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In ocean general circulation models, such as Bryan-Cox' and other
derived models, the dissipation term is usually taken to have two axes of
symmetry, with eddy coefficients A and A, in the symmetry plane and
symmetry axis direction respectively. A is much greater than A,, and
both are much greater than the molecular value. If we further impose the
condition of complete isotropy, the viscous stress term must return to the
usual Laplacian of the velocity multiplied by a scalar, in whatever
coordinates the equations are written and in particular in the earth
surface coordinates in which the codes are written. However, the viscous
stress terms used by nearly all the models, which were taken from
Kamenkovich, do not do this. The vreason for this flaw is the
Kamenkovich’s linearization of the gauge matrix occurred too early, i.e.,
the substitution of the earth radius a for the radius r = a + z was made
too early, so that some of the z-derivatives that should appear failed to
appear.

In this paper, the correct form of the viscous terms are presented.
Indeed, the practical consequences of the error is probably not too
serious, since the omitted z-derivatives in Bryan-Cox' are multiplied by
A,, and are therefore smaller compared to the terms multiplied by A, .
Nevertheless, we present this paper in the interest of consistency and
possible future use. In the following, we first show our results in
rectangular coordinates; then a revised form for the turbulent viscous
term in earth-surface coordinates will be derived. The detailed formulae
are given in the appendixes.

1. Molecular and Eddy Viscosity
in Rectangular Coordinates

The eddy viscous force for incompressible fluids is the divergence of
the Reynolds’ stress (Appendix I)

Fo=— R, (1.1)

an assumption widely accepted today. In (1.1}, subscripts i and j stand
for the three Cartesian components.

The two horizontal components of (1.1) can be written as?
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and (1.2)
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where u, v, and w are the x, y and z components of velocity; A, A, and A
are the turbulence viscosity coefficients and they can be functions of x,
Yy, Z.

For 3-dimensional isotropic fluids, i.e. A = Ay = A_ = constant = k/p,,
the Reynolds’ stress becomes:

du;  du;
IxX;  9X;
and the eddy viscous term is then
d ou; ou;
Fo = Kk — — + L (1.4)
dx; ax;  9x;
For incompressible fluids,
au;
— =0 (1.5)
ax;
(1.4) becomes
F o (1.6)
= K — _— .
k dx; dx;

which of course can also be obtained by directly inserting a constant
turbulence coefficient into (1.2).

Obviously, under the complete isotropic conditions, this eddy viscosity
term has the same form as molecular viscosity term — Laplacian of the
velocity, the only difference being that the eddy viscosity coefficient is
much Targer than the molecular value.



2. Eddy and Molecular Viscosity Terms
in Earth Surface Coordinates

In rectangular coordinates, we have seen that when the transverse
symmetric condition is replaced by the complete jsotropic condition, the
formulae for the eddy viscosity term returns to its spherical symmetric
form. This is easily seen in rectangular coordinates because the gauge
matrix is constant. Choosing X, longitude, ¢, tatitude, and 1z, distance
along the earth radius from the earth surface, we get the earth surface
coordinates. These are curvilinear coordinates in which the Reynolds’
stress (Appendix II) and the corresponding viscosity terms have more
complicated forms; this fact, however, does not change the previous
conclusion, since any physical phenomenon should not depend on coordinates
chosen.

In earth surface coordinates, the components of the gauge matrix are

hy = (z + a) cos ¢
hy = (z + a)
h, =1
= (z + a)? cos ¢ (2.1)

where a is the radius of the earth.

The force F,, divergence of the Reynolds’ tensor R,z, is now
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whose two horizontal components are:
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Inserting the gauge matrix (2.1), the Reynolds’ stress, the condition
of incompressible fluids

I
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=0 (2.4)

and its related formulae shown in Appendix III into eq. (2.3), we obtain a
set of viscosity forces in the earth surface coordinate:
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where A, stands for the 2-dimensional (X and ¢) Laplacian operator, and A,
A, and A_ are the three eddy viscosity coefficients.

If we let A = A, = A_ = constant, we will obtain the viscous forces
under the isotropic conditions:

1 1 + tan?¢ 2 tan ¢ duy 2 ou,

I F/\ =’A Au/\ - T U)‘ - +

Po (z+a)? (z+a)?2 cos ¢ A (z+a)2 cos ¢ dX
and
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(2.7)

These results are the same as that obtained from the direct transformation
of the Laplacian from ordinary spherical coordinates to earth-surface
coordinates. These terms, in fact, are identical to the molecular
viscosity terms except the eddy viscous coefficients.

Since the thin shell approximation, z « a, is used, z is usually taken
to be zero in the denominators of eq. (2.7); in addition, u, is much
smaller than u, and u,, so it and its derivatives are omitted in these
formulae as well. Then the correct approximation for the turbulent

viscosity should be :
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with the constant viscosity coefficients.

If we now impose the isotropic condition, the viscous forces (2.9)
become

1 1 + tan2¢ 2 tan ¢ Au,
—Fo=A |y - —— u, - S
Po a ac cos ¢ Ix

1 + tang 2 tan ¢ du,
—FsA Ay, - —— o+ S (2.10)
Po a ac cos ¢ I\

But when we impose these two conditions (isotropy and thin shell) into the
equations in Ref. 2, we obtain instead

1 1 - tan?g 2 tan ¢ du,
— F, =A Auy + ——— u, -
Po a2 a? cos ¢ A
and
1 1 - tan2¢g 2 tan ¢  du,
— F, = A Au —_— u, + 2.11
py ° [ ? a2 ¢ a® cos ¢ A\ ] ( )

which are different from eq. (2.10); in other words, the equations in
Ref. 2, under the isotropic condition, do not return to a spherical
symmetrical form. This is why the equations in Ref. 2 are not a proper
approximation for the eddy turbulent viscosity terms, although the
last terms



- ? uy in (2.8)
and
2A, .
- ? Uy in (2.9)

are very small compared with other terms in the equation (due to the very
large radius of earth and small A,), they should nevertheless be retained
in a complete set of eddy viscous forces.

The cause of this incompleteness is that the gauge matrix was

linearized according to thin shell approximation too early, so the terms
involving z-derivatives fail to appear when they should appear.
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I. Reynolds’ stress

where
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Rig = Po A ¢,
RAz = pO AH Q/\z
R¢z = pO AH q)d:z (3)

where §,, is assumed as:
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(4)
where q stands for the coordinates X, ¢, z and the summation index v rolls
over X, ¢, z components. We have the following expressions for its
components:
a [u (u, 1 dh u, 1 8h
U R I R
ox Lhy [ hy h, 3¢ . hy 92z
a (u (u, 1 0dh
dgp = 2 — U)o, —Z——i]
3 | hy ) [ h, hy 32
da (u
g, - 22 [t
oz | h, |
L U L
* 7 ohy 3 Uhy hy, & L hy ]
h ] u h, 8 (u,’
e L_” cea
, 0z hy h, 9x h,
h a3 Uy, | h, 4 (u
b, = 5 o [4‘1 N (5)
, 02 s ) hy ¢ L h, )




ITI. Two formulae related to the incompressible fluids condition (2.4)
are very useful and are derived below:

1 a . . 1 3%y, h, dhy du h, d2u,
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