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Recent work has demonstrated that the time dependent properties exhibited by concentrated
suspensions of non-colloidal spheres when sheared in a conventional Couette viscometer may be
explained in terms of shear-induced particle migrations (Gadala-Maria and Acrivos, 1980;
Leighton and Acrivos, 1987b). These suspensions were observed to exhibit both a short-term
increase in viscosity upon shearing immediately after loading into the Couette device and a

subsequent long-term decrease after prolonged shearing, which were used to estimate the effective
shear-induced diffusivity for concentrated suspensions both normal to the plane of shear and
parallel to gradients in fluid velocity within the plane of shear (Leighton and Acrivos, 1987b).

In this paper the experimental evidence for the existence of shear induced migration processes
is reviewed and the mechanism proposed by Leighton and Acrivos (1987b) is described in detail.
The proposed mechanism is shown to lead to the existence of an additional shear induced
migration in the presence of gradients in shear stress such as would be found in Poiseuille flow,
and which may be used to predict the amplitude of the observed short-term viscosity increase.

The concentration and velocity profiles which result from such a migration are discussed in detail
and are compared to the experimental observations of Karnis, Goldsmith and Mason (1966).

1. Introduction

Particle migrations across fluid streamlines in suspensions may result from a wide variety of
mechanisms, ranging from Brownian type diffusive motions to the inertia induced drift

mechanisms studied by Ho and Leal (1974) and others. In this paper we are concerned with
shear-induced particle migrations which have been observed to occur in concentrated suspensions
of non-colloidal particles (particles sufficiently large that colloidal forces are unimportant at
distances comparable to the particle diameter) and at sufficiently low Reynolds numbers that
inertial forces may be neglected. Particle migrations under these conditions have been observed
by a number of researchers. Early work by Kamis and Mason (1967) demonstrated that particles
tend to accumulate behind an advancing meniscus in flow through a tube, and to be depleted
behind a receding meniscus, the magnitude of the phenomenon being a strong function of the
particle diameter/tube radius ratio and the concentration, suggesting that the particle migration was
the result of some type of wall effect. Leighton (1985) demonstrated that if proper precautions
were not taken, this effect can lead to serious errors in viscosity measurements in concentrated

suspensions. The coefficient of shear-induced self-diffusion of spheres in a sheared suspension
(i.e., the diffusion or dispersion arising from a random walk of particles in a sheared suspension
analogous to Brownian diffusion) was examined by Eckstein, Bailey and Shapiro (1977) and later
by Leighton and Acrivos (1987a).

The observations of particle migration of primary interest here were initially made by
Gadala-Maria and Acrivos (1980) in suspensions of 40}.tm to 501J.m diameter polystyrene spheres
in silicone fluids. In the course of viscometric measurements of concentrated suspensions made
with a conventional Couette viscometer, Gadala-Maria and Acrivos (1980) found that the

suspension viscosity would decrease after prolonged shearing, and eventually reach a steady-state
value which was as much as a factor of two below the initially observed value (cf. Figure 1). In
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FIOVRE 1 Relative viscosity of a ¢ = 0.45 suspension as a function of the time that it had been
sheared in the Couette device at $, = 24 s-1. Polystyrene spheres, 40-50 lain in diameter in a mixture
of silicone oils (from Gadala-Maria 1979, figure 33).

subsequent experiments, Leighton and Acrivos (1987b) demonstrated that the viscosity decrease
was due to particle migration out of the sheared gap and into the reservoir by sealing the base of
the Couette device with a layer of mercury and showing that the phenomenon disappeared. The

rate of particle migration was found to be proportional to the shear rate and the square of the
particle radius, and was successfully modelled by a one-dimensional diffusion process. The
viscosity decrease was thus used to measure the effective diffusivity in the direction normal to the
plane of shear for concentrated suspensions. The effective diffusivity was found to be a very
strong function of concentration (cf. Figure 2) and to be much larger than the shear-induced
coefficient of self-diffusion measured by Leighton and Acrivos (1987a).

During the course of their experiments (also with polystyrene spheres in silicone oils)
Leighton and Acrivos (1987b) observed that, upon first sheafing the suspension in the Couette
device, the viscosity would increase over a total strain of approximately 100, reaching a
steady-state value before the subsequent long-term viscosity decrease. Since the long-term
viscosity decrease only became significant after a strain of about 103 had elapsed, the two
phenomena were well separated in time and could be investigated independently. As it is central
to the present investigation into concentration distributions in PoiseuiUe flow, the short term
viscosity decrease phenomenon is examined in more detail in the next section, which follows the

development by Leighton and Acrivos (1987b).

2. Short-Term Viscosity Increase

The observed timescale appropriate to the initial viscosity increase phenomenon was found to
be inversely proportional both to the shear rate "_and to the square of the ratio of the particle
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FIGURE 2 Diffusion coefficients calculated from the long-term viscosity decrease experiments: D],
461am polystyrene in 0.639mm gap; O, 461am polystyrene in 1.261 mm gap; A, 87 lam

polystyrene in 1.261 mm gap. Shear rates were: filled symbols, 76 s-_; open symbols, 24 s-_;
half-filled symbols, 7.6 s-k

diameter to gap width ratio _; thus this effect was explained in terms of a shear-induced migration
of particles across the width of the Couette gap analogous to the long-term viscosity decrease
phenomenon. This could only be the case, however, if the suspension flowing into the gap
during the loading procedure acquired a concentration distribution across the gap that was
different from the equilibrium profile corresponding to Couette flow. Then, upon shearing, the
particle distribution would diffuse into that appropriate for the Couette flow, and thereby induce a
change in the observed viscosity. The actual change in the viscosity results from the non-linear
dependence of the observed viscosity on the concentration profile. For example, if the
concentration prof'de is only slightly non-uniform and is assumed to be symmetric about the
centerline of the gap, then the observed viscosity may be calculated to be:

= -1 =_l_b L dy] =-L._--_.I_1 1 Ix (A¢)2dy+O(<(A@)3>)
(2.1)

where the viscosity has been expanded in a Taylor series about @=...9. In equation 2.1, ix is the
viscosity that corresponds to a uniform concentration _, A@ = @(y)-@ is the deviation from the
average concentration across the gap, y = 0 denotes the centerline of the gap, and y = +b the
walls. Note that the variation in viscosity is proportional to the average value of (Ate)2 across the
gap for small fluctuations in concentration. The viscosity function in equation 2.1 may be
calculated from the dependence of viscosity on concentration observed by Leighton and Acrivos
(1987b):

[, +}_L j1 (:.:)
l't° 1 - I(p(I)/('m-"

an Eiler's equation where _)m is the maximem particle concentration and [_t] is the intrinsic
viscosity. The best fit values for the suspensions used in the experiments discussed here in the
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range.3 < _ < .5 were (_m = 0.58 and [It] = 3.0. From (2.2) it is found that any non-uniformity
in concentration leads to a decrease in the observed viscosity, the magnitude of which is a strong
function of the average concentration. Since the viscosity was observed to increase upon
shearing., it was concluded that the initial concentration profile established upon loading the
suspensxon into the gap was more non-uniform than that corresponding to Couette flow.

2.1. Diffusion model for the observed short-term viscosity increase
The viscosity increase phenomenon was modelled by assuming that the diffusion coefficient

across the gap was constant throughout the migration. This approximation is acceptable if the
variation in concentration is sufficiently small, and in any case the experiment yielded some
average value of the diffusion coefficient for the migration, ff the initial concentration profile is
given by _(0,y) and the concentration after a long period of shear is _ (assumed to be constant),
the concentration profile at all times is given by:

_ '_ nny (-n____2Dl[) (2.3)
_(y,t) = + 2__BncoS--b-- exp b"

n=l
where

Bn = 2 _(0,y) cosP_ - dy

and D, is the diffusivity within the plane of shear parallel to gradients in fluid velocity.
To further simplify the model, equation 2.3 was approximated by its limiting form at long

times, i.e. the coefficients were chosen such that:

BI_0;, Bn=0, n_ 1 (2.4)

in which case, to obtain accurate values of the diffusion coefficient under this assumption,
equation 2.3 was fitted only to data taken after sufficient time has elapsed for the neglected terms
to become unimportant. Since these higher-order terms decrease exponentially with a rate
constant at least four times that of the leading-order term, this requirement was easily met. Thus
the model describing the short-term viscosity increase contains three adjustable parameters: the

equilibrium uniform concentration; the amplitude of the initial variation in concentration B1; and
the diffusion coefficient. The first of these was fixed by the equilibrium viscosity corresponding
to the concentration of the suspension initially loaded; thus the rate at which the viscosity
approached its equilibrium value and the magnitude of the deviation between this and its value at

the start of the experiment yielded the diffusion coefficient and the approximate initial
concentration variation across the gap

It is important to note that the above development tacitly assumes that the concentration
profde is not a function of the distance up the gap. In practice this is unlikely to be true since at
the base of the gap the concentration profile will correspond to the entrance region into the gap,

while sufficiently far up the gap it should correspond to the steady-state distribution resulting
from Poiseuille flow. While this will be discussed in more detail in section 4, it is noted here that
while variations in the initial concentration profile up the gap may affect the estimated amplitude of
the concentration variation B1, it should not affect the calculated value of D,. This arises from the
assumption that the diffusivity is essentially constant within the gap, corresponding to the average
concentration which does not vary along the length of the gap, and thus the rate at which the
concentration approaches its steady-state distribution is the same at all positions along the gap.

2.2 Experimental results

Short-term viscosity increase experiments were performed by Leighton and Acrivos (1987b)
with suspensions of 461.tm and 87_m polystyrene spheres at concentrations from 30% to 50% in
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two mixture of silicone oils with viscosities of 1.22p and 1.07p. The measurements were taken

using _ouette gap widths of 0.639mm, 1.261mm and 2.513mm. The gap height for all
experiments was 4.508cm, and the bob diameter was 4.7498cm.

The fit of the data to the model was excellent (cf. Figure 3); however, owing to the many
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3 Short-term viscosity increase with shearing, 46 _tm polystyrene suspension. Model
parameters were: (_ = 0.45, 3) = 2.4 s-1,/_,i = 1.8 B 1 = 0.062.

assumptions that were necessary in deriving (2.3), the calculated values of the diffusion
coefficient and concentration fluctuation across the gap must be considered only approximate.
The diffusion coefficient was found to be proportional to _2 and, as in the case of diffusion

normal to the plane of shear measured in the long-term viscosity decrease experiments, was a

strong function of concentration. A plot of the diffusion coefficient as a function of concentration
is given in Figure 4, where the dashed line is the diffusion coefficient normal to the plane of
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shear. The fact that the measured values of the two diffusion coefficients were almost identical

provides us with added confidence that the viscosity increase was interpreted correctly as resulting
from a particle migration across the gap width.

The short-term viscosity increase phenomenon was observable only for a narrow range of
particle diameters, suspension concentrations and Couette gap widths. This was due in part to the
fact that, since the diffusion coefficient was found to be proportional to the square of the particle
radius, the total length of sheafing necessary to reach steady-state was inversely proportional to
_, the square of the ration of the particle diameter to gap width. Thus, for very large values of
(such as were obtained for experiments with the 87gm polystyrene spheres in the narrow Couette
gap) the strain associated with the migration was sufficiently short that it was not possible to
reliably separate fluctuations in the viscosity due to migrations across the gap from those due to
the initial equilibration of any short range order in the suspension, f'trst observed by Gadala-Maria
and Acrivos (1980). Similarly, the timescale for the viscosity increase was also much too short

for experiments with the 461.tm spheres in the narrow gap and a 50% concentration, owing to the
high value of the dimensionless diffusion coefficient found at this concentration.

At 30% solids concentration, a different experimental difficulty was encountered in that,
although the total fluctuation in concentration across the gap may have been the same as that

observed for more concentrated suspensions, the resultant variation in the observed viscosity was
too small to be accurately measured. From the observed dependence of viscosity on
concentration, the same fluctuation in concentration across the width of the gap affects the
observed viscosity at an average concentration of 30% by an amount that is less by an order of
magnitude than that at 50%.

Finally, for some combinations of concentration, particle diameter and gap width, the
short-term viscosity increase effect was not observable. No useable measurements were obtained

for tha suspensions of either 46gm or 87pm spheres in the large Couette gap at concentrations of
30% to 45%, and for suspensions of 461.tm spheres at 30% to 40% concentration in the medium
Couette gap. Possible causes for the absence of a measurable initial increase will be discussed in

section 4. Table 1 presents the calculated amplitude of the concentration fluctuation across the
channel for those experiments where it was measurable.

TABLE I.

Particle Gap
diameter width

(I.tm) (mm)

46 0.639

87

1.261

1.261

¢ D B,

0.40 1.1 0.131

0.40 0.54 0.094

0.45 2.45 0.075

0.45 1.7 0.062

0.50 3.2 0.081

0.40 1.4 0.050
0.40 1.4 0.075

0.45 1.6 0.063

Estimated diffusion coefficient and amplitude of concentration fluctuation for the

short-term viscosity-increase experiments
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3. Mechanisms leading to shear.induced migration

Thus far, we have presented experimental evidence for the existence of shear-induced particle
migrations arising from gradients in concentration and shear stress. To see how these migrations
take place we follow the development provided by Leighton and Acrivos (1987b). Let us first

examine the case of migration due to gradients in .particle concentration.
Consider a single marked sphere of radius a m a susp.ension of otherwise identical spheres

undergoing the viscous linear shear flow u = _, where u is the velocity in the x-direction. As the

sphere interacts with its neighbors in the shear flow, it will experience a series of displacements in
both the y- and z-directions with a characteristic length proportional to a and a frequency
proportional to the shear rate '_. In the absence of any gradient in concentration, these
displacements will be random with zero mean (i.e. on average the particle will remain on its initial
streamline), and thus will constitute a random walk. But, as is well known, in the presence of a
concentration gradient such a random walk will lead to a diffusive flux and thus marc be
characterized by a diffusion coefficient, in this case with the dimensional scaling _a z, the same as
was observed in the experiments described here. It is important to note that in a dilute suspension
the spheres will return to their initial streamlines at the end of all two-particle interactions owing to
the linearity of the viscous-flow equations when only viscous forces are present. As a

consequence, at least three particles must interact to yield the permanent displacements that lead to
a random walk, and therefore, since the reate at which two particles interact with the marked

sphere is proportional to _2, the diffusion coefficient must be proportional to _a 2 in the dilute
limit.

This source of diffusive flux, termed shear-induced self-diffusion, may be measured by

examining the random walk of a single marked particle in a homogeneous suspension.
Experiments carried out along these lines have been conducted by Eckstein, Bailey & Shapiro
(1977), and more recently by Leighton & Acrivos (1987a), and have demonstrated that the

• * 2 " " "

diffusion coefficient is indeed proportional to _2" Leighton & Acnvos (1987a) also obtained a
dimensionless value of the diffusivity of about $/2 in the dilute limit, in agreement with the

scaling predicted by the theory. The measured coefficient of self-diffusion, however, was found
to be a much weaker function of concentration and, at a concentration of 40%, had a value nearly

an order of magnitude lower than the diffusivity that was calculated from the experiments
described earlier in this work. The discrepancy between the observations of self-diffusion and

effective diffusivity in the presence of a gradient in concentration suggests, therefore, that the
presence of a concentration gradient in some way induces a drift of particles from regions of high
to low concentration in addition to that provided by random self-diffusion.

The most likely source of this additional drift is that interparticle interactions in the presence
of a gradient in concentration lead to an average displacement of the marked sphere from regions
of high to low concentration. It is not clear at this stage whether interactions in the presence
solely of viscous forces can lead to such a drift. Direct calculations of the drift for such a
suspension would require consideration of interactions involving at least three spheres in a dilute
suspension and, in concentrated suspensions where the average interparticle separation distance is

very small, the interaction of many spheres would have to be taken into account. Such
calculations are far beyond the capabilities of current analytical techniques, and are also quite
difficult to deal with numerically owing to the very large number of particles that must be included

in any computation.
As we shall presently demonstrate, however, for sufficiently concentrated suspensions of

real non-colloidal particles, it is not necessary or even appropriate to consider only the influence
of purely viscous hydrodynamic forces because, in such systems, the particles are driven
sufficiently close together by the flow that irreversible surface contact will occur as a consequence
of surface-roughness effects, thereby destroying the macroscopic reversibility of the purely
viscous interactions. In this section we shall therefore discuss both theoretical and experimental
evidence for the existance of such irreversible interactions and demonstrate that they may lead to

IIS



the diffusivities observed here.

3.1. Irreversible interactions in concentrated suspensions

Consider a sphere interacting with a second sphere in a simple shear flow. As the two

spheres approach one another, the viscous stresses in the fluid act to drive the spheres together.
Under purely viscous conditions, when the interparticle separation distance is very small this
approach is resisted by the lubrication layer between the particles, in which the resistance is

inversely proportional to the separation distance. Thus although two mathematically smooth
interacting spheres may never touch, hydrodynamic theory predicts that, over a certain range of
initial configurations, they will approach one another very closely even in a dilute suspension. On
the other hand, in the presence of a finite amount of surface roughness on the spheres (as is the
case for any real particles), the interaction may be significantly modified. Indeed, Arp & Mason
(1977) found that even for two isolated interacting spheres, the existence of a small degree of
surface roughness was sufficient to eliminate the closed orbits predicted for purely viscous
interactions.

This effect of surface roughness is accentuated for concentrated suspensions. Specifically,
since the forces driving spheres together in the flow depend on the bulk fluid stresses, they are
proportional to the bulk suspension viscosity, which in turn is a strong function of concentration.
In contrast, the lubrication forces resisting this approach remain proportional to the pure-fluid
viscosity since the presence of other particles in the suspension does not affect the flow in the
narrow gap between particles. This imbalance, combined with some finite surface roughness,
implies that in sufficiently concentrated suspensions particles will simply approach one another
without any significant displacemtn from the their original streamlines until they come into
physical contact, folowing which they will rotate owing to the vorticity of the shear flow, and
finally separate. Moreover, since the interaction is no longer reversible owing to the surface
contact it will also no longer be symmetric and thus will lead to permanent displacemtns of the
particles from their original streamlines at the end of each interaction. A more complete
discussion of the evidence for irreversible interactions and thier effect on the rheology of
concentrated suspensions is given by Leighton (1985).

3.2 Particle drift arising from irreversible interactions

There are several ways in which the irreversible interactions described above can lead to drift

in the presence of gradients in concentration or shear stress. To see this, consider a test sphere at
the origin which is immersed in a suspension undergoing shear. We shall assume that the bulk

flow is in the x-direction with a constant shear stress _ = _yx and a linear concentration gradient
in the z-direction, normal to the plane of shear. Under these conditions, the viscosity, and hence
the shear rate, will be be constant within the plane of shear. Consequently, when the particles are
not mathematically smooth, the test sphere will be irreversibly displaced upwards following an
interaction with another sphere approaching it from below, and conversely if approached from
above. Thus, in the presence of a higher particle concentraiton on one side of the test sphere than
on the other, this sphere will experience a drift towards the region of lower concentration since it

interacts with more particles on one side than on the other. Moreover, the displacement after each
interaction will be proportional to the particle radius; thus since the excess rate of interactions from

regions of higher concentration is proportional to _d_/dz, the particle flux resulting from this
source of drift should be proportional to _2_d_/dz, which is the same scaling expected for
shear-induced diffusion.

A second source of drift normal to the plane of shear arises from the gradients
in suspension viscosity brought about by gradients in concentration. First we note that in the
absence of a gradient in viscosity, two touching spheres in a shear field will rotate about their
center of mass (the point of contact). But, in the presence of a viscosity gradient, the center of

mass will no longer be the center of rotation and the particles will, on average, be displaced
during an interaction from regions of high to low viscosity. The magnitude of this displacement
during each irreversible interaction will scale as the relative variation in viscosity across the
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particle, i.e. it will be proportional to (a/lx)dlMdz, multiplied by the particle radius. Since, for
small gradients in concentration, the variation in viscosity is linear in the concentration gradient,
the above result, when multiplied by the rate of interactions "_, gives the corresponding drift

velocity. In turn, when multiplied by (Dand divided by d_/dz, thedrift _locit_.!eadsto,aq_
expression for the effective diffusivity aris'mg trom this source ot drift u ~ ya'_t(p'_/_)al.t/aq_. The
total effective diffusivity normal to the plane of shear is then the sum of the two mechanisms
outlined above, plus that due to shear induced self-diffusion.

For concentrated suspensions, the function (1/_)d_d_) is very large, with a value of about 15
for a 45% suspension; thus drift due to gradients in viscosity is likely to dominate the diffusivity.

Recognizing this, we therefore let
2

D± _ d_t ._2 (3.1)
= K±-_- _ T't

be the expected form for the effectivediffusivitynormal to the plane of shear athigh

concentrations, where K± is a dimensionless parameter whose value will depend on the exact

geometry of the interactions. As shown in figure 5, Kx, as determined from the results of the
long-term viscosity experiment, was found to be a relatively weak function of concentration with
a value of about 0.7 at 45%. The scatter in the data is, of course, indicative of the simplcity of the

model.
The contribution of irreversible interactions to drift within the plane of shear is quite similar

to that found above for the case of drift normal to the plane of shear. Again, displacements will
lead to random self-diffusion, to drift arising from a higher rate of interactions on one side than on
another due to the concentration gradient (assuming a uniform shear rate), and drift from regioins
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FIGURE 5 Value of K l vs. concentration: [_, 46 _m polystyrene in 0.639 mm gap; ©, 46 lam

polystyrene in 1.261 mm gap; /k, 87 lam polystyrene in 1.261 mm gap. Open symbols, 3; = 24 s-l;

filled symbols, _p = 76 s-*; half-filled symbols, :_ = 7.6 s -_.

of high to low viscosity. In addition to these sources of drift, however, variations in viscosiW
within the plane of shear will, in the case of a uniform applied shear stress, lead to variations m
the local shear rate. Thus, in regions of low concentration and low viscosity the shear rate will be

greater, with the consequence that a test sphere will, on average, experience a greater number of
interactions from the region of lower concentration than would otherwise be the case. Since the

shear rate is inversely proportional to the local viscosity for a constant shear stress, the excess rate
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of such interactions will be proportional to ((_'a/lx)(d_/dy), which in turn will reduce the drift

velocity,2 from regions of high to low. concentration, by an amount proportional to
(Ta _/l.t)(d_d_)(dO/dy), an expression for the drift velocity identical with that due to gradients in
viscosity with uniform shear.

Although this drift due to the shear rate gradient effect will certainly reduce the magnitude of
the effective diffusivity (the sum of all contributions due to drift and random walk) it appears
unlikely that the two terms due to gradients in fluid viscosity will exactly cancel out. Thus, as in

the case of diffusion normal to the plane of shear, we obtain for the limiting expression of the
effective diffusivity at high concentrations

2

dl.t
Du= (3.2)

where the value of KII may be determined from the initial-viscosity-increase experiments. The

results are shown in Figure 6 from where it is seen that, in spite of the scatter, which again is
indicative of the simplicity of the model, K Happears to be relatively independent of concentration
and approximately equal to 0.6.

The same mechanism due to gradients in shear rate that reduced the effective diffusivity
within the plane of shear should also lead to drift from regions of high to low shear stress in a
homogeneous suspension. This is because, for the case of uniform particle concentrations and

uniform suspension viscosities, the local shear rate is proportional to the local shear stress o;
hence the excess rate of particles interacting with the test sphere from regions of high shear stress
is proportional to (_r_t/_)/(dcr/dy), yielding a particle flux

2

Ny=-K _d° .2
o o d-Y r'_ (3.3)

where again K o is some order-one function of concentration.
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Fiovrtv, 6 Average value of K,_ vs. concentration calculated from the data in table 1. Error bars

denote one standard deviation as estimated from the scatter in the experimental results.
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4. Particle distributions in Poiseuiile flow

Using the above analysis it is possible to determine the steady-state concentration distribution

acquired by a concentrated suspension undergoing flow in a channel or a tube. Since the shear
stress in Poiseuille flow is a maximum at the walls and zero in the center, migration due to the

gradient in shear stress will result in a depleted concentration near the walls. At steady-state, this
inward migration is balanced by shear-induced diffusive migration outwards, where the net

particle flux:
2 2

Ny=- [K c _ do _ dl.t dq_'-t. 2
d---y+ Kllg d O _jya (4.1)

is set equal to zero. For Poiseuille flow the shear stress is simply proportional to y, hence
1 dff_ 1 (4.2)
o dy Y

and therefore we obtain the derivative of the steady-state concentration profile:

do Ko dg'_ -11 (4.3)

where the viscosity is a known function of concentration. If we assume that the ratio Ko/Kll is

approximately constant across the gap, then (4.3) may be directly integrated to yield the viscosity

prof'fle: Ko

g_
_w_ (b)_ (4.4)

where gw is the relative viscosity of the suspension evaluated at the concentration at the walls.
Using the observed relationship between viscosity and concentration (given by equation 2.2), we

may invert equation 4.4 to obtain the concentration profile across the channel:
-1

( )= Cm 1 + 2 (4.5)

[gw (b)_--] _'2- 1

which is a function only of the ratio _11 and the concentration at the wall. Note that the
concentration distribution given by equation 4.5 applies to both flow through channels and tubes.

For a known value of Ir_r/Kit the wall concentration may be determined from the average
concentration by integrating 4.5 across the channel or, in the case of flow through a tube, by

integrating the product _2rdr. A plot of the expected concentration profile for _ as a function of

Ir_/Kii is given in Figure 7 for _ = 0.45. Note that the predicted concentration approaches the
maximum value _ = _m at y=0. This is a consequence of the singularity in (4.2), and the

divergence of the effective diffusivity as the particle concentration approaches its maximum value.

4.1 Estimation of K a . . .

We may estimate the value of Kq fromthe ampl!tude of the s,hort-term.vlscosl_an_er_a._to the
phenomenon if we examine in more _taal me proceaure oy wmcn suspensions are toau_
Couette device. As is described in detail by Leighton and Acrivos (1987b), in these experiments
the fluid was loaded into the gap by first pouring the suspension into the Couette cup and then

lowering the bob, thus displacing the fluid and filling the gap. The flow thus created consists of a
converging entrance flow at the base of the gap, followed by channel flow up the gap. While it is
unclear what effect, if any, the entrance flow has on the concentration profile, the channel flow up

the gap should lead to a migration of the particles from the regions near the walls into the center.
The concentration profile in the gap will thus be a function of distance up the gap, but provided

that the height of the gap is sufficiently large the concentration profile in the gap will approach the

steady-state distribution given by (4.5).
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Plot of concentration profile across a channel predicted from equation 4.5 for an average
concentration of 45%, as a function of Ka/ICN.

If we assume that the concentration profile in the gap is indeed due to migrations arising from
.gradients in shear stress we may estimate the influence of finite gap length on the short-term

wscoslty increase phenomenon. The concentration distribution in the gap will be governed by thedifferential equation:

8_1 8Ny { 8_ }u_-_-= --fly--= _-_y- _,,a2 [_ + K_____llDI y.I (4.6)
where:

U=U m 1- ; Ny ly=+ b =0 ; _[x=0 =¢0

where, for purposes of estimation, we linearize the problem by assuming the velocity profile to be

parabolic and the diffusivity to be constant, and where we have assumed a no-flux boundary
condition at the sides of the channel and a uniform concentration at the entrance. The differential
equation may be rendered dimensionless using the variables

2 x a2Di, y . •
y=_,x=

b3 (4.7)
resulting in the dimensionless equation:

(1- y*2) 8_ 8.
8x*-_ { 'Y_[_--_ *+Kal] } (4.8)Dly _l

where:

÷=- DI/ and (hlx.=0 =(h 0

which may be solved using separation of variables. Equation 4.8 admits a solution of the form:
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with

$(x*,y*)= q_.,(y*)+ • , 2x,, Fn(Y*)y__., Anexp(-0_n )

n=0

;(1 - y2)Fn(y)(¢._(y ) _ q_0) dy

An = 1

0(1 y2) Fn2(y) dy

where the eigenfunctions Fn satisfy the Sturm-LiouviUe type equation:
! t

(y*Fn) + a_(1-y*2) Fn =0

with

Fn(0) = finite ; F_( 1) = 0

(4.9)

(4.10)

While equation 4.10 does not admit a closed form solution, the leading ei.genvalue has been
determined numerically to be o_0 = 2.277795. As a consequence, the assumptmn that the
concentration distribution in the gap is close to that at steady-state for channel flow will be valid

provided

2a_ a2Dih>> 1 (4.11)

b 3

where h is the gap height. In the experiments described by Leighton and Acrivos (1987b) where
the short-term viscosity increase was observable, the dimensionless parameter given in (4.11)

ranged from 1.9 to 14, thus the assumption of steady-state is reasonably good. In contrast, in
those experiments where the short-term viscosity increase was not observed, the value of the

parameter was less than 1, suggesting that the observed increase was, in fact, due to particle
migrations in Poiseuille flow rather than entrance effects.

To estimate the value of K,, we may simply substitute the steady-sta.te concentration

distribution given by equation 2f.5 into the equation for B 1 given in equauon 2.3 and integrate.
The resulting values of K_ are given in Figure 8, which, allowing for considerable scatter in the

is a relatively weak function of concentration (not quiteexperimental data, indicates that I_
constant as we have assumed) with a value of about 0.6 at 0 = 0.45.
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FIG_:Rr, 8 Average value of K¢ vs. concentration ealculated from the data in table 1. Error bars
are one-standard-deviation error estimated from the scatter in the experimental results. 121



4.2 Comparison with other experiments

In a bounded Poiseuille flow (channel or tube), any migration of particles toward the center

leads to an increase in the viscosity in this region and hence to a blunting of the parabolic velocity
profile that applies for Newtonian fluids. We may calculate the expected velocity profile resulting
from the steady-state viscosity distribution given in equation 4.4:

2+K 
'u--_ - (4.12)

which, surprisingly, is not a function of concentration. Of course, in the development leading up
to (4.4) we assumed that the ratio Ko/K , is independent of concentration. This is certainly not
true for dilute suspensions where the mechanisms leading to the shear stress gradient induced
migrations would be expected to vanish, and is only approximately correct for concentrated
suspensions.

Observations of velocity profiles in concentrated suspensions flowing through tubes were

conducted by Kamis, Goldsmith and Mason (1966). Their observations at an average
concentration of 38% (the highest concentration for which measurements were reported) and

particle/tube diameter ratio of .028 is reproduced in Figure 9 together with the profile predicted by
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Figure 9. Comparison of the velocity distribution estimated from equation 4.12 with that observed
by Karnis, et al. (1966).

equation 4.12 using an observed ratio Ko/KII = .912 estimated from the _ = 0.40 experiments
described above. From this comparison it is seen that the velocity profile observed by Karnis, et
al. is blunter than that predicted here, corresponding to Ko/K , _. 2.1. While these two values do

not greatly differ considering the large degree of scatter in our experiments, at least part of the
discrepancy may be accounted for by wall effects. Indeed, Kamis, Goldsmith, and Mason

attributed their observed blunting entirely to wall effects, however in view of the small particle
diameter / tube diameter used in the experiment depicted here, this seems unlikely. Experiments
in the Couette geometry reported by Karnis, et al. (1966), showed that wall effects were

insignificant at the same concentrations even for particle diameter / gap width ratios over a factor
of three larger than that used in the experiments leading to Figure 9.
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Theseauthorsdid attempttomeasuretheconcentrationprofile acrossatube,althoughonly at

a lower average concentration of 32%. Owing to the statistical nature of their measurement

technique, however, their observations had a very large experimental error. Specifically, their
measurements involved counting the number of spheres that were present in each of four
divisions of the half-width of a tube cross-section, and since only a small fraction of the spheres
were marked, their observations were subject to Poisson statistics, which dictate that the
one-standard-deviation error in the number of spheres that were counted is equal to the square
root of that number. But since the total number of spheres that were counted in each region was

rather small (less than 80), the concentrations reported by Karnis et al. (1966) had a two standard
deviation error of nearly 25%. Their observations, with error estimated as described above,

together with the concentration profile predicted using equation 4.5 and a value of Ko/K, = .912
is given in Figure 10. While the concentration observations of Karnis et al. do not agree with the
predicted concentration profile (which has been extrapolated well beyond the range over which
Ko/K , was estimated), more accurate measurements of the concentration distribution in PoiseuiUe
flow are needed in order to determine the source of the observed blunting of the velocity profiles.
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Figure 10. Comparison of concentration distribution estimated from equation 4.5 with particle
distribution observed by Karnis, et al. (1966). Error given is 2 standard deviation error

calculated by statistical means.
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