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The Application of Single Particle Hydrodynamics

in Continuum Models of Multiphase Flow

Rand Decker

National Research Council Associate, Fluid Dynamics Branch
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Huntsville, Alabama, 35812
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February 25 and 26, 1988

Abstract: A review of the application of single particle hydrodynamics in models
for the exchange of interphase momentum in continuum models of multiphase
flow is presented. Considered are the equations of motion for a laminar,
mechanical two phase flow. Inherent to this theory is a model for the interphase

exchange of momentum due to drag between the dispersed particulate and conti-
nuous fluid phases. In addition, applications of two phase flow theory to

de-mixing flows require the modelling of interphase momentum exchange due to
lift forces. The applications of single particle analysis in deriving models for

drag and lift are examined.



I. Introduction

Before the advent of numerical approximation techniques, coupled with
large computational facilities the study of single particle hydrodynamics was
popular. Following the early conceptual efforts on theories of multiphase flow
[1],[2] investigations into the form of certain classes of phenomena were
undertaken. Specifically, those investigating the form for models of interphase

momentum exchange found a wealth of information by evoking the arguments
once used in single particle hydrodynamics. As an example, consider the follow-
ing quote [3], used in a context specific to arguments relating to forms of
momentum exchange models in continuum theories of multiphase flows:

"On the other hand, the terms ... and ... have no analogs in single particle
calculations and will be neglected."

It would appear that the application of single particle hydrodynamics in contin-
uum models of multiphase flow has received a degree of acceptance.

II. Continuum Theories of Multiphase Flow

Continuum theories of multiphase flow have developed along parallel lines:
Mixture Theory and the Theory of Interpenetrating Media with Moving Inter-
faces. Both approaches are rooted in the same fundamental assumption, namely:
That both the dispersed and continuous phases of the flow can be treated as and
described within an Eulerian kinematic framework by the conservation equations
of a macro-continua. Implicit in this assumption is that the variable fields of

each phase are unique and continuous over the flow domain. The limits of this
assumption for the case of dilute concentrations of the dispersed phase have been
explored [4] and the alternative of a Lagrangian or 'particle tracking' kinematic
scheme for the dispersed phase forwarded. In addition, continuum models have

been adapted to granular material flows [5] where the dispersed phase concentra-
tion approaches a maximum.

Mixture theories arise from the specialization of the classical field theory

requirements of internally consistent thermodynamic arguments [6],[7]. In
contrast, the theories of interpenetrating media address more directly modifica-
tions to the classical transport equations due to discontinuous or 'jump' conditions
at moving phase boundaries [8],[9],[10],[11]. To reduce to a local form, the
conservation equations resulting from the theories of interpenetrating media must
be averaged in either space or time. In fact, the key difference between the
mixture theory formulation for multiphase flows and the averaged conservation
equations for interpenetrating media is that; while the averaging process is
implicit in the mixture theory approach it is an explicit operation in the course

of writing the conservation equations from the interpenetrating, moving phase
boundary approach.

With few exceptions, it is reassuring to note both approaches result in the
same set of conservation equations.

Consider a simple two phase flow. That is one in which the dispersed
phase is a dilute, mono-dispersed suspension of non-reacting, smooth, rigid,
spherical particles in an incompressible, linearly viscous fluid. Both phases and
the surroundings are thermally equilibrated. Laminar flow conditions prevail.



Regardlessof the methodof formulation, the conservation equations reduce to the
expressions for continuity and balance of momentum [10],[12] and constitute the
continuum equations of motion of the mechanical theory of two phase flow.

CONTINUITY: _ _7.._.%_ rL = D (DISPERSED), C (CONTINUOUS)
0t T.s_ ,v v _ '

SATURATION: ¢D+¢C _l

BALANCE OF MOMENTUM:_P" /0V" _ _ _. _ _ . a _ ,_

(i)

(2)

(3)

WHERE O_(x,t) :CONCENTRATION

p : MATERIAL DENSITY

._ (x,t) :VELOCITY

p (x,t) : SPHERICAL STRESS (PRESSURE)

T (_,t) : DEVIATORIC STRESS

Iv_ (x ,t) : IN'I-ERPHASE MOMENTUM EXCHANGE

X (x .t) : SATURATION (CONTACT) PRESSURE

The flow has two velocity fields and two concentration fields. Each phase has a

unique, constant material density and may be acted upon by a set of external

potentials or body forces. In addition, there exists unique expressions for the
spherical and deviatoric elements of the dispersed and continuous phase stress
tensors. Lastly, under the assumption that the flow is saturated, i.e. no phaseless
voids may develop, the phases are coupled by an interface "saturation" pressure
and momentum exchange or transfer between the phases.

If the external potentials are specified, the momentum exchange terms
modeled and the deviatoric elements of the stress tensors specified by constitutive
assumption or neglected via arguments with respect to magnitude, the resulting
is the unclosed system of 9 equations in 10 unknown fields; velocity, concentra-
tion and spherical stress or pressure, for each phase. Commonly, the assumption
of equal phase pressures is used in an effort to create a closed determinant

system of fields and conservation equations [1],[11]. However, in should be
noted that the wisdom of this assumption has been challenged on both physical

and mathematical grounds [12],[13],[14].

III. Models 0f Momentum Exchange in Two Phase Fl0w

As a common denominator, all theories of two phase flow embody some
model for the exchange of momentum between phases. For simple, mechanical

two phase flow it can be demonstrated rigorously that the sum of the interphase
momentum transfer must be conservative, i.e. the sum of all momentum transfer
terms is zero. Those exceptions to this "summing rule" are more a matter of

bookkeeping than conceptual difference [15].



In addition, the degree of coupling between the phases of the flow , both
in a physical and mathematical sense is controlled by the momentum transfer
model. Two way coupling, i.e. momentum transfer from one phase to the other
and vice versa is implicit in the requirement of conservative transfer of momen-
tum. In attempts to simplify the computational complexities associated with

applying continuum theories of two phase flow the assumption of one way cou-
pling is often evoked [16]. One way coupling allows for the transfer of
momentum from the continuous to the dispersed phase, but not vice versa. In
this case the process of momentum exchange is not conservative. Within this

context, one way coupling is synonymous with the statement that the velocity
field of the continuous phase is unchanged due to the presence of the dispersed
phase within the flow. The computational simplifications result from the fact
that it is no longer necessary to solve the conservation equations for the
continuous phase field variables simultaneously with the conservation equations of
the dispersed phase. Given a solution to the continuous phase variable fields,
perhaps generated by single phase analysis or experimental techniques, the
uncoupled conservation equations can be solved for the dispersed phase variable
fields.

The use of a step function to describe the "effectiveness" of momentum

transfer has been proposed and applied to the problem of laminar two phase jet
flows [I],[17]. This approach allows the degree of coupling to vary, step=wise
from uncoupled to one way coupled. The arguments raised are: that in flows
where interparticle spacing in large relative to the sum of the particle diameter
and twice the fluid boundary layer thickness on the surface of the particles no
net momentum transfer between the phases occurs. It is argued that when the
interparticle spacings are large and the suspension is dilute, the slip between the

phases results only in unrecoverable dissipation in the particle wakes. However,
if the multitude of efforts in the analysis of two way coupled, dilute two phase
flows can be used as an indication, then it would appear that the "ineffective=

ness" of interphase momentum transfer in dilute two phase flows is not generally
accepted.

Arguments have been presented for the set of variables which constitute
the general class of admissible momentum exchange functions [3],[18].

(4)

where ... indicates that additional functions, of higher order in gradient, do exist.
S,B,C and L are constructed from the scalar invariants of the admissible vector

and tensor fields. In addition, owing to the discrete nature of the dispersed
phase, the admissibility, as a class of momentum exchange function of gradients
of dispersed phase field variables is still debated [II]. If the existence of
smooth, continuous first partials derivatives to the dispersed phase variables is at
question, consider:. Implicit in the assumption of the continuum model of two

phase flow was that the dispersed phase could be treated as a macro-continua,
i.e. that the dispersed phase field variables are smooth and continuous.



In fact, the use of Divergence (Gauss') theorem in the process of reducing the

global conservation equations to the local form requires the existence of continu-
ous first partial derivatives of dispersed phase velocity and concentration fields.

The appropriateness of using phenomenologically based arguments for the

purpose of identifying the specific forms of the momentum exchange models from
the general admissible class is justified [19]. In fact, more often than not it is
the lack of a phenomenological or physical analogue that results in the neglect of
a class of the admissible momentum exchange functions.

Depending on the purpose of the analysis, four generic categories of
momentum exchange processes and models are identifiable:

-Drag Forces
-Lift Forces
-Inertial Coupling or Virtual Mass Effects

-Inertial History Effects

The arguments for the inclusion of the inertial coupling/virtual mass
effects and inertial history effects are raised during the construction of models
for momentum exchange in two phase flows [1],[20],[21]. The analogous single

particle hydrodynamic forces have been investigated and debated [22],[23],[24],[25].
Inertial coupling stems from the analysis of the forces required to
displace a given volume of fluid during the acceleration of a particle through it.
Likewise, the inertial history or Basset force is linked with the acceleration
history of a particle moving through a quiescent fluid. However, the lack of
complete agreement on the single particle hydrodynamic analysis of these effects
and the lack of agreement on the forms or even the necessity for retaining these

effects [12] in models of momentum exchange in two phase flows .precludes them
from additional discussion at this point.

Dra_ Forces

Common to all theories of two phase flow is a model for momentum

exchange due to drag between the fluid phase and the particles of the dispersed
phase [11],[12],[26],[27],[28]. Intrinsic to each of these models is the existence of a
slip velocity between the phases. The result being a net drag force on each

phase:

_= -I_C,_= S(@-_Vc)
(5)

where the factor of proportionality, S is derived from arguments which are

rooted in single particle analysis.
The most sophisticated models for S are derived from an analysis of the

mean, terminal sedimentation velocities of a dispersion of spheres falling through
a quiescent Newtonian fluid under gravity [11],[12],[29]. The analysis is limited
to flows, about any one single sphere in the Stokesian regime, where the Rey-
nolds number between the fluid and the sphere is of order unity or smaller.

This implies either very small slip velocities and/or a very viscous fluid. The
net result being that the inertia of the fluid phase is neglected.



Equilibrium between the force on a single sphere due to the gravitational poten-
tial and the terminal or steady state sedimentation velocity drag can be given as:

Up= (:_ :) (6)

WHERE: a: PARTICLE RADIUS

I1: FLUID VISCOSITY

g: GRAVITATIONAL POTENTIAL

This sedimentation velocity potential is modified by the probability of hydrody-
namic interaction with the next closest sphere, where the distance separating these
spheres is defined probabilistically for a uniform dispersion. The result is the

mean sedimentation velocity potential, corrected by the presence of a dispersion
of other spheres of a given concentration:

u - Up(1- s.55,t,D) (7)

The incorporation of this result into a form for the interphase momentum

exchange in two phase flow due to drag requires the suppositions that:. At a given
slip velocity the potentials acting on each phase due to drag are equal and
opposite, i.e. momentum exchange is conserved. The slip velocity of two phase
flow is then equated with the modified mean sedimentation velocity due to gra-
vity. Resulting in, for a single spherical particle:

2--9_a(1-s.55¢o) (_vO_yc) . (pO_pC)it
(8)

This result is then further generalized with the assumption that if this is the

potential for interphase momentum exchange due to drag on a single sphere, then
the drag force per unit volume of mixed flow should be simply this potential
normalized by the local volume fraction or concentration of the particulate phase:

= ,t,o(i,6.ss¢o)(yO_v ) (9)

The caveats are obvious: The single particle analysis is grounded in the
assumption of Stokes flow for the motion or slip of the dispersed phase relative
to the continuous phase. Unlike the slip velocity of two phase flow, the sedi-
mentation velocity at a given concentration is a constant, being the result of a

constant potential; gravity. The modification to the mean sedimentation velocity
by the hydrodynamic interactions with the other particles of the dispersion has
presupposed that the dispersion is uniform, i.e. gradients of dispersed phase
concentration are not present.

8



It is observed that certain classes of laminar shear flows will result in

demixing of the dispersed phase [30],[31], i.e. the dispersed phase will become
distributed in a non-uniform manner, despite the fact that initially the flow may
have been homogeneous with respect to dispersed phase concentration. Analysis of

these phenomena have been made using single particle hydrodynamics [32] and
using continuum two phase flow theory with the inclusion of lift forces in the
description of the interphase momentum exchange [11],[12],[15],[16],[33]. It is

generally accepted that the lift forces are those potentials, accounted for within
the interphase momentum exchange which produce dispersed phase motions or

migrations transverse to the slip or velocity difference between the phases. These
lift forces arise through the interaction of the slip velocity, the rotation or spin

of the particles of the dispersed phase and the shearing or gradients of the
continuous phase velocity. If the exchange of momentum between the dispersed
and continuous phase is conserved, then the lift force potentials act equally and

in opposite sense on both phases.
A variety of single particle analysis, with the resulting identification of

certain lift forces have been performed [23],[34],[35],[36],[37],[38]. The lift force

on a single particle, as outlined by Saffman, [35] is the most commonly used in
models of momentum exchange due to lift forces in continuum theories of

demixing two phase flow. Saffman's analysis identifies the lift force:

WHERE v : FLUID KINEMATIC VISCOSITY

u (y): FLUIDVELOCITY(IN PARALLELFLOW)

Unlike the assumption of Stokes flow used in the analysis of and subsequent

application to momentum exchange due to drag, Saffman's lift analysis begins
with the Navier-Stokes equations. However, the Reynolds numbers for the slip

velocity, the particle spin and the fluid shear are all constrained to order unity
or smaller. Hence, even though the Saffman's analysis retains the inertial terms
of the Navier-Stokes equations, the flow is not inertially dominated. The
solution requires the matching of the "inner" and "outer" asymptotic expansions
of the flow equations in an analysis technique pioneered before numerical

approximation coupled with computational methods became available [39]. In
Saffman's analysis the field variables for the flow about a single sphere are
expanded about the radial position from the sphere center. The inner expansion
has as a boundary condition the no slip requirement at the sphere surface. Since

the sphere is spinning, the no slip boundary condition constrains the fluid to
have the angular velocity of the sphere surface. Hence, the particle spin enters
the calculation implicitly, despite the fact that due to the level of truncation, it
does not appear explicitly in the expression for lift. The necessity for an outer

expansion results from the non-convergent nature of the solutions to the inner
expansion as the distance from the sphere center approaches the infinite.



The outer expansion embodies a second boundary condition, at a some large dis-

tance from the sphere center; namely, the undisturbed (by particles) velocity field
as radial position approaches the infinite. In fact the primary difference in most

single particle analysis of lift is whether the boundary condition for the fluid

velocity field in the outer expansion is constrained by a wall condition [32], a
quiescent fluid [34] or by the rate of fluid strain [35]. The assumptions implicit
in Saffman's analysis of the lift force on a single sphere include: the flow is

uniform and parallel, the slip velocity is parallel to the plane of the fluid shear,

the shear or velocity gradients of the fluid are linear and the particle spin vector

lies in the plane of the fluid shear, but is normal to the slip vector. The

resulting force is normal to the plane of the fluid shear (and slip vector) as well

as being normal to the spin vector of the particle. If, in terms of the slip

velocity, the particle lags behind the fluid the lift will produce a migration of
the particle into the faster, adjacent fluid and vice versa if the particle leads the

fluid. In other words, the sense of the lift force depends on the sense of both

the gradients of the fluid velocity and the slip velocity.

Saffman's result for the lift on a single spherical particle has been

generalized for the analysis of the momentum exchange due to lift forces in

continuum theories of de-mixing two phase flow [11],[12],[15]. The lift force on

the dispersed phase is normalized by the number of particles in a unit volume of

two phase flow. The resulting generalized form of the momentum exchange due
to lift being written:

- o  KC %I,o o= IDCl .(v°_v c)'= "_'1_ 4 _a (11)

This form of the momentum exchange due to lift has been used in calculations

of parallel, de-mixing two phase flows using continuum theories. However, it is

not clear that this general form will reduce directly to Saffman's result for a
one dimensional, parallel flow, both in terms of magnitude and the directional

nature of the lift force. In addition, despite the fact that the intentions are well

motivated, the meaning of operations such as absolute value, square root and
division by a second order tensor valued variable is not clear.

IV, Summary

In conclusion, it has been shown that single particle hydrodynamics is the

only source presently used to derive and justify forms for the interphase momen-

tum exchange models within continuum theories of laminar multiphase.
Four generic classes of momentum exchange models can be identified:

Drag, Lift, Inertial or Virtual Mass effects and Inertial History or Basset forces.

The latter two categories are still advent in nature and have not yet assumed a
role in the models of interphase momentum exchange in applications of contin-

uum theories of two phase flow. On the other hand, examples of Drag and Lift

forces in applied momentum exchange models are numerous, though not without
obvious caveats and inconsistencies.

It is encouraging that the requirements of emerging technologies based on

an understanding of multiphase flow processes has motivated such a great deal of
work on generalized models for interphase momentum exchange.

10
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Abstract

A general framework is outlined for the modeling of fluid-particle flows. The

momentum exchange between the constituents embodies both lift and drag forces,

constitutive equations for which can be made explicit with reference to known single-

particle analyses. Relevant results for lift are reviewed, and invariant representa-

tions are posed. The fluid and particle velocities and the particle volume fraction are

then decomposed into mean and fluctuating parts to characterize turbulent motions,

and the equations of motion are averaged. In addition to the Reynolds stresses, fur-

ther correlations between concentration and velocity fluctuations appear. These

can be identified with turbulent transport processes such as "eddy diffusion" of

the particles. When tile drag force is dominant, the classical convection-dispersion

model for turbulent transport of particles is recovered. When other interaction

forces enter, particle segregation effects can arise. This is illustrated qualitatively

by consideration of turbulent channel flow with lift effects included.

Introduction

Flow of an incompressible, single-phase fluid is fully characterized by a single

kinematic field, the velocity. The kinematics of a fluid-particle mixture involves the

velocity of each constituent, and an additional scalar field representing the particle

volume fraction, or concentration. In some flows, the latter can be quite critical.

For example, since the effective viscosity of a suspension is a strong function of the

concentration, particle segregation in a viscometer will violate the assumption of

homogeneity required to interpret measurements. Furthermore, if the distribution of

particles is in part determined by the shear rate (e.g., Ho and Leal, 1974; McTigue,

et al., 1986), the apparent viscosity will be rate-dependent, and the mixture will

appear to be non-Newtonian even when this may not be so locally.

A great deal of work has been done on the dynamics of a single particle in a

viscous fluid; reviews are given by Happel and Brenner (1965), Goldsmith and Ma-

son (1967), Brenner (1966, 1970), and Leal (1980). In many applications, however,

it is neither practical nor even of interest to track individual particles. Rather, the

l This work was supported by Sandia National Laboratories under contract to the U. S. Department
of Energy {DE-AC04-76DP00789).
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primary concern is more often for some average characteristics of the flow. The

objective of a continuum mixture theory is to provide governing equations for these

average kinematic fields. Ideally, one would like to draw upon knowledge gained

from single-particle analyses to guide the development of the constitutive models

required by the continuum theory. As a practical matter, this process relies heavily

upon empirical input as well.

This paper is intended to illustrate by example the construction of a two-phase

flow model for turbulent mixtures. It is highly idealized and far from complete, but

captures some interesting phenomenology. We first outline the general mechanical

balance laws for a mixture. We then review in detail results from the literature

on lift forces in viscous and inviscid flows. Generalizations in forms appropriate

for the exchange of momentum between the constituents in a mixture are then

discussed. "Exact" equations of motion are posed for the simplest forms for lift and

drag interactions. Turbulent decomposition and averaging yields not only Reynolds

stress terms, but other correlations of velocity and concentration fluctuations as

well. Simple "eddy viscosity" and "eddy diffusivity" closure schemes are adopted

to model the correlations. We then show that the classical convection-diffusion

model for turbulent transport emerges naturally for the case when the drag term

dominates the disperse phase momentum balance. Finally, we consider channel flow

with the lift force present, and identify an equilibrium particle segregation due to

a balance of lift and turbulent diffusion.

16

Balance Laws

by:

The balance equations for the mass and momentum of constituent a are given

Op,_
0-7 + v. (pov ) : o, (1)

)p_ -_-+v_-Vv,_ =V.T_+p_g+m_, (2)

where po is the density (mass of constituent a per unit volume of the mixture),

v_ is the velocity, To is the stress, g is the acceleration due to gravity, and m_

is a body force due to the interaction of constituent a with the other constituents

present. Equations (1) and (2) take the form of the classical balance laws for a

single-phase continuum, with the exception of the interaction force, or momentum

exchange, m_. Equation (1) neglects chemical interactions or phase changes, which

would be embodied in mass exchange terms (cf, Passman, et al., 1984).

We anticipate that the mixture can be represented as a single continuum, so

that:
Op

+ v . (pv) : o, (3)

p +v-_Tv = V.T+pg, (4)



where p, v, and T are the density, velocity, and stress for the mixture. Comparison

of (1)-(4) shows that the mixture quantities are related to the constituent quantities

by the summation rules:

p = _p_

pv = _]pava

T = _:[T_ - p_(v - v_)(v - vo)],

_m_ = 0,

(5)

(6)

(7)

(8)

where _2 indicates the summation over all constituents present. Equation (8) shows

that whatever momentum is lost from one constituent is gained by the other(s).

The density fields, p_, can vary due to changes in both the volume fraction, ¢_,

and the local density (mass of constituent a per unit volume of that constituent),

-,/_. Thus, it is convenient to introduce the decomposition:

pc, = 0c,3'a. (9)

Finally, we consider only saturated mixtures, in which all space is occupied, which

imposes the requirement:
_¢_ : 1. (10)

Equations (1)-(10) hold for multiphase systems with any number of constituents.

For present purposes, we specialize to the case of two, a continuous fluid (a = f)

and a dispersed particulate solid (a = s). In this case, we let

¢ = ¢., = 1 - Cj. (11)

We also restrict attention to mixtures comprised of incompressible constituents (_"/'f

and % constant).

Without loss of generality, it is convenient to decompose the stresses, T_, into

an isotropic pressure, p_, and an extra stress, T_:

T_ = -¢_p_l + T_:. (12)

There is substantial motivation to include in the momentum exchange a buoyancy

force, pfV¢, due to the fluid pressure acting over the interracial surfaces (e.g.,

Passman, et al., 1984). Thus, we also define an extra momentum exchange, m_,

such that

m._ = pfV¢ + m; (13)

Finally, equations (1)-(13) can be combined in the form:

0¢ (14)---+V-[(1-¢)vf]=0,
gt

0¢ + v (¢v,) o, (15)
Ot
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Ovf )Pl _,_/-+W'VV_" ---(1-_,)Vp,÷V.T_+p_,g_m;, (16)

)P_, t -_ -_ v,. Vv, = -_VPl - V[(5(p, - Pf)i + V. T: + p.,g + m2, (17)

Note from (14) and (15) that, even though the constituents are taken to be incom-

pressible, neither velocity field is, in general, divergence-free.

Lift Forces

Particle segregation has been observed experimentally in Poiseuille flow by a

number of investigators; results have been summarized by Brenner (1966), Cox and

Mason (1971), Goldsmith and Mason (1967), and Leal (1980). In general, these

studies show that particles lagging the fluid motion tend to migrate toward the

centerline, or region of minimum shear rate, and particles leading the fluid migrate

toward the wall. Segr_ and Silberberg (1962) found that, for a small range of

mean flow Reynolds number, neutrally buoyant particles can achieve an equilibrium
position at a dimensionless radius of about 0.6.

Saffman (1956) and Bretherton (1962) have shown that a particle embedded in

a steady, rectilinear Stokes flow, i.e. at zero Reynolds number, cannot experience a

net force normal to the unperturbed fluid streamlines. Thus, any analysis for the

cross-stream lift on a particle in a steady, rectilinear flow must take inertia into

account. One approach is to introduce small inertial effects through a perturbation

of the Stokes flow problem, and a number of such analyses are in the literature.

Both unbounded and bounded domains have been addressed. The analyses for the

former assume that the boundaries of the unperturbed flow are sufficiently far away

that they do not interact with the disturbance due to the particle. Boundaries play

an indirect role in this type of problem, of course, insofar as their presence may

be required to establish the velocity gradient or curvature with which the particle

interacts. Two well-known analyses for unbounded flows are those by Rubinow and

Keller (1961) and Saffman (1968), which are summarized briefly below.

Analyses for bounded flows address configurations in which, say, a fixed wall

lies within the disturbance field of the particle. Examples include the work of Ho

and Leal (1974) and Vasseur and Cox (1976). It is not immediately apparent how

one might adopt analyses of this type in the formulation of a continuum model.

Although we have attempted previously to do so (McTigue, et al., 1986) using

the results of Ho and Lea], the result is not very satisfactory. The indication of

ditficulty is the appearance of the channel width in the expression for the lift. It

would seem that this should enter through boundary conditions rather than through

a constitutive equation. Obviously, this arises because the bounded-flow analyses

are geometry-specific. For this reason, we consider in more detail generalizations
only of lift forces in unbounded flows.

Rubinow and Keller (1961) consider a sphere spinning with angular velocity fl

and translating at velocity V' through an incompressible viscous fluid. The fluid is



assumedto be static far from the sphere. The solution takes the form of a Stokes
expansion in the near field that satisfiesboundary conditions at the particle, but
fails far away, and an Oseenexpansion in the far field that exhibits the converse
behavior. An asymptotic match is performed in order to calculate the forceson the
sphere. The expansionsare it. powersof the particle Reynoldsnumber,

Rv - '-/]aV , (18)
#

where a is the particle radius, V is the magnitude of the translation velocity, and

# is the fluid viscosity. The result of interest here is that for the lift force normal

to the direction of translation, f(LRK):

fL(R_) = 7ra3"/I _ X V'[1 + O(Rv)]. (19)

Consider a rectilinear shearing flow, vii(x2 ). A force-free particle spins with the

angular velocity of the fluid, so that 133 = -s:/2, where t¢ = Ovfl/i)x2 is the shear

rate, and V_' = -Y =: -(v]l - v.,2). The "slip-spin" lift force (19) is then

h(, l _ 1.a%s v. (20)
2 2

It is interesting to note that, although Rubinow and Keller's analysis is for a small

inertial correction to the Stokes flow problem, the lift force is, to leading order,

independent of viscosity.

Saffman (1968) considers a sphere in a simple shear flow, translating parallel to

the undisturbed streamlines with a relative velocity of magnitude V'. The analysis

again is based on matched asymptotic expansions. In addition to (18), two other

Reynolds numbers enter the problem:

: (21)R_ _sa2_, Rn - ,
# #

and the conditions under which the analysis holds are

Rv <_ R1/2 Rv << 1, Rn<< 1. (22)

For a simple shear flow given by vi1 = vo + tcx2, Saffman obtained a "slip-shear"

lift force in the form:

f(Ls) :: 6.46a 2,_/2"_/_(sgn,c)l,_ll/2V. (23)

Equation (23) indicates that a particle lagging the fluid (V > 0) migrates toward

higher-velocity streamlines, and a particle leading the fluid (V < 0) migrates in the

direction of decreasing fluid velocity. This qualitative behavior is in accord with

experimental observations. In the rectilinear shearing flow, the ratio of the "slip-

spin" lift (20) found by Rubinow and Keller to the "slip-shear" lift (23) treated by

Saffman, then, scales like R_/".
19



In a moregeneralflow field, the applicability of the "slip-shear" analysisrequires
that thecharacteristic lengthscalefor the disturbancefield is muchlessthan that for
the variation in shearrate. Saffman (1968)suggested,from dimensionalreasoning,
that the lift due to interaction of the particle disturbance field with the mean-flow
curvature takes the form

f/(SC) =: ca4"_/3jL/1/3_c(sgn_') 1_'[2/3, (24)2

where _" is the curvature (e.g., for an undisturbed mean flow vii = VO + _¢X2 4-

_'X2/2). Saffman noted that determination of both the sign and the magnitude of

the constant c await more complete analysis. In this unbounded flow, one may

define a curvature Reynolds number R; = "_/aaf/tz, in terms of which the ratio of

the "shear-curvature" lift (24)to the "slip-shear" lift (23) scales like R_/2R2/aRv _.

It is interesting to speculate upon the possibility that these two forces oppose one

another in certain flows. Consider, for example, plane Poiseuille flow carrying a

neutrally buoyant particle. The particle slips relative to the fluid due to the Faxdn

effect only. Thus, for symmetric flow in a channel of half-width d, the shear rate is

tc = -3Vx_/d _, the curvature is f = -3_/d 2, and the slip is V : a2_/2d 2, where v is

the mean velocity. The "slip-shear" and "shear-curvature" forces are then balanced
where

= 0.s0c-2R-1/3, (25)

where R = "tfvd/# is the channel Reynolds number. Segrd and Silberberg (1962)

observed an off-axis peak in particle concentration in flows of dilute suspensions in

circular tubes. The peak occurred at a dimensionless radius of about 0.6, and was

manifest in flows characterized by R of order 10. If these conditions apply to a plane

geometry, the constant c would be of order 0.8. The ratio of the "slip-shear" (23)

to the "shear-curvature" (24) lifts in Poiseuille flow scales like _-1/6. Ho and Leal

(1974) also considered interaction with the mean flow curvature, but in a bounded

flow. The ratio of the curvature effect discussed by Saffman in an unbounded flow

(24) to that found by Ho and Leal scales like _-1/3.

Both Rubinow and Keller and Saffman studied small Reynolds number effects.

In the other limit, Drew and Lahey (1987) have recently considered inviscid rota-

tional flow past a sphere. They obtain a lift force of exactly the same form as that

found by Rubinow and Keller (19), but multiplied by a factor 4/3. The same result

was obtained independently by Auton (1987). This is essentially like the classical

Kutta-Joukowski lift on a two-dimensional body in a plane flow, which is just "TIUF,
where U is the velocity of the body and F is the circulation.

2O

Invariant Forms for the Lift Force

The momentum exchange, m;, includes fluid-particle interaction forces such as

lift and drag. For brevity, let us decompose m; into drag, mE, lift, m[, and other
components:

m* * *= + + (26),, mD m L ....



It has been suggestedpreviously (Drew, 1976; McTigue, et al., 1986; Passman,

1986) that the lift might include terms of the form

m_ = 2a2¢Df. (vf - v_) + 4/32¢Df. (V. Dr), (27)

where D_ = symVv_. It is expected that a2 and /32 may be a functions of the

particle volume fraction, 0, the relative speed, ivf -v_l, and the invariants of D/,

D,, and their higher-order derivatives. In particular, if we assume that, for dilute

suspensions, we should recover the single-particle results discussed in the foregoing

section, 2 this function can be made explicit. For example, Saffman's result for the

"slip-shear" lift (23) is recovered for the choice

3(6.46) ( "_.: _ 1/4
a2 - 47ra \2t_rD-_] (28)

The "shear-curvature" lift (24) is recovered for the choice

3ca'7_/3#'/s (29)
/32 ---- 47r]2V. Df] 1/3"

Generalization of a "slip-spin" lift of the form found by Rubinow and Keller

(20) poses some difficulty. It wou]d appear that such a lift is proportional to

2Wf • (vf - v,), where Wf = skwVvf is the skew-symmetric part of the fluid

velocity gradient. However, Wf is not invariant (e.g., Truesdell, 1977, p. 115).

Drew and Lahey (1987) have suggested that this dilemma can be resolved by si-

multaneous consideration of the virtual mass effect. The virtual mass, too, when

generalized from the classical expression, is not easily put into an invariant form.

However, the combination of the virtual mass and lift forces posed by Drew and

Lahey is invariant:

mvM + m L : _'7f¢ Dt Dt /

where rn_M is the momentum exchange due to the virtual mass effect, and the

substantial derivative is defined by D_/Dt =- O/Ot + v_ • V. In (30), neither the

virtual mass, represented by the difference in convective accelerations, nor the lift,

in the form 2Wf • (vf - v_), is invariant, while their sum is. This depends upon

the remarkable result that the coefficient -yf/2 is the same for both the virtual mass

and the lift. That (30) embodies the classical virtual mass effect is easily seen by

specializing to an unsteady, uniform flow. That it embodies the result of Drew and

Lahey for the lift can be demonstrated by specializing to steady, rectilinear shearing

flow. Drew and Lahey point out that a simple regrouping of terms can yield an

invariant form for the virtual mass:

m_M = _f4) -_ Dt - (vI - v_). V(vf- v,) , (31)

and a lift in the form of the first term in (27) with a2 -- _f/2. Equations (31) and

the lift sum to recover (30).

2This assumption was stated by Drew (1976) as the principle of correct low concentration limits.
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Turbulent Decomposition and Averaging

It is evident from the foregoing discussion concerning lift forces that the for-

mulation of the necessary constitutive models necessary to complete the equations

of motion (14-17) is quite formidable. It remains to specify relationships for the

stresses, T_ and T;, the pressure difference, ps - p/, and momentum exchanges

such as that due to drag, m_. Each of these raises subtle and complex modeling is-

sues. For present purposes, we skirt these difficulties in order to isolate phenomena

associated with the lift and drag. In particular, we assume

T} --0, (32)

T: :0, (33)

P! : P, = P, (34)

m. : - v.), (35)

m_, : 2a_¢D!. (v! - v,). (36)

We rationalize neglect of the fluid extra stress, T_ (32), by confining attention to

inertially-dominated flows) In a dilute suspension, it is easy to imagine that the

disperse-phase extra stress, T_, vanishes (33), implying that there is no direct ex-

change of momentum between particles. The assumption of equal pressures (34)

implies that Brownian motion (Nunziato, 1983) and certain inertial effects at the

particle scale (Givler, 1987) are negligible. The drag force, m_, is written in its

familiar form (35), proportional to the relative velocity. The coefficient al is, in

general, expected to depend upon ¢ and [vf - vsI, accounting for the effects of

particle interference at high concentration and inertia at high relative velocity, re-

spectively. The choice al = 91_/2a _ corresponds to the classical result for Stokes

drag on a single particle, and is adopted here. Finally, we take the lift in the form of

(36), with a2 assumed to be constant for simplicity. Neglect of inertial effects in the

drag (35) while retaining those giving rise to the lift (36) is justified if RvR_ n << 1,

where n = 1 for the "slip-spin" lift of Rubinow and Keller (20) and n = 1/2 for the
"slip-shear" lift of Saffman (23).

Under these assumptions, the momentum equations (16-17) reduce to:

)P: \ ot +v:'vv/ = -(1-¢)Vp+p:g

P$

Ot +v,.Vv, :

-_,¢(vf - vs) - 2a2¢D/. (v/- v,),

-¢Vp + p,g

(37)

(38)

+aa¢(v/- v,) + 2a2¢D!. (v: - v,),

3The dissipative, viscous terms represented by T_ are critical, of course, to the extension of this
discussion to the kinetic energy balances.
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Note that these "exact" equations of motion do not contain interaction terms rep-
resenting diffusive forces.

The independentfield variablesin (37) and (38) areeachdecomposedaccording
to:

' (39)Va ----Va + V a,

¢: _+¢', (40)

p : p+p', (41)

where overbars indicate mean quantities and primes indicate fluctuating quantities.

By definition, ¢-7 = 0 and p-_= 0. However, the averaging scheme chosen here defines

the mean velocities in terms of mean momenta, an approach introduced originally

for compressible, single-phase flows (Favre, 1965), and suggested in the multiphase

context by Drew (1975):

_,_Y_ = p,,,v,_. (42)

Note that Pa = "_a¢_ for incompressible constituents. Note also that the averages of

the velocity fluctuations do not vanish, but (1 - ¢)v_ = 0 and -Ova' = 0.

Substitution of (39)-(41) into (14), (15), (37), and (38) and averaging yields:

0¢ (43)
- 0_- + V. [(1 - ¢)V/] = 0,

m

0¢
O--t + V. (¢Vs) : O, (44)

-Pf \ ot + vf" Vvf =
-(1 - ¢)Vp + ¢'Vp' + V. T_ + pfg

--20e 2 [_ Df • (Vf - V,) Jr Df • Cv_ + CD_ • (V] - V,)]

(45)

P" \ Ot + V'' VV" = -¢Vp-cp'Vp' + V" T, + p.,g

-_- ¢:E1 ['_ ( V f -- V, ) -_- evil "]

--_-20i2[_Df.(Vf--Vs)_-Df'¢Vrf + CD_ • (vl - Vs)]

(46)

v' v' is a Reynolds stress for constituent a, and triple correlationswhere T_ : -_._ _

have been omitted.
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Constitutive Models for Turbulent Correlations

The averaged mass balances (43-44) appear in forms identical to the exact equa-

tions (14-15), in part as a consequence of the definition of average velocity (42).

Averaging the momentum balances, however, yields a number of correlations of

fluctuating quantities. The Reynolds stress terms are familiar from single-phase

turbulence, but several additional correlations arise here that are a direct conse-

quence of the fluctuations in the particle concentration field, ¢. Of special note is

the correlation of particle concentration and fluid velocity fluctuations, ever , which

represents a flux of particles due to the fluid turbulence. In all subsequenl devel-

opments, we neglect the pressure-concentration correlations appearing in (45) and
(46).

For the present discussion, it suffices to adopt the simplest possible closure

scheme, following essentially the classical "eddy viscosity" argument. That is, a

' is taken to be proportional to thecorrelation of some fluctuating quantity with v_

gradient of the mean of that quantity:

-pav_v_--' '- : u_llo[V • (_aV_)]l + 2u_/_symV(_ay_) , (47)

Cv_ : -u;13V-¢, (48)

2¢D_ : -u.el, V (V$), (49)

where us is an appropriate velocity scale for constituent a, and the Is are appropriate

length scales ("mixing lengths").

Turbulent Convection and Dispersion of Particles

A commonly encountered situation for which modeling capabilities are well de-

veloped is that for particles fully entrained in the fluid. In this case, the particles

are essentially "passive" tracers for the fluid, and are transported by the mean con-

vective motion and by turbulent diffusion. It is worth considering briefly where this

classical model is embedded in the mixture theory outlined here.

For ¢ << 1, the fluid mass and momentum balances (43 and 45) are approxi-
mately those for the fluid alone:

24

v.vf ::0, (s0)

_f _ Ot +Vf'VVf = --Vp+ V.Tf +'Tfg. (51)

In this approximation, the fluid motion is unaffected by the presence of the particles,

and can be solved independently. The disperse-phase mass balance (44) remains in

its exact form. Suppose the drag coefficient, al, is large, so that the dominant terms

in (46) are simply those due to drag. This can always be realized for sufficiently



small particles; the ratio of the drag to lift forcesdiscussedin the foregoingscales
at least like a -1. The disperse-phase momentum balance then reduces to:

 (vs - v,) = (52)

i.e., the mean flux of particles relative to the fluid is balanced by the turbulent

correlation Cv}.

Equations (44): (50), and (52) combine to give:

-v. (¢v}) (s3)
o-t + vs •

Substitution of (48) into (53)yields:

a¢ - (54)
o-7+ vs. v¢ = v.

where P = ull_. This recovers the classical result: the particle concentration field is

governed by a convection-dispersion equation, with turbulent dispersion coefficient

or "eddy diffusivity" P. A similar discussion for the case when the gravitational

body force is retained was presented by McTigue (1981, 1983).

Although this limiting case is relatively simple and quite well known, the present

development is revealing. Many texts derive the turbulent diffusion equation solely

from a statement of mass balance, a decomposition and averaging process, and a

model for the correlation of concentration and velocity fluctuations. This tends to

mask the fact that the turbulent diffusion is a dynamic process in response to fluid-

particle interactions. Thus, the momentum equations must be considered. Indeed,

it is worth reiterating here that the turbulent dispersive flux, ¢v), appearing in in

(53) arose from decomposing and averaging the drag force (35). Thus, the tendency

for the particles to be convected with the mean fluid velocity and dispersed by the

fluid velocity fluctuations is clearly identified with the drag. Analogous observations

have been made previously with regard to molecular diffusion (e.g., Miiller, 1968).

We also note that the assumptions leading to (54) are quite special, and empha-

size in particular the neglect of any interaction forces other than drag in writing

(52). It is evident that much more complex phenomenology could be embedded in

the general scheme outlined here if additional interaction forces come into play.

Channel Flow With Lift Effects

Particle segregation has been observed in turbulent jets (Laats and Frishman,

1970), and ascribed to the "Magnus" lift force (30). Here we consider plane channel

flow in order to simplify the kinematics, and retain the cross-stream lift effects

embodied in (46). The analysis is highly simplified and somewhat speculative, and

is intended only to illustrate the type of phenomena that might be represented by

a mixture model of the type sketched out here.
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Consider a vertical channel, with steady upward flow. The flow is in the +xl
direction, so that g = {-g, 0, 0}, x2 = 0 at the wall, and x2 = h at the centerline.

We assume that % > _l, so that gravitational settling will cause the disperse
particulate phase to lag the fluid.

For a steady, rectilinear flow in the mean, the mass balances (43, 44) are identi-

cally satisfied. We expect again that, for ¢ << l, the fluid momentum balance can

be approximated by that for the fluid alone (51). Thus, in the streamwise direction,
(51) becomes:

d_ d
21o dx; + ex2T; _fg (55)

For a smooth-walled channel, familiar arguments for the mixing length 12f (47) and

the identity ul = u, = (To/ql) 1/2, where To is the shear stress at the wall, lead to

the usual logarithmic velocity profile:

vii _ 1 In u.x2
-- + 5.5, (56)

U. _ V

where _ __ 0.4 is the K_rm_n constant, and u = p/-_/is the kinematic viscosity. The

streamwise momentum balance for the particles, from (46) and (48), and neglecting
T_21 , becomes:

d_l dr/1 de
0 : --_ -- "/'_g _- O_l_(Yfl -- V,1) -- O_2U*gsX2 dx 2 dx2,

(57)

where we have assumed u/l 3 = u,_c, x2. Substituting from (55) for the mean pressure

gradient in (57), and noting that the fluid shear stress gradient is simply -_lu_,/h,
(57) becomes:

(%- ..::)g+ ,_,(_:,- _.,)- o_,u.,_.z_d__ (58)Q

Let us suppose, again for simplicity, that the second and third terms in (58) domi-

nate. In this case, we are left with a balance between the buoyant weight and the
drag, giving

_fl -- V,1 _-- Voo, (59)

where V_ -- 2a 2 (% - "_/)g/9# is the Stokes settling velocity.

The cross-stream momentum balance for the disperse phase is

(1 d-_ dyflt. -

0 ---- --O_lU._,X 2 \¢ dx2] _- _2-d-_x2 tvf 1 -- V,1),
(60)

which is simply a balance between turbulent diffusion and the lift due to the mean

flow. Note from (60) that the gradient of ¢ vanishes at the centerline if the fluid

velocity gradient vanishes there. According to the eddy viscosity model adopted for

the Reynolds stress (47), the latter is in fact required by symmetry. However, of



course, the logarithmic velocity profile (56) doesnot satisfy this condition. There-
fore, we can anticipate a similar failing in the solution for _. Substitution of (56)
and (59) into (60) and integration gives

(61)= _(h) exp a,_Dh

where r/ = x2/h, and a diffusivity, /)h = u,_,h has been introduced. This profile

has some of the expected characteristics: the particles are concentrated to_'ard the

center of the channel by the lift; the central peak is flattened by diffusion; and the

channel margins, where the fluid velocity gradient is steepest, can be essentially

clear of particles. That (61) indicates _(0) = 0 is a result of using the logarithmic

fluid velocity profile (56), which is not valid in the limit x2 ---' 0, in (60).

Lee and Durst (1982) conducted experiments in this configuration using glass

beads in an air stream. Some of their results are in qualitative agreement with

those found here: the air velocity profile (56) is little affected by the presence of

the particles (at less than 0.5% mean volume fraction); the particles lag the fluid

approximately by their fall velocity (59); and there is a particle-free zone near

the wall. However, important phenomena are missed by this simple analysis. In

particular, Lee and Durst observed that the velocity difference (59) is not uniform

across the channel, but typically decreases toward zero near the wall. The particle

velocity profiles, then, are more nearly uniform across the channel, suggesting that

the turbulent mixing brings high-momentum particles from the core of the flow

toward the boundary. For the smaller particles examined, the profiles actually cross

near the wall; i.e., the particles lead the fluid, so that the momentum exchange due

to drag (35) changes sign. These phenomena are clearly not embodied in the model

analysis outlined here. The limitation is most likely in the simple, Boussinesq closure

scheme adopted (47-49). Kashiwa (1987) has modeled these experiments using a

higher-order (k - e) closure, and is able to represent the cross-stream transport of

streamwise particle momentum into the near-walt region.

Summary and Discussion

Treatment of turbulent suspensions in the context of the continuum theory of

mixtures is currently in its most rudimentary stages. The appeal of the overall

approach is that it provides an axiomatic framework on which to build. In practice,

of course, one is quickly confronted with the difficulty of posing specific constitutive

equations for the stresses and momentum exchange that embody the phenomena

of interest. This is only compounded in the case of turbulent mixtures, in which

correlations between the three kinematic fields, v I, v_, and ¢_proliferate. The intent

of this paper is not to lay out a definitive set of equations of motion for such a system.

Rather, we have attempted only to sketch the general spirit of the approach, and to

illustrate by means of the simplest possible example. The sequence is familiar from

its antecedents in classical, single-fluid flow: state balance laws, pose constitutive
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equations, construct "exact" equationsof motion, introduce a decompositionand
averaging scheme,model the resulting correlations, and, finally, solve boundary
value problems. The channel flow problem consideredhere, exhibiting particle
segregationeffects,only hints at the rich and complex phenomenologythat could
be embeddedin sucha model.

Each section of the paper encounterschallenges. Exact forms for lift forces,
even from single-particle analyses,are not well established;those that are known
arecomplex; and their generalizationsare not immediately obvious. Weemphasize
in particular that bounded flows have been analyzed (e.g., Vasseur and Cox, 1976)

in which wall effects are critical, and it is not clear how one might adopt such results

in a continuum model. Many of these remarks carry over to other interaction forces,

as well, such as the "Basset" term (e.g., Hinze, 1975, p. 463), which accounts for

the history of the particle acceleration. Because no universally valid expressions

for lift, drag, or other forces are available, considerable judgement is required in

selecting the forms appropriate to a particular application. Constitutive equations

for any concentration beyond the dilute limit are especially difficult to define; few

analytical results are available (e.g., Batchelor's (1972) work on "hindered settling")
and resort is usually made to empiricism.

Perhaps the greatest challenge encountered in constructing a model for turbu-

lent mixtures is the "closure" problem, familiar from single-phase turbulence, but

magnified here by the presence of additional fluctuating fields. As in single-phase

problems, some simple configurations can be addressed through classical Boussi-

nesq models (e.g., 47-49) and simple scaling arguments. However, it is also clear,

even from the highly idealized channel flow problem addressed here, that such an

approach is severely limited. For example, the Boussinesq model for the Reynolds

stresses (47) does not embody normal stress effects in rectilinear flows, while one

might easily imagine that such effects could be important. Higher-order closure

schemes are obviously called for, and steps in this direction have been taken with

some success. Scheiwiller (1986) has developed a k - e model to represent snow

avalanches, and has achieved excellent agreement with laboratory experiments.

Kashiwa (1987) has used a similar approach, and successfully captures some of

the unusual phenomena observed by Lee and Durst (1982) in the vertical channel

flow discussed in the foregoing section.
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Gas-solid two-phase flows occur commonly in many natural and industrial

situations. Examples are blood flows, rocket exhaust plumes, pulverized

coal gasification and combustion, and sediment transport by air and water.

These flows are invariably turbulent and are characterized by the mutual

coupling between the solid particles and the gas phase. Contrary to passive

additives in a single-phase flow, the particles will change the flow

structure of the carrying fluid. Globally, metering and heat transfer data

[1,2,3] of two-phase flows shows discrepancy from the single-phase data.

Further, small scale turbulence structures are also affected. Solid

particles may attenuate the spreading rate and damp the turbulance intensity

in a jet flow [5,6]. The alternation of the turbulence structure was found to

depend on the particle size, the solid loading ratio as well as the physical

properties of the different existing phases.

In general, a complete theoretical treatment of two-phase flows is not

possible because of the lack of detailed understanding of the physical

processes involved [7]. Previous analytical studies have not been very

successful, due in part to a lack of knowledge about the turbulent flow field

of the conveying gas which is a prerequisite to the solution of the two-phase

flow problem. Difficulties in theoretical analysis also arise from the

coupling between the two phases, i.e., the exchange of momentum, mass and

energy between phases. These coupling phenomena comprise a very complex

interaction which affects both the gas and particulate phases.

Consideration of the infinite variety of interfacial geometries and flow

regimes, various forms of non-equilibrium, and aggregation of particles

complicates the problem even further.

The inability of the theoretical analysis to account for all the

complicated interactions in two-phase flows is similar in the study of

single-phase turbulent flows two decades or so ago. An exact theory of

turbulence did not (and still does not) exist; however, using a combination of

theoretical equations, modeling assumptions, and experimental evidence,

mathematical models describing certain features of the flow were developed.

The field of turbulence modeling has subsequently been developed to the point

where single-phase turbulent flow fields can be predicted rather well using a

variety of turbulence models of varying complexity [8,9]. These advances

suggest that a similar combination of theory, experiment, and modeling could

be used to develop computational models capable of predicting two-phase

flows. However, extra sets of equations and correlations need to be

formulated and modeled for turbulent gas-solid flows. The purpose of this

*This work was partially supported by NASA-Marshall Space Flight Center

(NAS8-36718)
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paper is to discuss and review the recent advances in two-phase turbulence

modeling techniques and their applications in various gas-solid suspension

flow situations. In addition to the turbulence closures, heat transfer

effect, particle dispersion and wall effects are partially covered here.

Because of the intrinsic, complex coupling between different species in

two-phase flows, there seems to be no "unified" set of governing equations

that can completely describe the flow field of two-phase media. However,

there are quite a number of different formulations in the literature from

which to begin. One approach, the so called "discrete" or "tracking"

approach, starts with an equation of motion for a single discrete particle in

a turbulent fluid flow field and the particle's trajectory is calculated.

For particles much smaller than the smallest scales (say Kolmogorov's

microscale) of turbulent motion and for which the solid' s material density is

much greater than the conveying gas, the BBO equation (Basset, Boussinesq,

Oseen), which is the momentum equation of a single particle, can be reduced to

[io]:

d 1

-- vi - (ui - Vi) + gi (i)
dt t,

Because the Eulerian velocity u i is a stochastic quantity when the conveying

gas flow is turbulent, this simple looking ODE cannot be solved analytically

due to its inherent nonlinearity.

However, progress has been made using this approach in conjunction with

the turbulence closure models which have been developed for single phase

flows. The basic strategy is to use the turbulence model to calculate the

fluid flow field assuming that no particles are present. This calculation is

used to generate the velocity in equation (I) after making suitable

assumptions regarding turbulent time scales, length scales and isotropy. To

account for the mutual coupling (or the "two-way" coupling [ii]) of mass,

momentum, and energy between phases, the extra source terms generated by

particles must be included in the Eulerian sets of governing equations for the

gas phase. In the mean flow fields, this can be achieved by the iterative

PSIC (particle-source-in-cell) technique developed by Crowe and co-workers

[12,13] or by the non-iterative, transient numerical scheme of Dukowicz [14].

The discrete particle approach can also be extended to account for the

particle-turbulence interactions which have two aspects -- the turbulent

particle dispersion (the influence of fluid turbulence on the particles), and

the "modulation" effect [15] (the effect of particles on fluid flow

turbulence). These will be discussed in further detail in the next section.

In the non-discrete (continuum) approaches, two formulations are

commonly used; the first considers the gas-solid suspension to be represented

as a single inhomogeneous medium. The interactive forces between the phases

are taken account of by internal stresses which must be related by

constitutive equations to the bulk properties of the medium. Sets of

governing equations for this approach were first formulated by
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Barenblett [16] and described in detail in Monin and Yaglom [17]. This

approach was also used recently in heat transfer analysis of a gas-particle

pipe flow [18].

The other approach is the so-called "two-fluid" approach. This

approach regards the gas and particles as two inter-penetrating continua in

much the same way as the two species of a flowing binary mixture, for example.

Here, the cloud of particles is regarded as a continuum and the governing

equations are obtained by properly averaging the conservation equations over

a volume and expressing the equations in differential forms. Many authors,

namely Murray [19], Drew [20], Marble [21] and Ahmadi [22], have described the

two-phase flow based on the two-fluid formulation and applied it to some

physical processes. It is often not possible to formulate a general set of

governing equations for gas-solid two-phase turbulent flows due to the lack

of understanding and differences in interpretation of the physical processes

involved (for example, the "solid-phase pressure" term [23]). In order to

obtain theoretical relations of two-phase turbulent flows, several

assumptions have to be invoked to simplify the formulation. These are:

i. The particle phase is dilute (volume fraction of particles,

<< i) and is made up of particles spherical in shape and uniform in

size. The particle material densityps >> p;so that the model is valid

when p_ = _ (p) . This assumption is required because we

ignore particle-particle collisions, the frequency of which increase

quadratically with loading. The uniformity of particle size reduces

the book-keeping in the formulation; extension to poly-dispersed non-

uniform size distribution is a straight forward matter for dilute

suspensions.

2. Both the particulate and fluid phases behave macroscopically as

continua. The fluid phase is Newtonian and both phases have constant

physical properties and do not undergo any phase change. The continuum

hypothesis assumes that the mathematical "points" are large enough to

contain many particles and fluid molecules to ensure a stationary

average. In order to satisfy the "dilute suspension" and continuum

assumptions simultaneously for particle phases, some stringent

restrictions regarding the number of particles in a smallest control

volume made up of Kolmogorov microscale, the distance between particles

to avoid direct inter-particle interactions, have been discussed

[10,24,25]. However, the continuum approach has proven to be

applicable also to situations which do not strictly meet such conditions

[26].

3. The mean flow is steady and incompressible. Molecular diffusion,

Brownian motion and gravity effects on the particulate phase are

negligible compared with turbulent diffusion. Electrical and magnetic
forces are not considered here.

With the above assumptions, we may adopt the governing equations

developed by Marble [21,27] andHinze [25] which are applicable to dilute gas-

particle flows. Marble used statistical averages for the particle cloud and

postulated the macroscopic governing equation for the gas phase. Continuity

equations are written for each phase:

ap a

+ (pUi) = 0 (2)

at ax i
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app a

-- + (ppV i)
at ax i

= o (3)

Here Pp is the mass of particles p_r ,,_it volume of mixture (or "density" of

the particulate phase where Pp = Ps@, @is the particulate phase volume

fraction). The momentum conservation equations for each phase are:

au i %u i ap 8

p + puj - (Tij) + Fpi (4)

at OXj OX i @Xj

8v i av i

pp + ppVj - Fpi (5)

8t Oxj

Here Fpi represents the force acting on the primary fluid per unit volume due

to the presence of the particle. Note that due to dilute assumption, the

multiplication of (i - #) by each term in equation (2) and (4) was replaced by

i. Of special note is that the values of ui, P' P that appear in the

continuum relations (2) and (4) are, in a sense, "smoothed" variables. The

detailed gas disturbance caused by the particle motions are omitted from the

instantaneous gas velocity vector U i. Since the gas velocity varies

strongly in the neighborhood of a particle that is moving through the gas, use

of these smoothed variables in continuity, momentum and energy relations

requires that all particle wakes or regions of immediate influence are

dissipated very rapidly over the gas control volume. Hinze [25] treats this

problem by attributing the forces around the particle as the external forces

and disregarding the modified velocity field around the particles. If this

external drag force follows Stokes law, then the fluid velocity U i in the

Stokes drag law is at "infinity", i.e., a large distance from the particle

center so that the detailed fluid motion in the neighborhood of the particle

is still not accounted for. However, the inadequacy of this model is not

important for small volume fractions of particles having a not too large

velocity relative to the gas. But for large volume fractions and cases in

which particles may form into groups by trailing another in its wake, large

regions of the flow may be inadequately modeled (c.f. [25] and [28]).

Several derivations concerning the two-fluid model equations have

appeared in the literature. The derivations include those of Hinze [29], Soo

[30], Drew and Segel [31], Ishii [32], Nunziato [33] and more recently, Roco

and Shook [34]. The resulting equations differ in various ways such as the

pressure gradient term for both gas and particulate phase, momentum source

term, and shear stress tensor of the secondary phase although general

constitutive equations relating stress and flow properties have not yet been

developed. However, for the low concentration limit of suspension flows of

small spherical particles, most of the derivations will recover similar

forms. For example, the theory proposed by Ahmadi [35] which was general to

the extent that it could be applied to both concentrated and dilute two-phase

flows could be shown to recover the theory of dusty gas as derived by Saffman

[36] in the low solid volume fraction range. The general expression for the

internal forces between solid and continuous phase is discussed by Truesdell

and Toupin [37] (also see [38]) and Drew and Segel [31]. The philosophical
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reasons for using the two-fluid continuum approach and the common feature of

dispersed two-phase flow systems can be seen in Drew's [20] review paper.

By performing the Reynolds decomposition and time averaging of

equations (2) (5), the following mean equations for statistically steady

flows result.

au i
- 0

ax i

a vi a

ax i axi
pp 'vi ,

(6)

(7)

8U i 8P 82Ui 1 8 (8)

pUj - + _ ui'uj' + Fpi

8xj ax i 8xj 8xj p. 8xj

av i 8v i 8 8
I e v e

- pp'vj (__) (Vj pp i ) - Fpi
_pvj axj axj axj axj

(9)

where some use of the continuity equations has been made in deriving

equations (8) and (9). As a consequence of dilute suspension, triple

correlations involving fluctuations in the particulate phase density are

considered negligible. At this point the mean interaction term F". needs to

be specified. Empirical expressions for the interaction termsP_ave been

summarized by [39] for low and moderate solids concentrations. The

appropriate relationships are given by

i

"F'pi =- (I + o.179_-R_p + O.013Rep) p'p(Vi - Ui) (i0)

t,
i

+ -- (i + (3/2)0.179_ Re p + 0.113 x 2Rep)pp' (v i' - ui')

t,

where
]U i - vii dp

Rep = (ii)

2

and t, = dpp,/18pv (12)

We note that several turbulent correlations appear in equations (7) -

(9) in addition to the conventional Reynolds stress _ for the single-

phase flows. These terms arise from the velocity fluctuations and

fluctuality volume fractions of the particulate phase and represent the

turbulent momentum flux and mass flux of particles. To close the set of

governing mean equations, models are required for these second order
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correlations. The field of turbulence modeling for single-phase flows is a

rapidly expanding one and will form the two-phase closure models described
here.

The hierarchy of turbulence closure models has been received by Reynolds

[40], and recently in [8,9]. The proposals range in complexity from zero

equation models where the turbulent fluxes are modeled as if they were

molecular fluxes, with an eddy diffusivity related to mean flow structures to

Mean Reynolds Stress models where separate transport equations are solved for

each component of the turbulent flux vectors and tensors. Most two-phase

turbulence models follow the single-phase turbulence models for

incompressible flows closely; their modeling is discussed in the following.

The most common and simplest modeling technique is to assume a Newtonian

type constitutive equation for relating the turbulent fluxes to the mean

field through an eddy viscosity. For gas phase Reynolds stresses,

Ui 'Vj _ = _ vfSij + 2/3 _ijk (13)

1 I 8Ui @Uj
where S i j is the mean rate of strain tensor of gas flows -- _ +

2 [ 8Xj aX i

k = I / 2 u i 'U i ' and v f is the eddy viscosity.

Depending on the level of complexity employed, the eddy viscosity could be

specified by zero-equation mixing length models, one-equation models or two-

equation models. Due to the presence of solid particles, the eddy viscosity
constructed by these models must take into account this effect.
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ZERO-EQUATION MODELS

Early theoretical studies [41 - 43] indicate that the presence of solid

particles decreases the eddy viscosity of the gas flows arising from

dissipation of turbulence energy at the interface between solid particles and

the fluid. These results lead several first-order closure schemes which

modify the eddy viscosity for the clean gas flow without suspension of solid

particles, Vfo. For example, Owen [41] proposed

-- = 1 +--

Vfo P

1

2
(14)

for the case t,/t e _< i and

vf[= 1

Vfo

1

t_ I - -_ (15)



for te/t , _> 1

This model has been used by Melville and Bray [44] for application in a

turbulent free jet of dilute gas-particle mixture and has been further

modified by Choi and Chung [45] and Chung et. al [46] for application in a
wall-bounded shear flow. Most closure models developed at this level

heavily involve empirical information and limiting case (loading ratio

approaching zero) analysis and, in most cases, ignore the effect of particle

size [47,48]. This level of models are very useful in engineering analysis

because of their simple forms. However, they fail to handle some important

effects, such as the "turbulence modulation", and besides, it is hard to

prescribe the "mixing length" and the effect of particle on the mixing length
scale. The next level of models, which incorporate a transport equation for

the turbulence kinetic energy, and thus the velocity scale, were developed in

the hope of providing additional generality and at the same time account for

the effect of particles on the turbulence structure.

ONE-EQUATION MODEL

An equation describing the dynamics of the gas-phase turbulence kinetic

energy can be derived from equations (4) and (8) by simple manipulations.

For statistically steady, high Reynolds number flows it is given

8k aJ i

U i - + Pk - _ + ui'Fpi (16)

ax i ax i

Here __ aU i

Pk = - Ui'UJ ' --

aXj

is the rate of production of turbulence energy and

8U i ' aU i ' is the rate of energy dissipation rate.

axj axj

' ' )
i ( p u i ak

Ji = -- L u i 'uj 'uj ' + 2v and2 p axi

ui'Fpi the extra particle production (or dissipation) term, all per unit

of mass. Probably the first attempt to use a one-equation turbulence model

to study the two-phase flows is that of Dannon et. al [49]. They applied a k-Z

closure model to a particle-laden axi-symmetric jet. The length scale i was

specified algebraically and was taken to be the same as that of a single-phase

jet. For the k-equation (16), the diffusion term and production term were

modeled following the conventional single-phase gradient-type modeling

technique. In their study, quasi-equilibrium (i.e. U i = V I ) and

mono-dispersed particles in Stokes regimes were assumed,

39



which simplify the interaction terms F

kinetic energy equation becomes

pi

pp(v i - ui)

t,

and the turbulence

U i
ak 8 ( vf 8k

[
#x i @x i 8 k 8x i

+ vp

p"-_ (Ui,Vi, - Ui,Ui, )

p t,

I _U i
8xj

312
k

- C D --
1

1 pp'Ui' (V i , - Ui, )
+ --

p t,

(17)

The triple correlation was neglected and the concern was the modeling of the

additional dissipation term created by the particle slip velocity at the
fluctuation level. This term is similar to the turbulence "modulation"

effect attributed to the inability of dispersed-phase particles to

completely follow turbulent eddy fluctuations at high frequency. This added

dissipation mechanism has been experimentally observed [2,5,6,50,51] and has

gained much attention in recent two-phase modeling studies.

The fluctuating velocity correlation of this term is bounded by

0 < - (Ui'V i , -Ui,Ui, ) < 2k (18)

where the two bounds represent the cases where particles completely follow

the fluid (u_ = v_) and stationary particles relative to the velocity
fluctuation (v. = 0). Dannon et al [49] proposed a model that has theI

correct limiting behavior

- (U i 'v i ' - U i'u i ') = 2k [i - exp (-S(t,/T)) ] (19)

whereT = (_/£_is the Kolmogorov time scale, and B is a model constant.

The use of the time scale 7 was argued [52] to be inappropriate since the

eddies contributing most to the correlation u[u--_are the energetic eddies

which have an integral time scale t e . Dannon et. al [49] indicated that this

model did not give good prediction due to a change in the structure of the

turbulence and the structure was represented by the length scale. As a

result, they had to arbitrarily modify the production and dissipation terms

to reflect the structural variations. Due to the difficulty of specifying

the length-scale distribution a priori in a flow and appropriate modeling for

particle effect, most workers have abandoned one-equation models in favor of

two-equation or even stress-equation models in which the length scale is
computed from a transport equation.
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TWO- EQUATION MODELS

Most studies in two-phase turbulence modeling utilizing a transport

equation for the turbulence length scale £' are based on a modeled equation

of the isotropic dissipation rate e; this equation can also be derived from

equations (2), (4), (8) by appropriate differentiation, multiplication and

averaging. The exact 6-equatlon consists of 67 terms with particle's effect

accounted for [53]. For high Reynolds number flows and based on an order-of-

magnitude analysis [54], the groups representing the production of £ by

vortex stretching, the viscous destruction of £, and the diffusive flux of c

in the X_direction, which are not affected by particles, are usually modeled

following the single-phase k-_ model of Jones and Launder [55]. The

resulting modeled equation (except the extra particle destruction term)

becomes

a _ v t a_ aU i _ _2

(Uj _) - CEI ui'u j' C_2 --

axj axj _ axj axj k k

+ 2v
OU i' OFpi' P-p (20)

aX k _X k p

The last term in the RHS of the above equation is the contribution from inter-

phase transport and is another main effort in two-phase modeling. This

equation is solved simultaneous with the k-equation to estimate the eddy

viscosity v% = C= k2/_. Since the effects of particles are modeled through

the k and _ equations, C= is assigned 0.09 same as the single phase flows.

In the two-equation model level, there have been several proposals for

modeling the extra terms in the k and E equation. Chen and Wood [52]

basically followed [49] and proposed exponential forms for added dissipation

terms in both the and equation. In the k equation, the correlation

ui,vi, is modeled as

Ui'V i' = 2k exp (-B k t,/t,) (21)

where t e is the time scale of the energetic eddies and in the context of the
model is given by k and _ t e here has often been interpreted as the

lifetime of a typical turbulence eddy by [56,57] in their Lagrangian

calculations. The time ratio t,/t e is the Stokes number [12] measuring the

response of how quick the particle responds to a typical eddy turnover. To

generalize the model, the constant B k was introduced and was determined by

limiting behavior for small particles, which corresponded to the linear

perturbation analysis with respect to apassive additive by [42]. A similar

approach has been used by Pourahmadi and Humphrey [58] and Gavin et. al [59] in

the k-equation. Their model for this term is summarized:

u i 'v i' = 2k / (i + t,/t e) (22)

It can easily be shown, for small values of t,/te, that this model yields the

same results as equation (21), depending On the numerical value of Bkand the

form assumed for t e. Genchev and Karpuzov [60] assumed t, >> teSO that
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=Oand no model was required. However they also assume that the

particles will follow the mean fluid motion which implies t, << te, This

inconsistancy plus the lack of model comparisons with data in their paper
casts doubt on their model.

The model of Elgobashi and Abou-Arab [53] for the correlation u|'v i' is

based on Chao's [61] solution of the linearlzedLagrangian equation of motion

of a spherical particle in a turbulent flow. Their model, in its most general

form, is extremely difficult to implement, especially for wall-bounded two-

phase flows, owing to the necessity of computing definite integrals over all

possible frequencies of fluid motion at every grid point. Given the

uncertainties of the model it seems more appropriate to use a relatively

simple model which exhibits the correct asymptotic behavior such as [52] and

[58] (c.f. [62]).

As in modeling slngle-phase flows it is the _-equation which provides

the greatest uncertainty. In the model of Chen and Wood [26], particle-

hydrodynamic drag force was assumed to follow Stokes law, thus the last term

of equation (20) became

2V P--P 8Ui' %FP|' _ 2 "_p [ v 8ul' [ %vi' 8ui' )] (23)
p 8x k 8x k t, p 8xj 8xj 8xj

A similar exponential model was proposed for this term as given by equation

(19). Adlfferent time scale, i.e. Kolmogov's time scale T, was used here in

place of t e since the eddies contributing most to the high frequency

destruction mechanisms are the dissipative eddies which have a time scale

(r/c)*/_[ - T ]. In [26] it was assumed that aul' and Bvl' are completely

_x! 0x!

uncoupled on this time scale since t, >> 7in most practical _as-solid

turbulent flows. In this limit equation (23) becomes (2E/t,)(_/p)

Clearly this model is not correct for very small particles or if t, : _ (T)
In the model of [58] an additional term is added but it assumes that the added

sink of dissipation to be a function of the integral time scale t e and hence

does not seem to be particularly appropriate. The extra sink and destruction

of E are modeled collectively by [53] as Cj! _t (_/t) in equation (20) whereat

equals _ plus the extra dissipation terms appearing in the k-equatlon and

C E2 is kept the same constant as in the single-phase flows.

IE_I_ OF SDSP_EB) SaUD BN_IGLES

Extremely small particles which behave llke trace molecules can be

treated as "passive" contaminants in the turbulent flow field. The behavior

of clouds of particles may be extended from single-particle dynamics when the

mixture is very dilute, say, the volume fraction of solid <_)(10-2)(c.f.

[7]). The subject of passive additive transport has been treated

extensively in the text of Monin and Yaglom [17]. See also the book by Hinze

[63] and the review paper by Launder [64]. However, as the particle size

increases, dispersion will be opposed by particle inertia and so once some

critical particle size is exceeded, discrete particle dispersion must be

treated in a different way from "passive" contaminant diffusion.
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For dilute suspensions, the particle trajectories can be calculated by
the tracking approach. In this approach, particle dispersion due to
turbulence has been modeledby randomwalk [65] or a Monte-Carlo Stochastic
method [14,66]. These methods usually require extensive computational
storage and time to achieve a stationary average. In some Lagrangian
approaches, certain types of diffusional velocity have been modeled for the
particle motion which is usually proportional to the concentration gradient
[67,68]. In the two-fluid approach, particle dispersion due to turbulence
is represented by the correlations and/or In lower level
closures, these are usually modeled as a gradient type, Fickian diffusion
process:

.; (24)
.... and pp,V i = Dp

ax iPp ui Dt 8x i

This constitutive equation is arbitrary at this point; however it may be

justified theoretically under certain conditions [17].
Values of Dt and Dp are calculated by the value of eddy viscosity vf in

most models by introducing zhe turbulent Schmidt numbers. Thus Dt " rt/S°t

and Dp - rf/Sop or Op - rp/aop , where vp is the effective eddy

viscosity of the dispersed phase (to be discussed later). This type of

phenomenological approach for diffusion process heavily relies on the

classical theory of "fluid point" diffusion of Taylor (c.f. [63]). However,

when particle size increases, discrete particle diffusion is opposed by

particle inertia and the crossing-traJectorles effect [69,70]. Since

heavier particles have the tendency to "fall out" from one eddy to another,

the correlations between particles and fluid velocities decrease. The

effect is to decrease the particle dispersion. The effect of the particle

inertia is not that clear. The inertia effect is characterized by the

particle relaxation time t,, which is controlled by the physical properties

of particles and the fluid, and the flow characteristics. There have been

arguments concerning the characteristic flow time scales [71,72,73] for

turbulent dispersion, although it has been indicated that the diffusivity of

the heavy particles is a little larger than that of the light particles.

Higher-order modelings such as the one developed by [74] are able to predict

this behavior. In the context of the lower-order phenomenological technique

just mentioned, the Schmidt number should be modeled taking into account

these effects. Recently one such model has been developed including a

constant drift velocity [75]

2 1/2

Dp = i / (i + 0.3 [U i - Vii / vj 'vj ') (25)

in which the coefficient 0.3 was tuned based on the lateral dispersion of

solid particles and measurements of [71,73].

However, in most models [26,53,58] the turbulent Schmidt number was

simply set to some constant value following the turbulent mass transfer of a

passive additive [76]. Some experimental data for gas-solid jets [77]

however indicate that a constant value of Set (i.e. independent of loading)

is appropriate. For axi-symmetric flows,Set =Scp = 0.7 is used [52,78].

In [53,58], the turbulent Schmidt number was simply chosen to be one.
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Finally, due to the contlnuum formulatlon, the correlation vi'vj 'has to

be modeled. Following the gradient type model for the gas phase, this

turbulent stress in the particulate phase is modeled from the Boussinesq
assumption:

V| 'Vj ' = - Vp
I @V! OVj 1 2 I OV+ -- + -- 8ij kp + Vp

Oxj Ox i 3 Ox
(26)

Earlier analytical studies [79,80] have contributed to the understanding of

some of the basic mechanisms of indirect interaction between particles

through the surrounding particles. This has lead Melville and Bray [44] in

their zero-equatlon modeling to propose

vp

m = 1 / (I + t,/t,)

¥%
(27)

Similar models have been used by [46,52] although the evaluation of t is
e

somewhat different. Alonso [81] reviewed some developments in determining Vp
and recommended the use of Peskins [82] formula

¥
P 2 2

-- = 1 - (T Le/15v) (3K / (K + 2))
¥t (28)

whenK = 2t,/TLand TL : k/_. This model has been used bv [58,83].

Although this model recovers the correct form in the limit t,-_0 (i.e. rp - vt)

as equation (27), it will yield negative value of Vp for reasonable values ott,, 7

and T L taken from pipe flow data. It is not likely that vp < 0 is
physically appropriate, casting doubt on this model.

The modeling technique discussed above based on the continuum approach,

especially the modification of k and E equation, has been extended and

adopted in some Lagrangian formulations. It has been shown by Shuen et. al

[6] that using the stochastic formulation instantaneous properties are

known; therefore, the extra dissipation term due to particles in the k

equation is exact and requires no modeling. This calculation is rather

complex and recently Mostafa and Mongia [75,91] have utilized the continuum

two-phase model of [58] to model this term in Lagrangian calculations. A

similar approach has been taken by [84] which highly simplified the

stochastic calculations. The extra sink term in the E -equation is not

closed in Monte-Carlo stochastic formulation and is modeled through a

gradient type model in [6]. The sensitivity of this term has been tested

recently [85] and it has been found that this term is important in conjunction

with the modulation term in the k-equation. Incorporation of the effects of

particle on turbulence scale and the response of the dispersed phase in two-

phase turbulence models is essential for representing the structure of
partlcle-laden turbulent flows.
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For wall-bounded flows, boundary conditions for both gas and

particulate phases are required. This is particularly important when other

transport processes such as heat transfer and erosion are involved. The

effect of particles on boundary layer and viscous sublayer flows has been

studied analytically [10,86]. In most calculations, it is assumed that the

influence of the particulate phase on the velocity defect law is to modify the

logarithmic law in sublayer. Based on the Monin-Obakhov similarity analysis

for the analogous stable stratified atmospheric boundary layer, a set of

"wall functions" taking into account the effects of particle size and loading

was used by Chen [87]. The logarithm profile was modified as

u 1
- in [y+] + B- Rf (29)

U, _ P

with B = 5 and particulate flux Richardson number

I auiRf = u i 'Fpi' - ui,u j , (30)

axj

The wall shear stress of the two-phase flow is related to that of the single-

phase flow by (c.f. [i0]).

7w Pp
- I +-

Two P

(31)

The wall boundary conditions for particulate phase are complicated by

the unsteady particle-wall interactions such as deposition of particles on

the wall and re-entrainment mechanism. The resulting piece of information

from a multitude of particle-wall interactions can be assessed as the slip

velocity for the particulate phase at the wall [88,89]. An expression for

the slip velocity and wall shear stress was suggested by Soo [88] based on

rarefied gas-dynamics theories. The lack of particle-particle interaction,

in accordance with the dilute suspension assumption gives a wall slip

velocity:

aV (32)

Vlw = Zp' --
an w

and stress

I 2

- v - (vi'vi')
2 3

:/2
(33)

where the fluid-particle interaction length Ip'is given
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1/2
_P' = [(ul' - Vl')2] t,

and Vy Is set to be zero at the wall following an impermeable wall condition

for particles. These expressions have been utilized by [58,87] for their

wail-bounded calculations. The effect of the walls on the particle dram

coefficient, the particle turbulent intensity and the correlation ui,v i '
And ul,(u i. - vl,_ , which represent the partlcle-gas interaction and

contribute to the modulation of the wall turbulence structures, has been

studied recently by Risk and Elghobashi [90] by including Magnus force and

lifting force in the particle dynamic equation. Their analysis can be

incorporated for detailed gas-particle wall function development.

SU4_RY _ _SCU_SIDN

Recent developments of two-phase turbulence models were reviewed.

Most existing models are constructed following the familiar form of single-
phase turbulence models. As in single-phase problems, most models are

addressed through classical Bousslnesq gradient-type diffusion processes

and scaling arguments. Most models are also developed based on the treatment

of turbulent suspensions in the context of the continuum, two-fluid theory of
mixtures.

The appeal of the two-phase closure technique embedded In the two-fluid

continuum formulation is that it provides an axiomatic approach on which the

analogous single-phase turbulence models are built. In practice, one is

confronted with the difficulty of constructing specific constitutive models

for the stresses and momentum transfer, turbulent mass fluxes and mass

transport in which additional fluctuating fields are magnified by the

presence of solid particles. Following the modeling approach in single-

phase flows, for simple flows (such as free shear flows) most two-phase models

were addressed through classical Boussinesq assumptions and characteristic

scaling arguments. Depending on the relaxation time scales, particles not

only influence the higher wave number end of the gas-phase turbulence

spectrum [10,25], but also the energy-containing range of the turbulence

spectrum which is largely responsible for mixing [72,73]. Most proposals

for treating turbulence modulations based on the two-equatlon k-E model were

not particularly successful for complex flows since they did not incorporate

the turbulence scale effects and the response of the dispersed phase.

Higher-order closure schemes or closures involving multiple-scale

characterization of the gas turbulent spectrum are obviously called for, and

some steps in this direction have been taken recently [74,87]. Additional

measurements similar to that of [72,73] are also needed to gain a better

understanding of particle-turbulence scale interactions and modulations in
multiphase flows.

The real challenge and difficulty in developing a two-phase closure

model for particle dispersion in connection with the two-fluid formulation is

encountered in wall-bounded flows and poly-dlspersed systems.

Establishment of wall boundary conditions for the particle concentration and

velocities depend on the interaction of particles with the wall. Particle-

wall collisions are not always elastic and the phenomena is unsteady. The

slip velocity boundary condition based on rarefied gas dynamics concepts is
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probably not appropriate since the normal component of averaged velocity is
not zero. Detailed measurements [92,93] and analysis [93,94] are needed.

To extend the two-fluid continuum mixture theory for poly-dispersed

situations, the continuous droplet models such as the one described in [95]

can be used. The particles are represented by a statistical distribution

function in a multi-dimensional space of droplet size, velocity location and

time. The properties of particles are determined by solving the

conservation of the distribution function.

One merit of the two-phase turbulence models developed on the continuum

formulation is that they can be accommodated into the Lagrangian approach and

do not require excessive computational storage and time [75,84].

Incorporation of more physics as turbulent combustion, evaporating sprays,

boundary layer dust ingestion, poses no conceptual difficulties. Further

testing and validation through well-defined experiments for more complex
flows to establish the universality of the model constants are highly

recommended.
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A multiple-realization particle trajectory scheme has been developed and applied

to the numerical prediction of confined turbulent fluid-particle flows. The example

flows investigated include the vertical pipe upflow experimental data of Tsuji et al.

and the experimental data of Leavitt for a coaxial jet flow, comprising a par-
ticle-laden central jet and a clean annular jet, into a large recirculation

chamber. The results obtained from the numerical scheme agree well with the

experimental data lending confidence to the modeling approach. The multiple-
realization particle trajectory turbulent flow modeling scheme is believed to

be a more elegant and accurate approach to the extension of single-particle

hydrodynamics to dilute multi-particle systems than the more commonly employed
two-fluid modeling approach. It is also better able to incorporate additional

force terms such as lift, virtual mass and Bassett history terms directly into

the particle equation of motion as appropriate. This makes it a suitable can-
didate for particle migration studies and an extension to situations involving

liquid particulate phases with possible propulsion applications, such as in

spray combustion, follows naturally.



INTRODUCTION

Turbulent fluid-particle flows are encountered in numerous technological
applications such as fluidized-bed combustors and pulverized coal gasifiers and

combustors as well as in atmospheric studies involving the dispersion of pollutants.

The modeling of such turbulent flows involving the presence of a dispersed phase

made up of small, light particles further complicates the already complex phenomena

encountered in single phase turbulent flows. However, the need to optimize the design

process in technological applications involving turbulent fluid-particle flows or

enhance the prediction accuracy of atmospheric dispersion models makes it impossible

to avoid the quest for a deeper understanding of the fundamental problems. Besides,
the various interacting complex phenomena encountered in the modeling of this class
of flows offer a very rich source of challenges to the fluid flow researcher.

The propulsion systems for space transportation vehicles, in particular the

liquid-fueled variety, will benefit directly from an improvement in the modeling of

turbulent fluid-particle flows. This is because such an improvement will translate to a

better understanding of the mixing and combustion phenomena in spray combustion

processes. Turbulent fluid-particle flows involving solid particles are simpler to model

than fluid-droplet or fluid-bubble flows due to the added degrees of freedom in the

latter associated with the deformation of the discrete entities of such a dispersed fluid

phase. A study of turbulent fluid-solid particle flows is thus useful in elimi-

nating the effects of the breakup or coalescence of droplets and bubbles from
other particle-turbulence interactions encountered in such flows.

The two common approaches adopted in the literature for the modeling of

two-phase flows are the homogeneous and the separated models. The former is

applicable to situations in which the mean slip between the phases is small and the

design parameters of interest are of the bulk variety such as the pressure drop or

mass fluxes. In situations where more detailed information about intra- or inter-phase

behavior is of interest, or where there is substantial segregation of the phases, the

separated two-phase models are invariably preferred. For such flows, another major

decision has to be made with regard to the scheme for the description of the

dispersed phase - whether to adopt an Eulerian or a Lagrangian approach. Important

considerations necessary for deciding which approach to adopt include the concentra-

tion of the dispersed phase which influences the mean separation distance between

particles. The relative magnitudes of this length scale as well as the particle size and

the microscale of the underlying turbulence in the continuous phase help to determine

whether the dispersed phase can be treated as a continuum and thus described using
the Eulerian approach or whether a Lagrangian description of the dispersed phase will
be more appropriate.

In the following, we present a discussion of turbulent fluid-particle flow
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modeling in which the continuous phase is described using the continuum Eulerian

approach while a Lagrangian description is adopted for the dispersed phase. We shall

restrict ourselves to confined flows and thus include a discussion of the treatment of

solid boundaries using the Eulerian - Lagrangian scheme.

2. PARTICLE TRAJECTORY SCHEMES

In the Eulerian - Lagrangian modeling of two-phase flows, the continuous fluid

phase is described using the standard single phase continuum equations. How-

ever, the dispersed phase is modeled by computing for individual particles the

trajectories and temperature histories where appropriate. The dispersed phase

velocity and temperature fields are subsequently obtained from information
obtained from the realization of a sufficiently large ensemble of particle tra-

jectories.

The use of a particle trajectory scheme in the modeling of turbulent fluid-

particle flows represents only a subset in the field of computer simulation using

particles as discussed by Hockney and Eastwood [1981]. Other important applications

particle schemes discussed by Hockney and Eastwood include the modeling of covalent

and ionic liquids, stellar and galaxy clusters, plasma and semiconductor devices.

In fluid dynamic applications, the Particle-In-Cell (PIC) method of Harlow

[1964] and, later, the Particle-Source-In Cell (PSI-Cell) method of Crowe et al.

[1977] have received considerable attention. In the present investigation, the PSI-Cell
method has been adopted as the basis for the Eulerian - Lagrangian model developed.

The usual starting point for the development of fluid-particle flow theory is the

consideration of the motion of a single particle in an infinite fluid. The nature of

such a single-particle flow has been investigated by numerous researchers including

Bassett [1888], Boussinesq [1903], Oseen [1927], Tchen [1947], Corrsin and Lumley

[1956] ,Hjelmfelt and Mockros [1966] and Maxey and Riley [1983] and is relatively
well understood for flows both within and outside of the Stokes flow regime. In the

Eulerian treatment of the dispersed phase, the single particle flow theory is adopted

directly to describe a multi-particle system and the validity of such a step is assumed.

However, in the Lagrangian particle tracking approach, the focus remains on single

particle hydrodynamics for obtaining an ensemble of statistical realizations, in this

case the particle trajectories, which are then analyzed using the well established

mathematical theory of statistics to extract the required phase information.

In the presence of turbulence, particle trajectories are not deterministic due to

an imposition over the mean velocity of a rapidly fluctuating random velocity

component. This additional velocity component due to turbulence enhances the
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dispersion of the particles, in aggregate, while the presence of the particles in the

continuous phase, even in relatively small concentrations [Al-Taweel and Landau

1977], does modify the underlying turbulence appreciably. This 'two-way cou-

pling' between the turbulence and the particulate phase exercises considerable

influence over the evolution of such flows. These important effects will be
considered later.

3. GOVERNING EOUATIONS

The field equations for the continuous phase in the Eulerian - Lagrangian
scheme are the same as those for single phase flows except for the addition of an

extra 'source' term which accounts for the influence of the particulate phase on the
continuous phase. The equations are written in a generalized form as

°3Bxi(Pui$)=_xl°_ ( Feff _°_b )+S+Sp (3.1)

where ui are the instantaneous velocity components, ref f the effective exchange

coefficients, S the usual single-phase source terms, Sp the source terms due to the
particulate phase and (_ any of the field variables such as velocity component,

temperature for flows involving energy exchange, turbulence kinetic energy or its
dissipation rate.

The simplified form of the particle trajectory equation in which only the

hydrodynamic drag term between the phases is retained [Adeniji-Fashola and Chen,
1987] is

dvi = (ui - vi)
clt ,_. (3.2)

where, in general, the fluid and particle velocities, ui and v i respectively are made

up of a mean and a fluctuating component and "_, is a particle response time

defined in terms of the particle relaxation time t, which is valid for particle motion
within the Stokes regime. Thus we have

ui = Ui +ui" (3.3)

vi = Vi + vi"
(3.4)
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'_.= t./f (3.5)

where

_nd

2
Psdp

t.=
181_

(3.6)

CDRe p fl FOR Rep = Iui -Vildp alv (3.7)
f=

1 + 0.15 Redo"687 FORRep> 1

An expression similar to equation (3.2) for the particle temperature history

written for a particle thermal equilibration time tTH can also be written for

flows involving energy transfer [Chen and Adeniji-Fashola, 1987].

4. PARTI(_LE-TURBULENCE INTERA(_TION

A very important aspect of the modeling of turbulent fluid-particle flows

is the particle-turbulence interaction problem. Turbulence kinetic energy

extracted from the mean flow kinetic energy of the continuous phase is partly

dissipated by the smallest eddies and partly imparted to the particles thus

enhancing the dispersion of the particulate phase. This 'two-way coupling'
referred to earlier - modulation of the kinetic energy of turbulence by the

particles and enhanced dispersion of the particles by the turbulence will now
be discussed in a little more detail. It is pertinent to point out at this

point that the turbulent dispersion phenomenon is primarily responsible for the
considerable enhancement in mixing observed for turbulent flows when compared

with laminar flows.

TURBULENT DISPERSION

The turbulent dispersion phenomenon is very closely related to the inter-

action between individual particles and turbulent eddies. A particle normally

interacts with a series of eddies as it moves through the fluid. The particle

trajectory scheme attempts to simulate this interaction by tracking each repre-
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sentative computational particle through a succession of turbulent eddies con-

tained within the domain of interest. Figure 1 is a schematic illustration of

this interaction between particle and eddies and in relation to the computa-

tional cells. As discussed by Gosman and Ioannides [1981], a particle interacts

with a given eddy for a period of time which is the minimum between an esti-

mated particle transit time within the eddy, ttr and an eddy lifetime, te. The
particle transit time is obtained as the solution of the linearized equation of

motion of the particle while the Lagrangian time scale of the turbulent eddy is

obtained from length and velocity scales of the turbulence which are extracted
from a k- turbulence model. Thus,

tint = Min [te, ttr ] (4.1)

where

ttr = -t,ln [1.0-le/t.lui-vil ] (4.2)

and

te = l e/(2k/3) 1/2 (4.3)

The eddy length macroscale, Ie is defined in terms of the kinetic energy
of the turbulence, k and its dissipation rate, _ as

I e = C_ 3/4 k 3/2/_ (4.4)

In a stochastic formulation of the particle trajectory scheme which is the

case in the present study, the fluctuating component of the fluid velocity, u',

is obtained from a Gaussian distribution of values having a zero mean and a
standard deviation, 0"ii given by

cii= (2k/3) /2 (4.5)
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The Gaussian distribution is, however, not expected to be appropriate, in gen-

eral, for describing non-homogeneous, non-turbulent flows.

TURBULENCE MODULATION

The presence of particles, even in very small concentrations, has the

effect of modulating the turbulence intensity, the direction of modulation

being influenced by the mean particle size and the level of modulation by the

particle loading. This turbulence modulation effect was observed experimentally

by Moderrass et al. [1984] and Tsuji et al. [1984] and attempts to mathemati-

cally characterize the phenomenon include those of A1-Taweel and Landau [1977]

and Chen and Wood [1985]. The interphase interaction force terms between par-

ticles and the continuous phase are reflected as extra dissipation terms in the

modeled equations for k and E when the former are included in the derivation of

the field equations for the latter. The earlier attempts to implement these

turbulence modulation models have been mostly within a two-fluid formulation in

which the two phases are described as two interpenetrating continua viewed from

an Eulerian framework. Equations (4.6) and (4.7) from Chen and Wood [1986] show

the extra dissipation terms due to the turbulence modulation effect of the par-

ticles for such a two-fluid formulation:

;) (Ui k) = ___i_ K_ I vt ab_i)Xi/.___l.PK- t - _--_-'-L_(l÷0.15Rep0"687)(UI'Vi)pt.

(TH1)

2k Pp [1-exp {-0.5 t.¢/k)]

t. p
(TH2)

(4.6)

Pp
;)_(U IE] = _ v t _t t __

-b---_l _ {._.._.¢-.._-i )+_ (ClPK-C2t) -2 P t°

(TH3)

(4.7)

The term THI in equation (4.6) is the turbulence modulation term due to

the mean slip while the terms TH2 and TH3 are due to the particle slip velocity

at the fluctuatiag level. The model is valid for the situation

t e > t, > tK , where t K = ('9/_ )1/2 (4.8)

is the Kolmogorov time scale. The model described above has been incorporated

into the particle trajectory scheme of the present study.
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5. NUMERICAL S_HEME

The set of governing differential equations describing the evolution of

confined turbulent fluid particle flows cannot, in general, be solved analyti-

cally thus requiring the adoption of a numerical procedure. For the continuous

phase, the governing Eulerian equation set is solved using the SIMPLE algorithm

of Patankar and Spalding [1972] and Patankar [1980]. The overall scheme adopted

for the solution of the governing equations is similar to that suggested by
Crowe et al. [1977] and illustrated in Figure 2. An alternative scheme more suited to

time-dependent flows was later presented by Dukowicz [1980] and further developed
by Cloutman et al. [1982] and Amsden et al. [1985].

First, the "clean" fluid flow field is obtained by solving

the continuous phase governing equations. This is done using a staggered grid

distribution in which velocity cells are centered about the edges of the scalar

cells. Next, particle trajectories are computed for a predetermined number of

representative particles such that a statistically stationary solution is

obtained for the overall particle flow field. The particle trajectories, and

temperature history where appropriate, are obtained by solving for the particle

the non-linear ordinary differential equations of motion and the energy equa-

tion subject to the currently existing continuous fluid flow and temperature

fields. A fourth order Runge-Kutta algorithm is used for this purpose. During

the calculation of a particle's trajectory and temperature history, the sources

of momentum, energy, kinetic energy of turbulence and its dissipation rate, all
due to the particle motion, are accumulated for each computational cell trav-

ersed. The form of the source terms have already been presented elsewhere [Ade-
niji-Fashola and Chen, 1987] and so will not be repeated here. These source

terms are then used in the next global iteration on the continuous phase field

equations until convergence is attained. It was found that source term relax-

ation was required to achieve stability of the global iteration scheme for some
of the example flow problems studied.

PARTICLE SOURCE FIELD CONTINUITY

A necessary condition to obtain a globally converged solution is to ensure

the continuity of the source fields as was also pointed out by Durst et al.

[1984]. In order to ensure compliance with this important requirement, it is

necessary to ensure the computation of source terms for each cell traversed by

each computational particle through a judicious choice of the particle integra-

tion time step as well as have particles start from as many locations as is
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practicable within the relevant portion of the inlet plane. In the present

study, particles are uniformly distributed in physical space at the appro-

priate portion of the inlet plane of the computational domain in contrast to
the scheme of Durst et al. [1984], in which particles are introduced only at

grid nodes. The smooth profiles they obtained are very likely to be a

consequence of the deterministic nature of the particle trajectories used in

their study.

INTEGRATION TIME STEP

The choice of appropriate time steps for the integration of the particle

equations of motion is very vital to obtaining a globally converged solution
and smooth averaged particle flow fields. For the complex confined turbulent

fluid-particle flow problems in general, some of the relevant time scales
include the Lagrangian or macro time scale (eddy lifetime) of the turbulence,

te; the Kolmogorov or the micro (dissipation) time scale of the turbulence, tK;
the particle relaxation time, t,; the particle residence time within a computa-
tional cell or the whole computational domain t R. Also relevant to the stochastic

determination of the particle turbulent intensity are the particle transit time within an

eddy, tte and the particle eddy interaction time, tin t. The integration time step is
selected to ensure adequate resolution with regard to the trajectory and temperature

evolution while ensuring computational efficiency by avoiding unnecessarily small time

steps.

In the present study, a variable integration time step scheme was devised.

An upper bound on the time step through any computational cell was imposed

based on an estimated particle residence time for that cell and with the par-

ticle being constrained to undergo about four integration steps within the

cell. Without this restriction, the possibility of a particle overshooting one

or more cells, possibly due to a sudden reduction in cell dimensions in a

non-uniform grid domain, exists. Such a situation will result in a failure to

compute the relevant source term contributions for a cell that was actually
traversed by the particle. The consequence will be a lack of smoothness in the

particle source distribution and, possibly, divergence of the global iter-

ations.

Also, for the reason of ensuring a smooth evolution of the particle tra-

jectory and temperature history, a further restriction on the integration time

step, _t < t. , is made. The particle-eddy interaction time is determined and

controlled independently of the integration time step.
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PARTICLE AVERAGED PARAMETERSFROM PARTICLE TRAJECTORYSTATISTICS

One of the problems associated with the use of the Lagrangian particle

trajectory approach, highlighted by Smoot and Smith [1985], is the difficulty
of extracting smooth mean particle flow and temperature fields from the statis-

tics of trajectories and temperature histories obtained for representative com-

putational particles. In the present study, the fluid properties utilized in

the particle trajectory and temperature history calculations are the linearly

interpolated values in which the four nearest neighbors regarding the par-

ticle's current location are used, resulting in second order accuracy [Sirig-

niano, 1983]. The details of the extraction of particle mean flow and tempera-

ture fields information from the particle trajectory and temperature history
statistics are available in Adeniji-Fashola et al. [1988].

BOUNDARY CONDITIONS

The definition of a fluid flow problem becomes unique through the speci-

fication of the boundary conditions after the governing differential equations

are outlined and an appropriate closure of these equations is effected. The

example flow problems investigated in the present study include vertical pipe
upflow and horizontal recirculation chamber flow. However, rather than define

the boundary conditions specific to each flow problem separately, the more

efficient approach of defining generic boundary condition types is adopted. It

then becomes a straightforward exercise to construct the boundary conditions
for these and other specific flow situations of interest.

Inlet Plane:

The specification of the inlet plane boundary conditions for fluid flow

problems is very important, as was discussed by Sturgess et al. [1983] and

Westphal and Johnston [1984], since this influences significantly the
subsequent evolution of the flow, especially in the case of parabolic flows for

which the inlet plane conditions constitute the initial conditions for the
solution of the governing differential equations.

In order to correctly simulate a given fluid flow experiment numerically,

the ideal specifications for the inlet flow variables are the actually measured

values. The complete set of measured inlet flow variables is, however, hardly

ever available. In the absence of such detailed experimental information, uni-

form profiles are commonly specified for the axial velocity and temperature

profiles of the continuous phase flow at the inlet plane. The turbulent kinetic

energy is usually assumed to be a percentage, between 3 and 20%, of the inlet

flow mean kinetic energy. The kinetic energy dissipation rate at the inlet is
then obtained as
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_, = ( C_/4k3/2 ) / 1d (5.1)

where ld, the dissipation length scale, is specified as a fraction of the
characteristic length scale at the inlet.

For the particle trajectory and temperature history calculations, the

initial velocity and temperature slip values relevant to the particular flow

problems are employed in setting the required inlet conditions.

Exit Plane:

At the exit plane, the usual boundary condition imposed for any flow var-

iable, t_ , is _¢_/_n = 0, where n is the normal to the exit plane. This con-

dition is generally valid if the extent of the computational domain in the

primary flow direction is sufficient to ensure fully-developed flow conditions

for internal flows or self-similarity for jet flows at the exit plane. Particle

trajectory and temperature history computations are discontinued for a compu-

tational particle once the particle exits from the computational domain through

the exit plane or any other open boundary.

Solid Boundary:

The conventional wall functions approach is used to impose wall boundary

conditions on the velocity and temperature as well as the turbulence kinetic

energy and its dissipation rate. The presence of particles in a fluid flow has

been experimentally observed to influence the boundary layer [Kramer and Depew,

1972] and, as a consequence, the nature of the wall function which is normally

used to connect the actual value of a given variable at the wall to the value

at the wall-adjacent grid node. During their trajectories, particles that reach

the wall either adhere to it as observed in particle erosion problems [Dosanjh
and Humphrey, 1984], or collide with the wall and get "reflected" back into the

flow domain, usually with an accompanying loss of energy and momentum to the

wall. In addition, the high level of shear in the wall vicinity coupled with a

particle velocity slip introduces an additional transverse force on the par-

ticle which further modifies its subsequent trajectory and behavior in the

near-wall region. These effects have not been included in the present study, in

which perfectly reflecting boundary conditions have been adopted for the parti-

cle-wall interaction, hut will be the subject of a future study.

Other generic boundary condition types include the symmetry axis, for
which D t_/_n = 0, where in this case, n is the normal to the symmetry axis,

and the open boundary condition which has been used by Leschziner and Rodi

[1984], Dosanjh and Humphrey [1984], Amano and Brandt [1984] and Chen and Ade-

niji-Fashola [1987] for modeling parabolic flows of free jets and wall jets using

elliptic formulations. These are described in greater detail by Adeniji-Fashola et al.

[19881.
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6. EXAMPLE FLOWS

In order to illustrate the multiple-realization particle trajectory mode-

ling scheme for confined turbulent fluid-particle flows described above, two

example flow problems - vertical pipe upflow and horizontal coaxial jet flow in

a recirculation chamber with a particle-laden central jet and a clean annular

jet are examined. 1500 computational particles were found to be adequate in

each example for obtaining statistically stationary solutions. Typically,

global under-relaxation values of 0.50 were found adequate to ensure the sta-

bility of global iterations of which between five and seven were required to

obtain globally converged solutions. The results obtained for the numerical

simulation of these flows will now be discussed.

VERTICAL PIPE UPFLOW

The experimental data which served as the basis for this example numeri-

cal simulation are those of Tsuji et al. [1984] for the upflow of a particle-

laden stream in a straight vertical pipe. The experimental flow within the test

section is considered to be fully-developed after going through a riser that is

167.5 diameters long.

A 50 X 23 uniform grid distribution was used to discretize the computational

domain which had an axial extent of 60 pipe diameters. Figure 3 shows both the

experimental data and the numerical predictions of the radial profile of the slip in

the axial velocity between the air and the particulate phase. The mean particle size

and loading ratio are 200_m and 1.0 respectively. The air velocity is slightly
overpredicted in the 0.2R - 0.8R range where R is the pipe radius. However, the

prediction accuracy is considered to be good for such a complex system. The radial

profile of the axial velocity of the solid phase is particularly well predicted. The

location of the cross-over in sign of the slip between the phases is predicted to be

closer to the wall, less than 0.1R from the wall, than the 0.2R from the wall that

was experimentally observed.

A similar picture obtained for the higher loading ratio of 2.1 is pre-

sented in Figure 4. The level of accuracy of the predictions is similar to that

of the 1.0 loading ratio case. However, it is the air velocity profile that is

better predicted in this case. The solid phase axial velocity is considerably

underpredicted in the inner 60 percent of the wall region.

As pointed out earlier, the particulate phase has the effect of modulating
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the level of the turbulence intensity. For smaller particle sizes this results

in a decrease in the kinetic energy of turbulence. The experimentally observed

and numerically predicted turbulence modulation effect for a loading ratio of

3.2 are illustrated in Figure 5. The solid line in the figure shows the pre-

dicted radial profile of the turbulence intensity for the corresponding "clean _

flow. The predicted level of turbulence intensity is considerably higher than

the level observed from experiment. Also, while a greater modulation effect was

observed closer to the wall region, the predictions show a reversal in which

the greater level of modulation is located closer to the pipe centerline. The

imposed wall boundary conditions and wall functions in the numerical scheme are

probably responsible for the suppression of the modulation effect in the

near-wall region.

The development in the axial direction of the streamwise velocity of the

particulate phase for an inlet velocity slip ratio of 0.10 is shown in the

contour plot of Figure 6a and a corresponding surface plot in Figure 6b. The

ability of the particle trajectory scheme to effectively handle extreme levels

of velocity slip was tested by imposing an axial slip velocity of 0.10 at the

pipe inlet plane. The figures indicate that a fully developed state was

attained in the 60D extent of the computational domain.

HORIZONTAL COAXIAL JET FLOW IN RECIRCULATION CHAMBER

The experimental data of Leavitt [1980] serve as the basis for the numer-

ical simulation of this example. The actual geometry studied is illustrated in

the schematic of Figure 7. The primary jet air velocity at inlet is 33 m/s

while the corresponding secondary jet air velocity is 42 m/s. Coal particles of

a mass mean diameter of 43_m were used to uniformly seed the primary jet and
the particle loading ratio is 1.50. The estimated turbulence intensity levels

at the inlet are 15 and 18% for the primary and secondary jets respectively.

The primary and secondary jet diameters at inlet are 0.0255m and 0.127m respec-

tively while the chamber diameter is 0.206m. The axial extent of the recircula-

tion chamber is 0.926m (36.3 primary jet diameters or 4.5 chamber diameters).

A 41 X 41 non-uniform staggered grid distribution, shown in Figure 8, is

used for the numerical study and the computational domain extended to 20D where

D is the chamber diameter. The numerical prediction of the evolution of the

axial velocity is shown in Figure 9. The corner recirculation zone is seen to

extend to about 1.79D. No particles are predicted as reaching this recircula-

tion zone and this is believed to be due to the high chamber-to-primary jet

diameter ratio of 8.08 and the positive slope of the shear in the mixing layer

between the primary and the secondary jets which will result in a slip-shear

transverse force directed towards the centerline. Another interesting observa-

tion is that the particle axial velocity starts 1o lead that of the fluid from

67



about the 0.80D axial location and this continues to about the 7.43D axial

location downstream of which all axial velocity slip disappears. Particles are

seen to have dispersed to the outer extremities of the recirculation chamber by
the time the 12.0D axial location is reached. However, it should be remembered

that this is only a hypothetical situation since the actual experimental inves-
tigation was limited to an axial extent of only 4.5D.

Figure 10 shows the axial evolution of the turbulence intensity. It is

observed that up to about the 3.0D axial location, the turbulence intensity in
the presence of particles (shown dotted) falls below that of the clean flow in

the primary jet portion of the flow but is actually higher for the rest of the

chamber in the radial direction. However, beyond the 3.0D axial location, the

clean flow turbulence intensity uniformly lags the two-phase intensity at all

radial locations for any given axial location. The kinetic energy of turbulence

is essentially fully developed at the 5.15D axial location and only a radially
uniform decrease in magnitude is observed for the rest of the flow in the axial

direction. This is in contrast to the radial profile of the axial velocity
which does not become fully developed for both phases until the 12.0 to 15.0
diameter range is reached.

The contour and surface plots of the particle axial velocity are shown in

Figures lla and llb. These have been normalized with respect to the secondary
jet gas velocity at inlet. Since, in contrast to the two-fluid scheme, non-zero

values of the particle velocity are not returned for computational cells not

visited by any particle during the trajectory calculations, the zero-velocity
surface in the plots of Figure 1 lb also indicate the particle-deficient
regions.

The comparison of the limited experimental data available from Leavitt
[1980] is currently being undertaken.

7. CONCLUDING REMARKS AND RECOMMENDATIONS FOR FUTURE WORK

The numerical modeling of confined turbulent fluid-particle flows using
the multiple-realization particle trajectory scheme has been presented. The

performance of the numerical modeling scheme has been tested using data for the

upward flow of a fluid-particle stream in a straight vertical pipe and for the

horizontal coaxial jet flow in a large recirculation chamber for which the cen-
tral jet is particle-laden.

The multiple-realization particle trajectory turbulent flow modeling
scheme ...
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is believed to be a more elegant and accurate approach to the

extension of single-particle hydrodynamics to dilute multi-particle
systems;

is better able to incorporate additional force terms such as lift,

virtual mass and Bassett history terms in the particle equation of
motion as appropriate;

needs further investigation in order to improve its computational

efficiency and so reduce its huge CPU time requirements;

needs to have the particle-turbulence and particle-wall interactions

further investigated to improve prediction accuracy.
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INTRODUCTION

The dispersion of particles in turbulence is fundamental to a variety of mass aIad en-

ergy transfer processes. The dispersion of particles in jets is important to the combustion

process and the design of propulsion systems. The separation of particles by electrostatic

precipitation is important in many applications from the power industry to clean-room

technology. Understanding the basic phenomena underlying particle transport in turbu-

lence and establishing viable models is important to the development of new technologies

for advanced propulsion systems.

This paper reviews some the concepts underlying particle dispersion due to turbu-

lence. The paper addresses the traditional approaches to particle dispersion in homoge-

neous, stationary turbulent fields and reviews recent work on particle dispersion in large
scale turbulent structures. The paper also reviews the state of knowledge on particle drag

coefficients in turbulent gas-particle flows.

MECHANISMS FOR PARTICLE DISPERSION

Basically two mechanisms have been used to physically model particle dispersion in

turbulence. In homogeneous turbulent flows, the most common approach is to regard

dispersion as a Stochastic process. On the other hand, dispersion in large scale turbulent

structures appears to be more influenced by the ordered motion. Both approaches are

treated separately.

Particle Dispersion in Homogeneous, Stationary Turbulence

The traditional approach to treating particle dispersion is turbulence is to regard

the process as a gradient diffusion (Fickian) process in which the diffusional velocities

are proportional to the concentration gradient, the constant of proportionality being the

diffusion coefficient.

Oc 1)
VF = - D Oz----ii

The earliest work that related the diffusion coefficient to properties in a homogeneous,

stationary and isotropic flow was that of Taylor (1921) who provided the following rela-

tionship,

D = u'2---TL 2)
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where u _2 is the mean square of the fluctuating velocity in the direction transverse to

the main flow direction and TL is the lagrangian integral time scale. Although Taylor's

analysis was done for a fluid point, Synder and Lumley (1971) showed it was applicable

to a particle provided the lagrangian time scale corresponded to the particle trajectory.

The earliest study of particle motion in a turbulent field was reported in a PhD thesis

by Tchen (1947) who integrated the Basset, Boussinesq, Oseen equation for a particle in

a homogeneous, stationary turbulent field. He assumed that the particle remained always

in the same turbulent eddy. By so doing the long-time diffusion of the particle was equal

to that of a fluid particle.

Many researchers after Tchen have strived to improve Tchen's model by relaxing the

assumptions made by Tchen. Peskin (Soo, 1967) solved a nonlinear stochastic equation
for the motion of a particle which did not deviate far from the initial coincident turbulent

eddy. Unlike Tchen's analysis, Peskin assumed that only Stokes drag acted on the particle.

He predicted that the diffusivity decreased uniformly with an inertial parameter which

related the aerodynamic response time of the particle to the time scale for turbulence.

The physical argument underlying this result was the larger the aerodynamic response

time of the particle is compared to the eddy life time, the less a particle would respond to

the unsteady turbulent field. Hinze (1972) used similar time-scale arguments for particle

dispersion and concluded that if the particle density ratio is large, only those particles less

than one tenth of the dissipation length scale will respond to the turbulent fluctuations.

A more general analysis of particle dispersion in homogeneous, isotropic stationary

turbulence has been reported by Reeks (1977). He assumed a linear drag law and body

force acted on the particle and obtained an expression for diffusion which depended on

time, particle aerodynamic response time and the correlation function for the velocity

field. He then utilized Phythian's model (1975) for the turbulent energy spectrum and
predicted a particle diffusion coefficient. His results show that the diffusion coefficient for

particles with no body force increases with increasing time and, at long times, approaches

an asymptotic value. This long-time diffusion coefficient increases with increasing aero-
dynamic response time and can exceed that of a fluid particle. This result differed from

Peskin's model. The reason underlying the trend predicted by Reeks is the fact that

the diffusion is jointly dependent on the mean square of the particle velocity fluctuations

and la.grangian integral time scale as shown by equation 2. Although the amplitude of

the fluctuation velocity of the heavier particle is reduced, the lagrangian time scale is

increased proportionately more giving rise to an increased diffusion coefficient.

Another factor controlling particle dispersion in homogeneous, stationary turbulence

is the "crossing trajectory" effect first identified by Yudine (1959). If the mean velocity of

the particles is different from that of the fluid, such as particles dropping at their terminal

velocity through a turbulent field, the particles remain less time in a given eddy. The

reduction in fluid-particle interaction time reduces the particle diffusion coefficient. Reeks

also predicted a decrease in long-time diffusion coefficient by including a body force in
the particle motion equation.

Thus there are two primary factors controlling particle dispersion in homogeneous

turbulence, the inertial effect and the crossing trajectory effect. Experimentally it has

been difficult to separate these effects since a heavy (not a fluid) particle will have both

inertial and crossing trajectory effects. The most convincing experimental evidence that

separates the two effects have been provided by Well and Stock (1983). They suspended
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glass beads by Coulomb forces in a horizontal flow of near-homogeneous, grid-generated

turbulence. The crossing trajectory effect was controlled by adjusting the field strength.

Their data show that the inertial effects on particle diffusion coefficient are small compared

the crossing trajectory effect. The small increase in diffusion with increasing inertial effects

predicted by Reeks was not discernible because of the scatter in the experimental data.

Future developments in the analysis of stochastic turbulent flows will address depar-

tures from homogeneity and isotropy. Reeks (1981) has initiated work in this direction.

Particle Dispersion in Large Scale, Turbulent Structures

Large scale turbulent structures are encountered in flows generated by a large ve-

locity gradient such as free shear layers and jets. Under these circumstances, large scale

turbulent structures are formed which grow and pair with time. These structures were

first identified by Brown and Roshko (1974) in flow visualization studies of mixing layers.

A typical photograph of a large scale structure is shown in figure 1 . These turbulent

flow fields are inhomogeneous, non-stationary and anisotropic but represent important,

practical problems in industrial applications such as combustion systems.
Particle dispersion in turbulent flow characterized by large scale structures is mech-

anistically different than that in homogeneous flows. The particle motion is controlled by

the moving structures and not by the fine scale turbulence. Thus, the dispersion process

cannot be regarded as gradient transport.
A conceptual model for particle dispersion i_'large scale structures is the entrapment

of particles in the structure and the subsequent centrifuging of the particles beyond the

structures. This concept was first suggested by Singamsetti (1966) who observed, ex-

perimentally, that particles in a submerged jet could disperse more quickly than a fluid

particle. The same trends have been observed by Lilly (1973), Householder 1968), Laats

and Frishman (1970) and Subramanian and Ganesh (1984) in the experimental study of

particle and droplet laden free jets. Lilly attributed his results to an increase lagrangian

time scale but Yuu et aI. (1978) claim Lilly's results were a manifestation of his experi-

mental set-up. Laats and Frishman noticed this trend only in the early portion of the jet
formation and surmised that it was due to a Magnus effect. Goldschmidt et al. (1972), in

reviewing Householder's data, mentioned the possibility of particle centrifuging by large
scale structures but concluded that the mechanism was not viable because it did not

explain the observed trends in centrifuging bubbles.

Yule (1981) gave some credence to the mechanism when he observed droplets in jet

flows being centrifuged toward the outer flow.

Crowe et al. (1985) report an effort to quantify those conditions under which the large

scale structures are responsible for dispersing heavy particles beyond fluid particles. They

proposed a time scaling argument similar to that used by Hinze (1972) for homogeneous

turbulence. The aerodynamic response time of a particle is the time required for a particle

released from rest in a uniform flow to accelerate to 63% of the flow velocity. For Stokes

flow it is

Pd2 3)
rA - 18_

where p is the fluid density, d is the particle diameter and # is the dynamic viscosity of

the fluid. It is a measure of the responsiveness of a particle to changes in flow velocity.

The characteristic time of the flow is given by
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Figure 1. Shadowgraph Visualization of Large Scale Turbulent Structures in Plane

Mixing Layer (Brown and Roshko, 1974)



4)
TF - AU

where 6 is the mixing layer thickness and AU is the velocity difference across the layer.

Thus the scaling factor is

St- "rA _ pd2AU 5)

"rF 18#6

A schematic diagram showing the effect of Stokes number on particle dispersion

is shown in figure 2. For small Stokes numbers, the particles are in near equilibrium

with the conveying fluid and the particles will disperse as a fluid particle. At large Stokes

numbers, the particles have insufficient time to respond to the structures and they disperse

less than the fluid particle. However at intermediate Reynolds numbers, the particles are

entrapped by the rotating structure and are centrifuged beyond the structures giving rise

to a dispersion exceeding that of a fluid particle.

A preliminary numerical study (Crowe et al. 1985) using a simple vortex sheet model

proposed by Stuart (1967) showed that particles could be centrifuged beyond the vortex
at Stokes number between 0.1 and 1 as shown in figure 3. A subsequent study by Gore

et al (1985) using pseudospectral direct simulation for modeling the vortex structures

showed the same trend lending support to the model.

Recent experimental studies have shown the importance of large scale structures in

the turbulent dispersion process. Kamalu et al. (1987) at Washington State University

have reported on particle dispersion studies in horizontally oriented plane mixing layer.

Both naturally evolving and subharmonically forced mixing layers were studied. The

forced mixing layer was generated by a sound source, the effect of which was more ordered

vortex structures. Particles, 40 microns in diameter, were released from a source upstream

of the layer and photographed. A photograph of the particles in a subharmonically forced

mixing layer is shown in figure 4. Shown in the same figure are streaklines generated by

smoke with no particles in the flow. One notes the absence of particles in the vortex cores

and the accumulation of particles near the edge of the vortex structures.

Laser Doppler measurements of particle velocities by Wen et al. (1987) lend more

quantitative support on the role of large scale structures in particle dispersion. The

measured lateral particle and fluid velocities taken in the same facility used by Kamalu

et al. are shown in figure 5. The fluid velocities show the expected trend; negative on

the top (high speed side) and positive on the bottom (low speed side) which indicates
a motion of the fluid towards the mixing region. The particle velocities, on the other

hand, are positive on the top and negative on the bottom indicating motion away from

the mixing layer.
The importance of large scale structures in particle dispersion has also been verified

in recent experimental studies by Kobayashi et al (1987) and Lazaro and Lasheras (1987).

The importance of large scale structures in turbulent dispersion of particles has been

established. It represents a demarcation from particle dispersion in homogeneous turbu-
lence because it is more deterministic than stochastic. Therefore it is not reasonable to

model particle dispersion as a gradient transport process.
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Figure 4. Photographs of Fluid Streaklines and Particles in Large Scale Turbulent

Structures (Kamalu et aL, 1987)
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Layer (Wen et aL, 1987)
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NUMERICAL MODELS FOR PARTICLE DISPERSION

Numerical models for fluid-particle flow can be divided into two categories; two-fluid

models and trajectory models. A review of these approaches has been provided by Crowe

(1982). In the two fluid model, the particulate phase is regarded as another fluid. In

the trajectory model, the particle field is established by integrating particle trajectories

through the field.

Gradient Transport Models

It is natural in the two fluid model to treat particle dispersion as a gradient transport

process and assign a diffusion coefficient to represent particle dispersion due to turbulence.

Elghobashi et al. (1983) have considered in detail the two-fluid model with the two-

equation model for turbulence and applied it to free jets. They recognize that the gradient

transport assumption is valid only if the energy containing eddies are much smaller than

the length scale for the transport gradient. They suggest a Correction term to Ficks law

that represents a convective flux due to flow inhomogeneity and which disappears for

homogeneous turbulence. The diffusion coefficient is related to the kinematic viscosity

through an effective Schmidt number, the value for which is not provided in the paper.

The model requires three additional empirical constants above those required for the k -e

model in single phase flows. They apply their model to the prediction flow properties of a

jet studied experimentally by Modarress et al. (1984) and claim good agreement between

measurements and predictions.

Chen and Wood (1985) also use the two-fluid approach to model a jet. They as-

sume that the particle and fluid phase have the same average velocity and justify this

assumption on time scale arguments. They also use a gradient transport assumption for

particle dispersion due to turbulence and chose an effective Schmidt number of 0.7 which

corresponds to the value for diffusion of a passive scalar in a round turbulent jet. Sub-

ramanian and Ganesh (1984) measure an effective Schmidt number of 0.47 for the same

configuration. Chen and Wood applied their model to experimental studies reported

by Modarresset al. (1984) and Wood et al. (1984) and noted good agreement between

predictions and measurements.

The real difficulty in using the gradient transport model for particle dispersion in

connection with the two-fluid model is encountered in wall-dominated flows. Here one

has to establish boundary conditions for the particle concentration and velocities. The

concentration profile will depend on the interaction of particles with the wall. For example,

if the particles stick to the wall a different boundary condition must be used than if the

particles rebound elastically from the wall. For inelastic collisions, another assumption
must be used.

In addition the particle velocity component parallel to the wall is not zero as in a

single phase continuum flows. Chen (1986) utilizes concepts from rarefied gasdynamics

and calculates a slip velocity which depends on a fluid-particle interaction length. The

normal component of velocity is set equal to zero although this would not be true for
an inelastic collision. Other ramifications of the two-fluid versus trajectory models are

discussed by Crowe (1986).

The advantage of the gradient diffusion model for particle dispersion is that it can

be accommodated directly into the two fluid model. It also does not require excessive

computational times. The difficulty is the selection of appropriate Schmidt numbers

and other empirical parameters for a given application. The relative advantages and
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disadvantages of the eulerian and trajectory approaches are discussed by Durst et al.

(1984).

Monte Carlo Methods

The method most natural to predicting particle dispersion using the trajectory ap-

proach is the Monte Carlo method. By this method the turbulent field is represented

with a random number generator. The basic idea was first proposed by Hutchinson et al.

(1971) and was subsequently used by Gosman and Ioannides (1981) in conjunction with

the k - e turbulence model for sprays. The turbulent fluctuational velocity is selected

from a random number generator with a variance proportional to the turbulence energy.

The particle motion equation is integrated with this velocity field until it passes from the

eddy. The particle-eddy interaction time is established by the characteristic life time of

the eddy or by the time for the particle to pass through the eddy. The dissipation length

and time scales are chosen as the characteristic size and time and are given by

3/4k3/._/¢ 6a)Le = C_

Te = Le/(2k/3) '/2 6b)

where k is the turbulence energy, e is the dissipation rate and C_, is an empirical constant

arising from the k - ¢ model. The time to pass through an eddy is approximated by

Le

Tp- - Upl

where Up is the particle velocity and Ug is the mean gas velocity. The interaction time

is the minimum of the eddy life time and the passage time. If the passage time is small

compared to the eddy life time then the crossing trajectory effect is important.

Gosman and Ioannides applied this model as a test case to the experimental study

done by Snyder and Lumley (1971) who measured the dispersion of a series of particle

types in grid-generated turbulence produced by a vertically oriented wind tunnel. Synder

and Lumley found that the heavier Copper particles dispersed less than the lighter hollow

glass beads. From the current state of knowledge, it is accepted that this trend is due to
the crossing trajectory effect. Gosman and Iond:ddies report good agreement between the

their predictions and Synder and Lumley's results even though their droplet equations

do not contain a body force term due to gravity. This was probably an omission in the

paper.

The Monte-Carlo technique was used by Chen and Crowe (1984) to model particle

dispersion measurements in fully developed pipe flow reported by Arnason and Stock

(1984). As with Gosman and Ioannides, they found that the technique worked well for

the near isotropic, homogeneous field in Synder and Lumleys experiments. However, it

was necessary to tune the model by changing C t, to achieve the best fit. Applying the

model to the pipe flow experiments yielded very poor agreement with the experimental

results as shown in figure 6. The model predicted that the larger particles would disperse

less than the small particles due to the crossing trajectory effect but the opposite trend

was found experimentally. Chen and Crowe rationalized that the turbulence model was

too crude for the complex turbulent flow in a pipe. One shortcoming of the model is the
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lack of information on the lagrangianlength scalewhich shouldbe usedfor Le defined

above. The above equations provide, at best, an estimate of the lagrangian length scale.

Faeth et al. (Solomon et al., 1983; Solomon et al, 1985) have used the Monte-Carlo

model extensively with their model for particle and droplet laden jet flows and show good

agreement with experimental results. The model is calibrated to fit the analytic results of

Hinze (1975) for diffusion of fluid particles from a point source in homogeneous, isotropic

turbulence.

The general utility of the Monte-Carl0 method for particle and droplet dispersion

remains to be established. The Monte Carlo method is attractive because of the mini-

mal empiricism needed to model the flow (provided the stochastic representation of the

turbulence is reliable) and the simplicity of handling boundary conditions. The primary

problem is the large number of trajectories needed to establish a stationary average in a

computational cell.

Another dispersion model which attempts to capture the desirable qualities of the

gradient transport and trajectory approaches is the "hybrid" model first proposed by

Jurewicz (1976) and subsequently used by others. In this approach the trajectory model

is first used to calculate particle concentrations in each cell. Then, a diffusional velocity

is added to the particle velocity which is proportional to the concentration gradient and

diffusion coefficient. Of course, this model requires selection of a diffusion coefficient.

Nonstationavy, nonhomogeneous models

The gradient transport models are inadequate to model particle dispersion by large

scale structures. Since particle dispersion appears to be controlled by the large scale

motion, the numerical model must represent the essence of these flows. Work in this area

is just beginning to appear in the literature.

Chein and Chung (1987) report a report a' numerical study of particle dispersion in

vortex pairs modeled using discrete vorticies. They found that particles with intermediate

Stokes riumbers (0.5 to 5) are dispersed more'than the fluid particles while at larger Stokes

numbers the heavy particles disperse less than the fluid particle.

Chien and Chung (1988) also used the discrete vortex method for generating a time

dependent two-dimensional mixing layer. Particles released in this flow field show the same

general trend as shown by figure 7. At low Stokes numbers, the particl_ follow the fluid

and disperse as a fluid particle. As the Stokes number is increased the particles disperse

more and near a Stokes number of unity the vortex core is almost void of particles as they

are centrifuged out. In this regime the particle disperse 5 more than the fluid particle. With

further increase in Stokes mumber, the particles become unresponsive to the vortices and

monte in near rectilinear trajectories. The same trend is noted in a numerical study of jets

by Chung and Troutt (1988).

Future work in particle dispersion in large scale structures will witness more ad-

vanced fluid mechanic models such as vortex models and pseudo-spectral methods as the

computational capability is enhanced by future generation computers.

PARTICLE DRAG COEFFICIENTS

Fundamental to the development of numerical models for gas solids or gas-droplet

flows is the particle or droplet equation of motion. In general, there are many forces

acting on the disperse phase particle such as the virtual mass force, Basset force, pressure

gradient force and the steady state drag force. The most widely accepted formulation for
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the equation of motion for low Reynolds number flow is that of Maxey and Riley (1983)

who derived the equation from basic principles. For gas-solids flows in which the material

density of the particle is three orders of magnitude larger than the conveying phase, the

primary force is the steady state drag force which is quantified by the value of the drag

coefficient, Co, and related to the steady state drag by.

FD = lpApCD(Ug - Up)lUg - Up]

where p isthe gas density,Ap isthe projected area and (U 9 - Up) isthe relativevelocity

vector between the fluid and the particle.

There is a plethora of literature available on particle drag coefficient. Most of the

data have been obtained for single particles or spheres mounted in an airstream. However,

in numerical model development, one is more interested in the drag coefficients of particles

in a cloud. The particle drag data show significant discrepancies as shown in figure 8.

Ingebo (1956) published a NACA report on particle drag coefficient which he mea-

sured by releasing solid particles in an airstream downstream of a grid. The particles

were tracked by a rotating mirror camera and the velocity-distance data were reduced to

obtain the acceleration and drag force. Ingebo found the drag coefficient was less than

the standard value for a sphere and attributed the discrepancy to the acceleration of the

particles. Crowe (1962) suggested that the low value could have been due to a critical

Reynolds number effect created by the grid upstream of the particle injection location.

Arrowsmith (1973) suggested that the local air velocity in the cloud was less than the

tunnel speed affecting the calculation of the relative velocity. The discrepancy has yet to

be resolved•

Hanson (1952) measured the deceleration of hexane droplets issuing from an atomizer

into an air flow. The spray was photographed,and the droplet deceleration reduced from

the photographs. He assumed that the local gas velocity was constant throughout the
chamber. Hanson's results for Co are very low. Hanson attributed the low drag coefficient

to evaporation but this explanation seems unlikely.

Rudinger (1969) injected particles into a vertically oriented shock tube and passed a

shock wave through the particle cloud. He used a rotating drum camera to record particle

motion. The drag coefficients he'reduced were significantly higher than the('_standa rd"

curve. Rudinger hypothesized that the turbulence generated by the particles created zig-

zag motion which made the particles appear to have an higher "effective" drag coefficient.

However the same trend would have been noticed in Ingebo's results.

Crowe (1962) reported measurements on the drag coefficient of burning gun powder•

The burning powder was subjected to a shock wave in a vertical shock tube in a manner
• _Ssimilar to Rundmger experiment. Particle motion was measured with a high speed

camera. The data lie slightly above the standard curve but well below Rudinger's.

Briffa (1981) has reported on the measurement of droplet drag in sprays. A water

spray was photographed to yield a triple exposure of a droplet. The local air velocity

was measured by photographing the motion of Lycopodium dust. The reduced drag

coefficients were smaller than the standard curve. Briffa attributed this trend to the

Basset term in the equation of motion but it is unlikely that the Basset term would be so

predominant.
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Tsuji et al. (1982) generated a stationary array of particles and measured the drag

on one particle in the array using the pendulum method. Two configurations were tested;

side by side particles and one particle in the wake of another. They found that the drag

of the particle in the wake was reduced for separation distances of less than 10 diameters.

The difference in drag coefficient does not explain the discrepancies observed in figure 8.

Tsuji et al. (1984) reported on the LDV measurements of particle and air velocities

of 200, 500 and 3000 micron particles in a vertical pipe. Small tracer particles were

used to measure the gas flow velocity and the signals from the test particles and tracer

particles were separated by a special signal discrimination device. The drag coefficients

resulting from Tsuji et al.'s experiments have been reduced by Lee (1987). The data

fall below the standard drag curve but demonstrate significant scatter. Lee correlates the

data with particle volume fraction, Froude number, Reynolds number (based on turbulent

fluctuational velocity) and density ratio (particle to fluid material density ratio). By so

doing, he was able to fit the data on a single curve. Still, extension of the empirical results
to other conditions is tenuous because one would not anticipate that the aerodynamic drag

would depend on the density ratio.

Very recently, Fleckhaus et al. (1987) have reported measurements of particle ve-

locities and concentrations in a jet with a two- dimensional LDA system. They also had

tracer particles in the jet to obtain the gas-phase velocity. By fitting cubic splines to

their velocity measurements, they were able to reduce particle accelerations. The drag

coefficients were obtained by knowing the particle (glass beads) size and relative velocity.

Their drag data lie above, but close to, the standard curve.

There is a need to establish a valid drag coefficient for particles in a turbulent flow

and to resolve the many discrepancies apparent in the data. It would be appropriate to

repeat some of the earlier experiments using modern instrumentation to either validate
the data or indicate the reason for the observed trends. Until more specific information

is available, one is advised to use the standard drag curve for an isolated particle.
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Particle Distributions in Poiseuille Flow
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Recent work has demonstrated that the time dependent properties exhibited by concentrated

suspensions of non-colloidal spheres when sheared in a conventional Couette viscometer may be
explained in terms of shear-induced particle migrations (Gadala-Maria and Acrivos, 1980;
Leighton and Acrivos, 1987b). These suspensions were observed to exhibit both a short-term
increase in viscosity upon shearing immediately after loading into the Couette device and a

subsequent long-term decrease after prolonged shearing, which were used to estimate the effective
shear-induced diffusivity for concentrated suspensions both normal to the plane of shear and

parallel to gradients in fluid velocity within the plane of shear (Leighton and Acrivos, 1987b).
In this paper the experimental evidence for the existence of shear induced migration processes

is reviewed and the mechanism proposed by Leighton and Acrivos (1987b) is described in detail.

The proposed mechanism is shown to lead to the existence of an additional shear induced
migration in the presence of gradients in shear stress such as would be found in Poiseuille flow,
and which may be used to predict the amplitude of the observed short-term viscosity increase.
The concentration and velocity profiles which result from such a migration are discussed in detail

and are compared to the experimental observations of Kamis, Goldsmith and Mason (1966).

1. Introduction

Particle migrations across fluid streamlines in suspensions may result from a wide variety of
mechanisms, ranging from Brownian type diffusive motions to the inertia induced drift
mechanisms studied by Ho and Leal (1974) and others. In this paper we are concerned with

shear-induced particle migrations which have been observed to occur in concentrated suspensions
of non-colloidal particles (particles sufficiently large that colloidal forces are unimportant at
distances comparable to the particle diameter) and at sufficiently low Reynolds numbers that
inertial forces may be neglected. Particle migrations under these conditions have been observed

by a number of researchers. Early work by Karnis and Mason (1967) demonstrated that particles
tend to accumulate behind an advancing meniscus in flow through a tube, and to be depleted

behind a receding meniscus, the magnitude of the phenomenon being a strong function of the

particle diameter/tube radius ratio and the concentration, suggesting that the particle migration was
the result of some type of wall effect. Leighton (1985) demonstrated that if proper precautions
were not taken, this effect can lead to serious errors in viscosity measurements m concentrated

suspensions. The coefficient of shear-induced self-diffusion of spheres in a sheared suspension
(i.e., the diffusion or dispersion arising from a random walk of particles in a sheared suspension
analogous to Brownian diffusion) was examined by Eckstein, Bailey and Shapiro (1977) and later
by Leighton and Acrivos (1987a).

The observations of particle migration of primary interest here were initially made by
Gadala-Maria and Acrivos (1980) in suspensions of 401.tm to 50lira diameter polystyrene spheres
in silicone fluids. In the course of viscometric measurements of concentrated suspensions made
with a conventional Couette viscometer, Gadala-Maria and Acrivos (1980) found that the

suspension viscosity would decrease after prolonged shearing, and eventually reach a steady-state
value which was as much as a factor of two below the initially observed value (cf. Figure 1). In
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Fmt_RE 1 Relative viscosity of a ¢ = 0.45 suspension as a function of the time that it had been
sheared in the Couette device at _, = 24 s -_. Polystyrene spheres, 40-50 pm in diameter in a mixture
of silicone oils (from Gadala-Maria 1979, figure 33).

subsequent experiments, Leighton and Acrivos (1987b) demonstrated that the viscosity decrease
was due to particle migration out of the sheared gap and into the reservoir by sealing the base of
the Couette device with a layer of mercury and showing that the phenomenon disappeared. The
rate of particle migration was found to be proportional to the shear rate and the square of the
particle radius, and was successfully modelled by a one-dimensional diffusion process. The
viscosity decrease was thus used to measure the effective diffusivity in the direction normal to the

plane of shear for concentrated suspensions. The effective diffusivity was found to be a very
strong function of concentration (cf. Figure 2) and to be much larger than the shear-induced
coefficient of self-diffusion measured by Leighton and Acrivos (1987a).

During the course of their experiments (also with polystyrene spheres in silicone oils)
Leighton and Acrivos (1987b) observed that, upon first shearing the suspension in the Couette

device, the viscosity would increase over a total strain of approximately 100, reaching a
steady-state value before the subsequent long-term viscosity decrease. Since the long-term
viscosity decrease only became significant after a strain of about 103 had elapsed, the two
phenomena were well separated in time and could be investigated independently. As it is central
to the present investigation into concentration distributions in PoiseuiUe flow, the short term
viscosity decrease phenomenon is examined in more detail in the next section, which follows the
development by Leighton and Acrivos (1987b).

2. Short-Term Viscosity Increase

The observed timescale appropriate to the initial viscosity increase phenomenon was found to

be inversely proportional both to the shear rate '_ and to the square of the ratio of the particle
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FIGURE 2 Diffusion coefficients calculated from the long-term viscosity decrease experiments: [[],
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polystyrene in 1.261 mm gap. Shear rates were: filled symbols, 76 s-t; open symbols, 24s-1;

half-filled symbols, 7.6 s -1.

diameter to gap width ratio _; thus this effect was explained in terms of a shear-induced migration

of particles across the width of the Couette gap analogous to the long-term viscosity decrease
phenomenon. This could only be the case, however, if the suspension flowing into the gap
during the loading procedure acquired a concentration distribution across the gap that was
different from the equilibrium profile corresponding to Couette flow. Then, upon shearing, the

particle distribution would diffuse into that appropriate for the Couette flow, and thereby induce a
change in the observed viscosity. The actual change in the viscosity results from the non-linear
dependence of the observed viscosity on the concentration profile. For example, if the
concentration profile is only slightly non-uniform and is assumed to be symmetric about the
centerline of the gap, then the observed viscosity may be calculated to be:

_ 1 Ill1 -' d ___2] bl-lo' O(<(A¢)3>)_ .l=_[b. #dy] =_[(_d_,)2__. _1}_1 I; (A¢)2dY +
(2.1)

m

where the viscosity has been expanded in a Taylor sen_'es about ¢ =_9. In equation 2.1, IXis the

viscosity that corresponds to a uniform concentration 5, A¢ = ¢(y)-¢ is the deviation from the
average concentration across the gap, y = 0 denotes the centerline of the gap, and y = +b the
walls. Note that the variation in viscosity is proportional to the average value of (A¢)2 across the

gap for small fluctuations in concentration. The viscosity.function in equation 2.1 may be
calculated from the dependence of viscosity on concentrauon observed by Leighton and Acrivos

(1987b):

I.t=[ 1

1 /era

an Eiler's equation where Cm is the maximem particle concentration and [Ix] is the intrinsic
viscosity. The best fit values for the suspensions used in the experiments discussed here in the

111



range .3 < t_ < .5 were _m = 0.58 and [it] = 3.0. From (2.2) it is found that any non-uniformity
in concentration leads to a decrease in the observed viscosity, the magnitude of which is a strong
function of the average concentration. Since the viscosity was observed to increase upon

shearing., it was concluded that the initial concentration profile established upon loading the
suspension into the gap was more non-uniform than that corresponding to Couette flow.

2.1. Diffusion model for the observed short-term viscosity increase

The viscosity increase phenomenon was modelled by assuming that the diffusion coefficient
across the gap was constant throughout the migration. This approximation is acceptable if the
variation in concentration is sufficiently small, and in any case the experiment yielded some
average value of the diffusion coefficient for the migration, ff the ini_fial concentration profile is
given by ¢0(0,y) and the concentration after a long period of shear is _ (assumed to be constant),
the concentration profile at all times is given by:

_(y,t) = _ + Y._' Bncos any exp (-n_ 2Ddt.') (2.3)
-- b \ b z /
n=l

where

Bn= _(0,y) cos dy

and DII is the diffusivity within the plane of shear parallel to gradients in fluid velocity.
To further simplify the model, equation 2.3 was approximated by its limiting form at long

times, i.e. the coefficients were chosen such that:

BI#0;, Bn=0, n# 1 (2.4)

in which case, to obtain accurate values of the diffusion coefficient under this assumption,
equation 2.3 was fitted only to data taken after sufficient time has elapsed for the neglected terms
to become unimportant. Since these higher-order terms decrease exponentially with a rate

constant at least four times that of the leading-order term, this requirement was easily met. Thus
the model describing the short-term viscosity increase contains three adjustable parameters: the

equilibrium uniform concentration; the amplitude of the initial variation in concentration B1; and
the diffusion coefficient. The first of these was fixed by the equilibrium viscosity corresponding
to the concentration of the suspension initially loaded; thus the rate at which the viscosity
approached its equilibrium value and the magnitude of the deviation between this and its value at

the start of the experiment yielded the diffusion coefficient and the approximate initial
concentration variation across the gap

It is important to note that the above development tacitly assumes that the concentration
profrle is not a function of the distance up the gap. In practice this is unlikely to be true since at

the base of the gap the concentration profile will correspond to the entrance region into the gap,
while sufficiently far up the gap it should correspond to the steady-state distribution resulting
from Poiseuille flow. While this will be discussed in more detail in section 4, it is noted here that

while variations in the initial concentration profile up the gap may affect the estimated amplitude of
the concentration variation B1, it should not affect the calculated value of D H. This arises from the
assumption that the diffusivity is essentially constant within the gap, corresponding to the average
concentration which does not vary along the length of the gap, and thus the rate at which the
concentration approaches its steady-state distribution is the same at all positions along the gap.

2.2 Experimental results

Short-term viscosity increase experiments were performed by Leighton and Acrivos (1987b)
with suspensions of 46itm and 87gm polystyrene spheres at concentrations from 30% to 50% in
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two mixture of silicone oils with viscosities of 1.22p and 1.07p. The measurements were taken

using t2ouette gap widths of 0.639mm, 1.261mm and 2.513mm. The gap height for all
experiments was 4.508cm, and the bob diameter was 4.7498cm.

The fit of the data to the model was excellent (cf. Figure 3); however, owing to the many
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assumptions that were necessary in deriving (2.3), the calculated values of the diffusion
coefficient and concentration fluctuation across the gap must be considered only approximate.

The diffusion coefficient was found to be proportional to _2 and, as in the case of diffusion

normal to the plane of shear measured in the long-term viscosity decrease experiments, was a
strong function of concentration. A plot of the diffusion coefficient as a function of concentration
is given in Figure 4, where the dashed line is the diffusion coefficient normal to the plane of
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FIGURE 4 Diffusion coefficient observed in the short-term viscosity-increase experiments: C),

46 jam polystyrene in medium gap; [--], 46 jam polystyrene in small gap; A, 87 jam polystyrene in

medium gap. Dashed line is the diffusion coefficient observed in the long-term viscosity-decrease

experiments.
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shear. The fact that the measured values of the two diffusion coefficients were almost identical

provides us with added confidence that the viscosity increase was interpreted correctly as resulting
from a particle migration across the gap width.

The short-term viscosity increase phenomenon was observable only for a narrow range of
particle diameters, suspension concentrations and Couette gap widths. This was due in part to the
fact that, since the diffusion coefficient was found to be proportional to the square of the particle
radius, the total length of shearing necessary to reach steady-state was inversely proportional to
_, the square of the ration of the particle diameter to gap width. Thus, for very large values of
(such as were obtained for experiments with the 871.tm polystyrene spheres in the narrow Couette

gap) the strain associated with the migration was sufficiently short that it was not possible to
reliably separate fluctuations in the viscosity due to migrations across the gap from those due to
the initial equilibration of any short range order in the suspension, first observed by Gadala-Maria
and Acrivos (1980). Similarly, the timescale for the viscosity increase was also much too short

for experiments with the 461.tm spheres in the narrow gap and a 50% concentration, owing to the
high value of the dimensionless diffusion coefficient found at this concentration.

At 30% solids concentration, a different experimental difficulty was encountered in that,
although the total fluctuation in concentration across the gap may have been the same as that

observed for more concentrated suspensions, the resultant variation in the observed viscosity was
too small to be accurately measured. From the observed dependence of viscosity on
concentration, the same fluctuation in concentration across the width of the gap affects the
observed viscosity at an average concentration of 30% by an amount that is less by an order of
magnitude than that at 50%.

Finally, for some combinations of concentration, particle diameter and gap width, the
short-term viscosity increase effect was not observable. No useable measurements were obtained
for tha suspensions of either 46_m or 87gm spheres in the large Couette gap at concentrations of
30% to 45%, and for suspensions of 46pm spheres at 30% to 40% concentration in the medium
Couette gap. Possible causes for the absence of a measurable initial increase will be discussed in
section 4. Table 1 presents the calculated amplitude of the concentration fluctuation across the
channel for those experiments where it was measurable.

TABLE 1. Estimated

Particle Gap
diameter width

(pro) (mm)

46 0.639

87

1.261

1.261

¢ B I

0.40 1.1 0.131
0.40 0.54 0.094
0.45 2.45 0.075

0.45 1.7 0.062

0.50 3.2 0.081

0.40 1.4 0.050

0.40 1.4 0.075

0.45 1.6 0.063

diffusion coefficient and amplitude of concentration fluctuation for the
short-term viscosity-increase experiments
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3. Mechanisms leading to shear-induced migration

Thus far, we have presented experimental evidence for the existence of shear-induced particle
migrations arising from gradients in concentration and shear stress. To see how these migrations
take place we follow the development provided by Leighton and Acrivos (1987b). Let us fast
examine the case of migration due to gradients in particle concentration.

Consider a single marked sphere of radius a in a suspension of otherwise identical spheres
undergoing the viscous linear shear flow u = 7Y, where u is the velocity in the x-direction. As the
sphere interacts with its neighbors in the shear flow, it will experience a series of displacements in
both the y- and z-directions with a characteristic length proportional to a and a frequency
proportional to the shear rate "_. In the absence of any gradient in concentration, these
displacements will be random with zero mean (i.e. on average the particle will remain on its initial
streamline), and thus will constitute a random walk. But, as is well known, in the presence of a
concentration gradient such a random walk will lead to a diffusive flux and thus may be
characterized by a diffusion coefficient, in this case with the dimensional scaling _2, the same as
was observed in the experiments described here. It is important to note that in a dilute suspension

the spheres will return to their initial streamlines at the end of all two-particle interactions owing to
the linearity of the viscous-flow equations when only viscous forces are present. As a
consequence, at least three particles must interact to yield the permanent displacements that lead to
a random walk, and therefore, since the reate at which two particles interact with the marked

sphere is proportional to ._2, the diffusion coefficient must be proportional to _Zt/a2 in the dilute
limit.

This source of diffusive flux, termed shear-induced self-diffusion, may be measured by

examining the random walk of a single marked particle in a homogeneous suspension.
Experiments carried out along these lines have been conducted by Eckstein, Bailey & Shapiro
(1977), and more recently by Leighton & Acrivos (1987a), and have demonstrated that the
diffusion coefficient is indeed proportional to _2. Leighton & Acrivos (1987a) also obtained a
dimensionless value of the diffusivity of about _)2/2 in the dilute limit, in agreement with the

scaling predicted by the theory. The measured coefficient of self-diffusion, however, was found
to be a much weaker function of concentration and, at a concentration of 40%, had a value nearly

an order of magnitude lower than the diffusivity that was calculated from the experiments
described earlier in this work. The discrepancy between the observations of self-diffusion and
effective diffusivity in the presence of a gradient in concentration suggests, therefore, that the

presence of a concentration gradient in some way induces a drift of particles from regions of high
to low concentration in addition to that provided by random self-diffusion.

The most likely source of this additional drift is that interparticle interactions in the presence
of a gradient in concentration lead to an average displacement of the marked sphere from regions
of high to low concentration. It is not clear at this stage whether interactions in the presence
solely of viscous forces can lead to such a drift. Direct calculations of the drift for such a
suspension would require consideration of interactions involving at least three spheres in a dilute
suspension and, in concentrated suspensions where the average interparticle separation distance is
very small, the interaction of many spheres would have to be taken into account. Such
calculations are far beyond the capabilities of current analytical techniques, and are also quite
difficult to deal with numerically owing to the very large number of particles that must be included
in any computation.

As we shall presently demonstrate, however, for sufficiently concentrated suspensions of
real non-colloidal particles, it is not necessary or even appropriate to consider only the influence

of purely viscous hydrodynamic forces because, in such systems, the particles are driven
sufficiently close together by the flow that irreversible surface contact will occur as a consequence

of surface-roughness effects, thereby destroying the macroscopic reversibility of the purely
viscous interactions. In this section we shall therefore discuss both theoretical and expenmental
evidence for the existance of such irreversible interactions and demonstrate that they may lead to
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the diffusivities observed here.

3.1. Irreversible interactions in concentrated suspensions
Consider a sphere interacting with a second sphere in a simple shear flow. As the two

spheres approach one another, the viscous stresses in the fluid act to drive the spheres together.
Under purely viscous conditions, when the interparticle separation distance is very small this
approach is resisted by the lubrication layer between the particles, in which the resistance is

inversely proportional to the separation distance. Thus although two mathematically smooth
interacting spheres may never touch, hydrodynamic theory predicts that, over a certain range of
initial configurations, they will approach one another very closely even in a dilute suspension. On
the other hand, in the presence of a finite amount of surface roughness on the spheres (as is the
case for any real particles), the interaction may be significantly modified. Indeed, Arp & Mason
(1977) found that even for two isolated interacting spheres, the existence of a small degree of
surface roughness was sufficient to eliminate the closed orbits predicted for purely viscous
interactions.

This effect of surface roughness is accentuated for concentrated suspensions. Specifically,
since the forces driving spheres together in the flow depend on the bulk fluid stresses, they are
proportional to the bulk suspension viscosity, which in turn is a strong function of concentration.

In contrast, the lubrication forces resisting this approach remain proportional to the pure-fluid
viscosity since the presence of other particles in the suspension does not affect the flow in the

narrow gap between particles. This imbalance, combined with some finite surface roughness,
implies that in sufficiently concentrated suspensions particles will simply approach one another

without any significant displacemtn from the their original streamlines until they come into
physical contact, folowing which they will rotate owing to the vorticity of the shear flow, and

finally separate. Moreover, since the interaction is no longer reversible owing to the surface
contact it will also no longer be symmetric and thus will lead to permanent displacemtns of the
particles from their original streamlines at the end of each interaction. A more complete
discussion of the evidence for irreversible interactions and thier effect on the rheology of
concentrated suspensions is given by Leighton (1985).

3.2 Particle drift arising from irreversible interactions
There are several ways in which the irreversible interactions described above can lead to drift

in the presence of gradients in concentration or shear stress. To see this, consider a test sphere at
the origin which is immersed in a suspension undergoing shear. We shall assume that the bulk

flow is in the x-direction with a constant shear stress t_ = Ovx and a linear concentration gradient
in the z-direction, normal to the plane of shear. Under these conditions, the viscosity, and hence
the shear rate, will be be constant within the plane of shear. Consequently, when the particles are
not mathematically smooth, the test sphere will be irreversibly displaced upwards following an
interaction with another sphere approaching it from below, and conversely if approached from
above. Thus, in the presence of a higher particle concentraiton on one side of the test sphere than
on the other, this sphere will experience a drift towards the region of lower concentration since it

interacts with more particles on one side than on the other. Moreover, the displacement after each
interaction will be proportional to the particle radius; thus since the excess rate of interactions from

regions of higher concentration is proportional to _dth/dz, the particle flux resulting from this
source of drift should be proportional to _2(lxt_/dz, which is the same scaling expected for
shear-induced diffusion.

A second source of drift normal to the plane of shear arises from the gradients
in suspension viscosity brought about by gradients in concentration. First we note that in the
absence of a gradient in viscosity, two touching spheres in a shear field will rotate about their

center of mass (the point of contact). But, in the presence of a viscosity gradient, the center of
mass will no longer be the center of rotation and the particles will, on average, be displaced

during an interaction from regions of high to low viscosity. The magnitude of this displacement
during each irreversible interaction will scale as the relative variation in viscosity across the
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particle, i.e. it will be proportional to (a/I.t)dg/dz, multiplied by the particle radius. Since, for
small gradients in concentration, the variation in viscosity is linear in the concentration gradient,
the above result, when multiplied by the rate of interactions _, gives the corresponding drift

velocity. In turn, when multiplied by _ and divided by dq_/dz, the dr!f.t _loc.it_.!eadsto ,aq,
expression for the effective diffusivity aris'mg from this source oI antt t) ~ The
total effective diffusivity normal to the plane of shear is then the sum of the two mechanisms

outlined above, plus that due to shear induced self-diffusion.
For concentrated suspensions, the function (1/I.t)dgd_ is very large, with a value of about 15

for a 45% suspension; thus drift due to gradients in viscosity is likely to dominate the diffusivity.

Recognizing this, we therefore let
2

dg
D.I_= K±-g- -_ _ 2 (3.1)

be the expected form for the effective diffusivity normal to the plane of shear at high
concentrations, where K± is a dimensionless parameter whose value will depend on the exact

geometry of the interactions. As shown in figure 5, K±, as determined from the results of the
long-term viscosity experiment, was found to be a relatively weak function of concentration with
a value of about 0.7 at 45%. The scatter in the data is, of course, indicative of the simplcity of the

model.
The contribution of irreversible interactions to drift within the plane of shear is quite similar

to that found above for the case of drift normal to the plane of shear. Again, displacements will
lead to random serf-diffusion, to drift arising from a higher rate of interactions on one side than on
another due to the concentration gradient (assuming a uniform shear rate), and drift from regioins

2.0

1.5

1.0

0.8

K.
0.6

0.4 --A

0.3-

I l I L

[]

/X

[2x

A %

%
©

I I I 1

0.25 0.30 0.35 0.40 0.45 0.30

FmvRE 5 Value of Kl vs. concentration: [Z, 46 lam polystyrene in 0.639 mm gap; O, 46 gm

polystyrene in 1.261 mm gap; /X, 87 gm polystyrene in 1.261 mm gap. Open symbols, 3; = 24 s-l;

filled symbols, 3) = 76 s-l; half-filled symbols, _ = 7.6 s -t.

of high to low viscosity. In addition to these sources of drift, however, variations in viscosity
within the plane of shear will, in the case of a uniform applied shear stress, lead to variations m
the local shear rate. Thus, in regions of low concentration and low viscosity the shear rate will be

greater, with the consequence that a test sphere will, on average, experience a greater number of
interactions from the region of lower concentration than would otherwise be the case. Since the
shear rate is inversely proportional to the local viscosity for a constant shear stress, the excess rate
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of such interactions will be proportional to (¢'_t/p)(dg/dy), which in turn will reduce the drift
velocity from regions of high to low concentration by an amount proportional to

(_2_/I.t)(dp/dip)(dCp/dy), an expression for the drift velocity identical with that due to gradients in
viscosity with uniform shear.

Although this drift due to the shear rate gradient effect will certainly reduce the magnitude of
the effective diffusivity (the sum of all contributions due to drift and random walk) it appears
unlikely that the two terms due to gradients in fluid viscosity will exactly cancel out. Thus, as in
the case of diffusion normal to the plane of shear, we obtain for the limiting expression of the
effective diffusivity at high concentrations

2

Do= Ku_- dp -2
_7 -,t (3.2)

where the value of K Hmay be determined from the initial-viscosity-increase experiments. The
results are shown in Figure 6 from where it is seen that, in spite of the scatter, which again is
indicative of the simplicity of the model, K_i appears to be relatively independent of concentration
and approximately equal to 0.6.

The same mechanism due to gradients in shear rate that reduced the effective diffusivity
within the plane of shear should also lead to drift from regions of high to low shear stress in a
homogeneous suspension. This is because, for the case of uniform particle concentrations and
uniform suspension viscosities, the local shear rate is proportional to the local shear stress (_;
hence the excess rate of particles interacting with the test sphere from regions of high shear stress
is proportional to (_r_t/(_)/(d(r/dy), yielding a particle flux

2

Ny = -K a (_ d(_
-_- d--y-_2 (3.3)

where again K c is some order-one function of concentration.
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Fmvav. 6 Average value of K_ I vs. concentration calculated from the data in table 1. Error bars

denote one standard deviation as estimated from the scatter in the experimental results.
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4. Particle distributions in Poiseuille flow

Using the above analysis it is possible to determine the steady-state concentration distribution
acquired by a concentrated suspension undergoing flow in a channel or a tube. Since the shear
stress in Poiseuille flow is a maximum at the walls and zero in the center, migration due to the

gradient in shear stress will result in a depleted concentration near the walls. At steady-state, this
inward migration is balanced by shear-induced diffusive migration outwards, where the net

particle flux: 2 2

____do ¢_ dl.t d4d-t. 2 (4.1)

is set equal to zero. For Poiseuille flow the shear stress is simply proportional to y, hence
1 do _ 1 (4.2)

o dy Y

and therefore we obtain the derivative of the steady-state concentration profile:

dO K o dl.t "%-11 (4.3)

where the viscosity is a known function of concentration. If we assume that the ratio KcfKIt is

approximately constant across the gap, then (4.3) may be directly integrated to yield the viscosity

profile: Ko

g_g__= (b) K, (4.4,
_tw

where }.tw is the relative viscosity of the suspension evaluated at the concentration at the walls.
Using the observed relationship between viscosity and concentration (given by equation 2.2), we

may invert equation 4.4 to obtain the concentration profile across the channel:
-1

( )-" _m 1 + 2 (4.5)r,* v,

which is a function only of the ratio Kd_lt and the concentration at the wall. Note that the
concentration distribution given by equation 4.5 applies to both flow through channels and tubes.
For a known value of KtJKII the wall concentration may be determined from the average
concentration by integrating 4.5 across the channel or, in the case of flow through a tube, by

integrating the product _2rdr. A plot of the expected concentration profile for _ as a function of
Ko/Kit is given in Figure 7 for _ = 0.45. Note that the predicted concentration approaches the
maximum value _ = _m at y--0. This is a consequence of the singularity in (4.2), and the

divergence of the effective diffusivity as the particle concentration approaches its maximum value.

4.1 Estimation of Ka
We may estimate the value of Ko from the amplitude of the short-term viscosity increase

phenomenon if we examine in more detail the procedure by which suspensions are loaded into the
Couette device. As is described in detail by Leighton and Acrivos (1987b), in these experiments
the fluid was loaded into the gap by fu'st pouring the suspension into the Couette cup and then

lowering the bob, thus displacing the fluid and filling the gap. The flow thus created consists of a
converging entrance flow at the base of the gap, followed by channel flow up the gap. While it is
unclear what effect, if any, the entrance flow has on the concentration profile, the channel flow up

the gap should lead to a migration of the particles from the regions near the walls into the center.
The concentration profile in the gap will thus be a function of distance up the gap, but provided
that the height of the gap is sufficiently large the concentration profile in the gap will approach the

steady-state distribution given by (4.5).
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Figure 7.
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Plot of concentration profile across a channel predicted from equation 4.5 for an average
concentration of 45%, as a function of Ko/K; u

If we assume that the concentration profile in the gap is indeed due to migrations arising from
gradients in shear stress we may estimate the influence of finite gap length on the short-term

viscosity increase phenomenon. The concentration distribution in the gap will be governed by thedifferential equation:

where:

where:

a_) aNy a ra_) K o

Ua-x-: - --a-y--: _ { D'+a2 [_ + _11 1] }

u=u m 1- ; Ny ly=± b =0 ; _lx= 0=(_0

(4.6)

where, for purposes of estimation, we linearize the problem by assuming the velocity profile to be
parabolic and the diffusivity to be constant, and where we have assumed a no-flux boundary
condition at the sides of the channel and a uniform concentration at the entrance. The differential
equation may be rendered dimensionless using the variables

, y . , 2x a2Di
y=_,x=

b 3 (4.7)
resulting in the dimensionless equation:

a, +
(1-y'2)_,= -_ { ,y_[___. ___1]} (4.8>

1-+- DI] and #lx.=O=(l)o

which may be solved using separation of variables. Equation 4.8 admits a solution of the form:
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with

¢(x*,y*) = _ (y*) +

O0

Anexp(-anX )E 2 , Fn(Y* )

n=O

;(1 -y2)Fn(y)(_._(y)_ *0) dy

An = i

(l- y2)F_y) my

where theeigenfunctionsFn satisfytheSturm-Liouvilletypeequation:

(y*F_)'+ 0t_(1 - y*2) Fn= 0

with

Fn(0) = finite ; F_ 1 ) = 0

(4.9)

(4.10)
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FIGrRE 8 Average value of K_ vs. concentration calculated from the data in table 1. Error bars
are one-standard-deviation error estimated from the scatter in the experimental results.
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While equation 4.10 does not admit a closed form solution, the leading ei.genvalue has been
determined numerically to be o_0= 2.277795. As a consequence, the assumptmn that the
concentration distribution in the gap is close to that at steady-state for channel flow will be valid

provided

2 a 2 a2 E)I_
>> 1 (4.11)

b 3

where h is the gap height. In the experiments described by Leighton and Acrivos (1987b) where
the short-term viscosity increase was observable, the dimensionless parameter given in (4.11)

ranged from 1.9 to 14, thus the assumption of steady-state is reasonably good. In contrast, in
those experiments where the short-term viscosity increase was not observed, the value of the
parameter was less than 1, suggesting that the observed increase was, in fact, due to particle

migrations in Poiseuille flow rather than entrance effects.
To estimate the value of K o, we may simply substitute the steady-state concentration

distribution given by equation 4.5 into the equation for B 1 given in equation 2.3 and integrate.

The resulting values of K o are given in Figure 8, which, allowing for considerable scatter in the
experimental data, indicates that K o is a relatively weak function of concentration (not quite
constant as we have assumed) with a value of about 0.6 at 0 = 0.45.



4.2 Comparison with other experiments

In a bounded PoiseuiUe flow (channel or tube), any migration of particles toward the center

leads to an increase in the viscosity in this region and hence to a blunting of the parabolic velocity
profile that applies for Newtonian fluids. We may calculate the expected velocity profile resulting
from the steady-state viscosity distribution given in equation 4.4:

2+K 
'u---_- (4.12)

which, surprisingly, is not a function of concentration. Of course, in the development leading up
to (4.4) we assumed that the ratio _l is independent of concentration. This is certainly not
true for dilute suspensions where the mechanisms leading to the shear stress gradient induced
migrations would be expected to vanish, and is only approximately correct for concentrated
suspensions.

.Observations of velocity profiles in concentrated suspensions flowing through tubes were
conducted.by Karnis, Goldsmith and Mason (1966). Their observations at an average
concentrauon of 38% (the highest concentration for which measurements were reported) and

particle/tube diameter ratio of.028 is reproduced in Figure 9 together with the profile predicted by

O
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Velocity 0bserwdby__

Karnis, ee_ _

.0 -0.5 0.0 0.5 i.0

r/R

Figure 9. Comparison of the velocity distribution estimated from equation 4.12 with that observed
by Karnis, et al. (1966).

equation 4.12 using an observed ratio K_., = .912 estimated from the _ = 0.40 experiments
described above. From this comparison it is seen that the velocity profile observed by Karnis, et

al. is blunter than that predicted here, corresponding to .Kd'Kll = 2.1. While these two values do
not greatly differ considering the large degree of scatter m our experiments, at least part of the
discrepancy may be accounted for by wall effects. Indeed, Karnis, Goldsmith, and Mason

attributed their observed blunting entirely to wall effects, however in view of the small particle
diameter / tube diameter used in the experiment depicted here, this seems unlikely. Experiments
in the Couette geometry reported by Kamis, et al. (1966), showed that wall effects were

insignificant at the same concentrations even for particle diameter / gap width ratios over a factor
of three larger than that used in the experiments leading to Figure 9.
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These authors did attempt to measure the concentration profile across a tube, although only at

a lower average concentration of 32%. Owing to the statistical nature of their measurement
technique, however, their observations had a very large experimental error. Specifically, their
measurements involved counting the number of spheres that were present in each of four
divisions of the half-width of a tube cross-section, and since only a small fraction of the spheres

were marked, their observations were subject to Poisson statistics, which dictate that the
one-standard-deviation error in the number of spheres that were counted is equal to the square

root of that number. But since the total number of spheres that were counted in each region was

rather small (less than 80), the concentrations reported by Kamis et al. (1966) had a two standard
deviation error of nearly 25%. Their observations, with error estimated as described above,

together with the concentration profile predicted using equation 4.5 and a value of Ko/Kn = .912
is given in Figure 10. While the concentration observations of Karnis et al. do not agree with the
predicted concentration profile (which has been extrapolated well beyond the range over which
Ko/K Hwas estimated), more accurate measurements of the concentration distribution in Poiseuille
flow are needed in order to determine the source of the observed blunting of the velocity profiles.

rg

k..
v

0.6

0.5

0.4

0.3

°2i0.1

0.0
-I.0

i I , I , I

-0.5 0.0 0.5

rlR

1.0

Figure 10. Comparison of concentration distribution estimated from equation 4.5 with particle
distribution observed by Karnis, et al. (1966). Error given is 2 standard deviation error

calculated by statistical means.
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Abstract

Liquid Jet breakup mechanisms and processes

have been studied extensively over the last one

hundred years. However, since the region near the

Jet injector is too dense and optically opaque,

conventional visualization cannot be applied with

satisfactory experimental results. To unravel the

liquid jet breakup process in the non-dilute

region, a newly developed system of real-time

X-ray radiography together with an advanced

digital image processor and a high-speed video

camera was used in this study. Based upon

recorded X-ray images, the inner structure of a

liquid Jet during breakup was observed. The Jet

divergent angle, Jet breakup length, and void

fraction distributions along the axial and

transverse directions of liquid jets, etc., were

determined in the near-injector region. Both

wall- and free-Jet tests were conducted to

study the effect of wall friction on the Jet

breakup process.

Introduction

Understanding the breakup mechanism of liquid

jets in diesel engines, regenerative liquid

propellant guns, and many other combustion and

propulsion systems is extremely important, since

the jet breakup process can strongly affect the

jet divergent angle, the distributions of droplet

size and velocity, and the mixing and combustion

processes. As indicated in a detailed review

paper by Arcoumanis and Whitelow,1 numerous

theoretical _nd experimental attempts have been

made to study the stability and breakup phenomena

of liquid jets ejected from nozzles. In recent

years, Wu, Reitz and Bracco, 2 Birk and Reeves,3

and Baev et al. 4 conducted intensive studies in

the experimental investigation of breakup behavior

in the near-injector region. Shimizu et al. 5

studied the breakup length of a high-speed jet by

measuring the electrical resistance between a

nozzle and a fine wire detector located in a spray

jet. They found that breakup length decreases

with increase in injection velocity, finally

reaching a constant value.

In the theoretical analyses, the growth of

initial perturbations on the liquid surface, the

effects of liquid inertia, surface tension,

viscous and aerodynamic forces on the jet were

considered. The earliest development of a

predictive model for the Jet breakup was initiated

by Rayleigh.6, 7 His linear stability analysis of

an inviscid cylindrical liquid jet showed that an

*The authors are grateful to Professor V. Y ang of

PSU for his initial effort in this study. The

assistance in test rig design by Dr. L. K. Chang

and chamber fabrication by Mr. W. Loesch are also

greatly appreciated.
tPh. D. Candidate

_Distinguished Alumni Professor of

Mechanical Engineering, Associate Fellow of AIA_
Research Assistant, presently working at

Sverdrup Technology, Inc., Cleveland, Ohio
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axisymmetr_c disturbance could be stable or

unstable, depending upon the magnitude of the

wavelength (stable for wavelengths less than the

circumference of the Jet, and unstable for other

cases). Further investigations using linear

stability analysis were conducted by Tyler and

Richardson, 8 Schweitzer, 9 Merrington, I0 Levich 11,

Dombrowski and Hooper, 12 and others. Based on

these studies, the Jet divergent angle near the

injector exit, and jet breakup length and mean

drop size near the lateral surface of the jet can

be estimated from the Reynolds number, the Weber

number, the density ratio of liquid to gas, and

several empirical constants. The effect of

viscosity was studied by Weber. 13 More recently,

the effect of nonlinearity 14-19 has been

considered and solved numerically in order to

simulate more closely the Jet breakup processes.

In the experimental studies, the core of the

Jet is optically opaque due to the high-density

condition in the near-injector region. Hence,

observations and measurements of the near-injector

region are almost impossible. Consequently, most

previous studies focused on the dilute region or

on the Jet boundary near the injector exit. 2 Due

to the lack of quantitative test results in the

near-injector region, the theoretical models

developed for prediction of jet-core breakup

length, mean drop size distribution, etc., have

not yet been validated. The estimated jet

profiles and characteristics at a given

near-injector station were used as initial and/or

boundary conditions in order to simulate the

atomization and combustion processes in the d_lute

region; this, in turn, could cause errors and

uncertainties in the theoretical predictions of

combustion processes.

The purpose of the present study is to

achieve a better understanding of the Jet breakup

process, using a newly developed system of

real-time X-ray radiography together with an

advanced digital image processor and a high-speed

video camera. The specific objectives are: (I)

to illustrate the differences between X-ray

radiography images and regular high-speed movie

films; (2) to measure Jet velocity, jet breakup

length, and void fraction distributions in the

near-injector region; (3) to observe the evolution

of the jet breakup and the formation of ligaments

and droplets in the near-injector region in order

to determine the inner structure of the liquid

jets; and (4) to demonstrate the feasibility and

advantage of using X-ray radiography in the jet

breakup study. In order to study the effect of

wall friction on the jet breakup process, both

wall- and free-jet tests were conducted.

Experiment Apparatus

In the experimental approach, a test rig has

been designed and fabricated to simulate both wall

and free jets ejected from a two-dimensional slit

with an aspect ratio of 10. The advantage of

using a planar two-dimensional jet is to avoid the

curvature effect which is inherently associated

with circul_r or annular jets.3 The side view of
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the jet breakup process is much clearer in the

planar two-dimensional case than in other cases.

The schematic diagram of the test rig is shown in

Fig. I. A photograph of the test setup is shown

in Fig. 2. In Fig. I, the gap of the

two-dimensional slit between elements 5 and 7 is 2

mm, and element 5 is an interchangeable piece for

providing different lengths of the wall jet. When

a piece of element 5 ends at the same location as

element 7, the configuration is that of a free jet

test case. A pressure transmitting rod is shown

as element 4. Prior to the test, this rod was

lifted by a vacuum pump. The liquid was then

loaded through element 6 into the free volume

beneath the rod and the entire slit region. The

liquids used in tests were either water or

(C1qH2gIO2),.- a fluid used in medicalPantopaque

X-ray examinations. The physical properties of

the two test fluids are presented in Table I.

D_ing the test, a solenoid valve was activated to

introduce high-pressure nitrogen gas into the top

portion of the test rig (see Fig. 2), thus pushing

the rod downward to inject the liquid into the

_nconfined ambient air. A major portion of the

?_ntopaque was recovered for f_ther use.

SOLENOID VALVE

___HAND VALVE

HIGH- TO VACCUM
PRESSURE PUMP

V

37 ®

LIQUID

I 'I '---@

,I I I I I,I
8_0

Fig. 1 Schematlc Diagram of Test Rig Assembly

for Two-Dimensional Wall or Free Jet

Breakup Studies (I. top cover, 2. bolts,

3. liquid reservoir, 4. push

rod, 5. top plate Of slit, 6. liquid

feeding hole, 7. base plate of slit, 8

and 9. test rig holder)

Fig. 2 Photograph of the Test Setup

Data Acquisition System

During the test, the instantaneous liquid jet

contour was filmed by real-time X-ray radiography.

Figure 3 shows the layout of various components of

the radiography system. A continuous X-ray was

generated from the Phillips MG 321 constant

potential X-ray system. Two X-ray tubes [one with

a focal spot combination of 0.2 x 0.2 mm/3.0 x 3.0

mm (MCN 167/160 kV), the other with a focal spot

combination of 1.2 x 1.2 mm/4.0 x 4.0 mm (MCN

321/320 kV)] were employed to achieve different

penetration depths and spatial resolution

requirements. A lead diaphragm was installed at

the exit port of the X-ray tube head to limit the

angle of divergence of the X-ray beam and to

confine the beam to the measuring section of the

liquid jet test rig. (This also reduced

unnecessary radiation exposure.) A second lead

diaphragm with a larger opening was placed in

front of the image intensifier to reduce scattered

X-ray radiation and decrease the noise level on

the fluorescent screen.

After passing through the test rig and liquid

Jet, X-ray signals were transformed to fluorescent

light signals on the output screen of a tri-field

image intensifier (Precise Optics, Model PI 2400

ATF, 4", 6", or 9" field diameter). The input

fluor of the image intensifier was made of cesium

iodide with a decay-time constant of 650 ns, and

the output fluor was a p20 type with a 85 ns

decay-time constant. These time constants are

short enough to allow the motion analysis system

to operate at its maximum framing rate without

generating image blur.

The fluorescent light signal output from the

image intensifier was recorded by a Spin Physics

2000 Motion Analysis System. This system can

record up to 2000 fully digitized frames per

second, or up to 12,000 digitized pictures per

second with adjustable playback speed. The motion

analysis system consists of the following

subsystems:

a) a Spin Physics 2000 video camera with

solid-state image sensor. The picture

information goes to the console from

the camera, and is processed into a

frequency-modulated carrier that is

recorded on tape.

b) a main electronic bin, which contains

record and playback electronics, along

with video output circuitry.

c) a tape transport, which drives the

half-inch tape cassette at a maximum

speed of 250 inches per second.

Digitized data was stored on a high-intensity

magnetic recording tape and transferred to the

digital image-processing system frame by frame for

analysis through an IEEE-488 interface. The

digital image-processing system consists of

several major components:

a) a Quantex (QX-9210) digital image

processor with two pipeline point

processors, each with a random access

image memory of 480 x 640 x 12 bits.

The processors perform real-time image

enhancements, including noise

reduction, image subtraction, arbitrary

contrast control, roam, and zoom. The

processor can also be used to conduct

such high-speed image analyses as

brightness histogram, local contrast

stretch, area and point brlghtness
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Real Time X-ray Radiography and Digital

Image Processing System

measurements, calibrated length and

area measurements, Sobel edge

enhancement, and so forth.

a mass storage device consisting of

both a 2.4 MB dual 8" floppy diskette

drive and a 50 MB hard disk for storage

of image data.

a high-resolution videograph printer

(AIDI CT1500) for producing large

high-quality pictures on hard copies

with 1660 lines/inch resolution.

Data Reduction Procedure

Besides observing the jet structure directly

from the recorded film (both regular movie and

X-ray films), more detailed and accurate data

could be deduced by analyzing the X-ray intensity

distribution across the Jet in horizontal and

vertical directions. Basically, an ideal

radiography image of the liquid Jet can be

determined from the assumptions that I) X-ray

radiation is generated from a point source via an

infinitely small focal spot, 2) X-ray is only

attenuated by photoelectric absorption, and 3)

distribution of X-ray intensity over the input

screen of an image intensifier is uniform. As

shown in Fig. _, the X-ray intensity distribution

on a y = constant plane can be evaluated by the

following equation:

I(x) = Io EXP [-mW(x)] (I)

where m is the linear attenuation coefficient of

photoelectric absorption, and W(x) is the local

sum of the intercepted width of the liquid in the

two-phase jet. Due to the X-ray beam attenuation

across the liquid Jet, the following test data can

be obtained using the digital image-processing

system:
a) Measurement of Radiance or Pixel Value:

The radiance (or pixel value) of any

arbitrary point of interest in the Jet

can be obtained by moving the cursor to

that point. The local radiance and the

x, y coordinates of the location can be

displayed on the screen.

b) Measurement of Area and Pixel Value:

The software program combines a

measurement of an area with a

measurement of the integrated pixel

values (or total radiance) within the

area. The calcul_ted average pixel

value within the area is also displayed

on the screen. This feature can be used

to detect the local void fraction level

IDEAL X-RAY POINT SOURCE

A

I

I '
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Fig. 4 X-ray Intensity Distribution Across a

Liquid Jet Under Idealized Conditions

from the X-ray radiograph for a

specified Jet region (see Fig. 5).

c) Profile Analysis: Figures 6 and 7 show

the measurement of the pixel value of

two scan lines--one parallel and one

perpendicular to the Jet core and head

regions. Both end at the cursor point.

From these profiles, the void-fraction

distribution can be deduced for a

certain cross-section of the Jet.

d) Histogram Analysis: This procedure

consists of measuring the frequency of

occurrence of pixel values within a

selected boundary of a rectangle. Such

distributions can be used to detect Jet

breakup phenomena in the core region.

Keeping the axial length of rectangular

area constant by varying the width of

the rectangle, different sets of

histograms can be obtained. These are

arranged into a series of histograms

(see Fig. 8).

e) Isophote Analysis: Using the data

reduction program, certain regions of

the viewing ares with the same range of

pixel values can be replaced by white

spots. This feature makes it possible

to observe the contours of different

radiances. The inner structure of a

liquid jet can, therefore, be studied by

selecting different pixel values (see

Fig. 13, to be discussed later in the

results section).

Finally, Jet-bead velocities in both axial

and radial directions can be deduced from the

recorded film by using the elapsed time and

displacement of reticle lines on the monitor of

the Spin Physics Camera System.

Discussion of Results

A series of high-speed motion pictures
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Fig. 5

Fig. 6

Fig. ?

Measurement of Area _nd Pixel Value of a

Liquid Jet

Horizontal X-ray Intensity Profile at the

Center Pl_ne of a Liquid Jet

Vertical X-ray Intensity Profile at a

Distance from Jet Exit

showing the breakup process of a plane wall jet is

given in Fig. 9. Several interesting phenomena of

wall jet evolution and breakup can be noted from

these photographs. In Fig. 9a, as the liquid jet

traveled along the wall surface in the early

stage, the head region diverged in the upward

direction. A thin sheet of liquid was formed

ahead of the main jet, as shown in Fig. 9b. This

thin sheet of liquid surface is believed to be

caused by shedding phenomena introduced by the

inertia of the fast-moving liquid near the free

surface of the engulfing wave front. Near the top

surface, the velocity of the liquid is much higher

than that near the wall, since the viscous force

is much smaller at the free surface. As time

progressed, this sheet became more evident, and

the head region expanded further (see Fig. 90).

In Fig. 9d, the main jet accelerated and merged

with part of the thin liquid sheet. In the later

stage, the so-called Klystron effect 20 was visible.

This effect was introduced by the acceleration of

the main Jet, which had higher axial momentum to

catch up with the precursor jet mass. Due to the

coalescence of the fast and slow moving fluids,

the width of the jet spread in transverse

directions. This spreading also made the Jet-head

portion more symmetric. In the meantime, several

ligaments and numerous droplets were formed as the

head region expanded further. Such a breakup

process greatly influenced vaporization, ignition,

and combustion of liquid sprays.

A set of high-speed photographs for the free

jet case is shown in Fig. 10. The Jet head was

quite symmetric as it expanded in the transverse

direction. The shape of the jet head changed from

a round cross section to a mushroom-shaped contour.

The Klystron effect can also be seen in Figs. 10d,

e, and f. The Jet head in Fig. 10e became spear

shaped with a sharp leading edge. Some ligaments

and droplets were formed (see Fig. 1Of) near the

boundary of the liquid-gas interface.

To demonstrate the differences between

conventional high-speed movie film and high-speed

X-ray radiography, a set of X-ray movie films

showing free Jet breakup processes is given in

Fig. 11. It is quite obvious that, unlike the

conventional high-speed movie film, the radiance

of the jet head region is highly nonuniform. The

Frequency

I Covered Area
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Fig. 9 Interesting Phenomena of a Plane Wall

Liquid Jet Breakup Process (From

High-Speed Movie Film)

inner structure of the Jet can, therefore, be

observed and analyzed from these images.

An enlarged photograph of the X-ray

radiography, obtained from the zoom feature, is

shown in Fig. 12. Figure 13 gives a set of

pictures of the same object, but with different

levels of radiance. The variation in contour of

the isophote shows the detailed structure of the

nondilute liquid jet. Although some pulsed X-ray

photographs were obtained by Baev, et al., 4 for

liquid jet, the detailed inner structure of a

non-dilute jet during the process of breakup has

never been observed before, to the best of the

authors' knowledge.

Using the Quantex Image Analyzer, the void

fraction distribution in the vertical direction

(normal to the jet axis) can be deduced for any

axial location. Figure 14 shows the void fraction

distribution across the widest jet head of

photograph 12 (see also Fig. 7 cursor station).

Near the centerplane (y = 0), the void fraction is

much lower than that at the jet boundary [when y

is approximately equal to 4H (gap width of the Jet

exit)]. The magnitude of the local void fraction

is taken to be proportional to the local pixel

value, (see Fig. 7) i.e.,

_(x, y) = It I/'m tc_ _ Ln _'J_/I° (2)

where Io and IL represent the intensity (pixel

value) of pure gas and liquid, respectively. For

Pantopaque in air, the values of IG and IL were

130 and 20, corresponding to the X-ray setting for
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most tests. It is useful to note that the

distance between the X-ray tube head and the image

intensifier was held constant during these tests.

A typical void fraction distribution for a

wall jet is shown in Fig. 15. It is evident that

near the wall (y/H - 0.5) the void fraction was

almost zero, while the value of _ was quite close

to unity near the outer edge of the wall jet.

A question about the effect of diffraction

and scattering from multiple interfaces on the

accuracy of Eq. (2) has been addressed. Equation
(2) essentially assumes that diffraction and

scattering from multiple interfaces have no effect

on the reduction of void fraction from intensity

measurements. To verify the weak dependence of

intensity on the number and orientation of

interfaces, two strands of rectangul_r-shaped

solid propellant grains from the same batch with

equal length were tested. One strand was cut into

10 sections with different angles to the main axis.

The other strand remained as _n integral piece.

The two strands were placed on a platform adjacent

to each other and viewed by X-ray from their end

surfaces. The local intensity distribution for

each strand was obtained and compared. It was

found that the intensity of the uncut piece is

only 5.80% higher than that of the chopped strand.

This implies that the intensity of the X-ray

radiography is minimally affected by the number

and orientation of the interfaces. The loaded

fraction (I-_) deduced from Eq. (2) corresponds to
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Fig. 11 Evolution of a Plane Free Liquid Jet

Using the X-ray Radiography System

the total width of the liquid intercepted by the

X-ray.

The Jet spreading angle in the y direction is

of interest in spray combustion. The angle 8 can

be determined from the instantaneous jet

velocities in both x and y directions. The Jet

head velocities (u and v) in the x and y

directions are deduced from the displacements of

the vertical and horizontal lines on the Spin

Physics monitor. The spread angle is defined as

8 = 2 tan -* (v/u) (3)

A plot of half spread angle (8/2) versus Jet head

Fig. 13 Isophote Analysis Shows the Inner

Structure of a Liquid Jet Using Different

X-ray Intensity Levels

axial velocity (u) is shown in Fig. 16. For both

wall- and free-Jet experiments, spread angles

decrease as jet head velocity increases. This is

due to the fact that when a Jet has higher axial

momentum, the rate of spreading is lower. Based

upon the data shown in Fig. 16, the wall jet

spread OUt more than the free Jet due to the

momentum distribution effect in the wall jet.

Near the wall surface, the non-slip condition must

be satisfied, and hence the liquid near the free

surface has a higher velocity than the free Jet

case for the same Jet head velocity.

130

Fig. 12 Enlarged Picture of a Liquid Jet from

X-ray Image
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The jet surface breakup distance (LsB) and

the jet core breakup distance (LcB) from the exit

station are also important In spray combustion.

Figure 17 plots these two distances versus jet

head velocity. Determination of LSB was based

upon the location of the first discernible

divergence of liquid from the Jet surface. The

value of LCB was determined from the abrupt

increase of intensity along the axial intensity

distribution at the centerplane of the jet. For

both wall and free Jets, LSB increased with Jet

head velocity due to the higher inertia of the

ILquld jet which delays the jet surface breakup.

However, LCB decreased while jet head velocity

increased for both wall and free Jets due to the

fact that higher velocity Jets may cause droplet

collision and coalescence to occur earlier,

generating an inhomogeneous axial intensity

profile. It should be noticed that the jet core

breakup distance used here is different from that

used in previous studies. (In earlier studies,

LCB is the length beyond which the Jet is no

longer continuous.) At the same jet head

velocity, wall jets have longer LSB and LCB than

free jets due to the fact that wall jets, which

are affected significantly by the stronger viscous

force, retard the core breakup. In comparing

surface breakup length, at the same value of jet

head velocity, the wall Jet has lower momentum

than the free jet; hence, breakup length is

longer.

Summary and Conclusions

I) The advantages of using real-time X-ray

radiography for liquid-Jet breakup

measurements are summarized below:

a) X-ray can partially penetrate through the

liquid jets, even in the dense regions.

Therefore, it is feasible to determine the

instantaneous inner structure of the jet

in the near-injector region during the jet

breakup processes.

b) X-ray radiography is a nonintrusive

technique which does not affect the liquid

Jet breakup processes and is superior to

other methods.

c) The real-time feature of X-ray radiography

gives the entire history of the jet

breakup event instead of a few snapshots.

The X-ray motion pictures taken during the

test event can be played back immediately

at a lower speed for detailed flow

visualization and analysis.

d) All data are in digiZal form and are

convenient for recording, analysis,

transfer, and storage in computers.

2) Based upon the recorded X-ray images analyzed

on a digital image processor, Jet divergent

angle, jet breakup length, and jet void

fraction distributions can even be measured in

the near-injector region.

3) The effect of wall friction on the jet

breakup process was observed by conducting

wall- and free-Jet tests. While the

spread angle is larger for the same jet

head velocity, longer distances are

required for the surface and core to break

up in the case of wall jet.

To understand the jet breakup mechanism,

more detailed studies are required.

Future tests should be conducted under

varied conditions, such as different

2)

pressure _nd density levels in the gas

phase, higher liquid-jet velocity ranges,

various test liquids, different jet nozzle

geometries, etc. The development of a

comprehensive theoretical model for the

near-injector region is also necessary.

The predicted results should be compared

with experimental data for model

validation.
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FABLE I. PHYSICAL PROPERTIES OF TEST LIQUIDS

Surface

Type Viscosity Density Tension

(poise) (gm/cm 3) (dynes/cm)

Water 0.01 1.0 72.7

Pantopaque 0.051 1.259 32.1

(C19H29102)
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Editor's Narrative:

Round-Table Discussion: Physical, Model, Numerical and Experimental Aspects
of Mixing and Demixing Processes in Multiphase Flows

At the conclusion of the first day of presentations a discussion was opened
in the general areas of physical, model, numerical and experimental aspects of
mixing and demixing processes in multiphase flows. Two specific topics became
the focus of the discussion. These were the relative merits of the continuum vs.

Lagrangian-Eulerian frameworks for developing multiphase flow theories and the
accuracy of the turbulence models used within these theories.

By the lack of discussion, it would appear that laminar flow about a single
spherical particle, at small or zero Reynolds number, leading to expressions for
the drag and migrations in idealized mechanical two-phase flows are not imperative
issues. This is despite the fact that most theories of turbulent multiphase flow,
whether continuum or Lagrangain-Eulerian in origin, accept aspects of Stokes
flow analysis within the models for the phase coupling drag. Hence, the accurate
description of the forces on a single particle in various circumstances is important
for a wide variety of flows. In addition, there exists a prevailing attitude that
the diffusion potentials due to the turbulence of the continuous fluid phase
dominates any transverse or migrational motions of the dispersed phase. How-
ever, it should be noted that laminar processes resulting in transverse particle
migrations may be of consequence within the viscous sublayer of turbulent flows
if the particle sizes are small relative to the viscous sublayer thickness. This may
be the case for such phenomenon as near wall particle depletion, as observed in
turbulent multiphase pipe and channel flows. Lastly, within this same context, it
should be noted that there are particle migration processes which may be ana-
lyzed by in-the-mean or laminar theory for some scale of 'large' or 'heavy'
particles relative to the turbulence. For example, a baseball, by imparting a spin
to it can be made to curve (migrate laterally) through the atmospheric boundary
layer with apparent disregard for the random diffusion potentials placed on it by
the turbulent air.

In the discussion of the relative merits of the continuum vs. the

Lagrangian-Eulerian frameworks for developing theories of multiphase flows, one
of the shortcomings of the continuum approach was immediately pointed out.
Specifically, the continuum approach requires a priori acceptance of the
assumption that the particles are of a single size category and have identical
mechanical properties. Thus, if the particles or droplets are a variety of
different sizes or vary in mechanical properties then the 'two-fluid' model has

become the 'many-fluid' model. This results in losing one of the original
benefits of the continuum theories for two-phase flow, that being computational
efficiency. This raised the question as to whether or not the continuum theories

are an artifact of the pre-supercomputer era. A conclusion on this question was
not reached. In defense of the continuum approach to modeling two-phase flow
it was pointed out that a well posed continuum theory does not contain the
implicit geometric dependencies that a Lagrangian-Eulerian scheme contains. In
addition, continuum theories have been used successfully to provide dispersed
phase field variable information in situations where the added complexity of
tracking individual particles was not warranted.
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Due to the stochastic nature and high frequency of collision between particles or

droplets, a consensus was reached that continuum models may provide a more
tractable approach than Lagrangian-Eulerian schemes for modeling dense two-

phase flows. However, advances within this area will require constitutive
relationships for the dispersed phase spherical and deviatoric stress, separate from
those of the continuous fluid phase. The development of these relationships will

have many of the same problems faced in trying to derive viscosity and strain-
displacement relationships from kinetic gas theory. Advantages of the intuitively
satisfying Lagrangian-Eulerian approach to multiphase flow theory were discussed.
The 'particle tracking' allows for the coupling of the fluid and particle at a level
consistent with single particle hydrodynamic analysis. This approach, despite its

requirement for increased computational resources can provide a very detailed
level of information on field variables, including the spectrum of a stochastic
variable at any point in the domain. Since it is usually the average behavior of

any given variable, for example particle velocity, that is desired this stochastic
response is averaged statistically over an ensemble of realizations. The result is

to produce information at the same level as is available from continuum theory,
that is, averaged fields. This highlights one of the primary differences between
the continuum vs. the Lagrangian-Eulerian approach to multiphase flow modeling.
Continuum theories give averaged field information from averaged conservation

equations. On the other hand, Lagrangian-Eulerian theories will provide for the
calculation of stochastic fields, from an ensemble of 'exact' conservation

equations. Averaged information from Lagrangian-Eulerian theories requires the

averaging of fields.
The modification or modulation of the turbulence structure of the

continuous fluid phase due to the presence of the dispersed phase was discussed.
Even at dilute concentrations, the coupling of the phases via drag will result in a
modification of the production and dissipation of turbulent kinetic energy.

Questions as to whether or not the presence of the dispersed phase will always
enhance dissipation of fluid phase turbulent kinetic energy ensued and references

to experimental observations were made. This led to the discussion of the
models for the turbulent time scales of the dispersed phase and the continuous

phase. A passive dispersed phase would have a relaxation time that approaches
zero and it would follow the continuous phase turbulent and mean motions

exactly. On the other hand, the relaxation time of the dispersed phase may be
very large in which case the motion of the dispersed phase would be unaffected

by the turbulence of the continuous phase. Unfortunately, in many turbulent
multiphase flows of practical interest there exists a spectrum of dispersed phase
time and length scales. Further complexity is introduced when it is pointed out
that, despite the abundant use of single time and length scale models, single

phase turbulent fluid flow is also dominated by a variety of length and time
scales over the domain of the flow. Hence, the need for improved models of

turbulence, for use in theories of single phase flow as well as multiphase flow
was recognized. Concerning an earlier argument, it was pointed out that regard-
less of the level of physical detail or lack thereof of the continuum or the

Lagrangian-Eulerian theory, they both suffer from inadequate turbulence models.
Any advantage in accuracy gained from using one theoretical approach over the
other may, in some cases, be washed-out by the inaccuracies inherent in the
common turbulence model.

The wisdom and desirability of repeating this workshop at sometime in

the future was noted in closing.
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NONGRADIENT DIFFUSION IN PREMIXED TURBULENT FLAMES

Paul A. Libby

University of California San Diego
La Jolla, California 92093

Abstract - We review recent theoretical and experimental results demonstrating the interac-

tion between force fields and density inhomogeneities as they arise in premixed turbulent

flames. In such flames the density fluctuates between two levels, the high density in reactants

Pr and the low density in products pp with the ratio Pr/Pp on the order of five to ten in flows

of applied interest. The force fields in such flames arise from the mean pressure drop across

the flame or from the Reynolds shear stresses in tangential flames with constrained stream-

lines. The consequence of the interaction is nongradient turbulent transport, countergradient

in the direction normal to the flame and nongradient in the tangential direction. The theoreti-

cal basis for these results, the presently available experimental support therefor and the impli-

cations for other variable density turbulent flows are discussed.

137



INTRODUC_ON

The phenomenology of turbulent flows is largely based on gradient transport assumptions proposed over a

century ago by de St. Venant and/or Boussinesq. Even in the recently exploited second moment methods

of analysis, methods which involve large systems of partial differential equations calling for considerable

computational effort, closure is achieved by employing gradient models to eliminate third moment and

other quantifies. The extension to turbulent flows with variable density of the various gradient models

carefully developed and validated for constant density turbulence has unfortunately been casually under-

taken with the consequence that much additional research is needed before the phenomenology is well

founded for high speed turbulent boundary layers and jets and for turbulent reacting flows, both high and

low speed. That new significant processes may be operative in turbulent flows with variable density is

suggested by the recent findings in premixed turbulent flames. It is our purpose to review these findings

and to discuss their implications.

Exposition is facilitated if we consider a normal premixed turbulent flame as shown schematically

in Fig. 1. Cold reactants, a metastable mixture of fuel and oxidizer, with a mean velocity fro, a density

Pr, an intensity of velocity fluctuations characterized by a turbulent kinetic energy ko and a length scale

of the large eddies lo are consumed within the flame and exit as hot products with these quantities

changes to (1 + x) U-o,Pp, k** and l** respectively. Here x is a beat release parameter with values of practi-

cal interest from five to ten. Figure 1 may be considered an idealization of the flames which occur in

internal combustion engines, various propulsion systems involving prevaporized fuels and industrial

accidents.

The object of a theory for such flames is the prediction of the turbulent flame speed fro and of the

flame structure. The development of such a theory involves two related considerations; one concerns the

thermochemistry of the flow, the description of the state of the gas, its density, temperature and composi-

tion, while the second relates to fluid mechanics. These two aspects are the aerothermochemistry of the

flow.
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Variousparameterscanbeusedto characterizetheseflames.Onesystemis proposedby Abraham

et al. (1985) and involves a Damk/Shler number Da^ =-(Alu') (St`/_t`) where A is a large eddy scale, i.e.,

lo introduced earlier, u'= (3/2 ko) u2 is a characteristic intensity of the velocity fluctuations and St` and

St` are the speed and thickness respectively of an unstrained laminar flame in the chemical system under

consideration. A second parameter is a turbulent Reynolds number R A -- U' A/V where v is a representa-

tive kinematic viscosity.* A pair of values, Dah and R ^, determines the ratio of two velocities u'/St, and

of two lengths LK/St` where LK is a characteristic Kolomogoroff length. For premixed turbulent flames

within internal combustion engines Abraham et al. (1985) determine that 1 < (LK/St`) < 102. The impli-

cation of this finding is that chemical reaction at the molecular level takes place in thin surfaces, laminar

flamelets, whose structure is dominated by laminar transport and whose motion is determined by the tur-

bulent velocity field. Similar considerations applied to other premixed turbulent flames indicate that in

many, indeed most, applications of applied interest this laminar flamelet description prevails.

The Bray-Moss Model and Some Consequences

Although not restricted to flows involving such flamelets, the Bray-Moss (BM) model simply and with an

accuracy suitable for many purposes describes the thermochemistry of premixed turbulent flows (cf. Bray

and Moss 1975). According to this description the instantaneous value of a progress variable c(x,t)

which has the values zero in reactants, unity in products and intermediate values in gas possibly undergo-

ing chemical reaction determines the entire state of the gas. Thus, for example,

_p____ 1 T__T=l+x c (1)

Pr l+'[C Tr

where x is most readily determined from the specialization of the second of these equations to products,

i.e.,from

Tt' = 1 + x (2)
Tr

* It should be kept in mind that V can vary by one to two decades within a flame and thus that there is some ambiguit), as to its appropriate value

for determining R A'
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In averaging the equations for variable density turbulent flows it is useful to employ Favre or mass

averaging; to illustrate the notion and notation involved consider the i-th velocity component, namely

ui(x,t ) = pU-i (x) + u"(x,t ) = a (x) +u'(x,t )
p

All variables except the density and pressure are averaged in this fashion. The great advantage of Favre

averaging is that the conservation equations for variable density flows closely resemble those for constant

density with exceptions which, as we shall see, indicate special effects associated with the variability of

the density. Despite this advantage it should not be assumed without support from experiment that the

closure methods applicable to constant density flows can be carried over to variable density cases without

modification. Furthermore, although significant only when low turbulence Reynolds numbers must be

taken into account, Favre averaging is not adaptable without approximation to the molecular terms in the

conservation equations. The defmitive discussion of Favre averaging applied to turbulent combustion is

given by Jones (1980) while such averaging is emphasized in the monograph on turbulent reacting flows

by Libby and Williams (1980). Rubesin and coworkers at the Ames Research Center of NASA apply

Favre averaging for the analysis of high speed turbulent boundary layers (cf. Wilcox and Rubesin 1980).

When Favre averaging is applied to Eqs. (1), there results

_p___ 1
--= 1 +'[£:

Or 1 + x Y Tr (2)

A further important feature of the BM model is an approximation for the probability density func-

tion (pdf) of the progress variable. In general for a statistically stationary flow

P (c ;x) = it(x) 8(c ) + _i(x) 8(1 - c) + _x) f (c ;x)

Now if

(3)

I-

f dc f (c ;x)= 1
0 +

i.e., if the pdf describing the interior values of the progress variable is normalized, then
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Theessentialapproximationin the BM-model is that y << 1, an approximation which is satisfied when

chemical reaction occurs in laminar flamelets as well as in other flow structures, e.g., reaction zones with

St. > L K. The implication of this approximation is that the temperature as measured by an idealized ther-

mometer within a premixed turbulent flame possesses essentially two values, Tr within reactants and Tp

within products, and that flamelet passages cause the switch from one level to the other.*

An important consequence of the y << 1 approximation is exposed if g(x) is calculated from Eq. (3).

There results

o_(x) = 1 - ? _(x) - (1 + "0
- l+zg l+x6 (5)

where Eq. (4) is used to calculate ct(x). We thus see that the strengths of the delta functions is simply

related to the mean value of the progress variable which must be considered one of the principal depen-

dent variables in a theory of premixed turbulent flames.

For the present discussion it is useful to consider the intensity of the density fluctuations; from

Eqs. (1), (3) and (5) we can compute

p'2 =,g 2 e (1-t_)

_2 1 + Z (6)

We thus see that the maximum in the relative intensity of the density fluctuations occurs within the flame

where g = 1/2 and has a value "c2/4(1 + z) = "c/4 for z >> 1. Thus for degrees of heat release of applied

interest we must expect intense density fluctuations.

Although not essential for the present discussion, it is worth noting that the mean rate of creation of

product _(x) in the BM model involves the product _Wma x where Wmax is the maximum rate of creation

of product, a quantity determined by the chemical kinetics of the system under consideration. In the BM

model this product involves a vanishingly small term multiplied by an indefinitely large term and is thus

* Extensive studies of the statistics of two valued functions with specific reference to premixed turbulent flames have been carried out in order to

develop a model for the mean rate of creation of product (cf. Bray el al. 1987).
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indeterminant.As a consequencea separatemodel

describedinBrayet al. (1987).

for if(x) is needed; progress in this direction is

The Bray-Moss-Libby Model for the Aerothermochemistry

The notion of bimodality extends to the the description of the velocity components in premixed turbulent

combustion and leads to the Bray-Moss-Libby (BML) model of the aerothermochemistry of such

combustion. To appreciate this extension consider the bivariate pdf

P (u i , c ;x) = o.(x) F.)(c) P (ui, O;x) + [3(x) _(1 - c ) P (ui, 1;x) +

_x) f (u 1, c ;x)
(7)

Iff (ui, c ;x) is normalized, Eq. (4) again applies and with

lows:
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Uir(X) = I dui Ui P (Ui , 0;x)

ai (x) = (1 - _) u_r + _ u_p

where ff_, and flip are the conditional mean values of the i-th velocity component within reactants and

products respectively. We show these values in Fig. 2. Precise definitions of these quantities are as fol-

(8)

Figure 2 shows schematically such a joint pdf.

the approximation _, << 1 the statistical behavior of ul and c are again dominated by contributions from

reactants and products. Note that two of the three pdf's on the right side of Eq. (7) are conditional and

describe the velocity within reactants and products. It is possible with current diagnostic techniques to

measure with good spatial resolution the temperature and one or more velocity components and thus to

determine experimentally the conditional pdf's appearing in Eq. (7) (cf. Moss 1980 and Shepherd and

Cheng 1988).

Equation (7) leads to significant results if _, << 1. To illustrate consider the mean unconditional

velocity component tii (x) which is given by Eqs. (5) and (7) as



oo

flip(x) = f du i ui P (ui, 1;x)

(9)

According to the BM model the mean turbulent flux of all state variables in the i-th coordinate

direction can be determined from the corresponding flux of the progress variable but from Eq. (7) we

have

pu i tP c pp

- -g (1 -g) (flip - ff,r) (10)
P

Now a gradient model for this mean flux yields

pu i "c " _g

- --vr (11)p Oxi

where v r is a positive turbulent exchange coefficient. If in connection with Fig. 1 we let xi correspond to

x, then Og/Ox > 0 implying that pu"c" < 0 and if gradient transport applies, then flp < fl,. But we know

from our earlier discussion that the velocity in the product stream downstream of the flame where g = 1 is

(1 + x) times greater than that in the reactant stream. Given this overall increase in mean velocities it

does not seem reasonable to expect the conditional velocities in products within the flame to be less than

those within reactants. Accordingly, we see a potential difficulty with a gradient model for premixed tur-

bulent flames if, as is the case in flames of practical interest, x >> 1.

In Bray et al. (1981), Masuya and Libby (1981) and Libby (1985) the BML model with all gradient

assumptions avoided is applied to normal and oblique turbulent flames in premixed systems in order to

clarify the applicability of the gradient model therein. In the next sections we sketch the analyses

involved and review the results from them
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APPLICATION TO NORMAL PREMIXED TURBULENT FLAMES

We now consider application of the notions advanced in the previous section to the flame of Fig. 1.

equations needed for the analysis are as follows:

The

d (_ a2 + pu"2) = _ dp (12)
dx dx

d a e + pu"c ") =
dx

and

p--U-7;5] ati =-2 --7;d_fi__ -d pa u-P-_-'2+ +2pu"2-_ - u dx-Xu
dx p (13)

d [_a_+pu,,2c,;] +pu,,c,, da dg _-z-d_ff__+u,,w_Xu *

The usual notation applies to Eqs. (12) and (13) which represent the first and second moment equations

respectively for one dimensional flames. The quantities _,, and X_ describe dissipation effects which for

the flames under consideration are due solely to chemical reaction, i.e., are proportional to _. Similarly

the velocity-chemical reaction term u"w can be convincingly described by application of the BML

model; it is found to be proportional to if, models for which are presently under development (cf. Bray et

al. 1987) but which are not needed for present purposes.*

Some analysis permits Eqs. (12) and (13) to be reduced to two equations with E as the independent

variable and with a dimensionless velocity intensity I -pu'2/pr _-2 and a dimensionless turbulent flux

F = pu"c "/Pr fit as the two dependent variables. In the present discussion the latter variable is of more

significance. In this formulation _ is needed only if subsequent to finding the solutions for I(_) and

F(6) the spatial distributions are sought. However, comparison between theory and experiment is

• It is worth noting that in these equations the effects of pressure fluctuations are neglected. In constant density turbulence models for such ef-

fects have been painfully and careflflly developed over a period of many years but these models do not apply to reaaing flows with heat release

since combustion induced pressure fluctuations result from volumetric sources, i.e., from an entirely different mechanism. Appropriate models

for such fluctuations are not presently available.
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conveniently carried out in terms of ? so that generally the absence of a model for ff is not a shortcoming

relative to the analysis of one dimensional flames. For premixed turbulent flows in two and three dimen-

sions such a model is needed and research to that end is underway (cf. Bray et al. 1987).

In developing the final equations for l(g) and F(g) the first of Eqs. (2) and (12) permit ti to be

eliminated while the second and third of Eqs. (12) are used to eliminate d_/dx and ff respectively. Clo-

sure requires the third moment quantities pu ''3 and pu"2c ", u", c" and the dissipation terms to be

expressed in terms of the two dependent and the independent variables but with the exception of some

inessential uncertainties in the conditional velocity statistics suitable models for these quantities free of

gradient assumptions can be developed. For example, we have

u,--7=.c_pu"c'" -- _ (I-g)c" = 1; (14)
Or 1+I:_

In the present discussion two terms in Eqs. (13) are of particular interest; we refer to those involving

dff/dx. If Eqs. (12) and (13) are specialized to constant density flows, e.g., by setting x = 0, then from

Eqs. (14) we see that these terms vanish and indeed the reduction to standard equations for such flows is

complete. The implication to be drawn from this consideration is that these pressure gradient terms

account for effects operative in variable density turbulence, in particular an interaction between a force

field associated with the pressure gradient and density fluctuations associated with heat release. In

premixed turbulent flames this interaction is present only within the flame proper since both the force

field and the density fluctuations are absent in the reactant and product streams on each side of the flame.

Additional comments on this interaction are indicated. If conventional rather than Favre averaging

is used, the interaction is contained within the resulting equations but is obscured by the clutter of a large

number of terms involving density fluctuations. In more general variable density flows models for the

multipliers of the several pressure gradient terms must be introduced as indicated for nonpremixed

combustion by Jones (1980) and for high speed flows by Wilcox and Rubesin (1980).

The final equations for I(?) and F(?) involve singularities at ? =0,1 as is to be expected since

these points correspond to points at infinity in the x-variable but appropriate series expansions permit the

numerical solutions to be initiated in the neighborhood of these end points. A shortcoming of the theory
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is that Io -u t2 o [Uo2 where u'20 is the intensity in the reactant stream upstream of the flame must be

imposed, i.e., the turbulent flame speed is not calculated. This shortcoming can be turned into a virtue for

the purpose of studying the structure of premixed turbulent flames since it can be argued that selection of

Io so as to achieve agreement with experimental results assures that the predicted flame structure

corresponds to realistic flames. In our original work we set Io = 0.22 unless we had specific reasons to do

otherwise but in recent years our confidence in this value has been reduced by evidence that a wide

variety of values is found depending on the geometry of the flames and on the flameholding mechanism

employed. The detailed reasons for this ambiguity are unknown.*

Numerical Results for Normal Flames

In Fig. 3 we show the distribution of the turbulent flux in terms of F(?) from both theory and from the

experiment of Moss (1980). In the open flame studied by Moss x = 6.5 and Io = 0.16. The two curves

represent theoretical predictions based on slightly different models for the conditional statistics, differ-

ences which are irrelevant for the present discussion. If it is recalled that gradient transport for these

flames implies F < 0, we see that the entire flame structure exhibits countergradient diffusion. The expla-

nation for such diffusion resides in the interaction between the pressure drop across the flame and the den-

sity fluctuations which from Eq. (6) are seen to involve a relative intensity greater than unity, roughly 1.4.

The pressure drop tends to accelerate the light parcels of product relative to the heavy parcels of reactants

in the direction of high product concentration, a differential effect contrary to gradient transport.

Several further comments are indicated. Calculations with the pressure gradient terms in Eqs. (13)

suppressed yield F < 0 for all values of x. Moreover, as x -o 0 the theory predicts gradient transport and

thus the expected behavior for nearly constant density turbulent flows. These results lend credibility to

the explanation of interaction as the cause of countergradient diffusion and to the validity of the theory in

general. The notion of countergradient transport in premixed turbulent flames is now widely accepted

* A recent study (Libby 1987) removes the shortcoming with respect to l o by invoking the Hakberg-Gosman condition and discusses in some de-
taft the uncertainties in its value.
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andhasbeenobservedin a varietyof laboratoryflameswith simplegeometries.Laterwediscussits

moregeneralapplicability.
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THE OBLIQUE PREMIXED TURBULENT FLAME WITH CONSTRAINED MEAN STREAM-

LINES

148

In Fig. 4 we show schematically a premixed turbulent flame which is oblique to the reactant stream. Such

flames can be established by a flameholder, e.g., a cylinder, in a duct carrying reactants. The classic

experiment of this nature is due to Wright and Zukoski (1962) while the theoretical description of these

flames based on the BML model is given by Masuya and Libby (1981). If we assume that the duct prohi-

bits significant deflection of the mean streamlines both upstream and downstream of the flame, it is rea-

sonable to consider as an idealization an infinite planar flame held at a specified angle 0 with undeflected

mean streamlines. In this case description of the flow involves an analysis identical with that for purely

normal flames and a second, subsequent analysis of the tangential velocity component which involves

explicitly the flame angle 0. The treatment of the tangential flow requires determination of the intensity

of the fluctuations of the v-velocity component and the tangential flux of the progress variable which in

dimensionless form are Iv =-pv"2/p, fff and Fv -pv"c"/pr fro respectively. This latter variable is of

principal concern in the context of the present discussion and from Eq.) is given by

.pV "PC pp

-- --C (1 --e) (_"p --_"r) (15)9

where _r and _-p are the conditional tangential velocity components within reactants and products respec-

tively.

Gradient transport indicates that this mean flux is zero since the tangential gradient of the progress

variable is zero and thus that the two conditional velocities in the tangential direction are equal. The

implication from this result is that parcels of reactants and products have streamlines which differ only by

the differences in the normal conditional velocities. However, there is a tangential force field in these

flames arising from the x-wise gradient of the Reynolds shear stress pu "v"; the existence of this forces

field can be seen from the mean conservation equation for tangential momentum which yields

d Pr U-o2 d_
dx pu "v " = - '[ tan 0 dx (16)

Note that when the heat release and thus the density fluctuations vanish, this force field is absent.



This discussion establishes that oblique turbulent flames in pmmixed systems involve a tangential

force field and density fluctuations. Thus according to our previous argument we can expect nongradient

turbulent transport in the tangential direction. Indeed calculations show that 7p > Vr , that pv "c '" > 0 and

that the parcels of reactants and products follow different mean streamlines with the former exhibiting

only small tangential velocity while the latter possesses large tangential velocities. This behavior is

shown schematically in Fig. 4. We thus have an example of nongradient transport to add to the previously

discussed case of countergradient transport. To date there have been no detailed measurements in oblique

flames to assess the validity of this theory.
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CONCLUDINGREMARKS

We show that when mean force fields and density fluctuations coexist, an interaction leads to turbulent

transport which is not described by the usual gradient model. In the simple flow configurations associated

with normal and oblique planar flames, the latter with constrained mean streamlines, countergradient and

nongradient transport exists. There is no question that the notions suggested by these findings are con-

ceptually important. Moreover, the experimental results of Heitor et al. (1987) relative to the complex

flow associated with a baffle stabilized premixed turbulent flame establish that nongradient transport

exists in complex flow configurations, i.e., in flows of applied interest. Within the context of the present

discussion the first few sentences of this paper are worth quoting:

In turbulent, premixed flames there arise source terms, explicitly set out below, in the conservation

equations for the turbulent heat transfer rate and stresses that have no counterparts in non-reacting

flows. Analysis (Masuya and Libby 1981; Bray, Libby and Moss 1985; Libby 1985) has shown that

at least in the two idealized extremes with the flame either normal or oblique to the approaching

reactants, and at practically important levels of heat release, these terms are sufficiently large to

cause non-gradient transport of turbulent heat flux. This finding is important because it casts doubt

on the applicability of turbulence models that use gradient-transport hypothesis.

From a detailed study of the velocity and temperature fields Heitor et al. conclude that the interaction

between pressure gradients and density fluctuations results in the largest contribution to the balance of the

turbulent heat flux and that that flux is not aligned with the mean temperature gradient.

The importance of nongradient transport on general variable density turbulence remains to be esta-

blished. With respect to premixed turbulent flames we note that the question arises as to the influence of

these processes arising within their structure on their orientation between reactant and product streams

remains to be clarified. Answering this question requires further theoretical and computational efforts.*

* If the provisional model for W(X) set forth in Bray et al. (1987) is validated, the effort required is largely computational.
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Additionalresearchisalsorequiredto determinetheimportanceof theinteractionunderdiscussion

in highspeedflows. It wouldseemobviousthatin scramjetswith theirlargegradientsof meanpressure

andmeanturbulentshearstressesthisinteractionmustbeoperativebutwhetherit playsanimportantrole

in themixingandchemicalprocessesin theflowisunclear.Certainlythepresentcasual,uncriticalexten-

sionto supersonicchemicallyreactingflowsof thephenomenologyof constantdensityturbulenceshould

raisehealthyskepticismconcerningthevalidityof theresultingpredictionsbutunfortunatelythatskepti-

cismdoesnotappeartobesharedbyauthors,reviewersandeditorsof currentjournalarticles.**Similar

uncertaintieswouldappearto prevailfor turbulentboundarylayersin highspeedflowssothatadditional

researchis indicated.

** Occasionally there is a mild rejoinder warning the reader of potential fundamental difficuhies. An example from a recent report is as follows:

"The turbulence model we we have used is the k - I_ model as described in ... Although Reference ... specifically addresses the question of

compressible flows, it should be noted that turbulence models for compressible flows are not weB-developed. Hence, the choice of the standard

k - I_ model in this situation cannot be regarded as definite."
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THE TURBULENT HEAT FLUX IN LOW MACH NUMBER FI,OWS

WITH I,ARGE I)ENSITY VARIATIONS

Peter d. O'Rourke and Lance R. Collins

Theoretical Division, Group T-3
Los Alamos National l,aboratory
Los Alamos, New Mexico 87545

1. INTRODUCTION: THE DIRECTEI) ENERGY FLUX

This paper is concerned with a physical effect of fundamental importance
for the modeling of turbulence transport in flows with large density variations.
The effect occurs because the interaction of pressure and density gradients gives
rise to a turbulent heat flux, which we call a directed flux, that is not accounted

for in turbulence models for constant density flows. To see how this flux arises, it
is perhaps best to consider an example of Rayleigh-Taylor instability, as depicted
in Fig. 1. A heavy, cold gas overlays a light, hot gas in a box with a gravitational
acceleration in the negative z-direction. The induced hydrostatic pressure gradi-
ent accelerates the light gas into the heavy gas and causes the instability and
mixing. The velocities averaged across a horizontal plane are in the z-direction,
and because the heavy gases are falling, the mass-averaged velocities in the
mixing region will be negative. Relative to a surface moving downward with the

mass-averaged velocity, there will be a net upward flux of energy. This is
because although the mass flux of light gas crossing the surface upward equals
the mass flux of heavy gas crossing downward, the light gas, being hotter, carries
with it more energy per unit mass.

This upward energy flux is the directed flux. In the example of Fig. 1, this
energy flux is in the direction of the negative of the temperature gradient, just as
given by the laminar Fourier heat conduction law. If after some time we were to
turn the box over so that the light gas overlay the heavy gas, to the extent that
the two gases had not already mixed on the molecular level, there would be an

unmixing in which the light gas would separate from the heavy gas. In this

tteavy, cold gas

Light, hot gas

Fig. 1. Schematic depiction of

Rayleigh-Taylor instability.
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unmixing process, the directed heat flux would be upward, in the direction of the
mean temperature gradient and opposite the direction given by the Fourier heat
conduction law. This phenomenon has thus been called countergradient diffu-
sion. ! It cannot be predicted by turbulence models that use gradient transport, or
a Fourier-like law, to describe turbulent heat transport. In our example, the tur-
bulent heat flux _h is in the direction opposed to the pressure gradient, rather

than the temperature gradient. We shall see that taking _h _ _ Vp is often more
realistic for turbulent flows.

Between single-phase, two-density turbulent flows and two-phase flows
there is an analogy that we will exploit in our turbulence modeling. This analogy
will be used in helping to formulate the equations and in developing closure

approximations for some of the terms. In two-phase flow modeling, which has
received much attention within the last ten years2,3 separate mass, momentum,

and energy equations are kept for each phase, and these equations are coupled
through functions that give the exchange rates of mass, momentum, and energy
between the phases. Following Besnard, Harlow, and Rauenzahn,4 we will use
an alternative, analogous formulation. In place of two mass equations, we will
keep an equation for the mean density and one for density fluctuations. In place
of two momentum equations, we will keep a mean momentum equation and an

equation for mean velocity differences associated with fluid elements of differing
density. We use this second formulation because it allows for the possibility of
modeling not just two-density flows, but the flows with a spectrum of densities
that often occur in practical applications.

Two physical examples, one of two-phase flow and one of single-phase flow
with density variations, serve to illustrate the analogy and another situation in
which countergradient transport can arise. In both examples, pressure gradients
are responsible for centrifuging lighter material inward toward the centers of
rotating flows. In a two-phase bubbly flow, this effect has been observed in the
vortices in the wake of an obstacle.5 In single-phase flow, it is probably responsi-

ble for the experimental results of Wahiduzzaman and Fer.guson.6 The experi-
menters measured the radial temperature profiles in an axmymmetric swirling

flow in a constant volume cylinder. The experimentally measured temperatures
are plotted at four different times as the circles in Fig. 2. The lines are computed
temperature profiles using the KIVA code7 with a k-e turbulence model8 and
gradient heat transport with a turbulent Prandtl number of 0.9. It can be seen
that a hot region in the center of the cylinder persists much longer in the experi-
ment than in the calculation, showing the large errors that can arise when a

gradient heat transport approximation is used.
The phenomenon of countergradient transport in single-phase flows was

recognized seven years ago in research on the structure of turbulent premixed
flames.l In retrospect, it is easy to see how this phenomenon arises. Figure 3
depicts schematically a planar turbulent premixed flame with velocities shown in
the frame of reference of the flame. Mass conservation and the fact that the com-

bustion is nearly isobaric together imply that the hot product gas velocities will
be larger than those in the reactants. Momentum conservation then implies that
the pressure in the products will be lower than in the reactants. Since the dir-
ected heat flux is in the direction opposed to the pressure gradient, this heat flux
will be from the colder to the hotter gases; that is, it will be countergradient

transport.
Two approaches have been used for modeling turbulent premixed flames -- a

single-phase formulation and a two-phase formulation. In the single-phase for-
mulation of Bray, Moss, and Libbyl,9-ll (BML formulation), equations are kept
for the mean product gas concentration, the mean momentum, the turbulent
fluxes of these quantities, and for the dissipation rate of turbulent kinetic energy.
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Fig. 3. Schematic depiction of a turbulent premixed flame.

Spaldingl2 utilizes a two-phase formulation, retaining mass, momentum, and
energy equations for each phase. Spaldingl2 assumes that the major source of
mixing is due to the difference between the mean velocity of the phases and thus
ignores the turbulent kinetic energy within each phase. The BML formulation
accounts for both sources to the turbulent kinetic energy. In principle, the equa-
tions of one formulation should be derivable in terms of those of the other, al-

though to our knowledge such a derivation and comparison have not been made.
In this paper some closure approximations are proposed, based on a derivation of
the single-phase equations from two-phase equations. Only the BML formulation
has been compared with experimental measurements of turbulent flames, I 1 and
satisfactory agreement was obtained.

In practical applications of turbulent combustion, other physical effects that
cause mixing and unmixing are superimposed on the pressure drop across the
flame. At Los Alamos, we have been involved for the past twelve y.ears in the
numerical modeling of combustion in internal combustion engines.7,13-|6
Figure 4 illustrates some of the complexities of the turbulence/chemistry inter-
action in an engine burning premixed charges. A turbulent premixed flame is

propagating away from an ignitor located near the center of the cylinder head
wall. Mach numbers are small, and thus the mean pressure is nearly uniform in

spacel7 and changing with time due to piston motion, combustion, and wall heat
loss. Near the top of its motion, the piston, and the axial flow velocities in the
combustion chamber, decelerate. This causes a small positive axial pressure

gradient and induces Rayleigh-Taylor instability and mixing where the flame is
propagating downward in the axial direction. This same pressure gradient will
cause a differential axial acceleration of the hot products and cool reactants and

promote Kelvin-Helmholtz instability where the flame is propagating radially.
ISSwirl, a nearly symmetric rotational motion of the burning gases, " introduced

by engine designers to promote mixing but will have two competing effects in the
engine of Fig. 4. Swirl induced shears will enhance turbulence and mixing, but
the radial pressure gradient caused by the swirl will, as in the experiments of
Wahiduzzaman and Ferguson,6 cause countergradient transport and suppress
mixing. It is important to point out that among these various turbulence effects,
only those associated with shear instability and mixing are accounted for in
current engine models.

In predicting turbulence in internal combustion engines and other practical
combustors, one cannot use two-phase models or single-phase equations for two

density flows. This is because within the reactants and products there will be

165



turbulent
premixed
flamm

wall
boundary
layers

cylinder head

swirl

..Kelvin-Helmholtz
Instability

Rai -

Fig. 4. The turbulence/chemistry interaction in an internal combustion engine.

distributions of density. In the engine of Fig. 4 density differences will arise due
to wall heat transfer and due to entropy differences in the product gases of this
confined burn.18 In other combustors density distributions are caused by charge
non-uniformity and spray vaporization.

In the next section we derive preliminary equations for a turbulent fluid
with large density variations. Our aim is to develop a model that has three
attributes:

(1) the model can predict mixing and unmixing due to shear instabilities and
pressure-density gradient interactions;

(2) the model can account for a distribution of densities; and
(3) the model equations can be efficiently integrated in two and three

dimensions.

The second attribute precludes use of two-phase flow equations, although investi-
gation of the two-density limit will yield valuable information. The third attri-
bute precludes use of the Reynolds stress equations, especially in three dimen-
sions. It seems appropriate to seek a simple one- or two-equation extension of
popular two-equation models for turbulent shear flows.

1I. THE EQUATIONS

A. Overview

We first derive equations for the average density _ and the Favre-averaged
velocity _ and enthalpy h. Using the low Mach number assumption, we relate
the turbulent heat flux _h to the difference between the average velocity fi and
the Favre-averaged velocity ft. We denote this difference fi - fi by a, and the
transport equation for a is derived and discussed. Closure approximations for
terms in the a-equation are postulated based on the analogy between two-phase
flows and single-phase, two-density flows. A comparison between the single-
phase and two-phase equations suggests that the fluctuating stress terms in the

a-equation are primarily associated with the decay ofa. We present an algebraic
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closure approximation for a that results in a heat flux that is the sum of contribu-
tions due to gradient and directed transport. Our a-equation is compared with

similar equations in the literature.

B. The Equations of a Low Mach Number Flow with Large Density Variations
For the low Mach number flow of a single component ideal gas with large

density variations, the equations are the following: 19

(1)
-- + V. (pu) = 0 , (continuity}
8t

apu (2)
+ V.(puu} + Vp = V-o + pg , (momentum)

Ot

aph dP (3)
+ V.(puh) = -- + Q , (enthalpy)

Ot dt

P(t)M =pRT,
W

(therma l eq ua tio n of sta re)
(4)

and

ITh(T) = c (t) d _ (caloric equation of state) (5)
p

where o is the laminar viscous stress tensor, Q is the volumetric rate of heating
due to such sources as chemical reaction or divergence of the laminar heat flux,
P(t) is the volume average pressure of the system, p(x,t) is the pressure fluctua-
tion from the mean value P(t), and Mw is the molecular weight of the gas. For low
Mach number flows tpl/l ) -_ M z, where M is the Mach number.17 From these
equations one can derive an equation for the divergence of the velocity field: 19

! dP y- I (6)
V.u- _--+_Q-

_! ) dt yP

In an open flow system, P is just the ambient pressure; for flow in a closed volume
V, an equation for P can be derived by integrating (6) over V:

1 dP 1 dV y- 1 1 [- -- _ + Q do . (7)
yP dt V dt yP V ]v

C. The Averaged Equations
In our turbulence equations we will use both unweighted averaged quanti-

ties and Favre (density-weighted) averaged quantities. The unweighted average

and Favre average of a quantity q_are defined respectively by

1 (8)(x, t) - NE
a

and
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1 1

_(x, t) - P (x, t) NE _ pa(x' t) _bn(X, t)
a

(9)

where ensemble averages are used, Ca being the value of ¢ in a particular
experiment a and NE being the number of experiments in the ensemble. The
fluctuations from these averages are denoted by

% - (lO)

and

¢"=¢a-¢,

where we drop the subscript a on the fluctuations.

By averaging Eqs. (1)-(5) we obtain the turbulence equations:

(11)

ap
-- + V.(pu): o (12)
ot

+V.(puu)+Vp=V.R+V.o + pg, (13)at

aph -~~ dP -- _h+V.(phu)= -- + Q -v. , (14)
at dt

M = pRT (15)

and

f

= ] Cp(_)dt , (16)

where the Reynolds stress R is given by - pu"u" and the turbulent heat flux Oh is
given by _ In deriving Eq. (16) we have assumed that the characteristic tem-

peratures over which significant changes in cp occur, are much larger than char-
acteristic temperature fluctuations T"

D. An Alternative Expression for Oh
An alternative expression for the turbulent heat flux can be derived from

the averaged and unaveraged equations of state. Subtracting (15) from (4)
results in

P' M = pRT - p RT = pRT" + p'R?"' (17)
W

We now assume that

IF'l/P < < Jp'J/p . (18)
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Under this assumption the left-hand sideof(17) canbeneglected,and we obtain

"r" = - 7' p-' (19)
i

p

wherein temperature and density fluctuations are directly related.
The assumption (18) requires some discussion. It will certainly be true for

an open flow system, because the P is always the ambient pressure and never
fluctuates. In a closed system, such as in internal combustion engine cylinder,

there can be significant fluctuations in the mean pressure P, primarily due to
fluctuations in the chemical heat release rate. In an internal combustion engine

these are referred to as cycle-to-cycle variations, and there is currently some
debate 20 whether or not these cycle-to-cycle variations should be called turbu-
lence. We recommend that in performing the averages (8) and (9) one should use
only experiments for which the mean pressure history P(t) is nearly equal to P(t).
When this limited ensemble average is used, the assumption (18) is automat-

ically satisfied.
Subtracting (16) from (5) gives

,. ~
h"= c (_)dt =c (T)T" (20)

P P '

where again we use the assumption that Cp varies little for temperature changes
equal to T". Using (20) and (19) in the defining formula for _h gives

O h = pu'h"

P

= p c(T) Ta (21)

where

- _ (22)
a---- U n ---- U --U.

Equation (21) is the alternative expression we seek for the heat flux. It says
that O h is proportional to a quantity a that can be loosely thought of as the differ-
ence between the volume-averaged and mass-averaged velocities. In a two-

density or two-phase system, a is proportional to the difference between the veloc-
ities of the two phases. In order to investigate further the nature of the turbulent
heat flux, we must derive a transport equation for a.

E. The Transport Equation for a
The transport equation for a is obtained by subtracting the equation for the

mass-averaged velocity u from that for the volume-averaged velocity ft. The
result is
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0a (! 1),-- + u.Vu -u.Vu+ - Vp +-Vp'
at p p

=-=V.R+ -- V.o +-V.o'. (23)
p P P

As an aid in modeling some of the terms in Eq. (23) we will derive an
a-equation for two-phase flows and compare this with Eq. (23). It will turn out
that all of the terms in Eq. (23), with the exception of those associated with the
fluctuating stresses p' and o', will be dup_Hc_a_ted exactly by terms in the
a-equation for two-phase flows. The terms Up Vp' and 1/p v'. o' are then associ-
ated with terms in the two-phase a-equation that arise due to momentum

exchange between the phases. With this comparison as a guide we postulate a
model for the fluctuating stress terms.

We now briefly introduce the equations for two-phase flow. For more details
the interested reader should consult Refs. 2 and 3. For simplicity we restrict our-
selves to the flow of two incompressible phases. The continuity equations for each
phase are

and

ap lo i -! (24)
-- + V.(plalu ) = d21Jt

aP2a 2 --2.

-- + v. _%%u) =Ot : J12 -J21 "
(25)

In these equations Pi are the microscopic (or conditional) densities, which we
assume to be constant; fii are the average velocities within each phase (where the
"i" next to the overbar indicates a conditional average in phase i); ai are the vol-
ume fractions of each phase (al + a2 = 1); and J21 is the rate of mass transfer per
unit volume from phase 2 to phase 1. The momentum equations for each phase
are

and

Ot

--l--l --

+ V.(plolU u )+olVp : plolg+olV- o + V.(olR 1) + P21
(26)

--2

clP2a2u

Ot

--2--2 --

+ V. (P202 u U ) + 02V p = P2O2 g + a2V • 0 + V. (a2R 2) - P21 "
(27)

As is commonly done in two-phase flow modeling,2 we assume here that the
phases are in local pressure equilibrium; that is/31 =/52 =/3. The conditional
Reynolds stresses Ri are given by
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• _i _

R i=-pl(u-_')(u-u ) .

The rate of momentum exchange per unit volume from phase 2 to phase 1 is
denoted by P21.

Average flow variables fare related to the averages within each phase _i by

-I -2 (28)
: alf + a2f •

Thus, for example,

p = alPl + a2P2 (29)

and

--I --2

pTJ = o,p,u + %p2u

By using the relations (29) and adding Eqs. (24) and (25) and Eqs. (26) and (27) we
obtain the same total mass and momentum equations, Eqs. (12) and (13), that we
have previously derived, when it is realized that

R : air I + a2R 2

-- plal(u -

--2
_ P2a2 (u -_ _)(_2_ _).

Thus the mass-averaged velocity equation is

(3O)

o'_ ~ 1 1 -- i
-- +u.Vu+ =Vp = :V.o + :V.R +g. (31)
Ot p p p

To obtain the a-equation, we will subtract (31) from an equation for 5,
which will now be derived. By dividing (26) by Pl and (27) by P2 and summing the
results, we obtain

Ou --I--I

-- + V .(alu u
Ot

+a2u u )+ Vp

= g + V. 0 + V- RI + -- R2 P21
Pl P2 Pl P2

(32)

It can be seen that
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--I--1 --2--2 °'1 Q2 [ --V. alu u +a2u u --- R 1- --R 2 =V.(uu)-- u.Vu + uV.u
Pl P2

Using (33) in (32) and subtracting (31) yields the two-phase a-equation:

{_a _

-- + u.Vu -u.Vu + uV.u +
at

1 ,) _ (, ,)-- =V.R+ - - V.o +
P p - P P21 'Pl P2

Comparing (34) and (23), we see they agree iS

(33)

(34)

1 1 (1 1)- Vp' - - V. o' = uV • u + P -- - -- . (35)
p p 21 P2 Pl

This is the relationship we seek between the fluctuating stress terms and the two-
phase momentum transfer terms. To obtain closure we need to postulate a form
for 1'21, and we will investigate expressions employed in two-phase flow
modeling.

F. Expressions for the Momentum Exchange Rate in Two-Phase Flows
For a dispersed phase 2 of equal-sized spherical particles of radius r in a

continuous phase 1, an expression for the momentum transfer term is21

3 Pla2 _2 --1 _2

P21 : 8 cD r {u2 -- ull (u -- u )+ d21u (36)

Thus, P21 has two terms -- one due to aerodynamic drag and one due to mass
exchange. This form of the mass exchange term assumes there are no circulation
velocities within the particles. Equation (36) has theoretical justification2! when
P2 > > pl and velocities within each phase are sharply peaked near their mean
values. It neglects virtual mass effects, Basset history effects, and particle dis-
tortions and oscillations.22

Motivated by Eq. (36), modelers usually use a similar expression for all two-
phase regimes:2

['21 = K(u2 -- ul) + J21 us
(37)

where K is called the drag function and ds is some average interface velocity. The
quantity K is a positive function of pl, p2, al, a2, Ifi 2 - ill], and an entity size r.

If we accept Eq. (37) then one is led to the postulate that the fluctuating
stress terms in the a-equation (23) contribute to the decay of a. Indeed one can
show that for a two-phase flow

ala2(Pl - P2 ) --2 -I
a= _ (u -u), (38)
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and (38), in conjunction with (35)and (37), gives

1 1
-Vp'- -V.o' -- uV.u
P P

where

+K'a +J21 P2 Pl
(39)

P
K'- K.

ala2PlP 2

K' has dimensions of a frequency.

G. Final Form of the a-Equation
After substituting (39) in (23) and some rearrangement of terms one obtains

-- +V.(ua+au)+K'a+J2, - -- +uV-u+ =Vp
at Pl P

1 I u"u _ 1 . P 'u_u"=-=V.R-V.(u"u')= = .Vp+ =V ( ). (40)
P P p

Here we have introduced the quantity b as a dimensionless measure of the
density fluctuations:

T
b= p(_)-l. (41)

If the density fluctuations are not too large, then b is approximately a self-
correlation coefficient for density fluctuations:

(p,)2

(p)2

In fact,Ref. 4 uses

(42)

B = (p,)2 (43)

as a measure of the density fluctuations. We will develop a transport equation for
b in future work.

Three further terms in (40) must be modeled. First we deal with the mass
exchange term. One can show from (24) and (25) that

V. u ----J21 - (44)

and hence the fourth and fifth terms on the left-hand side of(40) combine to give
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( ) ( )1 1 1 I u) uV.au_ __ .... (45)
" -- -- -- = J21 P2 PluV u + J21 P2 Pl

We assume that Os = u. An assessment of the validity of this assumption must

await a precise physical interpretation of the quantity fis.
Second, for the tensor u'u" one can show that for two-phase flows

R, R2 ( (_)2)u"u" = -- a i -- -- a 2- + l + -- aa,
Pl P2 B

(46)

where B is defined by (43) and given in two-phase flows by

B = ala2(Pl -- p2 )2 .
(47a)

For future reference we also note that

U (47b)
b-

PlP2

in two-phase flows. We define the volume-averaged conditional Reynolds stress r

by

R1 R2 (48)
r:a I -- +a 2 -- .

Pl P2

As a first approximation, and despite experimental evidence to the contrary in
turbulent flame experiments,9 we assume the conditional Reynolds stresses are

equal and isotropic. Then

R ! R2 2
-- = -- =r= - -k'i
Pl P2 3

where k' is related to the specific turbulent kinetic energy k = ½(6")2 by

(49)

2
1 a (50)

2 b

A transport equation for k will be developed in future work.
We also use a two-density distribution to model the triple correlation term

in Eq. (40). After some algebraic manipulation and use of the assumption (49)
one obtains

--2

p'u"u" = -- p 1 - b + B aa
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By substituting (45), (46), (49), and (51) in (40) and using the approximation (42)
we obtain the final form of the a-equation:

-- + u.Va+aV.u + a._u + V-(aa)+ =Vp
Ot p

_. _--=--+ - k
= -K'a+ b p 3 - 2 b p

(52)

H. An Algebraic Closure Approximation
In numerical computations of multidimensional fluid flows, use of Eq. (52)

would require solving two or three additional transport equations for components
of a. Although this is not an unrealistic task for modern computers, considerable
computational efficiency would result if an accurate algebraic closure approxima-
tion for a could be found. In this section we present such an approximation based

on an assumption whose validity must be tested in experimental comparisons.
The resulting expression for a predicts gradient heat transport, but also contains
a contribution that predicts the directed flux arising from the interaction of pres-

sure gradients and density inhomogeneities.
The assumption we make is analogous to the drift flux approximation of

two-phase flow modeling.2 In two-phase modeling this assumption is that the two
velocity fields are so tightly coupled through the drag terms that characteristic
drag times are much smaller than characteristic flow times. For us the assump-
tion is that

u (53)
0

K'>> --
L '

where uo and L are a characteristic velocity and gradient length for the flow.
Assuming (53) is true, order of magnitude estimates of the terms in (52)

show all terms on the left-hand side can be neglected, except the pressure grad-

ient term. On the right-hand side, the dyadic product term aa is negligible since
Eqs. (38) and (47) show that a/b is proportional to the velocity difference between
fluid elements of different density. The resulting equation for a becomes

'1 2
Equation (54) can be put in a more recognizable form if we use

(54)

7'
P

a=_- 5 -pVp -_k T

In conjunction with (21), Eq. (5_5) gives a heat flux that is the sum of contributions

proportional to -Vp and -v'r. The former is the directed flux. It goes to zero in
the absence of density fluctuations b.
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The gradient transport term in (55) looks similar to the gradient heat flux
commonly used in turbulence modeling, but there is a difference. The usual form
used for the turbulent heat flux8 is

= _ pc --= (56)
P Pr,r_

where Pr,,, is the turbulent Prandtl number and _ the turbulence dissipation rate.
Equation'(56) agrees with the heat flux contribution obtained from the second

term in (55) if the drag time associated with fluid elements of differing density
equals the turbulence dissipation time. For the momentum exchange function
(36) it can be seen that the drag time is

1 P2 r

when CD is approximately unity.
time is

(57)

On the other hand, the turbulence dissipation

c k_
(58)

where L is a turbulence length scale. Equations (57) and (58) agree if r _ L, k '_
IQ 1 - u21 and pl -_ P2, but when these equalities are violated more accurate heat

fluxes could be obtained using a drag time, and not a turbulence dissipation time,
to evaluate the heat flux vector.

!11. COMPARISON WITH OTHER WORK

In this section we compare our a-equation with two others in the literature.

In the BML formulation for turbulent flames, 10 an equation is kept for the tur-
bulent flux of reaction progress variable c. Our quantity a is just a constant times
the turbulent flux of c:

PrOp
pu"c" - a , (59)

Pr -- Pp

where Pr and pp are the reactant and product densities. Two differences are ob-
served between the a-equation one derives from the BML formulation and ours.

First, in the BML formulation it is not assumed that the conditional Reynolds
stresses within each phase are equal and isotropic. An equation for the uncondi-
tional Reynolds stress R is retained, and the difference between the conditional

Reynolds stresses is modeled using R. Accordingly, the double and triple correla-
tion terms on the right-hand side of (40) are modeled in a more detailed fashion,
although the authors observelO that "this modeling is generally not found to be
too critical to the predictions of first- and second-moment unconditional
quantities."

The second difference is in the modeling of the fluctuating stress terms. The
authors follow Launder23 and model
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E

10p' _2cl _a-c 2a-vu (60)
p ax c c

where cl_ and c2_ are empirical constants. Comparison with Eq. (39) shows that
these mddels hage in common the decay of a term and that these would be the
same if

c (61)
K' = 2clc _ .

Besnard, Harlow, and Rauenzahn4 keep equations for both the turbulent
heat flux and the quantity A = p'u', which is related to a by

m

A = - p a, (62)

since they are interested in more complicated equations of state in which the
relation (19) does not hold. Their a-equation differs from ours in several respects.
An equation for the Reynolds stress is retained and used in modeling the first
term on the right-hand side of (40). The triple correlation is broken into two
terms

p'u"u" = -2 p aa + p'u'u' , (63)

and the latter term is modeled by a gradient diffusion of a. There is a decay of a
that arises solely from the viscous stress terms.

IV. SUMMARYANI) FUTURE WORK

We have derived a transport equation for the quantity a, which is the differ-
ence between the volume- and mass-averaged velocities and is simply related to
the turbulent heat flux oh. Using this equation and an assumption analogous to
the drift flux approximation of two-phase flow modeling, we have obtained an
algebraic closure relation for oh that exhibits fluxes due to directed_ transport
proportional to - Vp and due to gradient transport proportional to - VT.

Much work remains to be done before the model can be used in predictive
calculations of low Mach number flows with large density variations. The equa-
tion for a involves an additional scalar b that is a measure of the density fluctua-
tions. An equation for b must be derived and terms in it modeled. We hope to use
the a - and b-equations in conjunction with a k - _ turbulence model. The k- and _-
equations must be reexamined to see what modifications are needed when the

flows have large density variations. When mass transport is important, such as
in many combustion problems, expressions for the turbulent mass flux must be
developed.

In an effort to test some of the modeling assumptions we are currently
writing a one-dimensional code that solves the turbulence equations of this
paper. Computed results will be compared with experimental measurements of
Rayleigh-Taylor instability, turbulent premixed flames, and flows with centri-
fuging and density variations. These results and extensions of the model will be
reported in future publications.
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This research is motlvated oy _he improved ballistic performance of large-

caliber guns using stick propellant charges. A comprehensive Lheoretical model

for predicting the flame-spreading, combustion , and grain deformation phenomena

of long unslotted stick propellants is presented. The formulation is based upon a

combined Eulerian-Lagrangian approach to simulate special characteristics of the

two-phase combustion processes in a cartridge loaded with a bundle of sticks. The

model considers five separate regions consisting of the internal perforation, the

solid phase , the external interstitial gas phase, and two lumped parameter re-

gions at either end of the stick bundle. For the external gas-phase region, a set

of transient oNe-dimensional fluid-dynamic equations using the Eulerian approach

is obtained; governing equations for the stick propellants are formulated using

the Lagrangian approach. The motion of a representative stick is derived by con-

sidering the forces acting on the entire propellant stick. _he instantaneous

temperature and stress fields in the stick propellant are modeled by considering

the transient axisymmetric heat-conduction equation and dynamic structural analy-

SlS. For the internal perforation region, a set of one-dimensional transient

fluid-dynamic equations is formulated with a coordinate system attached to the

moving stick. Major distinctions between the present and the conventional formu-

lations for interior ballistic simulation are delineated.

I. Introduction

Recently, there has been an increasing inter-

est in the use of stick propellant charges in

large-caliber gun systems. Stick propellants offer

_Tany advantages over conventional randomly packed

multi-perforated granular propellant charges. The

regular geometry of stick propellants allows a

higher loading density, flexibility in charge

design, and easier charge loading. The higher

charge density is preferable for low vulnerability

ammunition (LOVA) propellants, which require a

higher propellant mass to produce an equivalent

pe_rformance. It has been observed by Robbins et

al. (i,2) that flow resistance through the charge

of a stick propellant bundle is lower than that

through packed beds of granular propellants, thus

enabling faster and more reproducible flame spread-

ing through the stlck propellant charge. The lower

flow resistance also reduces considerably the phe-

nomena of high pressure gradients and severe

pressure waves in the gun tube, as indicated by

Minor (3).

A number of studies (i-10) on various aspects

of stick propellant combustion have been reported

to date. The NOVA code, developed by Gough (11,12)

for ballistic performance of granular charges, was

used with some modifications (1,4) to predict the

performance of a stick propellant charge. Results

obtained were in good agreement with experimental

data for multiperforated granular NACO propellants

and single-perforated slotted stick bundles (i).

However, the same is not true for the case of

slngle-perforated, unslotted stick propellants.

The structure mechanics consideration in the

oontinuum modeling of unslotted stick charge com-

bustion of the modified NOVA code (4) is rather

crude, due to the application of a steady-state re-

lationship between radial and hoop stresses and

Internal and external pressures. Although pressure

distributions in the internal perforation were cal-

culated, only the external pressure was used in

evaluating the axial stress component, which is in

turn related to the intra-granular stress. Grain

deformation and fracture of unslotted long sticks

are mainly due to the radial expansion and attain-

ment of a critical hoop stress.

Rupture of stick propellants during combustion

in a gun barrel was observed by Robbins and Horst

(2). Grain fracture can lead to high peak pressu-

res due to increase in total burning surface area.

The pressure difference across the web of a stick

propellant can cause the grain to deform prior to

fracture and alter the flow-channel width and the

distance between opposite burning surfaces, thereby

changing the combustion process. Hence, the pred-

iction of grain deformation and rupture should be

given due importance in the overall interior bal-

listic cycle.

The proposed model is based on a relatively

new method, previously applied to two-phase react-

ing flow problems such as spray combustion of

liquid droplets (14). In the separated-flow ap-

proach, the continuous phase (gas phase) is treated

by a Eulerian approach, while the condensed phase

media (stick propellants) are divided into several

representative groups and tracked, using a Lagran-

gian approach, as they move in the continuous

phase. The interstitial gas-phase region in the

present problem is treated in a similar fashion to

the continuous phase in spray combustion, while the

internal gas-phase regions in the grain perfora-

tions are treated separately. The flame-spreading

and combustion phenomena inside the perforation are

similar to those in a cylindrical side-burning

rocket motor grain. The ignition transient analy-

sis developed by Pe_retz et al. (15) is therefore

adapted to model the flame spreading and combustion

processes in the perforation. This two-phase sep-

arated flow approach is convenient because the
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s:;cK propellants have identical _imenslons Jnd

s_metry _bou_ their own axes as weii as _ _ncral

axls. _Tne number of representative sticks in a

stick propellant bundle is relatively low, there-

fore making it possible to study sQne of the

detailed flow and combustion _nenomena of these

representative stick propellant grains.

All of the gun interior ballistic codes and

analyses developed so far do not consider the dls-

trlbutlon of chemical species (16-18). The heat

release is asstaned to occur at the same location as

that of pyrolysis of the propellant. However, for

LOVA or other types of modern propellants, some

chemical species could be pyrolyzed from the pro-

pellant surface, be carried by the flow during the

ignition transient interval, and then react at some

downstream location. Therefore, in general, the

heat release could occur at a different position

than the site of initial pyrolysis. These complic-

ated phenomena, wt_ich were simplified in previous

_nalyses, are included in the present model.

Objectives of the current research are to for-

mulate a combined Eulerian-Lagrangian model for the

combustion of a bundle of stick propellants inside

a gun chamber. It is intended to cover many as-

pects of realistic simulation of stick propellant

combustlon characteristics so that the model is ca-

pable of predicting the _henca_=na of ignition,

flame spreading, and combustion of stick propel-

lants. Development of the model is also iqtended

to help explain the experimental observations from

test firings being conducted by the authors in a

simulated gun system. The data to be obtained will

be used for model valldation.

II. Method of Approach

I. Physical Model

Figure i shows a bundle of stick propellants

loaded in the combustion chamber of a gun. For the

present model, only unslotted long stick propellant

grains are considered. In the theoretical formul-

ation, the combustion chamber is divided into five

separate regions: i) It_=d parameter region near

the base pad; 2) internal perforation region; 3)

external interstitial gas-phase region; 4) solid

propellant region; and 5) itmlDed parameter region

near t_e base of the pro3ectile. Although the

solid propellant region consists of many stick pro-

pellants, only a few representative sticks are

required to be modeled due to the similarity of the

sticks in t/%e same fatally. Each region has a sep-

arate set of governing equations which are coupled

through various boundary conditions. The erosive

burning of the stick propellants under cross-flow

conditions is also taken into account. Since frac-

ture phenomena of stick propellants under dynamic

loading conditions are under investigation, the

present model is limited to the time period before

one or more stick propellants rupture as a result

of high pressure differential across the web of the

stick propellant. After the onset of rupture, a

stlck propellant could become partially slotted,

broken, and/or highly deformed. It is then diffi-

cult to distinguish the internal versus external

surface. These phenomena are beyond the scope of

the present model.

2. Mathematical Formulation

A. Baslc Assumptions:

F1g.] Stick propellant Charge in a Cartridge

of a Large Caliber Gun.

(i) All the stick propellants have the same

initial geometry and physical conditions. Further-

more, it is possible to divide the stick bundle

into a few families so that the calculations can be

performed for only a few representative stlcks. To

simplify the mathematical formulation, the combus-

tion of sticks in a bundle is represented by a

single stick. The mathematical format can be read-

ily extended to multiple families of sticks.

(2) Assumptions used in the gas-phase regions

are :

a. no body forces;

b. bulk viscosity ll'is negligible;

c. Soret and [_four effects are negligi-

ble;

d. gases obey Noble-Abel equation of

state;

e. all binary diffusion coefficients are

equal;

f. Fick's law of diffusion is valid;

g. flow is one-dimensional transient

(properties are uniform in r and e di-

rections) ;

h. total flow area in the external gas-

phase region is asstmled to be ¢ A

[Dupuit Forchheimer hypothesis (19) _;

and

i. turbulence correlations of flow proper-

ties in the axial direction are consid-

ered negligible in conloarison with the

product of their mean flow properties.

However, turbulence effects in the

transverse direction are embedded in

the empirical correlations.

(3) Assumptions used for the solid propellant

are :

a. burning in the inner and outer surfaces

of a stick is axisymmetric;

b. density of the solid is constant;

c. any subsurface heat release occurs very

close to the surface and therefore can

be itm_ed onto the surface;

d. torsion and rotation are negligible;

e. each stick propellant is locally axi-

symmetric;

f. burning at the end surfaces is uniform;

g. end surfaces are perpendicular to the

axis of the stick; and

h. propellant material behaves as a linear

viscoelast Jc material in shear and

elastic material in bulk deformation.

B. Overall Structure of the ,Mathematical

Model
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[n order to give an overview of _he structure

_f _ne mathematical model, Fig. 2 was constructed.

it shows the major compoDents and subco_nents of

t_e formulation for each region in t/qe physical

model. To simplify the diagram, the cross-coupling

7 ines _etween each region are not shown. However,

it is important to note that the physicochemical

processes in these regions are closely coupled.

Mathematical representations of each component and

subconlponent are given in the followlng sections.

C. Governing Equations for the External

Gas-Phase Region

The external gas-phase region occupies the

whole interstitial space in the cartridge, exclud-

ing the shaded region shown in Fig. 3. By using

the control volume analysis (reference to Eulerian

coordinate), the following governing equations are

_tained.

. &z

CHAMBER WALL

STICK PROPI[LLANTS __._

--" ( Aje AAZ ) _rbe /

._,_o_,

Fig. 3 Schematic Diagram Showing the Mass

Fluxes Entering and Leaving the Exter-

nal Gas-Phase _egion (Unshaded and

Multiply Connected Region).

C ,ntinuity Equation:

_(_ _ u ) N
+ gee se 2

3t 3z - ---7 =Z roj0srbe (i)
R j I

where _e is. the void fraction of the external gas-

_nase region and is defined as

N
i 2

- 1 --- .r r (2)_e 2 o

R c j=l j

Momentum Equa t ion :

_(Pge._eUge ) 3(Ogeb u 2)
+ e ge =

_t _z

N

2 _ r

_ , .e + 2 (u -V sin@ )e :z Osrbe s ge o
R c

2 v r

3uj.f- 2T

R -' "ve f_;'>3"-_e_e _z _ R ( 7_

c small c
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where "7 sln _o is the horizontal component of the_ e
gastltl@ation /eiocity normal to r_ne solid propel-

iant surface. The second term in the right-hand

side represents the momentum transfer from solid

propellant to the external gas-phase region due to

burni ng.

Energy Squation:

3(0 9 E ) '3(c u _ E _ _Ip u *

gee e + ge gee e + e ge'e

_c _z 3z
N

. __m_2t [i l  e ie  ps UeRe 2 Osrbe " + gk C_e sin@°+

N N

2Z r 2 I r

2 hte(Tge-Tse) - o D u _ p e
R R - ves e _t
c c

smali sma i i

(4)

where n i is the entha!py of the ith species defined
as

°thi " _hf,i + Cp,idT (5)

o

and E is the sL_n of the internal add kinetic

energ9 of the gas phase in the control volume. The

energy transfer due to molecular species diffusion

has been neglected because of a high degree of tur-
bu fence.

Species Continuity Equation:

_(¢eOseYie ) 3(¢ 0 u y. )
+ e Re se ze

_t _z

_Y.

.___(¢ ep gel ) _.e)9z + (_i)e (6)

where the Source term (_i) e_ consists of

contributions cause by surface p_rglysis and gas-
phase reactions, i.e.

r,_.) = (_.) + (_,t) (7)
I e i e,s " e,g

where the surface pyrolysis part can be expressed
as

(_.) = rbe0sAseYi* (8)
i e,s

Yia* represents the mass fraction of the ithwhere

sl_ecies pyrolyzed from the solid propellant before

mlxlng with ambient gases. Following the flame

model proposed by Wu et al. (20) in their study of

erosive burning of homogeneous propellants, the

solid propellant pyrolyzes into three groups of
species :

Solid Propellant Oxidizer-rich gases (O)

+

Fuel-rich gases (F)

+

First group of species

with delayed reaction ([_= .

(9)
Under low cross flow conditions, the flame strut

ture ad3acen t to a burning homogeneous propellant
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surface exposed to a large cavity can be assumed to

nave _qree stages, as shown In Fig. 4a. This flame

stracture is based upon _he erosive burning study

in a rocket motor by Wu et al. (20). In the case

of large-caliber guns densely loaded with stick

propellants, the void spaces adjacent to burning

surfaces are relatively small, and the species py-

rolyzed from the surface can be entrained by the

high-velocity gases flowing along t/he axis. The

heat release in the final flame generated by the

chemical reaction of pyrolyzed species from a spe-

cific location occurs at a downstream location, as

shown in Fig. 4b. To determine the gas phase reac-

tion rate and heat-release rate, the same chemical

reaction mechanism, proposed in Ref. 20, is adop-

ted. This mechanism can be represented by three

overall chemical steps:

,OF F + _00 -- UDR 2 DR2 (10)

UDR 1 DR1 -- _ p (ii)

P (12)

DR2 DR2 -- JpP

Oxidizer-rich gases (O) can be regarded as NO 2

species, fuel-rich gases (F) as a group of aldehy-

des (CHpO), and other species generated by surface

pyrolysrs as one groom of delayed reaction species

(DR1). Based upon the work of Fifer (21) and

Kubota (22), chemical reaction in the Fizz zone is

largely due to the reaction involving reduction of

NO 2 to NO. After the delay in the dark zone, the
reactions in the final flame can he assumed to

occur at high activation energies, associated with

reactions (Ii) and (12) to form the final products

from DR1 and tJ%e second groL_p of delayed reaction

species (DR2). In the dark and final flame zones,

chemical reactions result in oxidation of CO, and

perhaps some H 2 by NO. More detailed discussions

of kinetic parameters and mechanisr0s are given in

Ref. 20-22.

It is useful to point out that the chemical

reaction mechanism proposed in Ref. 20 can he fol-

lowed for highly turbulent cross-flow situations.

The O and F species pyrolyzed from the solid pro-

pellant origlnate at the same place, and flow

together in a torturous path to form DR2 and final

products (P). The delayed reaction species of DRI

can also be considered to flow together in the

process to form product species P. Gases in the

cross-flow can transfer heat to these species and

alter the delay times required to form product spe-

cies P. The stoichiometric coefficients %PF' u_,

_D , and u ^ are therefore functions of propeY-
!a_ ingredients only. The method for calculating

t_ese parameters is based u_pon the original molecu-

lar structure of the propellant and is discussed in

Ref. 20.

In Ref. 20, the rate of production of species

"i" was based upon the chemical reaction rate as

well as the eddy-break-up rate (23) controlled by

the turbulence intensity and concentration gra-

dient. Turbulence intensity is so high in the gun

situation because of base-pad ignition and combus-

tion of propellants that the species diffusion term

can be regarded as extremely short. Therefore, the

rate of consumption or production of species is de-

termined solely from chemical reaction time.

The rate of chemical reaction of species F,

DR1, O, and DR2 are given below in the same form as

_n Ref. 20.

(*F)e,g=" - AF exm(-r-a,F/RuTge)_g2e(YFYo)e / WF (13)

• 0 2 2 W

(_DRI) = - ADRI exp(-Ea,DRl/RuTge) geYDRle/ DR1
e,g

(14)

,o 0WO

(_0> = (_F) VFWF (15)
e,g e,g

2 2

(_DR2) = _ ADR l exp(-Ea,DR2/RuTge)OgeYDR2e/WDRi
e,g

- (I + XaoWo/'OFWF ) (_F) (16)

e,g

LUMINOUS
• FLAME ZONE

P DARK ZONE

I

_/_///z FIZZ ZONEFOAM ZONE

PREHEAT ZONE

DBSP

(a)

GAS-PHASE

REACTION

SURFACE/
SUBSURFACE
REACTION

P 'lm" FINAL

0 _ FLAME

(b]

Fig.4 Flame Structure of a Homogeneous Solid

Propellant (a) Two-dimensional Struc-

ture under Low Cross-Flow

Velocities, (b) Distorted Flame under

Extermely High Cross-Flow Velocities

(Nearly One-Dimensional Structure).

Equation of State:

The Noble-Abel dense gas law is used.

(17)
Pe (I- 5) = RTg e

ge

The initial and boundary conditions as well as em-

pirical correlations for the external gas-phase

region are given in a later section.

D. Governing Equations for the Stick

Propellant

The following governing equations for a repre-

sentative stick are derived based _pon the

Lagrangian coordinate.

i) Mass and Momentum Bquations:

The instantaneous mass of the representative

stick can be calculated from
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U(t)/2
Ms(t) - J-L(t)/2 0s n[ro2(t,_) - ri2(t,_)]d_ (18)

The instantaneous values of stick propellant

length, L(t), and the local inner and outer radii,

r: (t,_) and ro(t,_), are determined by integrating

t_e following first order differential equations.

_ri(t ,_)

_t rbi (t'_) + Vsrl (t'_) (19)

Dr (t,_)

o = -rbe(t,_ ) + V (t,_) (2@)
_t sr o

dL(t) r (t) - (t) + VSRB(t) - VSLB(t) (21)
dt = - bLB rbRB

where V and V_r o represent the radial velocities
of theSr_nner a_d outer surfaces of the stick pro-

pellant due to mechanical deformation with respect

to the centerline of the stick. VSR B and SLB re-
present the rate of mechanical deformation VOW-- the

right and left boundary surfaces with respect to

the geometric center of the stick. The equation of

motion is formulated according to the following

nxlT_ntum balance principle.

d(MsU s)

dt ZF_ + (net rate of momentum flux flowing
into the control volume encompass-

ing the stick propellant)

(22)

which gives (see Fig. 5j

[L/2

d_(MsU s) = -2. ] [P.sin@i-TicosSi]rid_ -(F +F )
J -L/2 l pp pw

L/2+ 2. [Po s inOo+ToCOS8o ]rod_
-h/2

L/2 rb2r sin0 rbirisin8 i+ 2np 2 e o

2 2

- W [(ro2-ri 2)(p + 0s r b )]
0g J L

Os2rb2 ]
+ (23)

+ n (ro2-ri 2)(p --_g )J _ = L

2

where Fr_a represents the net force acting between

the st[@k propellant and chamber wall, and F is

the force between ad3acent propellants. PP

p,z,_¢pu, \

'i

Fig.5 Momentum fluxes and Pressure Forces

Acting on the Entire Surface of a

Single Perforated Stick Propellant.

2) Transient Heat Conduction Equation:

To determine the instantaneous temperature

distribution in the stick propellant, a heat con-

duction equation must be considered. The equation,

which takes into account the subsurface radiation

absorption for translucent propellants, has the

following form.

_(CsTs) 1 7_ s_DT + [%__/_s)_ll

Os bt _r (r ks--_J

+ a[(Ir_Eb ) + (Jr_Eb)] (24)

where Eb i_ the black-body emissive power evaluated
as OT , and "a" represents the flux absorption

• S
coefflclent of the propellant. This equation is

based upon a two-flux model which assumes tl%at the

radiation fluxes are dominant in the radial direc-

tions (inward and outward). The source terms

represent the net rate of energy absorbed due to

radlant energy fluxes. The outward and inward

radiant fluxes, I and J , can be determined from
• r r

the followlng flux-transport equations.

d(rI r) i

dr (s+a)rlr + arEb + Jr + _ sr(Ir+Jr) (25}

d(rJ r)
I st(it+Jr ) (26)(s+a)r3r - arEb + Jr -dr

These two equations were used by Gosman and Lcck-

wood.(24)

3) Dynamic Structural Analysis

As a result of the different ignition and

flame spreading processes occuring in the internal

perforation and exterral gas-phase regions, a pres-
sure differential exists across the web of a

representative stick. A finite element analysis is

needed to compute the resulting transient viscoe-

lastic deformation of the stick propellant and to

predict the attainment of a critical condition for

grain fracture. Regression of the boundary as a

result of pyrolysis and burning should also be

taken into account. Furthermore, the mechanical

properties of the stick propellant must be specif-
ied.

The propellant material can be considered as

linear viscoelastic in shear and elastic in bulk

deformation. This is a commonly accepted practice

for solid propellant (25, 26). The elastic bulk

behavior is assumed to follow

i
_i = 3Kci (27)

i

where K is the bulk modulus. The deviatoric beha-

vior is taken as

t _e.(t')S_ = gl(t-t') 1--/1--dt'_t'
O

(28)

where the shear relaxation modulus Gl(t ) is assumed
to be of the form

Gl(t ) = Go° + (Go_C,)e-Bt (29)
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where Go= is the long-time shear modulus, G is the

short-time shear modulus, and Lqis the d_cay con-

stant. Since a closed-form solution for the

axisymmetric dynamic problem is not possible, a

well-established finite element code "HONDO-If"

(26) is employed for computations of grain deform-

ation. Tne code utilizes the principle of virtual

work for the solution. It states that at all the

points along the path of motion, the differential

virtual workr_rrm/st vanish for all variations _x k
satisfying t/]e imposed displacement boundary condi-

tions (26). <5_ is defined as

_n = [ 0x k_xkdV+] okm_xk,mdV - I 0fk_xkdV

k

- T _XkdS (30)

s

where _is surface traction and _ km is Cauchy

stress tensor. The stick propellant is divided

into a n_nber of elements over the cross-sectional

area of the web. the HONDO-If code uses four mode

bilinear isoparametric elements. The basic equ-

ation of motion, viz., the minimization of virtual

work, is then considered for each of the nodes in

the stick propellant. Thus, the equation of motion
for a node becomes

I!:6_ _n_l x dv + km ~k,m8£dv

u

n S n '

where _ 1 _2._3. _ 1

~k _ [_k" k k ¢ ]
U

n

and _kl are the bilinear interpolation functions.

In Eg. (31), N is the total ntunber of elements sur-

rounding the node in question. The calculations

are carried out on an element-by-element process to

get the final equations of motion. _Tie time in-

tegration of these equations gives the positions of

nodes at the new time step. A central difference

method is used for time integration in the HONDO-If

code.

E. Governing Equations for the Internal

Gas-Phase Region

Conservation equations for the control volume

in the perforation of a stick propellant are simi-

lar to those given in Ref. 15.

Continuity Equation:

(0giApVg i)8(0giAP) _ (321
3t "_ " rbiOsPb

where _ is the distance measured from the center of

the stick, and Vni is the velocity of the gas rela-

tive to the velocity of the stick propellant. %i

is related to the absolute velocity Ug i by

Vgi = %1 - Us (33)

Moment_ Conservation Equation:

_ (PgiVgiAn) $ (PgiVE21Ap) _Pi

_t " + _ = - Ap _ - DViPb

P 2 r 2_

small small

Energy Conservation Equation:

The energy conservation equation written for

the stored total energy (internal and kinetic) per

unit mass, Egi, is

_(0giApEg i) _(PgiApVgiEgi ) _ ,

_t + _ sl___ -_)

_(ApPiVgi) _ ht
- _E - _-_ (T_ApVgi) - i(Tgi-Tsl)P b

+ PsrbiPb J_ I

Species Continuity Equation:

(35)

The species continuity equation for the inter-

hal gas-phase is similar to that for the external

gas-phase, with the void fraction taken as one and

the absolute velocity replaced by the relative ve-

loci ty.

_ [P$1(Yi)i ] 8 [PgiVgi(Yi) l]
+

small

where the source term (_),i similar to (_)e in
Eq. (7), consists of contributions due to surface

pyrolysis and gas-phase reactions. The flame model

for the internal gas-phase region is the same as

that given earlier for the external gas-phase

region.

F. Heat Losses to the Walls of the Combustion

Chamber

In order to consider heat losses from the com-

bustion zone to the cartridge chamber, the gun

tube, and the projectile, temperature profiles in

these metal components are required. For a test rig

with a blowout diphragm and short barrel, the tran-

sient ignition and combustion phenomena occur in an

extremely short time interval and the heat loss to

the surrounding walls can be considered negligible.

However, if the simulation is made for the full

ballistic c_cle occurring in a long gun barrel, the

loss to the walls must be considered. The heat con-

duction to the gun tube can be given as

_(CwL ) _ _T _T
w )+i 3 ___w)

Ow _t _z (kw _ r _ (kwr _r (37)

The transient heat conduction equation for the

wall on the breech end will follow the one-

dimensional form:
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_ (CwTw) $ _T
-- W

Pw Dr = _z ( kw _z- ) (38)

Toe equation for the projectile is:

_T

D(CwTw) D ____ww)
Ow Dt = _ (kw 3z (39)

The solution of these equations are coupled to

the external gas-phase region through the boundary

conditions on the wall surfaces.

G. Initial and Boundary Conditions

For each of the above governig equations,

there is a set of boundary and/or initial condi-

tions required to complete the formulation• %'De

initial conditions can be specified readily, since

the gas and stick propellant velocities are zero

and the pressure and temperature of gas in the car-

tridge is at room conditions. %he stick propellant

charge with known geometry and its surrounding

chamber are also at room temperature. Since the

amount of air in the initial loading of the car-

tridge is extremely small in comparison with the

gases generated from combustion, it can be treated

as any one of the five species discussed above, in

view of the fact that air contains oxygen, it is

treated as oxidizer-rich gas (O).

A number of important boundary conditions are

given in the following.

i). Boundary Conditions for the stick Pro-

pellant

The boundary condition for Eq. (24) at outer

surface of the stick propellant can be written as

_T

k__{s - •

S_r r ° = hc(Tge-Tse) + Psrbe(Qs)chem + (qrad)e

) T + (40)
+ Os rbe (Cs-Cpge se (QcPIP) e

where (Qcpr m )- represents the rate of energy input

due the_L56s_t of condensed phase igniter products

onto the external surface and (qrad) e the net ra-

diative heat flux to the surface can be expressed

as

(qrad)e " Jr + £ I I - £sEbTse (41)
r=r + s r r=r-

O O

Similarly, the boundary condition for the inner

surface of the stick propellant can be written as

_T
S

-ks_-7- +

r i

+ Psrbi(Cs-Cpgi)Tsi + (QcPiP)i

where

(qrad)i = I r r=r_ + £sJr r=r_ - £sEbTsi

= hc(Tgi-Tsi) + @srbi(Qs) ch:m(qrad) i

(42)

(43)

The pressure distributions along the internal per-

foration and external interstitial regions solved

from the gas-phase equations are used as boundary

conditions • for the solid-phase dynamic structral

analysis.

2). Boundary Conditions for the External and

Internal Gas-Phase Regions

For simplicity in expressing the boundary

treatments, only one representative group of stick

propellants is considered, then each stick propel-

lant has the identical instantaneous velocity and

length. Therefore, the governing equations for the

left limped-parameter region (see Fig. 6) or called

left control volume (LCV) can be readily derived

and written as follows.

Mass balance:

dp (Us+rbLB)gLCV

dt -= - OgLC V z L

DgLC V _ " . .
l-_s @i$n _LC mlgn-moute-moutl

+

_Rc2_LcvZ L

(44)

where z_ is the length of the left lumped-parameter
L

reglon and can be calculated from

z L z L + (Us+rbLB)dt + _ dt (45)

o "o ]o _Rc2Olgn

(46)

(47)

(48)

and

• 1m = ]

oute _e_Rc2pPg[Uge - (Us+rbLg) _ = -L/2

mou  "= lS_ri2Ogl['gi-(Us+rbLB)] _ = -L/2

Momentum balance:

dUgLcv _ I

'L_ + _ (i-%)" ]
dt Mg | gLCV oute outi mign

LCV[. 2

[mig n )

+ $ _ (mouteUge)

O gRc2_LCV LB
gLCV

N_(ro2-ri2)f _

D

(m°utiUgi)LB - • = 2

• (ps2rbLB/PgLCV) - 2_RcZLTw I

IGNITER

BASE FAD

_"'_, ¢_,., h

|

Fig.6 Control Volt, he Considered for Deriving

Governing Equations in the Left

Lumped-Parameter Region.
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Energy balance:

dTgL 1 f

- (l-_s)mtln] + (l-_s)_ignCPLcvTflg n

- moute(C T + u 2 /2)

PLB geLB geLB

- mouti(C n T_i + u42 /2) - Q 2nR z

rLB ° I_ _LB w c n_

N_(ro-rl2) " D r. C T j|

= -L/2 s bLB PgLCV f I (49)

]
Equation of state:

RT

gLC V

PLCV = 1_ b (50)

P

ZIEV

_e void fraction in the left lumped-parameter

region, %[Ev, can be evaluated from the continuity

equation or-the condensed-phase products of the ig-

niter which is given as follows.

d_bLCV = _ _ cur s b 2-_T- (i-_.^.) [_+r +_]_
• L | LB wR p

mign_s - l c ign _ ]
(i _L_V ) [PlgnsA¢eL B%ehB+plgnsN_ri UgiIB ]

_Rc2Dlgns

(51)

The boundary values of velocity, density,

pressure, and temperature on the left hand side of

both internal and external gas-phase regions can be

solved from a number of relationships coupled with

Eqs. (44) and (48)-(51). Depending upon the flow di-

rections at left boundary of the internal and

external regions, three different cases are identi-

fied. In the first case, the flow velocities at

stick perforation and the interstitial regions are

both in the positive z direction, it can be ass_ed

that the pressure at LCv is equal to those at the

left boundary of the stick perforation and the ex-

ternal gas-phase region. Also, the stagnation

temperature of the gas in LCv can be assumed to be

the same as those on the left boundary. One com-

patibility relation along the characteristic line

in each gas-phase region is used together with the

aforementioned equations for solving the flow prop-

erties in the LCV and the left boundary.

In the second case, the flow velocity at the

left opening if the stick perforation is negative,

but the bulk velocity at left boundary of the in-

terstitial void region is still positive. In this

case, one additional compatibility relationship can

be used for the stick perforation region. Only the

pressure at the opening of the stick perforation is

considered to be equal to that in the iCV. The

treatment for the left boundary of the interstitial

region remains the same as that in the first case.

In the third case, the flow velocities at the

left boundray of both the perforation region and

the interstitial regions are negative. Therefore,

two additional compatibility relationships are

available. In this case, both the internal and ex-

ternal gas-phase boundaries are treated in a

similar fashion as that for the internal perfor-

ation region in the second case•

The void reglon between the right end of the

stick propellants and the projectile base is a

lumped-parameter region, which could contain either

a base pad with powders of igniter material or an

ullage space. In the case of base pad, a set of

equations similar to Eqs.(44)-(51) are derived. The

right control volume (_Cv) is considered to move

with the projectile and the left surface of RCV

coincides with the right boundary of the stick

bundle. A detailed discussion on the compatibility

relation mentioned above is given in Ref. 27-28.

H. Empirical Correlations and Constants

Several empirical cmrrelations are used in the

model. For the internal gas-phase region, these

comprise of the correlations for the burning rate

law including erosive burning effect, the convec-

tive beat-transfer coefficients, and viscous drag

coefficient. The latter two correlations are same

as those used in Ref. 15. New erosive burning cor-

relation being developed by authors and coworkers

in parallel to this study will be used. For the ex-

ternal gas-phase region, correlations for the

convective heat-transfer coefficient, and viscous

drag coefficient between the gas-phase and solid

surfaces are needed. These correlations are similar

to those for the internal perforation region except

the fact that they are based on a hydraulic diame-

ter D H defined as

2( R 2_ Nr 2)

= c o
DH R + Nr (52)

c o

The burning rate law for the external region

will be the same as that for _le internal perfor-

ation region.

For the stick propellants, correlations for

F and F, the ignition criterion, and mechanical

a_ thermal properties are needed. At the present

time, not all of this information is available; es-

pecially Fpp and Fpw need to be characterized.

4. Summary o__f Differences Between the

Present and Conventional Formulation

In order to bring out the major differences

between the present formulation and the conventio-

nal interior ballistic predictive models (4), a

summary table is given below.

As summerized by Robbins and Einstein (29),

there are differences between the measured and cal-

culated pressures from the NOVA code or its

extensions for long unslotted stick propellants.

Also, the measured muzzle velocities are higher

than those calculated for slotted stick propel-

lants. A number of improver0ents and considerations

suggested in the workshop (29) are incorporated in
the present model.

,_ _B_ _ ,i I
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Differences Between the Present Formulauzon an_ the

Conventlona[ In_erlor Baiiist_c Formulatlon

Sub3ect under

Conslderatlon

Typlcal grain

conflguration

Averaglng of

flow

properties

Grain

deformation

and fracture

Grain

displacement

and

acceleration

Radlatlve heat

transfer

Type of
formulation

and frame of

I reference

Species
dlstributlon

and location of

heat release

Present Formulatlon

* Simulation of a number of

typical full-length grains

in a bundle of stick prop-

ellants.

* Each stick is modeled as

separate tube with deform-

able and combustible walls.

Conventlal formulation (4)

* Simulation of an average

grain in a spatial location

along a packed bed of gran-

ular propellants.
* Each bundle is modeled as a

continut_ characterized by

t_he velocity and stress in

the stlcks.

The external flow propert- l*

ies are averaged over the

cross-sectional flow area

of interstitial voids,

while the internal flow

properties are averaged

over the flow area of each

stick propellant.

Simulated by the unbalanced *

pressure forces between the

internal perforation and

external interstitial void

region.

Linear viscoelastic consti-

tutive law is used.

Employs dynamic finite-
element structure mechanics

computational code.

The klnematics of the full-

length grain is determined
from the stmmation of all

forces exerted on the graln,

Subsurface radiation pene-

tration is allowed and tre-

ated by a two-flux model.

Kinematics and grain defor-

mation are formulated by

following the stick (Lagra-

ngian approach) while the

gas-phase properties for

internal and external regi-

ons are determined from a

fixed frame of reference

(Eulerian approach).

Five groins of species are

considered.

Heat release does not have

to occur at the site of

oyrolysis.

Flow properties in both ext-

ernal and internal regions

are averaged over their res-

pective flow areas.

The process of grain defo-

rmation and fracture are

not addressed, except the

longitudinal stresses are
considered in the solid-

phase momentum equation.

Linear elastic constitutive

law is used.

Employs a steady-state rel-

ationship between stresses

(radial and hoop) and press-

ures (internal and external)

The bulk properties of the

grains are determined from

local momentum balance.

No subsurface radiation

penetration is considered.

Both the gas-phase and solid

-phase properties are all

determined from the conserv-

ation equations formulated

based upon a fixed frame of

reference (Eulerian

approach).

Gas phase is made of combus-

tion products from ignition

and propellant.

Heat release occurs locally

at the site of pyrolysis.
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NOmenclature

Letter Symbols

D
V

P

e. ,

13

E

a flux model absorption coefficient, m -I

A cross-sectional area of the gun _rrel, m 2
A i p_eexponential factor of the i species,

m /kmol-s

Ap cross-sectional area of the perforation, m 2

As specific area of the external surfaces of
the stick propellant, ro-

b covol ume 3 of the Noble-Abel equation of
state, m /kg

Cp constant pressure specific heat, J/kg-K

C S specific heat of stick propellant, J/kg-K

C v constant volume specific heat, J/kg-K

DR1 group of species pyrolyzed from propellant

surface having delayed reactions

DR2 delayed reaction species generated from O

and F species

viscous drag force per unit area, N/m 2

binary diffusion coefficient, m2/s

deviatoric strain

E
a

fk

F

F_

h

H
c

h.
3

h t

0

_hf, i

total stored energy (internal plus kinetic)

per unit mass, J/kg

activation energy, J/kmol

black-body emissive power, = ;T 4, j/m2-s

body_force per unit volume in k th direction,
N/m 5

fuel rich species pyrolyzed from propellant

external force exerted on the solid propel-

lant in the axial direction, N

specific enthalpy, J/kg

convective heat-transfer coefficient, W/m2-K

specific enthalpy of the jth species, J/kg

total heat-transfer coefficient, W/m2-K

standard enthalpy of formation of the ith

species, J/kg

outward radiation f½ux in the positive
Ir radial direction, W/m

Jr inward radiation flux in the negative radial

direction, W/m 2

k thermal conductivity, W/m-K

K bul_ modulus of the propellant material,
N/m

total mass of gas in control volume, kg

M s instantaneous total mass of a single stick

propellant, kg

O oxidizer species pyrolyzed from propellant
P pressure, N/m

P final product species

perimeter of the internal perforation, m

qrad radiative heat fulx per unit time _bsorbed
by the solid propellant surface, W/m

QSchemSUrface heat release due to pyrolysis, J/kg

rate of heat loss to the tube wall, W/m 2

rb

r.
I

r
o

R

R
C

R
U

S

13

S

t

T

Tf

u

V
g

U

W.
1

x k

_k

6Xk, m

Y.
1

propellant burning rate, m/s

inner radius of the perforation, m

outer radius of the stick propellant, m

gas constant, J/kg-K

radius of the combustion chamber, m

universal gas constant, J/kmol-K

flux-model scattering coefficient, i/m
deviatoric stress tensor, N/m

surface, m 2

time, s

temperature, K

adiabatic flame temperature of the solid

propellant, K

absolute velocity, m/s

gas velocity relative to the solid propel-

lant, m/s 3
volu_e, m

molecular weight of _e ith species, kg/kmol

coordinate axis in k direction, m

acceleration in kth direction, m/s 2

deformation gradient tensor

mass fraction of ith species, i could

represent F, O, DR1, DR2, or P

axial coordinate in Eulerian coordinate

system, m

Greek Symbols

6kk dilatory strain

£s surface emissivity of solid propellant

@ angle measured ct-w from axis to the1

tangent to the inner surface of the stick
propellant, rad

80 angle measured ccw from axis to the tan-

gent to the outer surface of the stick

propellant, rad

dynamic viscosity of _e gas, N-s/m 2

_i ntanber of kmoles of i L_* species

Lagrangian axial coordinate, m

virtual work,3J
p density, kg/m

Ckm Stefan-Boltzmann c_nstant, W/m2-K 4
stress tensor, N/m

T viscous shear stress, N/m 2

k

T surface traction in k th direction, N/m 2

T w tube wall shear stress, N/m 2

T{_ normal viscous stress. N/m 2

_s mass fraction of combustion product in the

• condensed phase from _ igniter
_i rate of production of specles, kg/m3-s

Subscripts

external interstitial region

gas-phase, internal or external region
internal perforation region



L :[] i ]Jilter

L3 _--ft ooundary If the stlck pro[Teiiant bundle

L_; left l _oed -pd r amet e r reg ion in _he car-

tridge

RB rlgnt boundary of the st_ck propellant

bundle

soi'_d pro_Tei[ant or surface
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Editor's Narrative:

Round-Table Discussion: Propulsion Applications of Mixing and

Demixing Processes of Multiphase Flows

Several points were made either explicitly or implicitly in

the presentations and discussions on the second day concerning

mixing processes in multiphase systems and the modeling of these

systems. First, there are situations where transport in turbu-

lent flows can be in a direction other than along the gradient of

the property being transported. This comes about through cou-

pling of density inhomogenieties with pressure gradients, the

former being a consequence of the large temperature differences

in combustion environments. Hence, in turbulent flames, some

transport processes are "counter gradient" or more correctly,

"non-gradient" in nature. Errors due to neglect of these pro-

cesses are not understood, but could possibly be significant in

some combustion systems. Modelers are in the process of learning

to incorporate these ideas into practical codes.

Second, the weakest element in modeling of turbulent multi-

phase flows is probably the turbulence modeling itself. The

treatment of the coupling between the turbulence and the non-

continuously distributed dispersed phase is also a critical area

and includes the question of whether, for numerical purposes, to

treat the dispersed particulate (or droplet) phase as a continuum

or as an assembly of separate particles.



Third, it is possible to treat a very complex problem in

great detail by using appropriate levels of approximation and by

coupling separate regions together which are best treated with

different models or with different levels of approximation.

Fourth, while continuum approaches to multiphase flow calcu-

lations are not particularly illuminating in revealing details of

the physical processes at work (due to the necessity of averaging

quantities before solving the governing equations), there are

cases where they can provide useful results for a given problem.

The two-fluid approach works best where the dispersed particulate

phase is monodisperse, and where the flows are non-reacting.

Sixth, advantages and disadvantages of Favre averaging

approaches were discussed. An advantage is that the conservation

equations for variable density with Favre averaging are much like

the standard constant density equations. Disadvantages are that

there is some difficulty in obtaining molecular terms and com-

puted and measured quantities are more difficult to compare.

Finally, physical situations for which multiphase flow mod-

els are appropriate generally contain a very broad range of

length and time scales within the same problem. This means that

when computational approaches to these problems are used, some

levels of approximation will need to be made in order to deal

with these large ranges of scale. The point in the analysis at

which approximation is made is a key difference between a two-

fluid model and an Eulerian-Lagrangian model of a dispersed par-

ticulate phase in a fluid phase.
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