@ https://ntrs.nasa.gov/search.jsp?R=19890001916 2020-03-20T05:46:55+00:00Z

NASA Technical Memorandum 100642

The CSM Testbed Software System:

A Development Environment for Structural Analysis Methods
on the NAS CRAY-2

(hASA"Iu—IOOHiZ) THE CSHM TES1EED S CPTWALE NB8Y9-11287

SYSTEE: A LCEVRELCEEERT FNVIKCKEEN]T FOCR

STRUCTIURAL AKALYS1S METILCLS Ch TEE BAS) " L

ChAY—-2 KASA e C5CL 20n nclas
<) F 63739 0170002

Ronnie E. Gillian and Christine G. Lotts

September 1988

NASA

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23665-5225

Table of Contents

The CSM Testbed Software System:
A Development Environment for Structural Analysis Methods on the NAS CRAY-2

Introduction 1
Program Structure 2
Computer Environment 7
The Program Code 8
Verification Procedures 10
CRAY-2 Implementation 11
Structural Analysis Methods Development Experiences 13
Future Directions for the CSM Testbed 15
Concluding Remarks 16
References 18
Trademarks 18
Figures 19
Appendix A. Testbed CRAY-2 B ock I/O Routines A-1

Appendix B. Testbed Main Progiram AMS Files B-1

THE CSM TESTBED SOFTWARE SYSTEM: A Development Environment for Struc-
tural Analysis Methods on the NAS CRAY-2

INTRODUCTION

The Computational Structural Mechanics (CSM) Activity at the NASA Langley Research
Center is developing structural analysis methods that exploit modern computers (ref. 1).
To facilitate that research effort, a development environment has been constructed to
insulate the researcher from the many computer operating systems of a widely distributed
computer network. This paper describes that environment and its extension to include the
supercomputer resources of the Numerical Aercdynamic Simulator (NAS) CRAY-2TM, at

the NASA Ames Research Center.

The field of computational structural analysis is dominated by two types of computer
programs. One type is the huge, 2000 subroutine (ref. 2), general purpose program that
is the result of over a hundred man-years of effort spanning over a decade; the other
type is the relatively small code resulting from an academic or research environment that
represents a one- to two-year effort for a specific research application. This dichotomy has
resulted in long delays in making research techaology available for the critical structures
problems that NASA faces. To address the problem of accelerating the introduction of
successful research technology into large-scale zpplications programs, a modular, public—
domain, machine independent, architecturally s:mple, software development environment,

denoted the CSM Testbed, is being constructed.

A development environment which insulates both the structural analyst using the Testbed
and the methods developer writing enhancements for it is important in a distributed en-
vironment. Distributed environments are made up of stand-alone computers of different
sizes, architectures, and vendors, with a common network protocol offering the user easy file
transfer and remote login functions. Structural analysts require the diverse computer ca-
pabilities offered by a distributed environment (workstation-mainframe-supercomputer),
but cannot afford the “overhead” of learning the operating system commands for each
system they use. Methods developers have a similar problem, but at a lower level. They
cannot afford the “overhead” of learning a new set of system calls for each computer on

which they wish to implement their application code. The CSM Testbed addresses these

problems.

The CSM Testbed development environment was ported to the CRAY-2 to provide a high
end computational capability for structural analysis research. Earlier Testbed development
efforts were directed toward mainframes and minicomputers even though the complexity
of the structures that were being analyzed was growing. It was only through the struc-
tural analyses required during the space shuttle Challenger accident investigation and
subsequent recertification program (ref. 3) that the magnitude of the computational task
required for large-scale structural analyses was fully appreciated. After that experience, it
was clear that if this research Testbed was to be used to learn how to solve problems of
critical interest to NASA, the Testbed would have to be available on a true supercomputer.
To that end, the CSM Testbed was ported to the NAS CRAY-2 at the Ames Research
Center. This paper describes the implementation experiences, the resulting capability, and

the future directions for the Testbed on supercomputers.

PROGRAM STRUCTURE

The CSM Testbed program is an example of a modern software architecture designed to
support development of engineering analysis methods as well as to perform engineering
analyses. Its organization is illustrated in figure 1. The inner circle in figure 1, the
computer operating system, is provided by the computer vendor and is different for each
vendor. The outer ring in the figure, the development environment, insulates both the

user and the methods developer from those differences by providing a consistent interface.

The CSM Testbed is written primarily in Fortran and is organized as a single executable
file, called a macroprocessor. The macroprocessor calls structural applications modules
(also known as processors) that have been incorporated as subroutines. Applications mod-
ules are installed into the macroprocessor as they become accepted in the structural anal-
ysis community and are of a general interest to other researchers. The macroprocessor and
applications modules interface with the operating system for their command input and
data management functions through a set of “architectural utilities” that originated in a
software system called NICE (Network for Integrated Computational Elements) (ref. 4).
Processors access the Testbed utilities by calling entry points implemented as Fortran-77
functions and subroutines which are available to module developers in the Testbed object
libraries. Applications modules do not communicate directly with each other, but instead

communicate by exchanging named data objects in a database managed by a data manager

2

called GAL (Global Access Library). The user controls execution of applications modules
via an interactive or batch command input stream written in a command language, called
CLAMP (Command Language for Applied Mechanics Processors) which is processed by
CLIP, the Command Language Interpreter Program. Command language procedures for

performing complex analysis tasks may be developed and stored for future use.

To facilitate the development of new methods and algorithms, a capability for indepen-
dent executable programs to perform special functions related to a Testbed analysis is
included. Applications may be developed independently, using the Testbed architectural
utilities and data management capabilities, and may be invoked from within a Testbed
command procedure or runstream; this type of program is called a Testbed external pro-
cessor. The macroprocessor and external processors may be used within a single Testbed
command input stream via the architectural utility, SuperCLIP (ref. 5), which performs
the interprocessor exchange via operating systein calls which are invisible to the user. This

capability provides much of the flexibility required of the CSM Testbed as it relates to the

development of new applications.

For structural analysis research, both interactive and batch modes of operation are required
and both are supported in this program. Thkroughout the CSM Testbed development
effort, attention has been given to the problems associated with research codes and their
requirements for generality, while keeping a watch on overall efficiency. Efficiency affects
the overall size and complexity of the structural problems that can be considered, and if

current structures research problems are to be solved, efficiency must be maintained.

The Testbed Command Language

The Testbed command language, called CLAMP, is a generic language originally designed
to support the NICE system and to offer program developers the means for building
problem-oriented languages (ref. 6). It may be viewed as a stream of free-field command
records read from an appropriate command source (the user terminal, actual files, or
processor messages). The commands are interpreted by a “filter” utility called CLIP, whose
function is to produce object records for consumption by its user program. The standard
operating mode of CLIP is the processor-commznd mode. Commands are directly supplied
by the user, retrieved from ordinary card-image files, or extracted from the global database,
and submitted to the running processor. Speci:;.] commands, called directives, are processed

directly by CLIP; the processor is “out of the loop”. Transition from processor-command

3

to directive mode is automatic. Once the directive is processed, CLIP returns to processor-
command mode. Directives are used to dynamically change run-environment parameters,
to process advanced language constructs such as macrosymbols and command procedures,
to implement branching and cycling, and to request services of the data manager. CLIP
can be used in this way to provide data to a processor as well as to control the logic flow of
the program through a single input stream. All command language directives are available

to any processor that uses the CLIP-Processor interface entry points.

Program execution begins with control transferred to the Testbed macroprocessor by the
computer operating system. Within the macroprocessor an entry point requesting a read
operation is called which begins parsing and interpreting command language directives.
This operation continues until a complete processor command record has been read and
processed by CLIP. That data record is then returned to the calling module to be in-
terpreted according to the application or macroprocessor originally requesting the read
operation. The next read operation continues the cycle until a command is encountered
which directs the program to terminate. This process not only provides for module se-
quence control, but also provides a powerful input data description language for preparing
processor input. Both capabilities are incorporated through the same applications language

environment.

The NICE Data Manager
The data manager within the CSM Testbed was derived from the Global Access Library

(GAL) concept developed at the Lockheed Palo Alto Research Laboratory (ref. 7). Meth-
ods for data management in structural analysis programs can be broken into three levels
of complexity: file systems, file partition systems, and data base systems (ref. 8). Since
GAL database files are subdivided or partitioned into data sets the Testbed data manager
is classified as a file partition manager. To a processor, a GAL data library is analogous to
a file. It must be opened, written, read, closed, and deleted explicitly. The global access
library resides on a direct-access disk file and contains a directory structure called a table
of contents (TOC) through which specific data sets may be addressed. Low level routines
access the GAL library file in a word-addressable scheme as described by Felippa in ref-
erence 9. The data management system is accessible to the user through the command

language directives and to the running processors through the GAL-Processor interface.
The actual I/O interface to the UNICOSTM operating system for the CRAY-2 is accom-

4

plished through a set of block I/O routines written in the C programming language. To
provide the efficiency required to process the volume of data required for a complex struc-
tural analysis, all usual overhead associated with Fortran has been eliminated. Listings of

the routines used for block I/O in the Testbed are presented in Appendix A.

The global database is made up of sets of data libraries (GALSs) residing on direct-access
disk files. Data libraries are collections of named datasets, which are collections of dataset
records. The data library format supported by the Testbed is called GAL/82, which can
contain nominal datasets made up of named records. Some of the advantages to using this
form of data library are: 1) the order in which records are defined is irrelevant, 2) the data
contained in the records may be accessed from :he command level, and 3) the record data
type is maintained by the manager; this simplif.es context-directed display operations and

automatic type conversion.

SuperCLIP Implementation

The SuperCLIP capability of the Testbed architecture performs snterprocessor control,
allowing independent programs which use the Testbed architecture facilities (CLIP and
GAL) to be executed from within a single Testbed input stream. SuperCLIP handles the
interprocessor CLIP state preservation and restoration so that the CLIP environment is
maintained across independent program executions. These independent programs can be
used in conjunction with the Testbed macroprccessor, other independent Testbed proces-
sors, or entirely alone, as appropriate to accomplish the required task. The implementation
of SuperCLIP is the most complex and machine dependent element of the Testbed architec-

ture software. To date it has been implementec under VAX™™ /VMSTM and the UNIX™™

operating systems.

The operations performed by SuperCLIP to accomplish the processor exchange are as

follows:

1. The name of the executable file for the new processor is pushed onto a stack data
structure called the Process Name Stack.

2. The CLIP data structures are saved. This is done by writing the contents of the CLIP
data structures to a file, named ZZZZZZ7, via the data manager. The structures
include the Decoded Item Table, Macrosymbol Table, Command Source Stack, Process

Name Stack, control characters, logical unit table, and list of active data libraries. All

5

open libraries are closed.

3. The process switch is performed. For the VAX/VMS version, this is done via the
LIBSRUN_PROGRAM system function. For UNIX, it is done via the EXECLP system
function. Both functions stop the current process and start the target process.

4. CLIP is initialized in the new processor. The new processor calls CLIP for data input;
CLIP tests for the existence of the ZZZZZZZ file to determine if this processor is
executing as the result of a SuperCLIP operation. If the file exists, the CLIP state is
restored.

5. The CLIP state is restored. The ZZZZZZ1Z file is read via the data manager to restore
the CLIP data structures. Non-scratch libraries that were open in the parent processor
are re-opened. The Command Source Stack is reconstructed so it has the same array
of open files, and script files are restored to their original positions. The ZZZZZZZ file

is closed with the delete option so it disappears.

A Testbed processor terminates via a SuperCLIP function which performs many of the
same functions described above. The first step is the only one which is different. Here
the name of the parent processor is extracted from the Process Name Stack, which is then
removed from the stack. If the stack is empty, a normal termination is performed. If the
stack is not empty, the parent processor becomes the target process and steps 2-5 above
are performed

The only part of the SuperCLIP operation which is different for the two implementations
is the process switch operation which requires different system function calls for the dif-
ferent systems. In the UNIX version, any files which were opened via the Fortran OPEN

statement must also be closed, since files are allowed to remain open across the EXECLP

calls.

Structural Application Modules

The application modules are installed in the Testbed system in a macroprocessor config-
uration. They perform functions related to a structural analysis task, including model
definition, element interconnection analysis, system matrix assembly and factoring, static
stress analysis, eigenvalue analysis, thermal analysis, data display, and postprocessing
functions. Additional pre- and post-processing functions have been implemented as in-
dependent executable programs called external processors. The initial structural analysis

functions were implemented by interfacing processors from the SPAR structural analysis

6

system with the NICE architecture utilities (rel. 10).

Since the initial installation, many new modules have been developed to replace or com-
plement the original functions. A software “shell” and utilities have been developed to
facilitate installation of new types of structural elements into the Testbed. Several ele-
ment processors have been developed based or this shell and have been installed in the
Testbed. Pre- and post-processing functions as well as modules implementing new solution
algorithms have also been developed and installed. A description of the current analysis

capability of the Testbed is presented in refererce 11.

The architecture of the Testbed supports the independent development of new software
capabilities by structural analysis researchers and numerical methods developers via the
SuperCLIP facility. This facility and the supporting architectural utilities allow the macro-
processor modules and independent programs o access command language symbols and

data library contents.

COMPUTER ENVIRONMENT

The CSM Testbed was originally developed on a VAX 11/785 computer using the VMS
operating system. In order to address the new computer architectures, it became necessary

to migrate to the UNIX environment.

The Testbed relies heavily on the available UNIX tools to provide a common developer
interface across the distributed environment. In addition to the UNIX tools, system in-
dependent precompilers that support conditional compilation and text insertion complete

the requirements for maintaining the software for the distributed environment.

Machines

The Testbed is currently operational on the following types of computers: VAX/VMS,
MicroVAX™™ /ULTRIX7, SUNTM /UNIX, FLEX/32T™ /UNIX, and CRAY-2/UNICOS.
This wide range of computer capabilities create a development environment that makes
maximum use of computers at all levels of capability. It is possible to begin an application
task at a small single user workstation, develop and test new algorithms using small test
cases on a minicomputer, and apply those algorithms on large complex structures using the
resources of a supercomputer, all under one application environment, all without modifying

any of the Fortran code from that developed on the original workstation.

7

A single application task often spans the entire range of computers. Model development
usually occurs on a workstation, and the final analysis is usually performed on a super-
computer. Although the data libraries are not readable in binary form among the non-
homogeneous computers, the Testbed has commands which allow the user to format data
into text files on one computer, and after transferring the text files to the target computer,
to restore the data on the target computer for further Testbed processing. These com-

mands are typically used to transfer analysis results from the CRAY-2 to a local MicroVAX

workstation for graphics postprocessing.

Distributed Environment
The CSM computers at NASA Langley are linked via the Langley local area network to the

NASNET computer network as well as many other government and university computer
systems. This network gives researchers the capability of developing and testing new
methods in several different computer environments, selecting the machine characteristics

which are appropriate for the type of analysis to be performed.

All computers available to the NASA Langley CSM researchers are available through the
Internet TCP/IP communication protocol. Individual computers are linked via ethernet
within buildings at Langley Research Center. Gateways are provided between buildings
by a Pronet-107M token passing ring. A one megabit/second communication link using a
Vitalink™ bridge over a terrestrial, T1, circuit connects Langley Research Center to the
Ames Research Center and provides the backbone for the Langley-Ames NASNET con-
nection to the NAS CRAY-2. The resulting network has provided an effective interactive
capability as well as high speed file transfer for CSM researchers. Supercomputer resources
are provided directly to the individual workstation. The high speed of the long distance
communication link gives almost transparent interactive use as well as access to files. Even
the large data library files created by the Testbed are easily accessible under this network

for transmission to graphics workstations for postprocessing.

THE PROGRAM CODE

Master Source Code

The program code for all target versions of the Testbed is maintained in single copies of
the source files, in a format called Assembled Master Source (AMS) form. Embedded pre-

processing commands allow selective conditional precompilation by machine-independent

8

utility programs. An example of this form is given in Appendix B, which contains a listing
of the main program for the Testbed macroprccessor in the AMS format. Procedures for
extracting specific target versions of the compier source code have been developed for all
the systems on which the Testbed has been installed. All source code files and procedures
are maintained with the Revision Control System on a MicroVAX computer using the

ULTRIX operating system.

The architecture code is made up of approximately 650 modules with about 83000 lines
in source code and include files. The application code is made up of approximately 1300
modules with about 95000 lines in source code and include files. Distribution of the code
in the UNIX environment is accomplished by packaging the source code, makefiles, and
scripts in a single file using the tape archive utility (tar); this distribution file occupies

approximately 8 megabytes on disk.

Machine Independent Tools
Two utility programs, MAX and INCLUDE, which operate on the master source files were

originally developed by Carlos Felippa at Lockheed Palo Alto Research Laboratory (ref.
12). The MAX utility allows distribution of source code for selected target compilers,
computers, and operating systems from a Master Source file which supports the targets.
The INCLUDE utility allows text insertion froin files named in the source code, similar to
the “include” facility of VAX Fortran, in a muchine independent manner. Both of these
utilities have been modified from the original VAX versions to execute in a UNIX envi-
ronment and under the UNICOS operating sy:stem on the CRAY-2 computer. The main
program of the Testbed macroprocessor is presented in Appendix B along with the two
specific include files required for compilation. The processor names that are known to the
macroprocessor are established in the file named procs.inc. The correspondence between
the processor name and the subroutine called when the name is encountered in a com-
mand is established in the file named subcalls.inc. These files are inserted into the Fortran
source prior to MAX precompilation. Maintaining the processor-specific information in
the separate include files allows the macroprocessor to be customized for the application

by changing only the two included files and recompiling the main program.

Languages
Fortran is the primary language for the Testbed source code. The Testbed architecture

modules are written in Fortran-77, with extensive use of character variables, and a small

9

amount of assembler and C code in the low-level I/O modules for the data management
functions. The application modules are written in both Fortran-66 and Fortran-77, the
combination of which has presented some limitations to naming conventions for data base
entities and processors because of the old code used as a core analysis capability. However,
the flexibility of the supporting NICE modules is maintained for use by new application

modules.

Procedures for Building

Procedures and scripts for preprocessing, compiling, and linking the Testbed have been
developed for the target systems. The scripts on all the UNIX-type systems are almost
identical, with differences in the keys used for MAX precompilation, the name and options
for the Fortran compiler to be used, and the name and options for the loader program to
be used. A set of “makefiles” is used, with a top-level “make” invoking lower-level “makes”
to create the required object files and libraries in the correct order. The procedures for
building the code under a VMST¥ operating system are similar in organization but are

implemented in the DCL command language without all the power and flexibility of the

UNIX make utility.

VERIFICATION PROCEDURES

In order to verify the correct installation of the Testbed code, programs which test the
operation of the programmer interface with the command language interpreter and with
the data manager are built on the target computer and executed after the object libraries
for that software have been created. Correct results (manually verified at present) from
executing these programs verify the installation of the command language and data man-
ager. Once this successful installation has been established, the macroprocessor is built
and the scripts for the demonstration problems may be executed. These scripts are written
in CLAMP, which is portable across all the different computer systems where the Testbed
has been installed. System dependent commands such as those for deleting files, redirect-
ing input and output, and invoking execution of the Testbed are the only differences in
the text of the demonstration problem scripts. These scripts also serve the purpose of

providing a variety of examples of Testbed usage for new users.

10

CRAY-2 IMPLEMENTATION

Installation of the Testbed on the NAS CRAY-2 computer was accomplished over a period
of about one month in 1987 shortly after ths computer was made available to NASA
Langley users. The Testbed code was the large:t software system to be ported to the NAS
computer, and consequently many problems which had not been experienced by other

users had to be diagnosed and overcome.

The first step of the installation, which had to be performed before any compilation could
be done, was to build the MAX and INCLUDE utilities under UNICOS. This required
writing an interface between the Fortran program and the C language argc and getarg
functions not provided in the Fortran libraries. Next, compilation of the NICE software
was accomplished and object libraries created. The test programs for the NICE software
were built and executed successfully. Then the macroprocessor, application modules, and
utility routines were compiled. Finally, the linking of the executable file was performed.
Compilation Problems

Because the Testbed Fortran code uses character variables heavily, the CFT777™ compiler
had to be used for compilation. Most problems cncountered with this compiler were related
to its handling of character variables and formatting screen and printed output and were
not encountered until execution time. Most of these were resolved by inserting code blocks
for the CRAY/UNICOS version into the master source files so that the modifications
could be carried along into future versions of the code. The porting of the Testbed to the
CRAY-2 was accomplished using a very early version of CFT77 under UNICOS. Although
several compiler errors were discovered with that compiler, no errors that could not be
easily avoided were uncovered. The compiler errors that were discovered have been fixed

in subsequent releases of the CFT77 compiler.

Fortran/C Interface

One problem related to CFT77 character handling which had to be resolved twice was
the difference in data structures for CFT77 character arguments and C compiler character
string arguments. This problem arises where the Fortran code for the data management
functions calls low-level C language I/O functions. The CFT77 compiler does not conform
to the same standard as the Fortran compilers on other UNIX-type systems. To overcome
the problem, a C structure was defined in the C functions to correspond to the CFT77

character argument; upon entry to the C function, a transformation was performed from

11

the argument structure to a C character string. When version 3.0 of UNICOS was installed
with a new CFT77 compiler, the CFT77 character variable structure was changed without
documentation, so the C functions had to be modified to accommodate the new structure
after the difference was discovered. The definition of the Fortran and C character pointer

structures under UNICOS 3 are:

typedef struct { ushort offset: 3; /* string offset in bytes */
ushort fileri: 3; /* length ’'bits’ count */

ushort length: 23; /* string length in bytes */

ushort filer2: 3; /* offset ’'bits’ count */

ushort addres: 32; /* string address */

} chptrf; /* CHar PoinTeR Fortran */

typedef struct { ushort offset: 3; /* string offset in bytes */
ushort filer3: 29; /* unused space */

ushort addres: 32; /* string address */

} chptrc; /* CHar PoinTeR C-lang. */

The called C function assigns the offset and address fields of the input Fortran pointer
to the respective fields of the C pointer before moving the characters to a local character

array. The use of these structures is illustrated in the block I/O routines in Appendix A.

Loader Problems

The initial installation procedures used the LD loader for linking the executable file. When
the optimization options for the CFT77 compiler had been used in compilation, all sub-
routine argument addresses and some temporary variables were defined in local memory
by the compiler. The LD loader concatenates the local memory segments for all modules,
so attempting to link all of the application modules and libraries in the macroprocessor
resulted in overflow of local memory (40000; words) and failure of the load. The LMSTAK
utility to enable overlaying local memory segments was used, but the resulting program
would not execute. In order to check out the operation of the software before resolving the
local memory overflow problem, all the code was recompiled without optimization, linked

successfully, and tested.

Later, following the suggestion by the NAS CRAY analysts, the segmentation loader
(SEGLDRTM) was used. This loader performs the local memory overlay correctly, so
the optimized object code could be used. No execution errors were encountered as a result
of using the optimizing compiler. Performance was improved by a factor of 3 in CPU us-
age with the optimized code for most of the demonstration problems executed. However,

vectorization is not used efficiently in this version of the code because of the short vector

12

lengths actually used (< 6 in a critical area). M ch greater improvements should be gained

by tailoring the matrix operations in the code to take advantage of vectorization.

Installation of a new CFT77 compiler with options to enable the user to control the al-

location of local memory has since eliminated the requirement to use SEGLDR for the

Testbed to overlay local memory.

Optimization
In order to identify the most promising area: for performance improvement, two utili-

ties were used. First, the FLOW utility was used, after recompilation of the code with
the CFT77 flowtrace (-ef) option. The resulting executable file was used to run several
demonstration problems performing different types of analysis functions. The FLOW util-
ity analyzed the output files and identified the :nodules which were using most of the CPU
time for the executions. A calling tree diagrain was also obtained in the FLOW output,

which was helpful in analyzing the execution path of the program.

After identifying the biggest CPU users, the Fortran source code for those modules was
sent to an IRISTM workstation on which the FORGETM software was installed. FORGE
was used to insert timing function calls into the modules which were then sent back to the
CRAY, compiled and linked into the executable. The demonstration problems were run
again and very detailed analyses of the executicn of the modules of interest were obtained.
These analyses led to replacement of some code with UNICOS library function calls and
some other minor revisions. This work resulted in an improvement of about 12% in the

performance of the affected analyses.

This installation of the Testbed on the CRAY-2 is allowing researchers to analyze much
larger problems in a reasonable turnaround time than has been possible with the mini-

computer installations previously available.

STRUCTURAL ANALYSIS METHODS DEVEZLOPMENT EXPERIENCES

Workstation development of new analysis code and procedures

Rescarchers at NASA Langley have been usirg a distributed computer environment to
develop new analysis modules and procedures, with each researcher working in the Testbed
environment on a local computer or workstation of his preference. Procedures, scripts and
makefiles similar to those for maintaining the complete Testbed system are available to

the Testbed developers for building external processors or customizing macroprocessors.

13

The researcher has to be concerned only with the code for his new module, calling utility
subroutines from Testbed libraries, where applicable, and using the interface routines for
command input and data management functions. There are minimal requirements pre-
scribed for initialization and termination to ensure compatibility with installed processors.
Where a new module must interact with other Testbed modules via the data base, it must
conform to the data structures defined by the existing modules. The new module must
have a name different from any analysis module installed in the Testbed if it is to be exe-
cuted within a CLAMP procedure along with Testbed modules. Typically, the module is
tested on the local workstation or minicomputer to verify its operation before it is sent to

the CRAY-2 for further testing.

Once the new module has been initially tested on a local computer, the source code and /or
procedures are transferred to the NAS CRAY-2 system via a network, and an executable
file is built on the CRAY using the same procedures as on the local computer. CLAMP
scripts for verifying the processor operation on the local computer are also portable from

the local computer to the CRAY-2.

CRAY-2 UNICOS Environment

A shell script and makefile used for building an external processor on the CRAY-2 computer
are shown in Figures 2 and 3. The script refers to an environment variable CSM_ROOT
which contains the name of the root directory for the Testbed software files. This variable
is passed to the makefile as a macro variable to be used for defining the names of utility
object files and library files to be linked with the new module. The makefile uses the MAX
and INCLUDE utilities and requires that the user have his PATH environment variable

deﬁqed so that those files are accessible.

A login script is provided for Testbed users to execute to define their environments for
compatibility with these scripts. The user should determine the pathname for the root
directory of the Testbed files on each of the vcomputers where the Testbed is to be used. To
execute the Testbed login script on a particular computer at login time, the user should

insert the following commands in his “.login” file:

setenv CSM_ROOT "system_dependent_path"
source $CSM_ROOT/login

14

To precompile, compile, and link a new module into an executable external processor, the

following command is used:

bldextp module_name [object_file_names]

where module_name is the root name of the mocule source file, which resides in the current
directory with extension “.ams”; the optional arjjument, object_file_names, is a list of object
files to be linked with the module. The script automatically links in the Testbed utilities,

so these do not have to be included in the list.

The command to execute the Testbed macroprocessor is:

testbed

The user’s PATH environment variable is defined in the login script so that the directory

in which the Testbed executable resides is searched by the shell when the above command

is entered.

An example shell script for executing the Testbe in conjunction with an external processor

is shown in Figure 4.

FUTURE DIRECTIONS FOR THE CSM TESTBED

The future directions of the CSM Testbed will be tied to developments in several other
areas, particularly the evolving computer hardware industry. The changes in computer
hardware will, out of necessity, result in changes to operating systems and systems software
in order to take advantage of the changes in hardware. New approaches in applying
numerical analysis will result from changes in computer hardware and software. This
evolving technology provides more and faster computer architectures but only at the cost

of software compatibility and complexity.

The CSM Testbed is being extended to explcit the multiple instruction multiple data
(MIMD) computers that are becoming generally available. To support analysis on MIMD
computers, the command language is being rewritten and advanced numerical algorithms

are being developed

Command Language Enhancements
In order to provide a better Testbed environment, enhancements to the command language

are being developed. The current command language capability was developed over the

15

course of a decade (ref. 13). The present version of the command language interface

program (CLIP) contains 129 subroutines and 18,000 lines of source code.

Enhancements to CLIP are underway to include the implementation of a table driven
parser and lexical analyzer. The UNIX utilities LEX and YACC will be used to implement
an easily extendable language. This language will be primarily the CLAMP language
implemented by Felippa in the NICE computer environment with modifications to remove
context sensitive constructs from the language. Care is being taken to retain all the
problem solving capability proven effective over the last decade while adding generality.
As a side benefit we expect the resulting interpreter to be more efficient and maintainable
in addition to providing the required extendability. This extendability will be tested by the
addition of language directives to control processor/task allocation and synchronization at
a high level through CLAMP directives. The resulting capability will provide a convenient
research environment for the structural analyst to investigate parallelism without relying

on computer dependent coding.

Advanced Numerical Algorithms

Numerical analysts in the CSM activity are developing many new algorithms designed to
take advantage of the vector processing capability offered by many modern computers. In
the past, the sparse nature of the matrices that dominate structural analysis computa-
tions has made vector processors of limited use. Now, however, in addition to numerical
algorithms for vector computers, CSM researchers are developing algorithms for MIMD
computers. Recent research on algorithms for vector and MIMD computers are described
in references 14, 15, and 16. Work will continue on the development of numerical algo-

rithms that will take advantage of both the vector capabilities and the MIMD capabilities

of future computers.

CONCLUDING REMARKS

The CSM Testbed is a useful and powerful development environment for developing struc-
tural analysis and computational methods. The Testbed development environment pro-
vides the mechanism to allow researchers concentrating on different parts of the structural
analysis problem to communicate on solutions to problems that directly relate to current
NASA needs. The transfer of technology among researchers in computer science, numer-

ical analysis, and structural engineering can now be accomplished more effectively than

16

was previously possible.

The CRAY-2 provides an extremely powerful 1op-end capability for performing structural
analysis applications in a networked distributed environment. It is possible for the same
Testbed applications runstream to be used on computers ranging from a workstation run-
ning UNIX through the CRAY-2 supercomputer. A runstream may now be checked out on

a workstation for a small model prior to performing fullscale calculations on the CRAY-2.

Since the CSM Testbed was operational in a UNIX environment prior to converting to the
CRAY-2, the implemention under UNICOS was accomplished without significant prob-
lems. The Testbed program was made operational under a pre-release CFT77 compiler.
Although several compiler errors were found, corrections were possible with the help of

the Cray analysts.

Planned development of the CSM Testbed on supercomputers will involve extensions that
will allow researchers to develop combined vector/MIMD applications methods in an inte-
grated environment. The integrated environment is characterized by a common operating

system, common file system, and usually a coramon administrative system.

ACKNOWLEDGEMENTS

Prior experience of Dr. Frank Weiler of the Lockheed Palo Alto Research Laboratory with
the UNICOS compilers during installation of the STAGS-C1 structural analysis code on
the CRAY-2 was extremely valuable to the success of the Testbed installation. Assistance

and advice given by the NAS consultants is gratefully acknowledged.

17

10.

11.

12.

13.

14.

15.

16.

REFERENCES

Knight, Norman F., Jr.; and Stroud, W. Jefferson: Computational Structural Mechanics:
A New Activity at the NASA Langley Research Center. NASA TM-87612, September

1985.

McLean, Donald M.: MSC/NASTRAN Programmer’s Manual, MSC/NASTRAN Version
68. MSR-50, pp. 1.1-4, October 1983.

Knight, Norman F., Jr.; Gillian, Ronnie E.; and Nemeth, Michael P.: Preltminary 2-D
Shell Analysis of the Space Shuttle Solsid Rocket Boosters. NASA TM-100515, November
1987.

Felippa, Carlos A.: Architecture of a Distributed Analysis Network for Computational
Mechanics. Computers and Structures, Vol. 13, 1981, pp. 405-413.

Felippa, Carlos A.: The Computational Structural Mechanics Testbed Architecture: Volume
2 - Directives. NASA CR-178385, 1988.

Felippa, Carlos A.: The Computational Structural Mechanics Testbed Architecture: Volume
1 - The Language. NASA CR-178384, 1988.

Wright, Mary A.; Regelbrugge, Marc E.; and Felippa, Carlos A.: The Computational
Structural Mechanics Testbed Architecture: Volume 4§ - The Global-Database Manager
GAL-DBM. NASA CR-178387, 1988.

Hurst, P. W.; and Pratt, T. W.: Ezecutive Control Systems in the Engineering Design
Environment. AIAA Paper No. 85-0619, 1985.

Felippa, Carlos A.: Fortran-77 Simulation of Word-Addressable Files. Advanced Engi-
neering Software, Vol. 4, Number 4, 1982, pp. 156-162.

Lotts, C. G.; Greene, W. H.; McCleary, S. L.; Knight, N. F., Jr.; Paulson, S. S.; and
Gillian, R. E.: Introduction to the Computational Structural Mechanics Testbed. NASA
TM-89096, 1987.

Knight, N. F.; McCleary, S. L.; and Macy, S. C.; and Amminpour, Mohammad A.: Large-
Scale Structural Analysis: The Structural Analyst, the CSM Testbed, and the NAS System.
NASA TM-100643, 1988.

Felippa, Carlos A.: MAX and Friends. NASA CR-178383, 1988.

Felippa, Carlos A.: A Command Reader for Interactive Programming. Engineering Com-
putations, Vol. 2, Number 3, Sept. 1985, pp. 203-237.

George, J. A.; and Liu, J. W. H.: Computer Solution of Large Sparse Positive Definite
Systems. Prentice-Hall, Englewood Cliffs, N. J., 1981.

Poole, E. L.; and Overman, A. L.: The Solution of Linear Systems of Equations with a
Structural Analysis Code on the NAS CRAY-2. NASA CR-4159, 1988.

Storaasli, O. O.; Poole, E. L.; Ortega, J.; Cleary, A.; and Vaughan, C.: Solution of
Structural Analysis Problems on a Parallel Computer. AIAA Paper Number 88-2287,

1988.

TRADEMARKS

UNIX is a registered trademark of AT&T. CRAY and UNICOS are registered trademarks
and CRAY-2, CFT77, and SEGLDR are trademarks of Cray Research, Inc. ULTRIX is a
registered trademark and VAX, MicroVAX, and VMS are trademarks of Digital Equipment
Corporation. SUN is a trademark of Sun Microsystems, Inc. FLEX/32 is a trademark of
Flexible Computer Corporation. IRIS is a trademark of Silicon Graphics, Inc. FORGE
is a trademark of Pacific Sierra Research. PRONET-10 is a trademark of Proteon, Inc.
VITALINK is a trademark of Vitalink Corporation.

18

T

Gi §owd LUal BTy

Computer Specific
Development Operating System

Environment

Figure 1. CSM Testhed Organization

19

#! /bin/sh

*

Shell script for invoking make to build an external processor executable;

Environment variable CSM_ROOT must be defined prior to invoking this script.

Usage: bldextp processor name [other objects]

vhere: processor.name is the name of the executable file to be built;

(the source code for the processor must be in

a file of the same root name with extension .ams)

other objects is an optional list of full pathnames of object files
to be built and linked with the processor object,

Testbed utilities and NICE libraries

B c e m e e e e emm———————
case $# in

0) echo 'Usage: bldextp processor.name [other objects]' 1>k2 ; exit 2;;
2) EXTP=$1; shift

esac

“ __
Check to make sure shell variables are defined

' __

case "$CSM_ROOT" in
"") echo 'CSM environment variables must be set before invoking bldextp.’ 1>&2

exit 2
esac
et T T S Ry Ly U,
make other object files first
P r et nt et e e c e e Lt e ———————
for i in $=
do

echo Making $i
FILE='basename $i .o°
DIR=‘dirname $i°*
(case "$DIR" in
nn) i
*) cd $DIR
esac
make -f $CSM_ROOT/sam/tbo.mk $FILE.o CSM_ROOT=$CSM_ROOT \
MAXKEYS="NICE EXTP TEK")
case $? in
0) i
*) exit 2
esac
done

echo Making $EXTP
FILE=‘'basename $EXTP*
DIR=*‘dirname $EXTP*
FILE=*basename $FILE .o’
(case "$DIR" in
vm) N
*) cd $DIR
esac
make -f $CSM_ROOT/sam/tbo.mk EXE=$FILE CSM_ROOT=$CSM_ROOT OBJS="$=" \
MAXKEYS="NICE EXTP TEK")

Figure 2. Shell script for building a Testbed external processor

20

tbo.mk

#
Makefile for building a Testbed object or esecutable file

*
Build an object file for a Testbed module from an ANS file.
Link the object files with Testbed utility object files and
NICE libraries.

#

Macros (Make macros which may be overridden on the make command)

CSM_ROOT must be defined on the make commanc

CSM_NOD = $(CSM_ROOT)/sam/mod

CSM_UTL = $(CSM_ROOT)/sam/utl

EXE = testbed

FC = cft77

FFLAGS = -a static -ecrsx

INCDIR = .

LD = segldr

LFLAGS =

MAXKEYS = NICE TEK

NICELIBS = $(NLB)/clp861lb.a \
$(NLB) /gal86lb.a \
$(NLB) /dmg861b.a \
$(NLB) /ut1861b.a \
$(NLB) /bio861b.a

NLB = $(CSM_ROOT) /nice/lib

0BJS =

UTILS = $(CSM_MOD)/gsutil.o \
$(CSM_MOD) /nsutil.o \
$ (CSM_NOD) /nsparlibl.o \
$ (CSM_MOD) /nsparlib2.0 \
$ (CSM_MOD) /nsparlib3.o \
$(CSM_UTL) /plot10.2a

.SUFFIXES:
.SUFFIXES: .ams .o
Transform .ams file to .o file; use include and max utilities, then compile

.ams.o0:
include -i $*.ams -o $*.tmp -d $(INCDIR)

- m $*.f

max /wc/uc/for/sic/ti/mach=unix -i $*.tmp -o $*.f $(MAXKEYS)

- m $%.tm

$(FC) $(FFLAGS) $*.f
m $*.f
" ___
Targets
ettt e it

Executable depends on an object file with the same root name ;
link with named objects, utilities, and NICZ libraries
$ (EXE): $(EXE).o

$(LD) $(LFLAGS) -o $€ $€.o $(0BJS) $(JTILS) $(NICELIBS)

Figure 3. Makefile for building 2 Testbed external processor

21

time testbed << \eof

«SET ECHO OFF

*open 1 cube.1l01

*PROCEDURE CUBE

#DEF NN == 7

sDEF/g LL == 22.222222

*DEF NNN1 =< <NN> - 1>
»DEF NNNN =< <NN>*<NN> >
DEF JNT =< <NNNN><NN> >

[XQT TAB

online=0

START <JNT> 4,5.,6

[XQT AUBS

online=0

TABLE(NI=31 ,NJ=1): PROP BTAB 2 21
J=1

.101>

.1E-6>

-.3E-7 .1E-6>

-.3E-7 -.3E-7 .1E-6>

0.0 0.0 0.0 .26E-6>

0.0 0.0 0.0 0.0 .26E-6>
0.0 0.0 0.00.0 0.0 .26E-6>
0.0 0.0 0.0>
1.01.01.01.01.01.0
[XQT TAB

online=0

JLOC

*DEF N = <NN>
sDEF/1i JONT = 1
«DEF/g Z = 0.0
*DEF/g DELZ =< <LL>/<NNMi> >
*D0 $I=-1,<N>
<JCNT> 0. 0. <Z> <LL> 0.0 <Z> <NN> 1 <NN>
<NN> 0. <LL> <Z> <LL> <LL> <ZI>
*DEF/g Z =< <I> + <DELI> >
*DEF/i JCNT =< <NNNN> + <JCNT> >
«ENDDO
MATC : 1 10.+6 .3 .10
CON 1 : ZERD 1,2,3: 1 : <NN> : <NNNN>
*DEF N =< <NNNN> - <NN> + 1 >
<N>
[XQT ELD
online=0
s81
1 <NNMi> <NNM1> <NNM1> 1 <NN> <NNNN> 0 1
[xqt pfmx . Execute external processor pfmx (experimental version of PFM)
reset method=b5,maxcon=8,nalg=0
{xqT TOPO
reset maxsub=40000, LRAM=12288
stop
*gho macros
(xqt dcu
toc 1
*END
*CALL CUBE
[XQT EXIT
\eof

Figure 4. Example script executing Testbed with external processor

22

© 0 1 O ;bW

d B A A b D b B b WOW W W W W W W WW NN NN R NN NN
B N0 NEWNRNODDNAD N D DN ENOD R NSO RE N NEN SO D NS

Appendix A. Testbed CRAY-2 Block I/O Routines

IOXCLO - Close a file

~
*

Modified for UNICOS 3.0 cft77 character arguments
this routine is called in fortran (£77) via:

call IOXCLO (fd, opt, path, size, bksz, blks, msg)

input arguements:

fd = file descriptor for file (for closing)
opt = 1 character close option flag, where
opt = ' ' for normal close
‘d®" for close/delete option
path = complete 'path’ name of file (for delete opt)

output arguements:

size = size of file (in bytes)

bksz = optimum block size of file

blks = number of blocks in file

msg = error return message (blank if no error)

LA B R I R . N JER IR BEE R BER BEE R TR SN S SN S 3

*
~

#include <stdio.h>

#include <sys/types.h>
#include <sys/file.h>
#include <sys/stat.h>

typedef struct { ushort offset: 3;
ushort filerl: 3;
ushort length: 23;
ushort filer2: 3;
ushort addres: 32;} chptrf;

typedef struct { ushort offset: 3;

ushort filer3: 29;

ushort addres: 32;} chptr:;
[aepenhhnkkhhhdhhkkiok

* entry - IOXCLO =
TTITTIT I I T T T T TS

I0XCLO(fd, opt, path, size, bksz, blks, msg)

chptrf path, opt, msg ;
long int »fd, =size, *bksz, #*blks ;

A-1

IOXCLO: close (/delete) a file from randon i/o, given it's descriptor

49
50
51
52
53
54
66
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101

/*

*

*/

extern int errno;
extern int BLKSIZ;

chptrc cpath, copt;

int lpath, lopt, lmsg ;
char *op, *pp, fnam[256];
int i;

struct stat stbuf;

errno = O;

/*

clear the error code no. */

/* create local C-pointers form FORTRAN-pointers */

cpath.offget =
cpath.addres =

lpath =
copt.offset =
copt.addres =
lopt =
lmsg =
PP -
op =

path.offset;
path.addres;
path.length;

opt.offset;
opt .addres;
opt.length;
msg.length;

cpath;
copt;

/* first, extract the file's stats for return */

if (fetat(*fd, &stbuf) == -1) /*

{

sgize = O;
*bksz = 0;
*blks = O;

/*

IOXERR_{(errno, msg, lmsg);

}
else

{

/*

gize = gtbuf.st_size; /

*bkez = stbuf.st_blksize;
*blks = stbuf.st_blocks;

IOXERR_(NULL, msg, lmsg);

}

/+ second, close the file pointed to

if (close(*fd) == -1) » /*

{

error in status request 7 s/

clear file statistics =/

/* extract error number */
valid status info 74

set ’'size’ = file size (char) =/

/* clear error number

by 'fd’ =/

error on close request ? */

*/

102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126 }

TIOXERR_(errno, msg, lmsg); /* extract error number */
return;

}
/* last, check option and delete file if request is on */

if (sop == *d’) /* celete option on ? */
{

/* transfer FORTRAN character string (path) to local array fnam[] */

i = 0;

while ((*pp != '\0’) &k (+pp != ' ' &k (i < lpath))
{
fnam{i++] = *(pp++);
}

fnam[i] = '\0O’;

if (unlink(fnam) == -1) /* error on delete request ? */
{
IOXERR_(errno, msg, lmsg); /* extract error number x/
}
}
return;

IOXERR - Return a system error message, given the error no.

1 /+ IOXERR: return a system error message, given ‘erno’

2 * Modified for UNICOS 3.0 cft77 character arguments

3 =

4 » IOXERR_(erno, msg, lmsg)

5 *

6 * input arguements:

7

8 * erno = system error number

9 * if erno = 0, NULL error, ierr = 0

10 = erno < 0, undefined, ierr = -1

11 =* erno > sys_nerr, undefined, ierr = -1

12 = lmsg = length of message string °'msg’

13 =

14 * output arguements:

15 =

16 = msg = error message (blank if ‘erno’ == NULL)

17 =

18 */

19
20 #include <stdio.h>
21 #include <errno.h>
22
23 IOXERR_(erno, msg, lmsg)

24
256 char *meg;
26 long int erno, 1lmsg;
27
28 {
29 extern int sys_nerr; /* largest error no. for which system =/
30 /% system tables has a defined message */
31 extern char *sys_errlist{]; /* table of system error messages */
32
33 strncpy (msg, " ", lmsg);
34 if (erno == NULL) /* NULL error message returned */
35 {
36 return;
37 }
38
39 if (erno>0 && erno<sys_nerr)
40 {
41 strncpy(msg, sys_errlist[erno], lmsg);
42 printf (" IOXERR: ierr = %4d (%s)", errno, sys_errlist[erno]);
43 }
44 else
45 {
46 strncpy(msg, "ERROR: unknown error value", lmsg);
47 printf (" IOXERR: ierr = %4d (unkown error value ?)", errno);
48 }
49 return;

50 }

A-4

IOXLOC - Extract the current position within a file

1 /+ I0XLOC: extract the current position within a file
2 #* Modified for UNICOS 3.0 cft77 character arguments
3 =*

4 + this routine is called in fortran (£77) via:

5 =

6 * call IOXLOC (fd, size, bksz, blks, pos, msg)
7 % ceememmmmmmmmme e mememmmm—m——mm—o o

8 =

9 * input arguements:

10 »

11 = 1d = file descriptor for file

12 =*

13 * output arguements:

14 *

16 = size = size of file (in bytes)

16 = bksz = optimum block size of file

17 = blks = number of blocks in file

18 » pos = position within file returned by lseek(2)
19 = msg = error return message (blank if no error)
20 =

21 »/
22
23 #include <stdio.h>

24 #include <sys/types.h>

25 #include <sys/file.h>

26 #include <sys/stat.h>

27

28 typedef struct { ushort offset: 3;

29 ushort filerl: 3;

30 ushort length: 23;

31 ushort filer2: 3;

32 ushort addres: 32;} chptrf;

33

34 /»

35 = the following flags represent file positioning

36 parameters used by lseek(---)

37 =

38/

39 #define L_SET o /* absolute offset (from BOF) */
40 #define L_INCR 1 /* relative to current offset */
41 #define L_XTND 2 /* relative to end of file */
42

43 IOXLOC(fd, size, bksz, blks, pos, msg)

44

45 chptrf msg;

46 long int +fd, *=size, *bksz, *blks, #*pos;

47

48 {

49

60 int 1lmsg:

51 extern int errno;

A-5

52
53
54
66
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

}

extern int BLKSIZ;
struct stat stbuf;

lmsg = msg.length;
spos = lseek (*fd, OL, L_INCR);

if (fstat(*fd, &ketbuf) == -1)

{
*gize = 0,
sbkaz = 0;
*blks = O;
IOXERR_(errno, msg, lmsg);
}
else
{

*gize = gtbuf.st_size;

*bksz = sthuf.st_blksize;
*blks = stbuf.st_blocks;

IOXERR_(NULL, msg, lmsg);
}

return;

/* extract position within file */
/* error in status request ? */

/* clear file statistics */

/* extract error number #*/
/* valid status info */

/* set 'size’ = file size (char) #/

/* clear error number */

A-6

© 0 N DA W =

A b b b A Db b bR B WWWWWWWWWEN VN NN

IOXOPN - Open a file for random 1/O

/* I0XOPE: open a file for randon i/o, g:.ven it’'s path name
Modified for UNICOS 3.0 cft77 character arguments
this routine is called in fortran (f77: via:
call IOXOPE (path, opt, fd, size bksz, lbks, msg)
input arguements:

[IR BEE B BEE Y 2N S N IR TER BEE JEE NEE N R NEE R SN JBE R BEE BEE BN NN BEE BER N

*
~

path = complete 'path’ name of file
opt = 2 character open option flaygs, where
opt[0] = 'r’ for 'read_only’
'w' for ‘write_app2nd’
* * for both 'read write’
opt[1] = 'o’ for ‘existing’' file open
‘n' for ’'create_new’' file open
‘s’ for 'scratch’ file open
* * for 'create_nev’ even if file
already exists (truncate old)

output arguements:

fd = file descriptor for open fite

size = gize of file (in bytes)

bksz = optimum block size of file

blks = number of blocks in file

msg = error return message (blank if no error)

#include <stdio.h>
#include <ays/types.h>
#include <sys/file.h>
#include <sys/stat.h>

#include <errno.h>
#include <fcntl.h>
/*

* the following flags represent file

* accessing modes used by open(---)

*

o/
#define R_OK 04 /* read permisaion */
#define W_0K 02 /* write permission */
#define X_0K 01 /* execute/search permission */
#define F_OK 00 /* file existence */
int BLKSIZ = 4096; /* preset blo:k/buffer size

in bytes (= 512 words) */

A-7

62
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
756
76
77
78
79
80
81
82
83
84
BS
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104

typedef struct { ushort offset:
ushort fileri:
ushort length:
ushort filer2:
ushort addres:
} chptrf;

typedef struct { ushort offset:
ushort filer3:
ushort addres:

} chptrc;

/t‘tt‘t‘tt#t*tt‘###‘**#

* entry - IOXOPE »
ttt*tttttttttt#tttttt*/

IOXOPE(path, opt, fd, size, bksz, blks, mag)

chptrf path, opt, msg ;

long int =fd, *gize, *bksz, *blks ;

{

extern int errno;
extern int BLKSI1Z;

chptrc cpath, copt;

int lpath, lopt, 1lmsg;

char oc, *op, *pp, fnam{256];
int i, flags, mode, acc;

struct stat stbuf;

29;
32;

/*
/%
/*
/*
/*
/*
/*

/*
/*
/*
/*
/*

string offset in bytes %/
length °bits’ count */
string length in bytes #*/

offset 'bits’ count */
string address */
CHar PoinTeR Fortran */
-~a - - - - t/
string offset in bytes */

unused space */
string address */
CHar PoinTeR C-lang. */
- o - - o a */

/* create local C-pointers form FORTRAN-pointers */

cpath.offset = path.offset;
cpath.addres = path.addres;
lpath = path.length;

copt.offset opt.offset;
copt.addres = opt.addres;

lopt = opt.length;
1lmsg = msg.length;
PP = cpath;
op = copt;

/* transfer FORTRAN character string (path) to local array fnam[] */

i = 0;

105
106
107
108
109
110
111
112

113

114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
164
165
166
157

while ((+pp != °*\O’) && (»pp != ' ') #& (i < lpath))

{
fnam[i++] = t(pp++);
}

fnam[i] = °\O’;

/* setup open options by checking file status */

oc = ‘¢’
acc = access(fnam, F_0K);

if (acc == -1)
{
if (*(op+1)=="0")
{
IOXERR_(errno, msg, lmsg)
return;

}
}

else

{

if (*(op+1)=='n’)
oc = 'c';

else

}

mode = 0644;

flags = O;

if (+(op) == 'r’) flags =
if (x(op) == 'w*) flags =
it (*(op) == " *) flags =

it (s(op+1) == '0’) flags =
if (#(op+1) == °'n') flags =
if (*(op+1) == ’s') flags =

sgize = O;
sbksz = O;
sblks = O;

+fd = open(fnam, flags, mode);

if (#fd == -1)
{
I0XERR_(errno, msg, lmsg):
}

else

{

/*
/*

/*
/*
/*

/*

/*
/*
/*
/*
/*
/*

/*

/*
flags
flags
flags
flags

flags
flags

/*

/*

/*

/*

tet open/create flag = 'create’ */
sttempt to access the file =*/

file does not exist */
- t/

user option says °‘old’ */

/* extract error number */
return to user */

file exists */

mENERmumEn K /
user option says 'mew’' */

set open/create flag = ’create’ */
user option says 'old/both’ */
set open/create flag = ‘open’ */
ret protection = (rw_,r__,r__) */
vet open 'flags' using (opt) */

O_RDONLY;

O_WRONLY;

O_RDWR;

0_EXCL; */

O_CREAT | O_TRUNC;
O_CREAT | O_TRUNC;

wet defaults for file size */

open/create file 'path’ */

asrTOr on open/create request */
/* extract error number

ralid file open, check status */

A-9

*/

158
159
160
161
162
163
164
165
166
167
168
168
170
171
172
173
174
175
176
177
178
179
180
181

if (festat(»fd, &stbuf) == -1)
{
IOXERR_(errno, msg, lmsg);
}

else
{
*gize = stbuf.st_size;

/*
* s*bksz = stbuf.st_blksize;
* *blks = stbuf.st_blocks;

»/

IOXERR_(NULL, msg, lmsg);

/% error in status request ? */
/% extract error number */
/* valid status info */

/* set 'size’ = file size (char) */

/* clear error number x/

/* if file has been successfully opened and it is a scratch file,
*+ then if the file is unlinked at this point (while still open),
*% jt will be deleted when it is closed.

*/
if ((*(op+1) == 's’) &k (unlink(fnam) {= 0))
IOXERR_(errno, msg, lmsg) ;
}
}
return;
}

A-10

IOXRDR - Read r words from file

IOXRDR: read 'n’ words from file 'fd ', starting at block mo. 'blk’
Modified for UNICOS 3.0 cft77 character arguments

~
-

this routine is called in fortran (f77) via:

call IOXRDR (fd, buf, nwds, blk, msg)

© 0 3 O M & W -

VN o b A R A B WWW W WWWWWE N NN KNNNNNN
i—Oﬂom\lGO‘ACDNU-‘O(OWNIG)U\#NNi‘O‘O@ﬂ@GAWMO—86;:;;:55:8

input arguements:

output arguements:

® % % B OBE R X % X X ¥ XX R KRN

*
~

#include <stdio.h>
#include <sys/types.h>
#include <sys/file.h>

typedef struct { ushort offset: 3;

ushort fileri: 3;
ushort length: 23;
ushort filexr2: 3;
ushort addres: 32;} chptrf;
/*
* the following flags represent file positioning
» parameters used by lseek(---)
s/
#idefine L_SET (o] /* absolute oifset (from BOF) */
#define L_INCR 1 /* relative to current offset */
#define L_XTND 2 /* relative to end of file
IOXRDR(fd, buf, nwds, blk, msg)

fd = file descriptor for file
buf = pointer to buffer string (char)
nwds = number of words (long int) to read in
blk = starting 'block’ number in file

msg = error return message (blank if no error)

chptrf msg;
char *buf;
long int *fd, »*nwds, *blk;
{
extern int errno;
extern int BLKSIZ;
int nbuf, pos, ibuf, lmsg;

A-11

52
53
54
55
56
57
58
59
80
61
62
63
64
85
66
87
68
69
70
71
72
73
74
76
76
77
78
79
80
81 }

long int offset;

lmsg = msg.length;

*nwds * 8;
BLKSIZ * (sblk - 1);

nbuf -
offset =

if (offset >= 0)
{
pos = lseek(sfd, offset, L_SET);
if (pos == -1)
{
IOXERR_(errno, msg, lmsg);
return;
}
}

ibuf = read(*fd, buf, nbuf):
if ((ibuf == -1) || (ibuf != nbuf))
{
IOXERR_(errno, msg, lmsg);
}

else

{
IOXERR_(NULL, msg, 1lmsg);

}

return;

A-12

/* no_bytes = 8 * no_words
/+ (byte_wise) offset of 'blk’ %/

o/

/* error condition in lseek call

/* extract error number

/* error condition on read =/

/* extract error number =/

/* clear error number #*/

/* position file before read request +/

*/

/* Tead in 'nbuf’' bytes to 'buf’ &/

*/

© 0 2 DA WN

JIOXWTR - Write . words to a file

IOXWIR: write 'n’ words to file 'fd’, starting at block no. ‘blk’
Modified for UNICOS 3.0 cft77 character arguments

~
*

this routine is called in fortran (£77 via:

call IOXWTR (fd, buf, nwds, blk, msg)

input arguements:
fd = file descriptor for file
buf = pointer to buffer string (long imt)

nwds = number of words (long int) to write out
blk = starting 'block’ number in file

output arguements:

meg = error return message (blank if no error)

[T BT SR B A SN IR R N N R R N R B B

*
~

#include <stdio.h>
#include <sys/types.h>
#include <sys/file.h>

typedef struct { ushort offset: 3;
ushort filerl: 3;

ushort length: 23;
ushort filer2: 3;
ushort addres: 32;} chptrf;
/*
* the following flags represent file positioning
* parameters used by lseek(---)
*
./
#define L_SET 0 /* absolute offset (from BOF) */
#define L_INCR 1 /* relative to current offset */
#define L_XTND 2 /* relative to end of file T4
IOXWTR(£d, buf, nwds, blk, msg)

chptrf msg;
char *buf;
long int «fd, *nwds, *blk;

{

extern int errno;
extern int BLKSIZ;
int nbuf, pos, ibuf, lmsg:

A-13

52
53
54
55
56
57
58
59
60
81
62
63
64
85
66
67
88
69
70
71
72
73
74
76
76
77
78
79
80
81
82
83)}

long int offset;

lmsg = msg.length;

nbuf = =s*pwds * 8; /*
offset = BLKSIZ » (*blk - 1); /*
if{(offaot >= 0) /*

pos = lseek(+fd, offset, L_SET);

if (pos == -1) /*
{
IOXERR_(errno, msg, lmag);
return;
}

)}

ibuf = write(*fd, buf, nbuf); /*

if ((ibuf == -1) || (ibuf I= nbuf))

{
IOXERR_(errno, msg, lmsg);

}
else

{
IOXERR_(NULL, meg, lmsg);
}

return;

no_bytes = 8 * no_words */
(byte_wise) offset of 'blk’ */

position file before write request */

error condition in lseek call 7 #/

/* extract error number

write in ’'mbuf’ bytes to 'buf® =/
/* error condition on write */

/* extract error number */

/* clear error number =/

A-14

O WO 3O NA W W -

10

Appendix B. Testbed Main Program

Testbed Main Program in AMS format

C$Header: nicespar.ams,v 1.3.1.1 87/09/21 14:59:64 ns Exp §
C=DECK TESTBED TESTBED FORTRAN
C=BLOCK FORTRAN

program testbed

c
¢ main program for CSM Testbed macroprocessor
c
G mmm e e e o oo o o e
C+ COMMON & GLOEALS
G == mmmmm e e mm e e esaseM—meeesseeeas—
include ‘'CSM_INC:KORCOMA.INC'®
common /iando/ iin, ioutx
common/nsextp/iextp
[T D bl ittt bt Dttt R atatads
C+ LOCALS
[it e
character*50 verid,vertitl
character+32 idproc, commnd, cclval
character+*64 procnam, filnam, cclmac
character+256 image
character*8 cdt(2)
logical exis
integer runmod
[et e ittt
C+ Installed Processors
[+ R it it Gatnbale bbb bbbl bt
include ‘'procs.inc’
L N e L LR L L P e
C+ DATA
[et T
data iextp/1/
data vertitl/® CSM TESTBED Ver. 1.2 - May 1988°/
Ct--————-me e e e e m e m e — e e se s ass——
C+ LOGIC

c

c

C Initialize common variable to the length of the blank common work array
c

kort = kszzz ! Changed from DATA statement CGL 4/86
c
C Send empty message to CLIP to force it to boot
c
call clput(' *)
c
C Set unit where printed output will be written
C Look for macrosymbol 'ms_prtunt’ first, them CLIP PRT if not defined
c

B-1

49
50
51
52
63
54
55
56
57
58
59
60
61
62
683
64
85
66
87
68
89
70
71
72
73
74
75
76
77
78
79
80
81
82
B3
84
85
86
B7
88
89
90
91
92
93
94
95
96
o7
98
09
100
101

c

call nsprtu(ioutx, ierr)

C=IF VAX

verid='VAX/VMS'//vertitl

C=ELSEIF UNIX

verid=°"UNIX’//vertitl

C=ELSEIF CRAY

verid='CRAY-2'//vertitl

C=ENDIF

c
c
c

€

Get current date and time

100

200

G

call datimc ('R’, o, cdt)

write(ioutx, *(/1x,a2,10x,a,1x,a/)’') verid, cdt(1), cdt(2)

call timrb
call gmacro(1)

continue

idproc = 'CSN’

call gmsign(idproc)
continue

et next user command

call clnext(’' CSM>’,’' Enter command to execute processor: [XQT

$ //'proc_name’, nitems)

commnd = cclval(l)
idproc = cclval(2)

C=IF UNIX

lenc = lenetb(commnd)
call cc2uc(commnd, commnd, lenc
lenp = lenetb(idproc)
call cc2uc(idproc, idproc, lenp

C=ENDIF UNIX

[+

Cc
[~
c

check macrosymbol to see whether or not to initialize blank

[+

290

ommon array to zero

initcom=iclmac('NS_INITCOM')

if(nitems.gt.1.and.((commnd.eq.'[XQT').or.(commnd.eq. RUN *)))

$then
if (idproc.eq. ’EXIT') then
call clput(’*stop’)
else
if(idproc.ne.’ ') then
do 300 i=1,nproc

if(idproc .eq. namep(i)) then

if (initcom .ne. 0) then
do 290 j=1,kort
a(j)=0.
endif

)
)

102 iproc = i

103 go to 1000

104 endif

105 300 continue

106 C=IF VAX

107 procnam='ns$extp:'//idproc//’ .exe’
108 call stripbl(procnam)

109 inquire(file=procnam,exist=exis)

110 C=ELSEIF UNIX

111 ¢

112 ¢ Close bulk output file

113 ¢

114 if (ioutx.ne.6) close (unit=ioutx)
116 ¢

116 ¢ Convert filename to lower case

117 ¢

118 call cc2lc(idproc,idproc,lenp)

119 procnam=idproc

120 exis=.true.

121 C Let Superclip try to find the file
122 C=ELSE

123 procnam=idproc

124 exis=.true.

126 C Let Superclip try to find the file
126 C=ENDIF

127 if (exis) then

128 C

129 ¢ run external processor

130 C

131 call clput(**run '//procnam!

132 C

133 € If we get back here, there was an e:rror;
134 C continue if interactive or terminate if batch
135 C

136 write(ioutx,*) ’Unable to execute ’',procnam
137 call fbi(runmod)

138 302 if (runmod.eq.0) call endrun (*CSM’, 302)
139 go to 100

140 else

141 write(ICUTX,310) procnam

142 310 format(* Unable to run ’,a, ; File not found.’)
143 endif

144 C

145 else

146 write (IOUTX, 320)

147 320 format(* Error, invalid TESTBED command; image follows:')
148 call clglim (image)

149 write(IOUTX,321) image

150 321 format (a132)

151 endif

152 endif

153 else

154 write(IOUTX,320)

165
156
167
158
159
160
161
162
163
164
165
166
187

call clglim (image)
write(IOUTX,321) image
endif
go to 100
1000 continue
c
¢ execute the appropriate processor
c
include ‘'subcalls.inc’
15600 continue
go to 100
end
C=END FORTRAN

N DA W -

Include File Containing Processor Abbreviations - (procs.inc)

parameter (nproc =39)

character+6 namep(nproc)

data namep/’AUS’,'DCU’,°'DR’,'E’,'EIG’, 'EKS',*ELD', 'EQNF’,’GSF’,
*INV',*K','KG',’M',"P8",'PLTA’,'PSF*, SSOL’, "TAB",
*TOPO’, 'VPRT','VEC’, IMP’,'PANMA’,'PKMA’, 'PRTE’,'LAU’,
*CSM1°’, *RSEQ”, 'PFN’,*NTP',’8STA', TAFP', 'TGEO’, 'TRTA',
*TRTB’, *TRTG®,'TAK’,'TADS’, 'VIEW'/

» 0 e N

Include File for Macroprocessor Subroutine Calls - (subcalls.inc)

g0 to(1001,1002,1003,1004,1005, 1006,1007,1008,1009,1010,1011,1012,
1013,1014,1015,1016,1017,1018, 1019, 1020, 1021, 1022, 1023, 1024,

1037,1038,1039)

© W DA W N

10

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

.iproc
call AUS
go to 200
call DCU
go to 200
call DR
go to 200
call E
go to 200
call EIG
go to 200
call EKB
go to 200
call ELD
go to 200
call EQNF
go to 200
call GSF
go to 200
call INV
go to 200
call K
go to 200
call KG
go to 200
call M
go to 200
call PS8
go to 200
call PLTA
go to 200
call PSF
go to 200
call SSOL
go to 200
call TAB
go to 200
call TOPG
go to 200
call VPRT
go to 200
call VEC
go to 200
call IMP
go to 200
call PAMA
go to 200

$

$ 1025,1026,1027,1028,1029,1030,1031,1032,1033,1034, 1035, 1036,
$

$

52
63
54
55
56
567
58
59
60
61
62
63
64
85
66
67
68
69
70
71
72
73
74
75
78
77
78
79
80
81
82
83

1024

1026

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

call PKMA
go to 200
call PRTE
go to 200
call LAU
go to 200
call CSM1
go to 200
call RSEQ
go to 200
call PFM

go to 200
call MPMTP
go to 200
call MPSSTA
go to 200
call MPTAFP
go to 200
call MPTGEO
go to 200
call MPTRTA
go to 200
call MPTRTB
go to 200
call NPTRTG
go to 200
call MPTAK
go to 200
call MPTADS
go to 200
call MPVIEW
go to 200

B-%7

NNASA Report Documentation Page

Nationat Agrona mcs anc
Sopace Admmiralon
1. Report No. 2. Government Accession No. 3. Recipient’s Catalog No.
NASA TM-100642
4. Title and Subtitle 5. Report Date
The CSM Testbed Software System: A Development Environment September 1988
for Structural Analysis Methods on the NAS CRAY-2 8. Performing Organization Code
7. Author(s) 8. Performing Organization Report No.

Ronnie E. Gillian and Christine G. Lotts

9. Performing Organization Name and Address 10. Work Unit No.

NASA Langley Research Center 505-63-01-10
Hampton, VA 23665-5225 11. Contract or Grant No.

18. Type of Report and Period Covered
Technical Memorandum

12. Sponsoring Agency Name and Address
National Aeronautics and Space Administration
Washington, DC 20546-0001 14. Sponsoring Agency Code

15. Supplementary Notes
Ronnie E. Gillian, Langley Research Center, and Christine G.Lotts, Planning Research Corporation

18. Abstract

The Computational Structural Mechanics(CSM) Activity at Langley Research Center is developing
methods for structural analysis on modern computers. To facilitate that research effort, an applications
development environment has been constructed to insulate the researcher from the many computer
operating systems of a widely distributed computer network. The CSM Testbed development system
was ported to the Numerical Aerodynamic Simulator(NAS) Cray-2, at the Ames Research Center, to
provide a high end computational capability. This paper describes the implementation experiences, the
resulting capability, and the future directions for the Testbed on supercomputers.

17. Key Words (Suggested by Authors(s)) 18. Distribution Statement
Structural analysis software Unclassified— Unlimited

Finite element analysis
Finite element software

Subject Category 39

19. Security Classif.(of this report) 20. Security Classif.(of this page) 21. No. of Pages| 22. Price
Unclassified Unclassified 45 AO03

NASA FORM 1626 0CT s8¢
For sale by the National Technical Information Service, Springfleld, Virginia 22161-2171

