference velocity
ut magnitude of total velocity, eq. (B35)
ou dv
- freestream velocity
v velocity vector, eq. (B1)
Vi contravariant velocity vector, eq. (B45)
X, ¥,2 Cartesian (orthogonal) coordinates
Y fraction of semispan
Be inviscid yaw-plane inclination angle, eq. (92)
By limiting streamline angle, eq. (82)
By~ Bg parameters defined by eq. (35)
Y- Ve parameters defined by eq. (59)
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vectors defined by eq. (39)

Kronecker delta

central difference operators, eqs. (63), (64)
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angle defined by eq. (A3)

central difference operators, €gs. (65), (66)
three-dimensional displacement surface, eq. (86)
vector gradient operator, eq. (A5)

backward difference operator, €q. (68)
eddy-viscosity coefficient, eq. (7)

vectors defined by eq. (36)

transformed normal coordinate, eqs. (23), (49)
angle between s- and y-coordinate lines

wing cross-section angle

taper ratio

wing sweep angle, eq. (A2)

dynamic viscosity coefficient

kinematic viscosity coefficient

constant chord line, eq. (Al)

density

Reynolds stresses, eq. (6)

coefficients defined by eq. (34)

du oV
13 n? 24 n

stress tensor, eq. (B36)
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o,¢ stream functions, eqs. (24), (44), (52)

Q angle defined by eq. (Al3)
Subscripts

e edge of the boundary layer
i inner

i,J,k mesh point location, eq. (62)
le leading edge

0 outer

r root chord

te trailing edge

T total

W wall

0 Z =0 plane

® freestream conditions



INTRODUCTION

To obtain accurate flow field calculations over wings and wing-body
combinations, the effects of viscosity must be accounted for in the
solution. This may be accomplished by either solving some form of the Navier-
Stokes equations or by interacting an inviscid code with a viscous boundary-
layer method. The solution of the three-dimensional Navier-Stokes equations
requires extremely large computer storage in order to resolve the various
length scales and thus, also requires very long calculation run times.
Therefore a great deal of attention has been focused on the more economical
inviscid-viscous interaction procedure.

The interaction is performed by updating the inviscid solution by either
a displacement surface or transpiration velocity component calculated by the
boundary-layer code and then rerunning the inviscid code. This procedure is
repeated until successive viscous updates are less than some specified
tolerance. The methods of Streett [1] and McLean and Randall [2] interact a
full potential inviscid code with a three-dimensional boundary-layer method by
use of the displacement surface. A code in which the interaction is performed
by the transpiration velocity component was developed by Wai, et al. [3].
Each of these methods requires the solution of some form of the three-
dimensional boundary-layer equations.

Streett [1] and Wai [3] chose to solve the boundary-layer equations in
the integral form, where the governing partial differential equations have
been integrated in the normal direction. Swafford and Whitfield [4] developed
a time-dependent integral method for the three-dimensional boundary-layer
equations but did not perform the inviscid-viscous interaction. A drawback of
the integral approach is that one must choose, a priori, the shape of the
velocity profiles. For example, in Streett's method the crossflow velocity
profile cannot predict a crossflow profile with velocity crossover, a
situation which occurs quite often for three-dimensional flows. Also,
integral methods are generally less flexible than differential methods.

The method of McLean and Randall [2] solves the boundary-layer equations
in the differential form for a body-oriented curvilinear coordinate system.
However, the coordinate system they used is orthogonal with one surface
coordinate along the constant chord lines and the other perpendicular to
them. This type of coordinate system requires a large clustering of grid
points in the trailing edge region to resolve the outboard portion of a swept
and tapered wing. Further, the wing root- and tip-chord lines do not Tlie
along grid lines so the solution may not be determined along these lines. The
use of a nonorthogonal coordinate system alleviates these problems.

Viscous methods which solve the three-dimensional boundary-layer equa-
tions in a nonorthogonal coordinate system have been developed by Cebeci,
et al. [5], Matsuno [6], and Van Dalsem and Steger [7]. However, none of
these methods were interacted with an inviscid code. In this paper, a three-
dimensional laminar and turbulent boundary-layer method is developed for
compressible flow over arbitrary swept wings and coupled to a full potential
inviscid code through a displacement surface calculation. The inviscid
solution procedure used to drive the boundary-layer method is the FLO-30 code



developed by Caughey and Jameson [8] which solves the full-potential equation
in a conservative, finite-volume form for flow over wing-fuselage combin-
ations. The wake is treated as a contact discontinuity across which the
pressure is continuous but the tangential velocity component is discontinuous.
This inviscid code was also employed by Streett [1,9] to interact with an
integral boundary-layer method to develop a code called TAWFIVE and further
details of the procedure are provided in references 8 and 9.

For the present method, viscous effects are only determined on the wing.
The inviscid-viscous interaction is performed by running the inviscid code and
using the inviscid velocity distribution to drive the boundary-layer code.
The viscous displacement surface calculated by the boundary-layer code is
added to the original wing surface and the inviscid solution is then deter-
mined for the new wing surface (wing plus displacement thickness). The dis-
placement surface updates are slightly under-relaxed to minimize oscillations.
The number of these "global" iterations varied from about five to twelve
depending on the Mach number, sweep angle, and angle of attack.

GOVERNING BOUNDARY-LAYER EQUATIONS

The nonorthogonal curvilinear coordinate system is illustrated in figures
1 and 2 and the unit vectors and metric coeffifients for this body-oriented
system are derived in Appendix A. The independent surface variables are Sy
and yje where s. refers to s measured along the root-chord line and
yje refers to y measured along the wing leading edge. The angle 6
is the angle between the s- and y-coordinate lines. The three-dimensional
laminar and turbulent boundary-layer equations are derived in detail for this
coordinate system in Appendix B. For convenience, they are simply listed here
as:

continuity equation,

d . d : J— Lo
EE: (puh251n9) + By?; (pvhls1ne) + Eﬁ'(pw h1h251ne) =0 (1)

streamwise momentum equation,
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e e e e 2
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spanwise momentum equation,

— 0V 2 2
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u, ov Vo ave 2
+ p K21UV = pe [-rl-FS— *ﬁ;gy—]—e— - chote Ve

2 0 ov ——
+ K, csco u,” K21ueve] + (p PV ) (3)
energy equation,
pu dH  pv oH | = dH
LN Y oW =x—
AHI Sy “E Ve n
" 2
_d p OH 1 0 T
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where hy and hp are the metric coefficients, Ky and Kp are the
geodesic curvatures of the curves Yie = constant and S, = constant,
respectively, and Ky, and Kpy are geometric parameters which are functions
of the metric coefficients and geodesic curvatures. Their explicit values are
provided in the Appendices.

The boundary conditions on the above equations are:

= = = = bH = =
n=0 , u=v=w=0 Cgﬁ) 0 or T=1T
n=« , UuU=1U , V=V , H=H (5)

In order to close the system of equations, some assumptions for the
Reynolds stresses must be made. For the present study, the Cebeci-Smith [10]
eddy-viscosity model is employed. This relates the turbulent stresses to the
mean velocity and total enthalpy profiles by,

—_—— _ ou ——r _ ov
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where Prt is the turbulent Prandt] number and the eddy-viscosity coefficient
is defined in the inner layer by [5],

2 2 s
(o) = I + 29 + 2 coso (3 9] (7a)

and in the outer layer by [51,

(e,) = o0.0168 |/ (upg - up) dn | (7b)
0 0
where,
L =040 [1-e(n/A) (8a)
A= 26 v (.Ti.)l/? (8b)
Tw
2 2 L,
fra =y () + GF) + 2 coso ) () ] (8c)

In order to solve eqs. (1)-(4) an inviscid solution has to be provided,
either by an inviscid code or experiment, and both initial and side boundary
conditions must be determined since the equations are of the parabolic type.
The initial conditions will be the flow along the attachment line of the wing
and the side boundaries will be the flow along the root- and tip-chord
lines. For the flow along the wing tip an infinite swept wing assumption is
made whereby the flow variables are assumed to be independent of the spanwise
coordinate. Therefore, along the wing tip the governing equations reduce to:

continuity equation,
2_ (puh, sino) + 0 (pw h.h, sino) = 0 (9)
asr 2 °n 172

streamwise momentum equation,

%ﬂ.gg. + BW.§% - p Ky coto W+ p K, csce N Ky, uv
1 7r

]
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e 2 2
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pu ov — dv 2 2
hl Y oW = pK2 coto v+ pK1 cscoO u- + K21uv
u_ ov
_ e e 2 2
= pe[ﬁI'BE; - chot@ Vo F Ky cscO u, * Koy ueve]
0
+ 3 (p - W) (11)

energy equation,

2
pu OH — dH _ 0 g OH 1 o} T
T\‘l'és—r+prn’Bﬁ[PTﬁ+“(l - o) & ()

- owH7] (12)

The boundary conditions for the infinite-swept-wing equations are the same as
those given for the general equations.

The root chord line of the wing is assumed to be a line of symmetry where
the spanwise derivatives of all the flow variables except v are zero. Along
this line v = 0, and to the boundary-layer approximation, the spanwise
momentum equation is singular. However, differentiating the spanwise momentum
equation with respect to Y¥je yields a nonsingular equation. Therefore,

along the root-chord line theé governing equations become:

continuity equation,

d . . — o

33;-(puh251n9) +p h1 sinod vy + Bﬁ'(pw hlh2 sing) = 0 (13)
streamwise momentum equation,

u_du

pu du — du 2 _ e e 2

o+ ow _ oK, coto u =p, [ - K, cot® u. ]

hy oS . o 1 e FE'BE: 1 e

0 d

+ o (ugr - P TW) (14)
spanwise momentum equation,
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u_ ov v
- e ye ye 29
2 av‘y
EVE LY 4

+Fn-[p.-b-r-]-—-p(VW)y] (15)

energy equation,
2
pu dH — OH _ d p OH 1,98 ,u i i
ﬁ;&:+pw’6'ﬁ—"6'ﬁ[]5?3?+p(l'rf)’é_ﬁ(2_)-pw ] (16)

where v, means the derivative of vV with respect to Y1e. The boundary
conditions for the above equations are:

n=0 ,u=v =w=0 |, (g%) =0

n=eo .  y=y s V. =V s, H=H (17)

The initial conditions are obtained by applying eqs. (1)-(4) along the
attachment line of the wing. However, along the attachment line, u = 0, and
to the boundary-layer approximation, the streamwise momentum equation is
singular. It is therefore necessary to differentiate it with respect to s,
to obtain a nonsingular equation. Thus, along the attachment line the
governing equations become:

continuity equation,
oh,sino u_ + 2 (pvh,sino) + 0 (ow h.h, sino) = 0 (18)
2 s Ey]e 1 an 172

streamwise momentum equation,

2
pu L PV aus ___aus 2

S )
—FI_ ﬁ; ay]e + ow 5t eV 5§: (K2 cscoO) + p K12 ug v

u v ou
_ se e se 29
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spanwise momentum equation,

v_dv
pv Ov +—bv 2 _ e e 2
5w ¥ _ ok, cote vE = p, [ - K, coto v “]
fy BYye on 2 e 'y Byy, 2 e
0 0
+.6.ﬁ[p.6_;l.].-pW] (20)
energy equation,
pv dH — dH _d p OH 1 ) v2
W, 3, e M () g () - e W (21)
e
where ug means the derivative of u with respect to s,.. The boundary
conditions for the attachment-line equations are:
_ _ _ _ oH
n=0 , Ug=V=W* 0o, (Eﬁ)w = 0
n=e U U s VEV, H = He (22)

TRANSFORMATION OF THE GOVERNING EQUATIONS

Before proceeding to descritize the governing three-dimensional boundary-
Jayer equations, it is convenient to introduce a non-dimensional parameter
which scales the growth of the boundary layer. A variable mn is defined by

the transformation,

1

eyt ;"
n = o< —dn , S = h, ds (23)

VeST o Pe o 1 r

Two stream functions are also defined by,
.~ _ 0 . . _ 0b
puh251ne = w s pvhls1ne = s
(24)

_ YY)
pw hh, sin® = - LEE; + 3;;;)



which automatically satisfies the continuity equation. In addition, the
parameters f(sr,y]e,n) and g(sr,y]e,n) are defined by the relations,

- /2 .
¢ = (pe Bo Ug sf h, sine f (25)
1
Pe Pe s 72 .
¢ = (__TC;—-_) Unop Ny STnE g (26)

where u..¢ is a constant (usually chosen as the freestream velocity, u_).
Using egs. (23), (25), and (26) in eq. (24) yields,

3__ df (27)

(28)

With egs. (23)-(28), the governing three-dimensional boundary-layer equations
become:

streamwise momentum equation,

d dF dF dg oF dF
GRS TR By 5~ Gy
of oF oF _ 2 2
tm, (63: 5 - F 6?:) =m, F" 4+ m. FG + mg G° - my <, (29)
spanwise momentum equation,
d 26 3G dg a6 36
3 0 am] * oy gty (53— w0 Sy
le Te
of G oG y _ 2 2
g (BE: - F 3?:) =My FT+m FG +m G M, €, (30)
energy equation,
d dE dF dg dF dE
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where,

L T.ﬂam- F o

of BE %E ), 2 [o )42 [4 37, (31)
r

H (]} nm
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ﬂM L Pake 2 p
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The coefficients my-mjp are given by,

1 S 00 1 o:w
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m =B3+BIB4+5(-K coto + K 0 B2+ K )
h 1 ©° p €SCO By 12 P1

11 Hl
B B,B
) 176 |, s 2
m12 = .F'T + 1_2_ + BE (_KZ coto ﬁl + K1 csSco + K21 Bl) (33)

and the coefficients o1-0g are defined as,

c
g, = 1 (1 + e+
1 Pr m Prt

G =M frmgg

2
G. = Cl ue (1 _ 1 )
3 _H;—__ Pr
9y = O3 (F + G coso BZ)
o = 95 B, (G B, + F coso) (34)

where B;-Bg are the inviscid parameters,

v u
f
B o By = =1
e e
B =i_.ak B =S_au—e
3 ug asr 4 Ug ay1e
B = S bﬁ B = S ave
5 Uref 6Sr 6 Uref ayle
s 9 S 0
B, = —— (p u.) Bg = == mv— (P 1,) (35)
7 Pete 6§:. €e 8 Pelle Wy €€
Next, define the vectors Z and T by,
z=[5) o= (] (36)

Then, using eq. (36), eqs. (27) and (28) may be combined and rewritten as the
vector equation,
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Also, eqs. (29) and (30) may be combined and written as,

d 2z oz dg aZ Y4

'ﬁ[“ﬁ]+%6ﬁ+%(wgsﬁ'“wg)

of dZ 3L |\ _ 2 2
+my (55: 3 " F-sg;) =T FO+T, FG + T467 - T, G

where,
m m m

2 5 8 11

F1= [ ] ’ Pz = [m ] ’ F3 = [m ] s F4 - [ ]

The boundary conditions for eqs. (37) and (38) are,
_ R dEy _
n=0 :2=¢=[] ., Cgﬁ)w 0
memgrZ=l, 1 . E=1
e “ref
Along the wing tip the spanwise derivatives of the flow variables are

equal to zero. Thus, the inviscid and geometric terms which are different
from the general three-dimensional case are:

By = Bg = Bg = 0

mg = s Kyp By
8 ah
2 1 0s 00 1 1
m. = [ +s (cot® xo— + 3———)]
6 ﬁé z 6y}e Y1e HI Ye
m,, = 53 +s (- K, coto + K, cscoO B 2, K.n, B;)
11 ~ h, 1 2 1 12 "1

B
.5 .S 2
m o —-ﬁI +-EE (- K2 coto Bl + K1 csco + Kyy Bl)

and the governing equations reduce to,

(37)

(38)

(39)

(40)

set

(41)
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) (YA oz of dZ o7
ﬁ“sﬂ*%aﬁmm%qﬁ'FEﬁ

2 2

=T F" +T,FG+r; 6 - Ty G (42)
0 3 ok of dE ot
SHMB#*%mﬂmm%gﬁ'Faﬂ
d oF, . @ 3Gy _
" ow L% ) o [o5 5] = 0 (43)

The boundary conditions for the above are the same as those given by
eq. (40).

For the flow along the root-chord line, the same transformation as that
used for the general case will be employed. However, the stream functions are
defined in a slightly different manner,

. ¥ . _ 0 — e o¢
puh,sing = 2 | ph, sine Vy =3 s PW hihpsine = - (BE_ + ¢) (44)

r

so that eq. (13) is satisfied identically. Using egs. (23), (25) and (26) in
the above yields the velocity profiles for the flow along the root-chord line,

u of
— = = F (45)
Ug M

v

y . 9g_ G (46)
uref Bn

The governing equations along the root-chord line may be written as egs. (42)
and (43) provided that,

my = s By/h,
m5 = Mg = 0
Mg = My
m, =352 (K, csco)
9 B, dy 1
2 le
My =M
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ov v
_ s 1 ye 1 ‘ye 6]
m [ + + K, v, *ou (K, csco)]
12 U of ﬁ; Bsr ﬁ; Ug 21 “ye e Sy]e 1
o4=c3F
o = 0 (47)
where the boundary conditions are now given by,
- . _r - 10 d3Ey _
n=0 . Z1=2g [0] ’ (ﬁ)w-o
n=n, o 2= TREELAE (48)
ye' “ref

Along the attachment line of the wing both s and u, are zero. There-
fore, the governing attachment-1line equations are transformed by defining n
as,

u %@ n
L R (49)
e 1 0 e

and ¢ and ¢ are now given by,

¢=(p. w u_nh %@Yl sino f (50)
e "e "se 1 2
1
pe“ehl ‘e X
6 = ( = ) U.op Ny STN0 9 (51)

se

For the flow along the attachment line the stream functions must satisfy the
relations,

. _ ¢ : _ 0b
phzs1ne Ue = 3p pvhls1ne =37 °

—_ . 0
pw hyh, sin® = - (¢ + _B§Tg (52)

Using eqs. (49)-(51) in eq. (52) yields the velocity profiles for the flow
along the attachment line as,
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With

the above, the governing (laminar) attachment-line equations become,

)

=T
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B
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le

The boundary conditions for the attachment-line equations are the same as
those for the general case.

given by,
m1 = m2 =1
m3 = - h1 K2 72 coto
m, = mg = 0
Y273
" T ke,
h
_ 1 20
m6 = Yz [ﬁ- COter—"’
2 le
oM
7 h2
_ 22
mg = hlyz 35: (K2 csco)
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The inviscid and geometry coefficients are now
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2
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where the terms Yy - Yg are,

_le _ ref
1 Use g Use
. - h1 buse [ - h1 bve
—_— , = mo—
3 Use ay]e 4 Upef Ve
h
1 o
= 59
's Pele 6y;g (pepé) (59)

Applying the transformation given by eqs. (23)-(28) to the eddy-viscosity
formulas given by eq. (7) yields,

v 0
(e;) L;S) /Re %E [0.4 ¢, dn]2 [1 - exp (—-%)]2
0

i

2 2 1y
0 dF 2G
*{(%Eﬁ) + B22 (_&G_]_) + 2 BZ coso Fﬁ 56?1'] (603)

\Y

N
() = () /e (0.0168)|f ¢, V1% B, + 28 cosO
0
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R (8,6)° + 2 B, coso FG ] dn| (60b)

where Re is a local Reynolds number and,

- (58 e () R ey i G+ a7 (28

n
A w €2 \7p L LI

Y,
oF ) (ae) ]4

+ 2 B, cose (Bﬁ' (61)

w w

accurate p{edigtqr-qorrector schemg originally developed by Matsuno [6]. The

The notation Zi,j,k =7 (sri’ylej’"k) is employed, where,

S =S +As s 1 =1,2,...IMAX
"iv1 Ty "
y =y + Ay s J=1,2,...JMAX
1ej+1 1ej le
el = Mt An, R k = 1,2,...KMAX (62)

A coordinate stretching procedure developed by Blottner [12] is used in the
normal direction so that the mesh is clustered near the surface of the wing.
Central difference operators are defined by the relations,

6 Z- - = (Z'i,‘],k"'l - Zi,j,k-l)/(Ank + Ank_l) (63)

(e
N
{

= (Zi,j+l,k - Zi,j-l,k)/ZAy1e (64)
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and a backward difference operator for the predictor step by,

¢ Ly g T 2 (el g0 B0y

v

where,

+b

f

Applying the above operations at the predictor step to egs. (37), (38), a

(31) they become, respectively:

D.J ﬂd+ H\N .u.url H\N ) N._+ H\N um._uf| H\m

S T R K LI MM B R AU
+my (8, 95, 3,k8n Zi,5,k ~ Ci,d.k Oy 25,50
+ 5 7. . - F. . v

BHO h‘Qm *.._+H\N ouu—n n ._uuux ._uuo_a S N4+H\N -u.u—nu

2

2
ﬁqwﬂ + T, FG + Ty 6" - Ty S5 5.k

(65)

(66)

(67)

(68)

(69)

(70)

(71)
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+ 8 lo

n L% =0 (75)

A G, .
ilp gk 1T
The inviscid and geometry parameters are evaluated at the (i+1/2 j) station
for both the predictor and corrector steps. After performing thé indicated
operations, egs. (70)-(75) may be written as a set of linear algebraic
equations,

Ank—l .
T R Zj k-1) (76)
- 4 Zj,k-l * bm Zj,k ~ Zj,k+1 * dm Cj,k € (77)

E

b Ejy = Ce Eyke1 ~ e (78)

% j,k-1 *
where 35, Cps e bes Ces and do are scalars, bp and dy are 2 by 2
coefficient matricies and ep is a vector. Their values are provided in
Appendix C. Equations (76) and (77) are block tridiagonal equations and

can be solved using a block form of the Davis modified tridiagonal algorthim
[13]. Equation (78) is a linear tridiagonal equation and may be solved by the
Thomas algorithm [14]. '

The infinite-swept-wing equations, root-chord line equations and
attachment-line equations may each be written in the form of egs. (76)-(78).
They produce a set of coefficients which are subsets of the ones given in
Appendix C so their values are not listed here.

The character of the three-dimensional boundary-layer equations was shown
by Raetz [15] to be of a parabolic nature with secondary hyperbolic-like
properties. This Jed Raetz to formulate the well-known zones of influence and
dependence concept. The concept simply stated is that a disturbance at a
point p 1S instantly felt by all points on a vertical line passing through
p and then convected downstream along all streamlines passing through that
point. Since the direction of the streamlines varies across the boundary
layer, it is possible to identify the regions of inf luence and dependence of a
particular point. The effect of the zone of dependence on the numerical
calculations is to limit the allowable marching step size. Before the
solution can be advanced from one streamwise plane to the next, the maximum
step size must be determined from the relation [16],

h

- 2

As. < Minimum {Ay u } (79)
ke TRy

For the present method, the spanwise step size is chosen to be a constant and
the marching step size is calculated along with the viscous solution. The

solution begins at the root-chord of the wing and proceeds spanwise, along the
attachment line, from the root to the tip using the attachment-1line equations.
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With an initial solution thus provided, the fully three-dimensional equations
are marched streamwise from the attachment line, around the leading edge, to
the upper surface trailing edge, and then from the attachment line to the
Tower surface trailing edge. The solution along the root- and tip-chord 1lines
is obtained in the same manner by solving the root-chord line equations and
infinite-swept-wing equations, respectively, and provides the side boundary
conditions for the three-dimensiona?l equations.,

BOUNDARY-LAYER PARAMETERS
When the viscous solution has been determined, skin-friction coeffi-
cients, inviscid and viscous streamlines, and the three-dimensional displace-
ment surface are calculated. A streamwise skin-friction coefficient is
defined by,

2 T

= —, (80b)

Using the transformation given by eqs. (23)-(28) the skin-friction coef -
ficients become,

2c P u
1w (Te e oF
Ce = —" (59 ) (@) (812)
fs 5 Py U N W
2¢ P. U_ u
lw e e “ref 96
Cc = () (—=2) (32) (81b)
fy YRe P u on W

The limiting streamline angle, B,, is defined as

_ -1
B, = tan (CTc /Ce ) (82)
y s
Therefore, the equation for the surface streamlines in the (s,y)-plane is
given by

(§) - tang, (83a)
w
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so that in the (x,y)-plane the above becomes

dyy _ [CcOosQ cosA
(&) = [ tan 8, (83b)
dx W

A streamwise and a spanwise velocity integral thickness are defined as,

w

*
5 = [ (1 --P4) dn (84a)
S 0 peue
5 jm 1--2")d (84b)
= - n 4
y 0 peve

In transformed coordinates the velocity integral thicknesses become,

* s e

5 = — [IO c,dn - f(ne)] (85a)
* n u

8 =S [[®c,dn-— g (n)] (85b)
Y /me o 2 Ve €

The three-dimensional displacement surface, A*, was defined by Moore [17] to
be the solution of the equation,

®©

> * > >
v . [pe Ve A - Io (pe Ve - pV) dn] = 0
d . Xk
35, [pe u, h, sin © (A - 65)]
d . * * _
+ TP [pe Ve h1 sin © (Ao - 6y)] =0 (86)

le

When the displacement surface has been calculated for both the upper and lower
surfaces of the wing, a new wing surface is defined by adding the displacement
surface to the original wing coordinates, and the jnviscid solution is then
determined for the new wing surface. The displacement surface is not
smoothed, but is slightly under-relaxed during the first few viscous updates.
This procedure (global jteration) is repeated until the viscous updates are
less than some user-specified tolerance. On the plane of symmetry the
boundary-layer parameters are given by,

C, = zclw(fz) cey (& (87a)
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and along the attachment line they are given by,
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DISCUSSION OF RESULTS

(87b)

(88a)

(88b)

(89a)

(89b)

(90a)

(90b)

The inviscid solution is determined on a grid which consists of 160 grid
points in the streamwise direction, 32 points spanwise and 24 points normal to
the wing-fuselage surface. For the viscous solution a total of 110 streamwise
and 31 spanwise grid points are used for both the upper and lower surfaces of
the wing. The number of grid points across the boundary layer varies from 26
at the attachment line to about 75 at the trailing edge. Each of the

calculations presented here was performed on a Gould PN 9005 computer which

has an operating speed of 0.8 MFLOPS.

As a test case for the present method, a solution was calculated for flow

over a swept and tapered wing attached to a cylindrical fuselage.
has a aspect ratio of eight and a NACA 0012 cross-section, without twist.

The wing

The

planform is given in figure 4 and has a taper ratio of 0.5 and a leading-edge
sweep angle of 20 degrees. The solution was determined for a Mach number of

Me = 0.85 with the wing at an angle of attack of two degrees and a Reynolds
The results of

o o » . »
number based on the mean aerodynamic chord of nine million.
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the present method are compared to those obtained using the TAWFIVE computer
code developed by Streett and Melson [9], and to the inviscid results from
FLO-30. For simplicity, the present method will henceforth be referred to by
the acronym TIBLT (for Transonic Interactive Boundary-Layer Theory).

In order to directly compare the two inviscid-viscous interaction
methods, the boundary layer was assumed to transition from laminar to
turbulent flow at the first marching step beyond the attachment line. Both
methods employ
FL0O-30 as the inviscid solver, but the viscous routine in TAWFIVE 1is an
integral method while TIBLT solves the boundary-layer equations in the
differential form. Twelve viscous updates were performed by both interaction
methods and the number of inviscid iterations was the same for all three
calculations.

Figure 5 compares the streamwise distribution of the pressure coefficient
determined by the three calculation methods. The effect of the boundary layer
moves the location of the upper surface shock wave towards the leading edge,
reduces the strength of the shock, and decreases the static pressures in the
trailing-edge region. The location of the shock wave moves forward as the
wing tip is approached and near the tip the shock location is nearly identical
for both of the interaction methods. This may be due to the fact that both
methods make an infinite-swept-wing assumption at the wing tip. Due to the
location of the shock wave, upper surface boundary layer separation was
predicted at £ = 0.505 for the TAWFIVE calculation and at & = 0.510 for TIBLT.

The determination of boundary layer separation is different for the two
interaction methods. Since TAWFIVE is an integral boundary-layer method, the
criterion for separation is when the compressible shape factor reaches a
critical value of 2.8 [9]. On the other hand, in TIBLT separation is indi-
cated when the streamwise skin-friction coefficient goes through zero.
Neither criteria can be said to be the absolute definition of three-
dimensional boundary-layer separation, however, they may be thought of as
indicators that separation is imminent [18-21]. When separation is
encountered in the TIBLT calculation the displacement surface is calculated
from the separation line to the trailing edge by assuming the terms in the
brackets in eq. (85) to be constant and equal to their values at separation.
The 1ift and drag coefficients computed by each of the calculation methods is
presented in table 1. Both the 1ift and drag were slightly larger for the
TIBLT calculation than for the TAWFIVE calculation.

Table 1- Lift and Drag Coefficients for NACA 0012 Wing

FLO-30 TAWFIVE TIBLT
CL 0.302 0.248 0.275
Cp 0.0172 0.0175 0.0181
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As a further test for TIBLT, a subcritical and a supercritical Mach
number solution were calculated for the ONERA M6 wing for which experimental
results are available [22]. 1In both cases the angle of attack was 3.06
degrees and the freestream Reynolds number was 11.7 million, based on the mean
aerodynamic chord. The M6 wing has an aspect ratio of 3.8, a taper ratio of
0.56, and a leading edge sweep angle of 30 degrees. The planform is shown in
figure 6. The subcritical Mach number was M_ = 0.699 and a comparison of
the streamwise distribution of the pressure coefficient determined by TIBLT
and TAWFIVE with the experiment of reference 22 is given in figure 7. Viscous
effects are moderate for this case and both interaction methods compare
favorably with the measured values.

Five viscous updates were performed by both interaction methods. The
computer run time for the TAWFIVE calculation was 5.64 CPU-hours while the run
time for the TIBLT calculation was 21.87 CPU-hours, approximately 3.9 times
that of TAWFIVE. This difference may be accounted for by noting that in the
integral method the shape of the velocity profiles is assumed a priori, while
in the differential method they are determined as part of the solution. The
additional calculations performed across the boundary layer at each marching
step for the differential method results in the longer run times.

Typical velocity and total enthalpy profiles from the TIBLT calculation
are provided in figure 8. The spanwise velocity profile exhibits velocity
crossover; the velocity component is positive near the wing surface and
negative at the edge of the boundary layer. This type of velocity profile can
not be modeled by the TAWFIVE code, nor by most integral methods and illus-
trates an advantage of differential methods over integral methods. The
locations where this type of spanwise profile occurs on the upper surface of
the wing is shown in figure 9. The dark triangles in the figure are the
places where the spanwise profile exhibits velocity crossover. The majority
of the spanwise profiles along the root chord line have velocity crossover.
The chordwise extent of this type of profile diminishes as the wing tip is
approached, and the locations are concentrated near the trailing edge.

The supercritical solution was for a freestream Mach number of M@ = 0.84
and a comparison of the streamwise distribution of the pressure coefficient is
presented in figure 10. Both interaction methods predict a weaker shock wave
than the experiment and the computed locations of the shock are slightly
forward of the experimentally observed location. The TIBLT code predicted a
shock location somewhat closer to the experiment than the TAWFIVE code, except
near the wing tip where, as in the NACA 0012 solution, the shock location is
nearly identical for both interaction methods. Surprisingly, the TAWFIVE code
predicted upper surface boundary-layer separation at & = 0.209, while no
separation was predicted by the TIBLT code nor was there any indication of
separation in the experiment.

Ten viscous updates were performed by both interaction methods and the
computer run times were 7.82 and 44.53 CPU-hours for the TAWFIVE and TIBLT
codes, respectively. Figure 11 shows the locations where the spanwise
velocity profile has velocity crossover for the upper surface of the wing.
Figure 11 is very similar to figure 9 except that the chordwise extent of the
crossover profiles is smaller for the higher Mach number case. The angle of
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attack and the Reynolds number were the same for both cases, thus the
effect of increasing the Mach number does not change the distribution of the
crossover profiles but does reduce the number of such profiles.

The present method was also applied to a Douglas Aircraft Company (DAC)
wing-fuselage semispan model which was tested by Spaid and Roos [23,24] at the
NASA-Ames Research Center 14-Foot Transonic Wind Tunnel. The wing has an
aspect ratio of 6.8, a taper ratio of 0.3 and a quarter-chord sweep angle of
35 degrees. It employs 11.71 degrees of twist and the planform is shown in
figure 12. Two experiments were conducted. The first was for a subcritical
Mach number of M_ = 0.5, an angle of attack of six degrees, and a Reynolds
number based on the mean aerodynamic chord of 3.4 million. The second test
was for a Mach number of M_ = 0.825, an angle of attack of four degrees, and a
Reynolds number of 4.5 mi1Tion. A total of 378 static pressure orifices were
located at nine spanwise stations on the primary wing. An auxiliary wing with
a two-degree-of-freedom probe traversing unit was attached to the fuselage
downstream of the primary wing. The probe traversing unit could be installed
at any one of the nine spanwise locations on the auxiliary wing, thus allowing
boundary-layer profiles to be obtained along each row of static pressure
orifices. Spaid defined a local skin-friction coefficient and an inviscid
yaw-plane flow-direction angle as,

215

Cf = — (91)
peuTe

B~ tan”} [Vé/ﬁé] (92)

Thus, if B, is positive, the inviscid flow is moving outboard towards the wing
tip. It was intended to compare the results of both TAWFIVE and TIBLT with
the experiment, however, the TAWEIVE code computed the displacement thickness
on the lower surface of the wing to be unrealistically high and the solution
became unstable. The TIBLT code had no difficulty in computing a solution for
either Mach number and the results are presented below.

A comparison of the calculated and experimental upper surface pressure
coefficient for the subcritical Mach number fis given in figure 13. There is a
very sharp pressure peak near the leading edge at the inner span stations.
These large inviscid gradients had to be smoothed out slightly during the
first few boundary-layer calculations to keep the surface flow attached. A
total of five viscous updates were performed for this case and required 24.42
CPU-hours to run. The inviscid flow-direction angle is compared in figure 14
which shows the inviscid flow is moving inboard towards the wing root over 98%
of the chord due to the wing twist. Figure 15 is a comparison of the local
skin-friction coefficient and figure 16 compares the streamwise velocity
integral-thickness distributions. The experimental skin-friction coefficient
was determined by the Clauser chart technique [25] and the integral thickness
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from the measured streamwise velocity profiles. The agreement between the
calculated and experimental skin-friction coefficients is excellent at each of
the span stations. The calculated streamwise velocity integral thickness
agrees very well with the experiment near the wing tip, however, at the more
highly loaded mid-semispan stations it is significantly under-predicted. This
trend was also observed by Spaid [26] when he compared his experimental
results to various two- and three-dimensional boundary-layer calculations.
Figure 17 is a reproduction of figure 7 from reference 26 which shows the
comparison of the experimental streamwise velocity integral thickness with the
three-dimensional boundary-layer method of Cebeci, et al. [5]. The solid line
in figure 17 is Cebeci's three-dimensional calculation and n is the percentage
of the semispan. Cebeci used the experimental pressure distribution to drive
his boundary-layer code but still under-predicted the experimental integral
thickness at the mid-semispan station. The difference between the experiment
and the boundary-layer methods is probably due to the transition location
along the span and flow unsteadiness in the experiment.

In a recent paper, Cebeci and his co-workers [27] showed that moving the
transition location has a significant effect on the displacement thickness
distribution near the trailing edge. For the present method, the flow
was assumed to be fully turbulent just prior to the location of the upper
surface pressure peak, which occurs at about £ = 0.015. Cebeci's calculation
determined the transition location to be at & = 0.025. A challenge for
three-dimensional boundary-layer methods is to properly account for the
spanwise variation of the attachment line and transition location. At
present, TIBLT determines an average constant-chord attachment line and
assumes transition location. In the experiment, a boundary-layer trip was
lTocated on the upper surface at £ = 0.06, which is aft of the sharp pressure
peak so that they may have been trying to trip an already turbulent boundary
layer. The precise location of the experimental transition line and its
spanwise variation is not known, and may account for some of the observed
difference between the boundary-layer methods and the experiment. Also, there
was some flow unsteadiness in the experiment due to the mixing of the tunnel
flow with the outside air which produced some probe vibrations on the
auxiliary wing [23,28].

The Tocations where the spanwise velocity profile has velocity crossover
on the upper surface of the wing is jllustrated in figure 18. Once again the
majority of the spanwise profiles near the root chord are of this type and as
the wing tip is approached their chordwise extent diminishes and is
concentrated near the trailing edge. The calculated inviscid and surface
streamlines for the upper surface of the wing are presented in figure 19. The
inviscid flow moves inboard as it goes over the wing due to the wing twist.
The surface flow also moves inboard until just aft of the mid-chord line where
it then begins to move slightly outboard, except near the root and tip where
it continues inboard.

A comparison of the upper surface pressure coefficient for the super-
critical Mach number is provided in figure 20. The shock location calculated
by TIBLT is slightly forward of the experimental location at the inner span
stations. At the outer span station no shock wave is present, probably due to
the wing twist and to tip effects. A total of ten viscous updates were
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performed and the calculation took 43.43 CPU-hours. The inviscid flow-
inclination angle, skin-friction coefficient, and streamwise velocity integral
thickness distributions are compared in figures 21, 22, and 23, respectively.
The results for this supercritical case aré very similar to those from the
subcritical case. The locations where the spanwise velocity profile has
velocity crossover oOn the upper surface of the wing 1is presented in figure

24, The number of these profiles is less than those for the subcritical case,
but their distribution is similar. The calculated inviscid and surface
streamlines for the upper surface are given in figure 25. The streamline
patterns 100k the same as those from the subcritical case except for the
surface flow near the wing root, which is moving farther inboard.

CONCLUSIONS

A method for determining the three-dimensional, laminar and turbulent
boundary-layer flow over arbitrary swept wings was developed. The effect of
the boundary layer on the inviscid solution is accounted for through a
displacement surface interaction. The number of inviscid-viscous interactions
required to obtain a converged solution varies depending on the flow
conditions. Based on the results of the present study the following
conclusions are drawn:

(1) The method is very general and may be applied to a wide variety of
wing planforms provided the leading-edge sweep angle and taper ratio are not
too severe, due to limitations of the inviscid grid.

(2) The finite-difference technique used to solve the three-dimensional
boundary-layer equations has the advantage over other finite-difference
schemes in that the crossflow difference formulas are formed independent of
the sign of the crossflow velocity component.

(3) The method compared favorably with another jnviscid-viscous
interaction method and with experimental results for both subcritical and
supercritical Mach numbers.

(4) In each of the cases considered, the spanwise velocity profile
exhibited velocity crossover somewhere in the solution. The locations where
this type of velocity profile occurs for a given wing planform are dependent
on Mach number, Reynolds number, and angle of attack. An advantage of the
present method over integral methods is that this type of spanwise velocity
profile may be obtained as part of the solution without any special

accommodation.
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APPENDIX A. DERIVATION OF THE UNIT VECTORS AND METRIC COEFFICIENTS

In order to write the governing boundary-layer equations in a body-
orientated coordinate system, it is necessary to relate the curvilinear
coordinates to a reference orthogonal coordinate system. This will yield
expressions for the curvilinear unit vectors and metric coefficients. A
constant-chord line (figure 1) is defined as,

In general, the wing sweep and cross-sectional shape are functions of &
and y . It can be shown that the differential of eq. (Al), holding
E = constant, yields,

tan A = tan A]e - EA
where,

= tan A - tan A

le te

The equation for the wing surface is given by,
F(X,5,7) =7 - cf(g,7) = 0
Therefore,

F- ~ dF 1%  (dF 1~
SN il R el e L
X oy oz

<]
n
|

i

[-c %2_5]1-[?.a£+c(af9_g.+.:]3+;:
X dy dy dy

[- tan x] 1 + [fa + tan A tan x - ¢ -

and
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- Yy
of )]2 }

|vF| = sec x {1 + [tan A sin k + cOs x (fA - ¢ —- (A6)
dy
Define an angle T such that,
) . - af
tan T = tan A sin x + cos « (fa - ¢ =) (A7)
oy
Then a unit vector which is normal to the surface of the wing is defined by
the equation,
~ W o ~
e, --T1=T - _cos I sin x i + sinT j+ COS I cos kK (A8)
vF

Referring to figure 1, 3 streamwise unit vector which is orthogonal to e, is
defined by,

~

e~ cos ¥ i + sin k k (A9)

Next, define a unit vector € ., which is tangent to an g = constant line in
the z = 0 plane (figure 2) by,

€ = sin A1 + cos A ] (A10)
Then a spanwise unit vector which is orthogonal to € with its component in
the Z = 0 plane in the direction of eyo may be defined by the relation,

- . . = Q All

e, * eyg cos (A1)
Thus,

; = cos Q é - sin Q Q

y yo

cos @ sin A i + cos @ cos A j-singk (A12)

Since g was defined to be normal to €., their dot product must equal zero
which yiglds,
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tan @ = £0S A Sin T - sin A cos T sin «

Cos T cos k (A13)

Note that both e and e are perpendicular to é - However, the -
coordinate systemis nonor{hogonal because the dot product of e, and e is
not zero and is given by, J

cos O = e ey = CO0S Kk cos @ (sin A - tan « tan Q) (A14)

The position vector of a point (X,y,Z) in Cartesian coordinates is given by,
R=Xi+37j+7k (A15)

The same point may be represented in the curvilinear coordinate system by
(s,y,n). However, since s and Y vary along the wing it is more convenient
to choose as independent variables (sr,y]e,n) where s, refers to s along
the root chord and Yie refers to y along the wing leading edge. Thus any
point (x,y,Z) may be uniquely described by (sr,y]e,n). Then the differential
of the position vector on the surface of the wing is given by,

_ (dX dx : dy dy p
dR = (BE}dsr+'67i; dy]e) i+ (BEF ds  + By;;-dy]e) j
3z Y3 o
¥ (BE: ds, + 6y]e dy]e)
= h ds,, e, + h, dy1e ey (A16)

where h; and h, are the metric coefficients which relate any point on the
wing (s,y,0) to the independent surface variables (Sps¥10:0). From eq. (A16)
one may obtain,

OX 2,8y 1,087 »

X Y ¥y ~ a7 - 7
h, e, = 6772 i+ T Jj+ k (A17)

Performing the indicated differentiation gives,
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%é—-= (E—J cos K, (A18a)
r r
g—g- =0 (A18b)
r
dz _ (C)
3 = () cos x, tan x (A18c)
r r
and
ox = tanA cosQ, COSA (A19a)
5y]e le le
oy coOsSQ, . COSA (A19b)
5y]e le le
dz  _
BVTE = -tanQ cosQ,, cosA1e/cosA (A19c)
Thus, the solution of eq. (Al7) yields the metric coefficients as,
¢ cos k.
h = ccos = (A20)
r
cos A, COS Q
_ le le
h2 T T cos A cos @ (A21)
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APPENDIX B. DERIVATION OF THE NONORTHOGONAL BOUNDARY-LAYER EQUATIONS

With expressions for the unit vectors and metric coefficients in the
curvilinear coordinate system the conservation equations may be derived. The
velocity vector is given by,

~ -~ A

-)
V=u e, + v ey twe (B1)

where u, v, and w are the velocity components streamwise, spanwise and
normal to the wing surface, respectively. The substantial derivative of the
velocity vector is therefore,

) De De De
Du Dv o + Dw S n

ety TS tYDE VT T YT (82)

A=

Thus, in order to calculate the derivative of the velocity vector, one must
first determine the derivatives of the curvilinear unit vectors. To obtain a
unit vector along any coordinate line, differentiate the position vector (eq.
(A15)) with respect to the particular coordinate and divide by its

magnitude. Thus,

~ R R
es =55 / log ]
r r
I
o) 2
- 5/ L) D)+ 5
r r r r
_aR
= i /h (B3a)
In a similar manner,
~ R
- B3b

Differentiating eq. (B3a) with respect to yj;o and eq. (B3b) with respect
to s, yields,
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a2R d - d ~ !

ayle asr ) Byle (hl es] ) Sy (hz ey) i EE;—BYT; (84)
Then it follows that,
. 2e, . aéy o)
T ST w2
Taking the dot product of each term in eq. (B5) with ;s gives,
6‘ a oh dh
32% . e =-%E QSy%; - cos © EE%) (B6)

where eq. (Al4) was used for the dot product of és and éy. Next, take the
dot product of each term in eq. (B5) with e, to get,

Yy
6; dh oh
S " 1 2 1
ce = ( - cos © ) (B7)
P Wy
Differentiating eq. (A14) with respect to Sy yields,
bé b;
. *® ‘y N * s:.. 1 66
es ?S—‘:"' ey -Ss—r- sin @-gs—r- (88)
and using eq. (B6) in eq. (B8) one may obtain,
de ah
S " 1 d 1
" & " [?;- (h, cos @) - ?T"'] (B9)
Sy y -HE Sp 2 Ve
Similarily differentiating eq. (A14) with respect 10 Yqe gives,
de de
. [ ] ‘y : [ ] S = e i ae
e 6?;; + ey BYTE sin © 37?2 (B10)
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and using eq. (B7) in eq. (B10) one may obtain,

aéy N oh,
ry]; * es = *Fq [‘Fy:lz (hl Ccos G) - FS?] (Bll)

Now consider the derivative of e with respect to some argument, q
(q = Sps¥1esN) which may be written as,

3G % e+ bS ey+ c; e (B12)

Taking the dot product of each term in the above with és and then taking the

dot product of each term with e will yield expressions for ag and b
which are, J

, o .
bS = CSC O (Fq-— b ey)
w,
a, = - coto csco (55— . ey) (B13)

Substituting eq. (B13) into eq. (B12) yields,

o} 0
s _ S . a ~ 2 A A
5 - (55— ey) [-cot @ csc o e, + csco ey] tco e (B14)

Following a similar procedure for the derivative of ey it can be shown that,

-~ ~

de 2 N N A
Yo (Y. 256 -
5 " (55_ e.) [csce e, - cot © csc © ey] te e (B15)

~

The terms Cs and Cy only contribute to the normal momentum equation and
their explicit values” need not be determined under the thin boundary-layer
assumption. Using eqgs. (B7) and (B9) in eq. (B14) yields,
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a

de ) oh

s _ 1 rd 1 - 2, %
3 = 7= [z (h, coso) "67‘"]('C°te csco e, + csc o ey)
r 2 r le
te e (Bl6a)
Bes 1 bhz Ohl - a
oo = ﬁ-i.[,&s-;- - €0sO EYT;](—cote csco e, + csce ey)
tc e (B16b)

and using eqs. (B6) and (B11) in eq. (B15) gives,

0 y 1 ahl 6h2 2 - -
= T Lay—- - €050 5—](csc’@ e, - coto csco ey)
r 2 le r
v e, (817a)
de oh
y _1 rd 2 2, o N
55 TT'[BY"" (h, cose) 3] (csc“@ e, - coto csco ey)
le 1 Te r
re e, (817b)

The substantial derivative for steady flow in the curvilinear coordinate
system is given by,

bt 3 dy an
u 9 v 0 )
= + + w (818)
3. P, O

Substituting egs. (B16) and (B17) into the above yields,
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»~ ~

De oe

7 = K u (-cote e  + csco ey) + [CS(HI + “E) t W] e,
v oh bhl n R
* F—FTrs lae - €050 Ey“_]('COte e  + csco ey)
12 r le
and
De ah ah

y = u 1 - ~ -~
Dt h1 h2 S1no [b‘yle cos® B?r‘_] (CSCO es - coto ey)

o - u v Yy
+ K, v (csco e, - coto ey) + [cy (ﬁI-+ ﬁ-2-) + W Eﬁ"] e,

(B19)

(B20)

where K; and K, are the geodesic curvatures of the curves Yje = constant,

and s, = constant, respectively, and are given by,

K, = —1L [2— (h, cose) - i ]
1 hl hz RGE] bsr 2 6y]e
dh
1 o) 2
K, = [ (h; cos®) - =]
2 hl h2 S1ne by]e 1 5sr

(B21)

(B22)

Using eqs. (B19) and (B20) in eq. (B2) gives the substantial derivative of the

velocity vector as,

>
DV _ rDu 2 2 "
5t - [Df" Ky cotd u® + K, csco v© + K, uv] e

+ [g%.- K2 coto v2 + K1 csco u2 + K21 uv ] ;y

- ~

oe de a
R R RN A1

De
W n
ot

+

where the parameters Ky, and K,y are given by,
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oh oh

1 1 2 2
K,, = [ (1 + cos“@) - 2 cos® 5——]
12 h, h sinze Byle Sp

12
oh oh
1 2 2 1
K,, = [=% (1 + cos“®) - 2 coso ET’"J
21 h1 h2 sin26 o r Y4

Next, consider the gradient of a scalar, p, which may be written as,

Vp = pg e, t P, e t Py

S yy
The differential of a scalar is given by,
dp = vp + dR
where the differential of the position vector is,
dR = h1 dsr e + h2 dy]e ey + dn e,
Using eqs. (B26) and (B28) in eq. (B27) yields,
dp = (psh1 + pyhlcoso) dsr + (pshzcose + pyhz) dy]e+ pndn

However, dp may also be written as,

- op op op
dp -&—;dsr“’-&y——dy-‘e"’ﬁ—dn

Equating eqs. (B29) and (B30) and solving for pg and py gives,

csc20 op cot® cscO dp

P = -

s *hl bsr h2 By]e
b = cscze dp _ cot® csce 9p
y L %1e N Bsr

(B24)

(B25)

(B26)

(B27)

(B28)

(829)

(B30)

(B31a)

(B31b)
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With eq. (B31), eq. (B26) becomes,
2

_ [CSC™O 9p CcotoO csco dp -
= | - ] e
h1 asr hz ay]e s
+ [cscze Op  _ cotd csco dp ] é + 0P 2 (832)
h2 by]e h1 asr y " 3n n

The steady Navier-Stokes and Energy equations written in tensor notation
[14] are (neglecting body forces),

DV bti.
P 'D'f = -Vp + Tx'i ’ i;jak = 1:2’3 (833)
J
u 2
o] ’ 0 T
J J

where H s the total enthalpy, u is the dynamic viscosity coefficient,
Pr  is the Prandtl number, ugp is the magnitude of the total velocity,

uT2 = u2 + v2 + 2 uv cos® (B35)
and Tij is the stress tensor which is given by,
du, ou du
- i Jy _ 2 K
%5 u[(ﬂ&-:]_- + 6)(_1_) T 8 B_x;] (B36)

The boundary-layer assumption is that the boundary layer consists of a
thin viscous layer very close to the surface of the wing [14,29]. Therefore
the variation of the pressure and the unit vectors across the boundary layer
are assummed to be negligible. However, since the velocity components range
from the inviscid values at the outer edge of the boundary layer down to zero
at the wing surface, the velocity gradients normal to the wing are much larger
than those parallel to the surface. Thus, in the viscous and heat-conduction
terms, only the normal derivatives are retained. This produces a parabolic
set of equations which may be solved by a streamwise marching procedure.
Substituting eqs. (B23) and (B32) in eq. (B33) yields for the streamwise
momentum equation,

pu du + PV 2u + du 2 2
—— pw -pK, cotou® + pK, cscov
h1 6sr 52 5y1e an 1 2
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2
_ _Csco0dp cot® cscoO dp ) du
+p Ky uv —TG——-Eg: +-——~WE;-—-6y;g + oA (b =) (B37)

and for the spanwise momentum equation,

+ pw-%% - pK2 coto v2 + pK1 csco u2

+
PRSP
+ oK o= - cscze op + cot® c¢scO dp ) ( av) (838)
L3 T, e —h; %, o " Bn
Using eq. (B18) in eq. (B34) gives the energy equation as,
u 2
pu OH pv OH dH _ d p OH o) T
Eﬁ§+ﬁﬁﬁ+wﬁ'ﬁ¥Wﬁ+MLWﬂﬁ@T” (839)

Now consider a line element, d&, which in the tensor notation [30] is given

by,
2 3 3
det = ) L g5y dxg dxy (B40)
j=1 j=1 " !
The quantities g5 are the components of a covariant tensor of rank two
called the fundamental tensor. The line element may also be written as,
2 _ . .2 2 2 2
d2? = df + df = h;"ds” + h" dyyg
2
+ 2h h, cos 0 ds,. dyo * dn (B41)
Comparison of egs. (B40) and (B41) gives the elements of gjj»
h 2 h,h, cos® 0
1 12
- 2
9ij = h h, c0s® h, 0 (B42)
0 0 1

is a symmetric tensor whose determinant is given by,

Therefore, 9ij
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2

lgl = n 2 h,¢ sin%o (B43)

. > . . . .
The divergence of a vector V, in a general coordinate system is given in the
tensor notation [30] as,

vevs 12 g0

= =, , i=1,2,3 (B44)
g i

where y1 is the contravariant velocity vector,
i _ _ru v T
Vo= Vg = [ﬁT i w] (B45)
With eqs. (B44) and (B45) the steady continuity equation may be derived,
Ve (o) =0

g;T [vgev']=o0
i

o} , o) . o) .
EE;'(pUhZ sin@) + ByT;.(pvhls1ne) + Bﬁ'(pWh1h251”e) =0 (B46)

Equations (B46), (B37), (B38), and (B39) are the governing nonorthogonal
boundary-layer equations for a laminar, compressible flow. To obtain the
governing turbulent equations, the flow variables are defined as the sum of an
average plus a fluctuating quantity and then substituted back into the
original equations which are then time averaged [14]. However, the magnitude
of the fluctuating flow variables is small compared to the average values, and
under the boundary-1layer approximation, only the fluctuating quantities which
are multiplied by the normal velocity component need to be retained. This is
because across the boundary layer, the average of the normal velocity
component 1is of the same order of magnitude as its fluctuating component [14,
29]. Therefore a mass averaged normal velocity component is defined as,

oW X' (B47)

PW = pW + P w

and the governing equations become for a turbulent flow:

continuity equation,

) oD o) + 2 e b e
EE: (puh251ne) + 57?; (pvhls1n®) + Eﬁ'(pw h1h251n9) =0 (B48)
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streamwise momentum equation,

— 0u 2 2
FI'SE" FE.6-3;---+ W xo - pK1 coté u™ + pK2 csco v

r le
u_ du v_ du
FoK,u =p, [ e e, & € _cotou
12 e EI'SE: ﬁ; Sy]e 1 e
2 4] ou —r—r
+ Kyesce v, ¥ Kyp Ug ve] * 5m (b - P UW ) (B49)

spanwise momentum equation,

%E %%_ + %l %é__ +'BW.%% - p K, cotd w2+ p Ky csco u?
1 7r 2 e

() ]
u, 9V, Ve OV

= e e 2
+p Kyyuv = pg [ﬁI % +.ﬁz-5yT; - K,Cot0 Vg

2 o) ov ——r
+ Ky cscO U * K21ueve] * 5 (bgr-P V¥ ) (B50)
energy equation,

pu dH , pv OH + S0 oH

oW
FI 5?: ﬁ;'ﬁi;; n
" 2
_ 9 p OH 1 2 T
'ﬁ[p’fﬁ‘*u(l'w)gﬁ(—z—)'PWH] (B51)

In egs. (B49) and (B50) the pressure gradient terms have been replaced with
their equivalent velocity gradient terms by applying eqs. (B37) and (B38) at
the edge of the boundary layer.
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APPENDIX C. COEFFICIENTS OF THE TRANSFORMED EQUATIONS

The coefficients for the three-dimensional boundary-layer equations in
transformed variables are given below. The flow variables without an i
subscript are evaluated at (1) for the predictor step and at (i + 1/2) for the
corrector step. The parameter N has the value of one at the predictor step
and two at the corrector step. The terms Bips dps and en are defined by,

b . b d . d e
b= ml “m3 dm = | M "m3 = | ml (C1)

’ sy € =
m b2 Prg 4oz Mg L

The coefficients for the momentum equations are given by,

7 Pyk- 1 /A0

o
H
(=

m %t Oy * (An 4 an ) Mo Fj,k/8s,

bm2 = bm3 =0 (C2)

1 == Mo (F5 e - Fik-1178s,

m2 = 7 Mg (G5 e - 65 q)/as,

Qpg = &y = 0 (C3)
N

t, = g

177 %,
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€m2

= - Mo

_N

i.3,k7 05y

*

*
Lttt ty) * (G g - 65 k-1

mo (An * am ) Py Py g /85

mg (an *+ 80 y) Fy o Gy 5725

N
N (e r o) 65 (Frag e m Fiea /e
N
-y (an +any 1) 65y (B - 651,k )/ 1e
m Fg + m. F G +m G2 -m,, C
2 3,k 53,k 3,k 8 i,k 11 2j c
m F2 +m, F G +m G2 - My, C (ca)
9 " J,k 4 ik “J,k 3 73,k 12 zj "
t,. + bttt - N (An, + 8n,_4) t
43 5a 6a 7 K k-1 7a

N
tay * tsp T tep ” » (an *+ 80, q) top (C5)

At the corrector step the ey vector has the additional terms,
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T o g~ P g - (B - Ry )
em2 = em2 * Cm (G1aJak+1 - G‘,Jsk) - am (G."J9k B G.‘,J’k-l) (Cﬁ)
For the solution of the energy equation the term F. means fi+1/2 j,k at

K
the predictor step and fis1 ik at the corrector gtep. The energy equation
coefficients are defined by,’
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a =o¢ / An
€ Jsk' 1/2 k-l
C =o / An
€ Jsk+ 1y k
by = a, +c_ + Mo (Ank + Ank_l) Fj,k/Asr (C7)
N
t, = v o
877 %,
tg = Mo (Fyc = Fi 5.k )/0s,
tg=am ( - g )/ by
10 7" Wi,k ~ 95-1,k le
= * -
tyy = (tg + tg +t,0) (E5 ka1 Es k1)

_ N
12777 " Oy (o + o ey - 5 /ey

ti. = No (F, - F;  )/an
13 4j,k- L@ J,k-1 J.k k-1
t.,, =No (F. - F. )/tn
14 4J,K+%@ Jok+l T T4,k B



LY

- aﬁaa ﬂHoﬁ m OHJA ﬁnn
(019) (TF g X gy 3 L Oy ity e 99y
‘SWJal LRUOLILPPe 9yl SBY Op dals 403094400 Byl 3@ pue
(62) Ly, oﬁp + mﬁp + Ty me + Clq 4 Hﬁu = mn
sps s -
(89) Yse s MRS (Mg 4 ) Olw - LRy
%o AL axer, Al o1

uy/(" ‘9 - 9) o N = "'

Sy -3°C

- ‘ g T2
-0 (X Py - T1°Fg) Sy o 5Ty




48

x|

N

Figure 1,

Sy
N A
~
~ §= 3
~
~
~
~
Sy
X
| Cr ~{

-

Nonorthogonal curvilinear coordinate system,



N
\ .
E =constant line
‘( A
e ~
yo ~
~
~
~
i
K
e R
yo .
—J - — |
Q .
Sy
Figure 2. Definition of the spanwise unit vector.

49



50

® A Kknown point
C A& unknown point

redictor corrector

(1+1,3,k+1)

(1+1,5,k)

(1’+11J,k'l>

Figure 3.

Finite—difference cell,



Figure 4.

Planform of the NACA 0012

wing.
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Figure 5.
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Pressure coefficient distributions for the NACA 0012 wing,
M, = 0.85.



Figure 6.

planform of the ONERA M6 wing (ref. 22).
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Figure 7. Pressure coefficient distribution for the M6 wing, M_ = 0.699.
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Figure 8. Velocity and total enthalpy profiles at £ = 1.0 and Y = 0.46 for
the M6 wing, M_ = 0.699.
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Figure 9,

Locations of velocit
M6 wing, M_ = 0.699,

Y Crossover on the upper surface of the
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Figure 10. Pressure coefficient distribution for the M6 wing, M_ = 0.84.
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Figure 11.

Locations of velocit
M6 wing, M_ = 0.84,

Y crossover on the upper surface of the



Figure 12.

Planform of the DAC wing (ref. 23).
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Figure 15. Skin-friction coefficient distribution for the DAC wing, M_ = 0.5.
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Figure 16. Streamwise velocity integral thickness distribution for the
DAC wing, M_ = 0.5.



Computation, Cebeci et al
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Figure 17. Streamwise velocity integral thickness distribution for the

DAC wing, M_ = 0.5 (from ref. 26).
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Locations of velocity crossover On the upper surface

Figure 18.
DAC wing, M_ = 0.5.

of the

65



INVISCID

’\ VIScous

Figure 19.- Inviscid and viscous streamlines for the DAC wing, M_
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Figure 22.
M, = 0.825.
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Figure 24.
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Figure 25.-
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