PRECEDING PAGE BLANZ NOT FTLMED

'THF' ORBI' OF 'THE (EPMEID AW PLR

Nancy Remage Evans ${ }^{1}$
Douglas L. Welch
Dept. of Astronony and David Dunlap Observatory Domimon Astrophysical Obkervatory Unversity of 'Toronto
and
Astronomy Programs
Computer Sciences Corporation

ABSTRACT

An orbit for the classical Cephed AW Per has been derived. Phase residuals from the hight curve are consistent with the light-time effect from the orbit. The companon has bern studied using lUE spertia. The flux distribution from 1300 to $1700 \dot{A}$ is unusual, probably an extreme $\mathrm{Bp}_{\mathrm{p}} \mathrm{S}_{\mathrm{s}}$ star, comparable to a B7V or B\&V star. The flux of the composite spectrum from 1200 A through V is well matehed by F7lb and $188 V$ standad stars with $\Delta M_{t}=3^{\mathrm{ml}}$. The mass function fionn the orbit indicates that the mass of the Cophend must be greater that $4.7 \mathrm{M}_{\odot}$ if it is the more massive component. A B7V to B8V companion 15 compatible with the 1σ lower lmit (3.5 M_{\odot}) from the mass functuon. 'This mplies that the Cepheid has the same mass, but the large magnitude diference rules this ont. It is hkely that the companon is ithelf a hurary.

Keywords: Cepheids, bindes, masses, chemeally peculiar stars

10 ORBl

 Welch, and Scarfe, Ref 1). with a penod of 13100 -t 1000 days. a semm-amplitude of $11.4 \pm 0.6 \mathrm{~km} \mathrm{sec}^{-1}$, and a mass function of $1.17 \pm 0.30 \mathrm{M}_{\odot}$. Thes onbit is compatille with a light- time effect imempetation of the phase iesiduals in an O-C dagiam The large physitat separation between the Cephed and ats companom mahe AW Pro an excellent cands date for a geometric distance determmation with the labble Space Telescope

2. COMPANION

Becanse of the temperature diffeaence between the Cephead and its hot mam seguence compamon, IUF, specta provide $1000 \stackrel{A}{A}$ of uncontammated flux u wheh to study the companion. Athough the spectirum roughly matches the flax distributhon of a B8V star from the IUEE Spectiral Atla fiom 1170 to $2000 A$, it differs sigulicantly a detad Figum 1 bhows the companson between fong and shor wavelength specta of AW Per and the BEV standad is Tau. Spedfodly, NW Per has excess flax at 1600 A. We have meentugated a mumber of perssable catuses for the spertal pernhatmen No known iedtemme

[^0]due to Si autoionzation, and flux redistribution resulting in excess flux at 1600 A We have not found a comparison stat whech is as extreme an example as AW Per, but the ApSi star 56 An displays quahtatively simblar featurec as compared with a normal B9V star. In seathing unsuccessfully for a mote evact mateh with AW Per B, the companion, the spectra of $2: 3$ stars were examined, including $\Lambda_{p} S_{i}, B_{p} S_{1}$, HgMn. He weak sars (espectally those in clusters), and even β hyr, whoth has exress flan at 1800 A.

In order to investigate whether AW Per B is a man se quence star, of a more luminous evolved star with nearly the athe mass as the Gephed, we have compared the lummosity of the compamon in the SWP region (1200 t.0 2000 A) with that of the hot companion of SU Cyg (1375 FHgMn) This has heen done lov selecting observations at phates when the Copheck ate nearly the same temperatuse, and dereddening them. The spectra were then scaled so that the Cepherds have there correct difference in alisolute magnubude M_{v} arcording to the penod-hummosty -rolom tolation of (Gathell (Ref. 2), making small comections for the defference from mean light ath the thate of obseavation and the contabation fiom the companom

Pigure 2 show thas compatison between AW Per and Sil (eve AW Pe, 13 a dpprommately twice as boght as Sill Cyg 13 For compranson. Figure 3 shows apecta of 137 V (19 Ea) and B8V (18 Tan), sealed so that they have the magntude differene at V aren by the WAMS calshatom of Sichmedt hater (Ref S) The diference is the ultavolet lammobly between AW Per 13 and Sij Gyg B in consatent wath what would be produced by two stars with man sequence luminosity and a difference of one spectial mblass Attributing the in lummositv difference to a small dillerence in suectral trepe is plamatio. paticulaty comsidering the peroliarities me the spectrum of AW Per 1

The AW Per composite spectrum has been compared with thadial stan spectra from 1200 A though V. The flux dostio butionis well mathed by an Fialb supergiant (45 Dia) and a BSV star with a magmitude diference $\triangle M_{n}$ of $3^{\mathrm{m}} 1$

3 mscussion

The mass function from the orbit is $1.17 \pm 0.30 \mathrm{M}_{\odot}$ 'Thus puts a lower humt on the mass of the enmpanion of 17 M (G) with a 1σ lower limat on the mas of the companon of $3.5 \mathrm{M}_{0}$ - awhming the Cephed is the more massive star Usang the mass (ompatation of Popper (Ref. 6), the mass of B8V and BTV stasare 32 ant $10 \mathrm{M}_{6}$ sespertively If the compation 15 a 10 M M smale stat, this maplies thation $1=90^{\circ}$.

(nstribution) of $2^{\mathrm{m} 5} 5$ to $2^{\mathrm{ml}} 2$ a too large to be consistent with two stars of nealy equal mass

These mass estimates for the Cepheid can be compared with cvolutionary and pulsation masses computed from the following sources: B-V temperature calibration: Cox (Ref. 3), eq. 1 ; evolutionary masses $(Y=0.28 . Z=0.02$ for all calculations) Becker, Iben and 'Tuggle (Ref. 1): pulsation massesFaulkner (Ref. 5). Masses have been computed for both a long distance scale (Caldwell) and a short distance scale (Schmidt. Ref. 7) Both evolutionary masses ($6.8 \mathrm{M}_{\odot}$ (Caldwell) and $64 \mathrm{M}_{\odot}$ (Schmidt) are much larger than $4.0 \mathrm{M}_{\odot}$. The same is true of the pulsation mass for the long distance scale (5.4 M_{\odot}). Only the putation mass for the short distance scale (4.0 M_{\odot}) is compatible with the mass umplied by a single companion.

On the other hand, if the compamon is itself a double star, the inclination may be lower, and the mass of the Cepheid may be larger. This is to be mvestigated with a high disperson IUE spectrum by Bohm-Vitense, Evans, and Welch.

Acknowledgements: It is a pleasure to thank the IUE operations and RDAF staff for assistance in obtaning and reducing the data. Radial velocities were obtaned by DLW during the temure of a National Research Council of Canada Research Associateship at the Dominion Astrophysical Observatory This work was supported by NASA IUE Research contract NAS5-28749 with CSC and an NSERC grants to Drs. J. D. Ferme and C. D Scarfe.

4 REFERENCES

1. Becker, S. A., Iben, I, and Tuggle, R. S. 1977, Ap J., 218, 633.
2. Caldwell, J. A. R. 1983, The Observatory, 103, 244.
3. Cox, A. N. 1979, Ap J., 229. 212.
4. Evans, N R., Welch, D. L., and Scarfe. C 1988, preprint.
5. Faulkner, D. J. 1977, Ap J., 218, 209.
6. Popper, D. M 1980. Ann Rev. Astr Ap, 18, 115.
7. Schmidt, E. G. 1984, Ap J. 285, 501.
8. Schmdt-Kialer, $T 1982$ in Landolt-Bórnsten VI 2b, eds K. Schafers and II. II. Vorgt. (New York: Springer Verlag), p 18.

Figure 1 The comparison between AW Per (sohd) and a B8V star (dots). The 138V star (18 'ratu) has been scaled The contribution from the Cepheid can be seen for wavelengths longer than 2600 A. All wavelengths are in A; all fluxes are in ergs $\sec ^{-1} \mathrm{~cm}^{-2} A^{-1}$.

Figure 2 The companson between AW Per B (solid) and SU Oyg B (dots). The spectio have been scaled acouding tos the difference in absolute magnitude between the Cephends See text for diacusson.

Figure 3. The comparison between a B7V star (top) and a B8V star (bottom). The spectra have been scaled according to the ZAMS absolute magnitude

[^0]: ${ }^{1}$ IUL' Giuest Obmper

