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In ocean general circulation models, such as Bryan-Cox I and other
derived models, the dissipation term is usually taken to have two axes of

symmetry, with eddy coefficients AL and A_ in the symmetry plane and

symmetry axis direction respectively. AL is much greater than A H , and

both are much greater than the molecular value. If we further impose the
condition of complete isotropy, the viscous stress term must return to the

usual Laplacian of the velocity multiplied by a scalar, in whatever
coordinates the equations are written and in particular in the earth
surface coordinates in which the codes are written. However, the viscous

stress terms used by nearly all the models, which were taken from

Kamenkovich, do not do this. The reason for this flaw is the
Kamenkovich's linearization of the gauge matrix occurred too early, i.e.,

the substitution of the earth radius a for the radius r = a + z was made

too early, so that some of the z-derivatives that should appear failed to

appear.

In this paper, the correct form of the viscous terms are presented.

Indeed, the practical consequences of the error is probably not too

serious, since the omitted z-derivatives in Bryan-Cox I are multiplied by

AH, and are therefore smaller compared to the terms multiplied by AL .
Nevertheless, we present this paper in the interest of consistency and

possible future use. In the following, we first show our results in

rectangular coordinates; then a revised form for the turbulent viscous
term in earth-surface coordinates will be derived. The detailed formulae

are given in the appendixes.

1. Molecular and Eddy Viscosity

in Rectangular Coordinates

The eddy viscous force for incompressible fluids is the divergence of

the Reynolds' stress (Appendix I)

a

Fi _ Rij (1.1)
axj

an assumption widely accepted today.
for the three Cartesian components.

In (1.1), subscripts i and j stand

The two horizontal components of (1.1) can be written as2

f az u a2 u ! a au a aw a aw

__1 Fx : A, [ --- + _ j + AH + AH A-po ax2 ay2 Tzz ax ax az



and

I ra2v a2vl a av a aw a aw
-- Fy = ALL J--+ -- + AH + -- A, APo ax z ay 2 _ _zz az ay ay az

(I .2)

where u, v, and w are the x, y and z components of velocity; A, AH and A L

are the turbulence viscosity coefficients and they can be functions of x,
y, z.

For 3-dimensional isotropic fluids, i.e. A = AH = AL = constant = _/Po,
the Reynolds' stress becomes:

au_ ]
RiJ = m a._.. + _

ax i axj

and the eddy viscous term is then

(1.3)

: +ax, (1.4)

For incompressible fluids,

(1.4) becomes

au i

axi - 0 (1.5)

a au i

Fi = _ dxj axj (1.6)

which of course can also be obtained by directly inserting a constant
turbulence coefficient into (1.2).

Obviously, under the complete isotropic conditions, this eddy viscosity
term has the same form as molecular viscosity term - Laplacian of the

velocity, the only difference being that the eddy viscosity coefficient is
much larger than the molecular value.
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2. Eddy and Molecular Viscosity Terms
in Earth Surface Coordinates

In rectangular coordinates, we have seen that when the transverse
symmetric condition is replaced by the complete isotropic condition, the
formulae for the eddy viscosity term returns to its spherical symmetric
form. This is easily seen in rectangular coordinates because the gauge
matrix is constant. Choosing X, longitude, _, latitude, and z, distance
along the earth radius from the earth surface, we get the earth surface
coordinates. These are curvilinear coordinates in which the Reynolds'
stress (Appendix II) and the corresponding viscosity terms have more
complicated forms; this fact, however, does not change the previous
conclusion, since any physical phenomenon should not depend on coordinates
chosen.

In earth surface coordinates, the components of the gauge matrix are

h_ : (z + a) cos

he : (z + a)

hz = I

h : (z + a) 2 cos

where a is the radius of the earth.

The force F_, divergence of the Reynolds' tensor R_#, is now

F= - he h aq B
B

1
h# hB aq=

whose two horizontal components are:

(2.1)

(2.2)

1[a aF_- hh_ _ [ hR_ ] + a--_ hz

I [ I a ah_ a_ az Rz_ - h_h¢, a_

(2.3)
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Inserting the gauge matrix (2.1), the Reynolds' stress the condition
of incompressible fluids

I
div v =-

h

=0

I a a a 1az

(2.4)

and its related formulae shown in Appendix III into eq. (2.3), we obtain a
set of viscosity forces in the earth surface coordinate:

I [ I - tan2@ 2 tan @ auo ]-- F_ : A, a2u_ + )z uA -#o (z+a (z+a) 2 cos @ a_

I a Ih au_ I 2AH all z 2AH+ - __ __ AH +
h az hz_ _ (z+a) z cos @ a_ (z+a) z UA

u_ aAH

z+a az

AH a2Uz I au z aAH
+

(z+a) cos _ azax (z+a) cos _ ax aT

_ A aZuz I aA auz

(z+a)2 cos _ azax (z+a) cos _ ax az

and

i [ i-- F¢ : AL 62u ¢ +
Po tan2@ 2 tan @ auA 1(z+a)2 u_ + (z+a)2 cos _

la [hh az h_2 aus ] 2AH au z 2A HA, aT + (z+a)2 aT- (z+--a)-_us

(2.5)

aAH

az

AH a2uz

z+a aza@
+

i au z aA H

z+a a@ az

_ ,a, a_uz 1 auz aA

z+a aza_ z+a az a_ (2.6)



where A2 stands for the 2-dimensional (_ and @) Laplacian operator, and A,

AH and AL are the three eddy viscosity coefficients.

If we let A = AH = AL = constant, we will obtain the viscous forces

under the isotropic conditions:

I + tan2@ 2 tan @ au____ 2 aUz 1JI F_ = A Au_ )2 u_ +Po (z+a (z+a) 2 cos _ ax (z+a) 2 cos @ a_

and

I + tan2@ 2 tan @ au_ 2 auz ]I F¢ : A A% u¢ + -- +
Po (z+a)2 (z+a) 2 cos @ ax (z+a) 2 a@ J

(2.7)

These results are the same as that obtained from the direct transformation

of the Laplacian from ordinary spherical coordinates to earth-surface
coordinates. These terms, in fact, are identical to the molecular

viscosity terms except the eddy viscous coefficients.

Since the thin shell approximation, z _ a, is used, z is usually taken

to be zero in the denominators of eq. (2.7); in addition, uz is much

smaller than u¢ land u_, so it and its derivatives are omitted in theseformulae as wel . Then the correct approximation for the turbulent

viscosity should be :

-- [ i tan2@ 2 tan @ au¢ 11 F_ : A, A2u _ + a2 u_ a2 cos @ a_
Po

lalh 1 2AH+ h a--z h--{zAH _ a2 u_
(2.8)



1 I I - tan2@ 2 tan @ au_ ]F¢ = AL A2u¢ + u¢ +
#o a2 a2 cos @ a,1

1 a [h ausl 2AH+ h a-z h--_,AH _ a2 us (2.9)

with the constant viscosity coefficients.

If we now impose the isotropic condition, the viscous forces (2.9)
become

1F_ A [Au_ I+ tan2@ 2 tan @ aus ]#o a2 u_ a2 cos @ O_

I { ] + tan2@ 2 tan @ auA 1-- Fs = A Aus us + (2 10)
Po a2 a2 cos @ a_ "

But when we impose these two conditions (isotropy and thin shell) into the
equations in Ref. 2, we obtain instead

and

1 [ I - tan2@ 2 tan @ aus 1
-- F_ = A Au_ + u_
Po a2 a2 cos @ a]k

I [ I tan2@ 2 tan @ au_ ]-- Fs = A Aus + us + (2 11)
Po a2 a2 cos @ a_ "

which are different from eq. (2.10); in other words, the equations in
Ref. 2, under the isotropic condition, do not return to a spherical
symmetrical form. This is why the equations in Ref. 2 are not a proper
approximation for the eddy turbulent viscosity terms, although the
last terms



and

2AH

a2

2AH

a 2

u_ in (2.8)

u_ in (2.9)

are very small compared with other terms in the equation (due to the very

large radius of earth and small AH), they should nevertheless be retained
in a complete set of eddy viscous forces.

The cause of this incompleteness is that the gauge matrix was

linearized according to thin shell approximation too early, so the terms

involving z-derivatives fail to appear when they should appear.
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R_@ = Po AL @_¢

R_z = Po AH @_z

Rcz = Po AH _¢z
(3)

where @=B is assumed as:

h_, a /u_] hB a [uB] _ u,_ 1 ah_@(_x_ - hB aq# _ +h a aq_ _B + 26_# h-_ h---_- aq-_
'7

(4)

where q stands for the coordinates X, @, z and the summation index ? rolls
over _, @, z components. We have the following expressions for its

components:

a [u_ ] [% 1 ahx Uz 1 ah_ 1@x_ = 2 _-_ _ + 2 he hx a@ + hz h_ az

1 Iuzl1_,,_-2_ K + 2 ,z,,az

aiuz)@zz = 2 az

oio l ho°iuo1

1 hza[uz1

h,aioo/ hzaIoz1_z- h,az E + hea¢
(5)



III. Two formulae related to the incompressible fluids condition (2.4)
are very useful and are derived below:

I a div _v = I azu_ + hz ah_ 8% + _hz azu¢_
h_ a>, h_ a,12 h), h a@ oi>, h a,xa@

h_ aZUz
+ +

h aza_,
h_, ah_ au z I ah¢ au z

-- -- Jl" --

h_,h az a,k h az a,k

: o
(6)

i a -, h_ a2 u_
div v = --

h_ a@ h aza¢
I ah_ au_ I a2%

-- -- -- -- -- "Ji"

h_h_, a@ a,,1 h_ 8_ z

I a% ah A
+

h_h_ a@ a@

+
u____¢a2h____A u@ (ahA]2-

1 ah A au z
+

h_h_ az a@

uz azh_ uz ah_ ah_

hAh_ a_az h_h_ a_ az
1 a 2uz 1 ah_, au z

+ +

he hz aC)az h$ hz az 8_

= o
(7)
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