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Abstract - Progress on millimeter-wave propagation experiments in Hawaii
is reported. A short path for measuring attenuation in rain at 9.6, 28.8,
57.6, and 96.1 GHz is in operation. A slant path from Hilo to the top of
Mauna Kea is scheduled. On this path, scattering from rain and clouds that
may cause interference for satellites closely spaced in geosynchronous orbit
will be measured at 28.8 and 96.1 GHz. In addition the full transmission
matrix will be measured at the same frequencies on the slant path. The
technique and equipment wused to measure the transmission matrix are
described.

1. Introduction

It is well-known that high rates of attenuation in rain will limit the
availability of millimeter-wave telecommunication links. Fortunately, on
Earth-satellite paths only a short segment of the path (depending on elevation
angle and altitude of the ground station) is in the lower atmosphere where
liquid water droplets occur. For this reason, millimeter waves may prove to
be economically viable for a number of applications involving earth-space
communications. To accurately predict the limitations that rain (and clouds)
will place on such systems, a great deal more knowledge is needed about the
interaction of millimeter waves and naturally occurring atmospheric. hydro-
meteors.

A three-stage experiment measuring the effect of rain on some millimeter-
wave propagation parameters is under way in Hawaii. The first stage of the
experiment, to measure the dependence of the attenuation rate (dB/km) on rain
rate (mm/h) at 9.6, 28.8, 57.6, and 96.1 GHz using a 1l-km path on General
Lyman Field in Hilo, Hawaii, is in progress. In the second stage, a slant
path from the airfield to the top of Mauna Kea will be used to measure
scattering from rain and clouds that may cause interference for satellites
closely spaced in geosynchronous orbit. In the third stage, measurements of
the complex transmission matrix at 28.8 and 96.1 GHz will be made on the same
slant path.

The Hawaiian location was chosen because of the availability of a slant
path from sea level to 4,205 m altitude, which would approximate the lower
atmospheric portion of an earth-satellite path, on which rainfall is frequent
(approximately 300 inches per year near mid-path).

The paths and equipment are described in the remainder of this report.
The third stage (transmission matrix measurements) will be described before
the second stage (interference measurements) to allow a more concise
description of the equipment. :
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2. Short-Path Experiment

The purpose of the short path is to measure the attenuation rate (dB/km)
in rain as a function of rain rate (mm/h) in the Hawaiian climate. Measure-
ments have been made in the past in California, Colorado, and Alabama. This
experiment extends- the study of the climate dependence of attenuation in rain
to Hawaii.

The short path has been in operation since February 23, 1988. The recei-
vers at 9.5, 28.8, 57.6, and 96.1 GHz are located about 15 m above ground
Tevel in the old control tower on General Lyman Field in Hilo, Hawaii. The
transmitters are located approximately 4 m above ground level on top of two
standard scaffolding sections about 1 km south on the Shop and Yard grounds of
the Hawaii Water Department. A tipping bucket and a laser rain rate gauge
along with air and rain temperature measuring instruments are mounted on top
of the old control tower. Hourly accumulated rainfalls measured with a
tipping bucket are also available from the National Weather Service office
Tocated in the base of the tower. The radio frequency equipment has been
described previously (Espeland et al., 1986).

The movement of most rain showers is north to south along the propagation
path. The showers typically last for less than 30 minutes.

The data will be analyzed and reported in Fiscal Year 1989,
3. Transmission Matrix Measurements

Measurements of attenuation in rain are often made. However, rain has
polarization dependent effects. More than attenuation measurements at a
single polarization are needed to understand these effects. A more complete
description of the propagation effects is provided by the transmission
matrix,

3.1 Transmission Matrix

A transmitted, polarized wave can be represented by a complex valued, two
element vector, E;, the elements of which represent the phase and amplitude of
two orthogonal polarization components of the wave, e.g., vertical and hori-
zontal. When the wave is altered during propagation, a new vector, E., repre-
sents it at the receiver. The altered wave at the receiver can be related to
the original using a 2x2, complex valued matrix, T, by

E. = TE;. (1)

The matrix T is called the transmission matrix and provides the desired
description of the propagation characteristics of the path. See Figure 1.

3.2 Experiment

The planned experiment described here is to measure the transmission
matrix at 28.8 and 96.1 GHz on a simulated earth-satellite path. This path
from the old control tower on General Lyman Field, in Hilo, Hawaii to the top
of Mauna Kea has an elevation angle of 5° and is 45.6 km long. The path
profile is shown in Figure 2. When measuring the transmission matrix, it is
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important to account for the effects of equipment that can be represented by
additional matrices in (1). These effects will not be discussed here, but the
reader can find a complete discussion in Marvira (1986).

The transmission matrix will be measured by transmitting vertically and
horizontally polarized waves at slightly different frequencies. This allows
the original polarization of the wave to be identified at the receiver. At
the receiver, horizontal and vertical components will be received
separately. There will be four IF's at the receiver corresponding to the
waves transmitted vertically and received vertically, VV, transmitted
vertically and received horizontally, VH, transmitted horizontally and
received vertically, HV, and ‘transmitted horizontally and received
horizontally, HH. The phase and amplitude of these four IF's give the phase
and amplitude of each of the elements in the transmission matrix.

Typically, transmission matrix measurements have been made by switching
polarization devices at the transmitter and receiver. The technique described
here has the advantages of allowing simultaneous measurements of phase at each
polarization with a frequency response well in excess of 1 MHz ps.

3.3 Transmitters and Receivers

The phase of three of the transmission matrix elements can be measured
with respect to the remaining one, usually one of the copolarization
elements. However, the equipment for this experiment has been designed so
that the phase delays of all four matrix elements at 28.8 and 96.1 GHz are
measured with respect to the phase delay of the 9.6 GHz signal. This gives
the additional information of the relative phase delays on the path of the
different frequencies. The absolute phase delays could be measured, but
variations in the absolute delay would make the measurements of the relative
delays between the transmission matrix elements more difficult.

In Figure 3, a block diagram of the transmitters is presented. The
9.6-GHz signal serves as a phase reference for the receiver local
oscillator. The 28.8 (vertical), 28.815 GHz (horizontal), 96.1 (vertical),
and 96.15 GHz (horizontal) transmitted signals are all phase coherent with the
9.6 GHz signal, being derived from the same transmitter local oscillator
(LO).

In Figure 4, a block diagram of the 9.6-GHz receiver and the reconstruc-
tion of the transmitter LO are shown. The 9.6-GHz received signal has a phase
of

B, = 19208, o + 9.67 (2)

in wavelengths at 9.6 GHz where 2081 g 7s the phase of the 100-MHz transmitter
LO and 1 is the propagation delay of the 9.6-GHz wave in nanoseconds. Al]l
constant phase delays are neglected in this analysis.

The reference oscillator is phase locked to the received signal through
Phase Lock Loop 1. The phase locking electronics (PLE) control the reference
oscillator so that its phase and the phase of the IF output of the mixer are
the same. This results in the reference oscillator frequency of
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fp = 9.6 GHz/1921 = 5 MHz * 1920/1921 (3)
and the phase of
Op = 8/1921. (4)

In Phase Lock Loop 2 the reference oscillator signal is removed and the
transmitter LO is reconstructed. In this second loop, the PLE controls the
receiver LO so that the IF output of the mixer has the same phase as the
reference oscillator. This results in the receiver LO frequency of

frLo = fr"1921/1920 = 9.6 GHz/1920 = 5 MHz (5)

and phase of

) = GR 1921/1920 = @/1920 = @ + 9.61/1920. (6)

RLO TLO
Thus, the 5 MHz receiver LO is phase coherent with the phase of the 100 MHz
transmitter LO plus the 9.6 GHz propagation delay phase divided by 1920. The
100 MHz signal with phase

209 = 208 + 9.61/96 (7)

RLO
is used in the 96-GHz receivers,

TLO

The purpose of Phase Lock Loop 3 is to generate a phase coherent LO
signal at 100-Af MHz for the other receivers. The PLE controls the second
receiver L0 so that the IF output of the mixer is the same as the rece1ver
LO. Thus, the oscillator frequency is

frioz = frLo’ 191971920 (8)

so that when multiplied by 1920, it is 9.595 GHz or 5 MHz below the 9.6-GHz
signal. In a similar fashion it results in proportional IF frequencies when
used as the LO for 28.8 GHz of 15 MHz and for 96.1 GHz of 50 MHz.
The (100-4f)-MHz signal has a phase of (20 - 1/96)8p 4.

In Figure 5, a conceptual block diagram of the receivers is presented.
Each IF is sent to an IF processing box. There the IF's are amplified and
filtered and fed into logarithmic amplifiers. The log amplifiers have limited
outputs of the IF signal and analog outputs proportional to the logarithm of
the IF amplitude. The analog outputs of signal amplitude are sent to an
analog-to-digital (A/D) converter and recorded in a computer. The limited
outputs are sent to phase meters. The analog outputs of the phase meters are
sent to the A/D converter to be recorded in the computer.
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Figure 5.

Block diagram of receivers.

Figure 6. Example of phase analysis of

28.8 GHz receiver.




In Figure 6 an example of phase analysis is shown for the 28.8 GHz
receiver, The phase of the 28.8-GHz VH signal (transmitted with vertical
polarization and received with horizontal polarization) is 5760 @10 + 28.87"
where t' is the delay time of this signal in nanoseconds. The phase of the
28.815-GHz HH signal 1is 5760 @y 5 + 28.8157" where 1" is the delay time of
this signal. These two signals are mixed with the 28.785-GHz L0 signal with
phase 5757 g 0° The resultant IF's and their phases are shown in the
figure. The o&tput of the phase meter for the 15 MHz-VH IF is the propagation
delay time at 28.8-GHz VH minus the propagation delay time at 9.6 GHz in
28.8-GHz wavelengths, The output for the 30 MHz HH IF 1is the propagation
delay time at 28.815-GHz HH minus the delay time at 9.6 GHz in 28.815-GHz
wavelengths. The results for the VV and HV signals follow similarly.

3.4. Phase Locking Electronics

The phase locking electronics (PLE) used in the transmitter and receiver
are of a uniform design shown in Figure 7. Each signal is amplified to TTL
levels and a digital phase comparison is done. The phase detector used is
also a frequency detector so that even if the signals differ in frequency the
control voltage will tune the VCXO until the frequencies are equal and then
will lock the phase. Thus, phase lock is always achieved avoiding the problem
with many phase Tock loops in achieving or re-achieving lock. The freguency
response of the phase detector and loop filter allow the tracking of phase
shifts as rapid as 25 kHz.

3.5 Phase Meters

The phase meters were also designed to have fast response times. A block
diagram of the phase meters is shown in Figure 8. The input signals can be as
high as 100 MHz. Each input is amplified to ECL levels. These digital sig-
nals are then fed through a binary frequency divider capable of dividing by
from 1 to 256. The dividing factor determines the scale of the analog output
so that rapid folding over can be avoided. It also allows some flexibility in
matching input and reference frequencies.

The phase measuring electronics can respond to phase shifts as rapid as
one-half the frequency fed to it. The accuracy is about 2 to 3 degrees of the
phase of the input to the measuring circuit so that the overall accuracy 1is
scaled up by the dividing factor. The output is filtered before being fed to
the A/D converter. Cutoff frequencies for these low-pass filters of 5 kHz are
to be used initially.

4. Interference Measurements

The purpose of the interference measurements is to determine the poten-
tial of scattering from rain and clouds to cause interference on earth-satel-
lite paths. One possible interference scenario is presented in Figure 9.
Ground station B causes interference to satellite A receiving ground station A
because energy from ground station B's beam directed at satellite B is scat-
tered from the cloud toward satellite A, The geometry is the same for satel-
lite A to interfere with ground station B receiving satellite B.
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This interference scenario will be simulated as shown in Figure 10
employing the same equipment used for the transmission matrix measurements.
The receivers at 9.6, 28.8, 28.815, 96.1, and 96.15 GHz will be located on top
of Mauna Kea. The transmitters at 9.6, 28.815 and 96.15 GHz will be located
in the old control tower but the transmitters at 28.8 and 96.1 GHz will be
Tocated on the scaffolding 1 km south of the old control tower. This will
result in a separation of 1.2° degrees between the two transmitters as seen
from the mountain top receivers. The receiving antennas will be pointed at
the 28.8 and 96.1-GHz transmitters. Because of the narrow beamwidths and the
shortness of the path, the other transmitters and the clouds above them are
outside the receiving antenna beam. Therefore, the 28.815- and 96.15-GHz
transmitting antennas will need to be pointed toward the clouds lying in the
desired link. The scattering angles are still nearly forward as in the
interference scenario being simulated.

The isolation between the desired transmitters and the interfering trans-
mitters should be high (> 60 dB). Both signal levels will be monitored to
measure how much this isolation is degraded by scattering from rain and
clouds.

5. Summary

A description of a three-stage experiment has been presented. The first
stage, measuring the specific attenuation in rain at 9.6, 28.8, 57.6, and
96.1 GHz in a tropical marine environment, is in progress in Hilo, Hawaii.
The second stage will measure scattering from rain and clouds on a slant path
from Hilo to the top of Mauna Kea. The third stage will measure the transmis-
sion matrix at 28.8 and 96.1 GHz on the same slant path.

The results of the experiments should be reported next fiscal year.
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