N89-11761 -12 35¢ OAST ASSISTANT DIRECTOR FOR SPACE LARGE SPACE SYSTEMS CIVIL SPACE TECHNOLOGY INITIATIVE DR. JUDITH H. AMBRUS VSVN PRECEDING PAGE BLANK NOT FILMED

https://ntrs.nasa.gov/search.jsp?R=19890002390 2020-03-20T05:45:13+00:00Z

PAGE 14 INTERVIONALLY REAMS

15

SPACE R&T STRATEGY

REVITALIZE TECHNOLOGY FOR LOW EARTH ORBIT APPLICATIONS

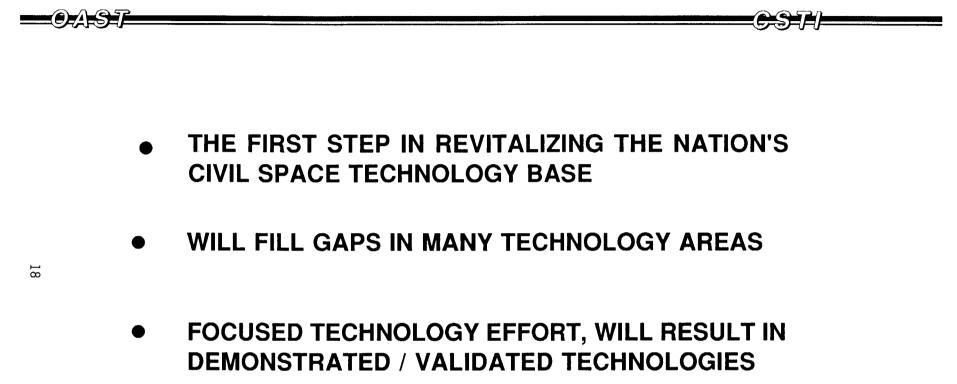
DEVELOP TECHNOLOGY FOR EXPLORATION OF THE SOLAR SYSTEM

MAINTAIN FUNDAMENTAL R&T BASE

BROADEN PARTICIPATION OF UNIVERSITIES

EXTEND TECHNOLOGY DEVELOPMENT TO IN-SPACE EXPERIMENTATION

FACILITATE TECHNOLOGY TRANSFER TO USERS


MISSION NEEDS

TRANSPORTATION TO LOW EARTH ORBIT

- PROPULSION
- AEROBRAKING

OPERATIONS IN LOW EARTH ORBIT

- AUTONOMOUS SYSTEMS
- TELEROBOTICS
- POWER
- SCIENCE
 - STRUCTURES
 - SENSORS
 - DATA SYSTEMS

OBJECTIVE:

PROVIDE A VALIDATED TECHNOLOGY BASE FOR THE DESIGN OF HIGH PERFORMANCE, LONG LIFE LOX/H2 AND LOX /HC ENGINES

• ENABLE FULLY REUSABLE VEHICLES TO REDUCE TRANSPORTATION COSTS

APPROACH:

EXTEND KNOWLEDGE AND UNDERSTANDING OF ROCKET ENGINE CHEMICAL AND PHYSICAL PROCESSES BY BUILDING AND VALIDATING COMPONENTS AND HEALTH MONITORING DEVICES

()/__S`]E

EARTH TO ORBIT PROPULSION

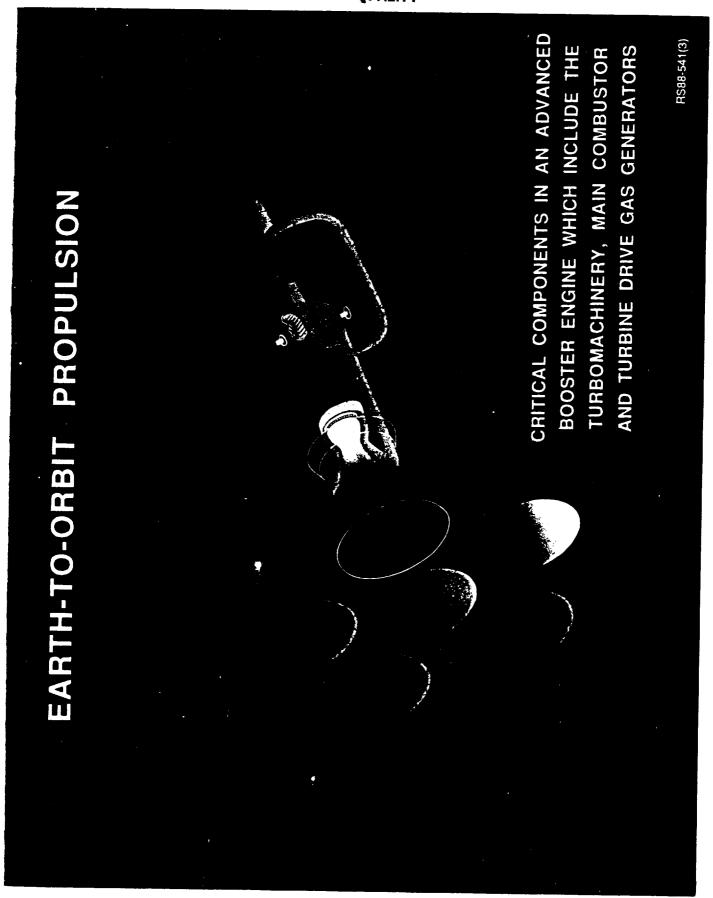
MANAGEMENT

LEAD OAST DIVISION

PROPULSION, POWER AND ENERGY DIVISION

• LEAD NASA FIELD CENTER

MARSHALL SPACE FLIGHT CENTER


PARTICIPATING CENTER

LEWIS RESEARCH CENTER

• FY 1989 BUDGET : \$ 29.1 M

<u>∕</u>₽₽₽₽₽₽₽

ORIGINAL PAGE IS OF POOR QUALITY

BOOSTER TECHNOLOGY

DEVELOP THE ENGINE TECHNOLOGY FOR ALTERNATE PROPULSION CONCEPTS FOR THE SPACE SHUTTLE SOLID ROCKET BOOSTER (SRB)

- PROVIDE A SAFE ABORT OPTION
- PROVIDE THE ABILITY TO TAILOR THRUST
- PROVIDE THE POTENTIAL FOR ADDITIONAL IMPULSE

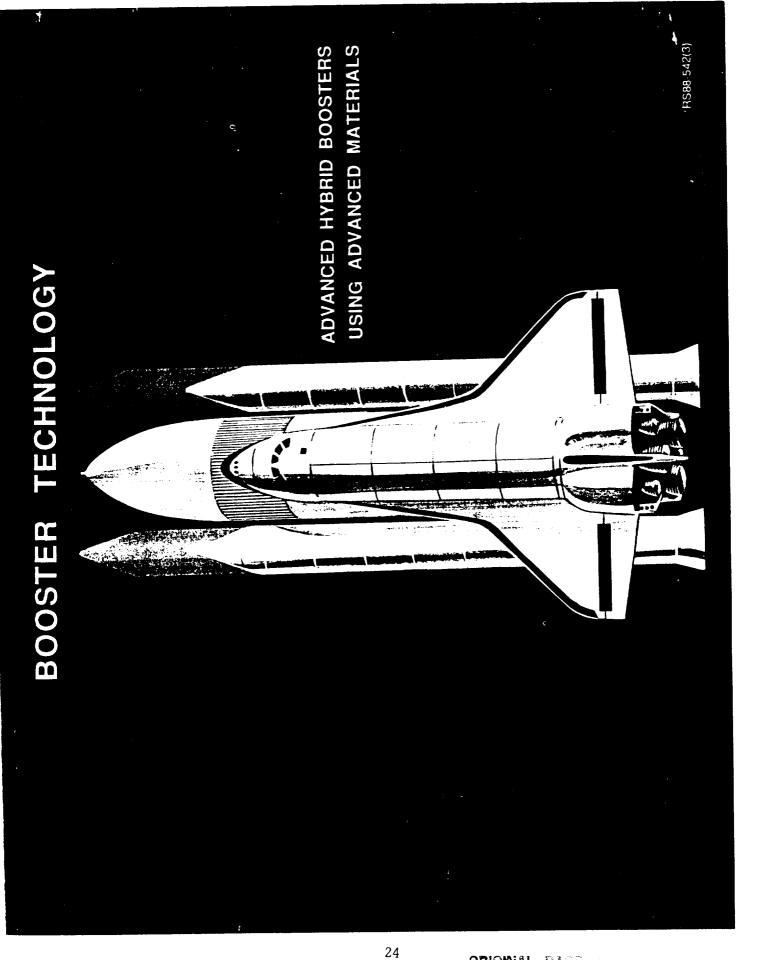
APPROACH:

EXPLORE ALTERNATIVE BOOSTER TECHNOLOGIES INCLUDING LIQUID AND HYBRID CONCEPTS

BOOSTER TECHNOLOGY

MANAGEMENT

LEAD OAST DIVISION


PROPULSION, POWER, AND ENERGY DIVISION

• LEAD NASA FIELD CENTER

MARSHALL SPACE FLIGHT CENTER

• FY 1989 BUDGET: \$ 9.0 M

=(0)/4\S\]E

1

OBJECTIVE:

INVESTIGATE THE CRITICAL VEHICLE TECHNOLOGIES AND UPPER ATMOSPHERIC CHARACTERISTICS APPLICABLE TO THE DESIGN OF AN AEROASSISTED ORBITAL TRANSFER VEHICLE

 PROVIDE A LARGE SAVING IN PROPELLANT WHICH COULD DOUBLE THE PAYLOAD WEIGHT

APPROACH:

CONDUCT A REENTRY FLIGHT EXPERIMENT THROUGH THE UPPER ATMOSPHERE TO VALIDATE DESIGN CODES

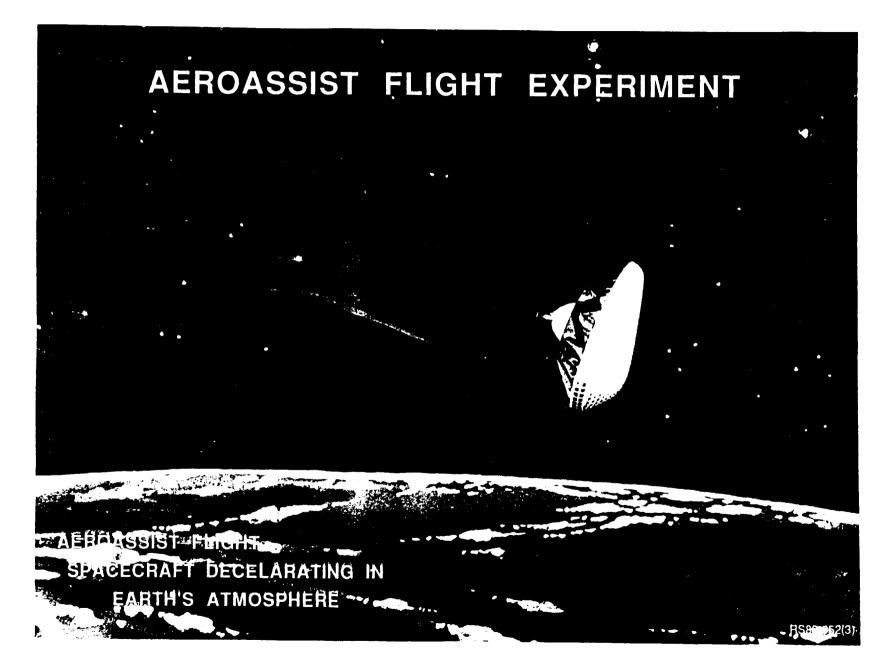
MANAGEMENT

• LEAD OAST DIVISION

FLIGHT PROJECTS DIVISION

• LEAD NASA FIELD CENTER

MARSHALL SPACE FLIGHT CENTER


PARTICIPATING CENTERS

LANGLEY RESEARCH CENTER JOHNSON SPACE FLIGHT CENTER AMES RESEARCH CENTER

• FY 1989 BUDGET: \$ 13.3 M

CSTI 88-019

@_Sjij___

ROBOTICS

OBJECTIVE:

DEVELOP THE TECHNOLOGY BASE REQUIRED TO EVOLVE FROM TELEOPERATIONS TO TELEROBOTICS

 PERFORM SPACE ASSEMBLY AND CONSTRUCTION, SATELLITE SERVICING, AND PLATFORM MAINTENANCE AND REPAIR EFFICIENTLY AND SAFELY

APPROACH:

DEVELOP COMPONENTS TO BE EVALUATED IN AN INTEGRATED TESTBED THAT WILL DEMONSTRATE CAPABILITIES SUCH AS STOPPING SLOWLY SPINNING SPACECRAFT, PERFORMING SIMPLE SERVICING, ETC.

()-A-S-I

ROBOTICS

MANAGEMENT

• LEAD OAST DIVISION

INFORMATION SCIENCES AND HUMAN FACTORS DIVISION

• LEAD NASA FIELD CENTER

JET PROPULSION LABORATORY

• **PARTICIPATING CENTERS**

GODDARD SPACE FLIGHT CENTER LANGLEY RESEARCH CENTER JOHNSON SPACE CENTER

• FY 1989 BUDGET : \$ 13.8 M

ROBOTICS

ADVANCED DUAL ARM MANIPULATOR WITH DEMONSTRATED VISUAL TRACKING CAPABILITY

> ORIGINAL PAGE IS OF POOR QUALITY

RS88-557(3)

OBJECTIVE:

FA-S-I-

DEVELOP AN ADVANCED SENSOR TECHNOLOGY BASE FOR SCIENTIFIC SENSING INVESTIGATION OF EARTH SYSTEMS, THE SOLAR SYSTEM, AND THE UNIVERSE

- DEVELOP PASSIVE, SENSITIVE, RELIABLE, AND IMPROVED IMAGING CAPABILITY OF SPACE-BASED ADVANCED DETECTORS
- KEEP COSTS TO A MINIMUM

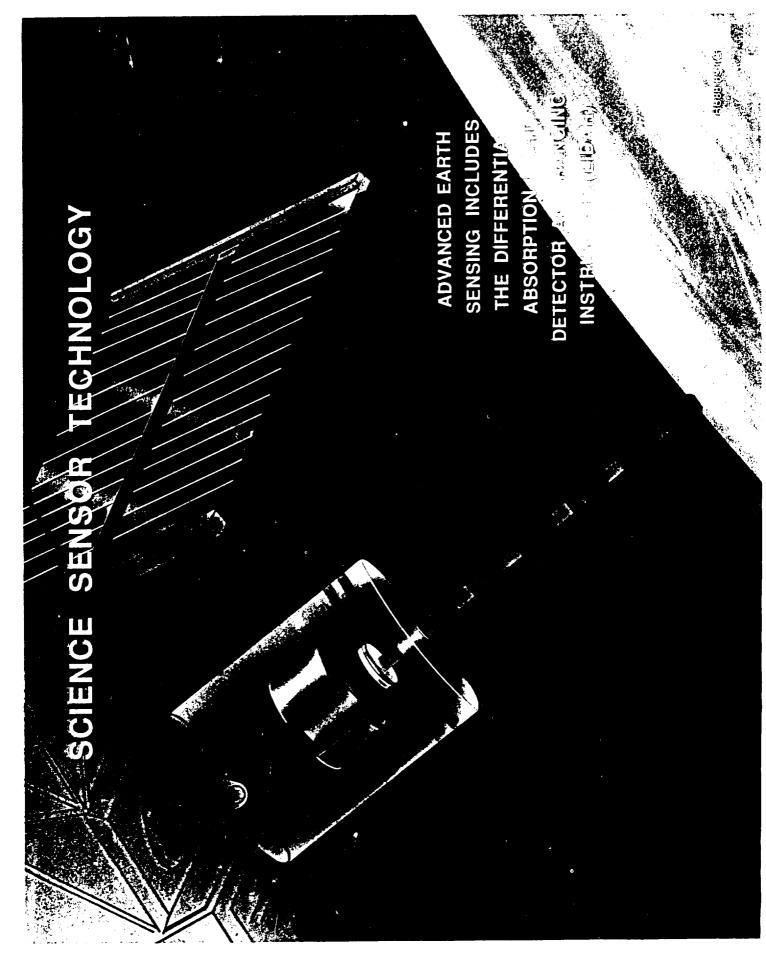
APPROACH:

DEVELOP ADVANCED TUNABLE SOLID STATE AND GAS LASERS AND ACCOMPANYING ADVANCED TECHNOLOGY

MANAGEMENT

LEAD OAST DIVISION

INFORMATION SCIENCES AND HUMAN FACTORS DIVISION


• LEAD NASA CENTER

LANGLEY RESEARCH CENTER

PARTICIPATING CENTERS

GODDARD SPACE FLIGHT CENTER JET PROPULSION LABORATORY MARSHALL SPACE FLIGHT CENTER AMES RESEARCH CENTER LEWIS RESEARCH CENTER

• FY 1989 BUDGET : \$ 7.8M

33

ORIGINAL PAGE IS OF POOR QUALITY

AUTONOMOUS SYSTEMS

(CASTE)

DEVELOP AN ARTIFICIAL INTELLIGENCE TECHNOLOGY BASE FOR EFFICIENT AUTONOMOUS OPERATIONS IN SPACE AND ON THE GROUND

- FREE HUMAN RESOURCES FROM ROUTINE OPERATIONS
- DECREASE COSTS OF SPACE OPERATIONS

APPROACH:

DEMONSTRATE KNOWLEDGE BASED DECISION MAKING, MACHINE LEARNING, UNCERTAINTY PLANNING AND SIMILAR ADVANCED CONCEPTS

(0 A = S = I

AUTONOMOUS SYSTEMS

MANAGEMENT

- LEAD OAST DIVISION INFORMATION SCIENCES AND HUMAN FACTORS DIVISION
- LEAD NASA FIELD CENTER AMES RESEARCH CENTER
- PARTICIPATING CENTER JOHNSON SPACE CENTER
- FY 1989 BUGET: \$ 12.1 M

0-A-S-I

AUTONOMOUS SYSTEMS

ORIGINAL PAGE IS

AUTONOMOUS SYSTEMS APPLICATIONS AIDING THE INTEGRATED COMMUNICATIONS OFFICER (INCO) IN MISSION CONTROL CENTER

RS88-559(3)

OBJECTIVE:

DEVELOP HIGH SPEED, HIGH VOLUME DATA HANDLING TECHNOLOGIES AND SYSTEMS NEEDED TO MEET THE SCIENTIFIC AND OPERATIONAL REQUIREMENTS OF FUTURE MISSIONS

- PERFORM RECOGNITION, EXTRACTION, AND TRANSMISSION OF SIGNIFICANT OBSERVATIONS ON-BOARD THE SPACECRAFT
- ENSURE HIGH SCIENTIFIC RETURNS WHILE KEEPING OPERATIONAL COSTS LOW

APPROACH:

PRODUCE, TEST AND VALIDATE FLIGHT QUALIFIABLE COMPONENTS FOR ON-BOARD DATA PROCESING AND STORAGE

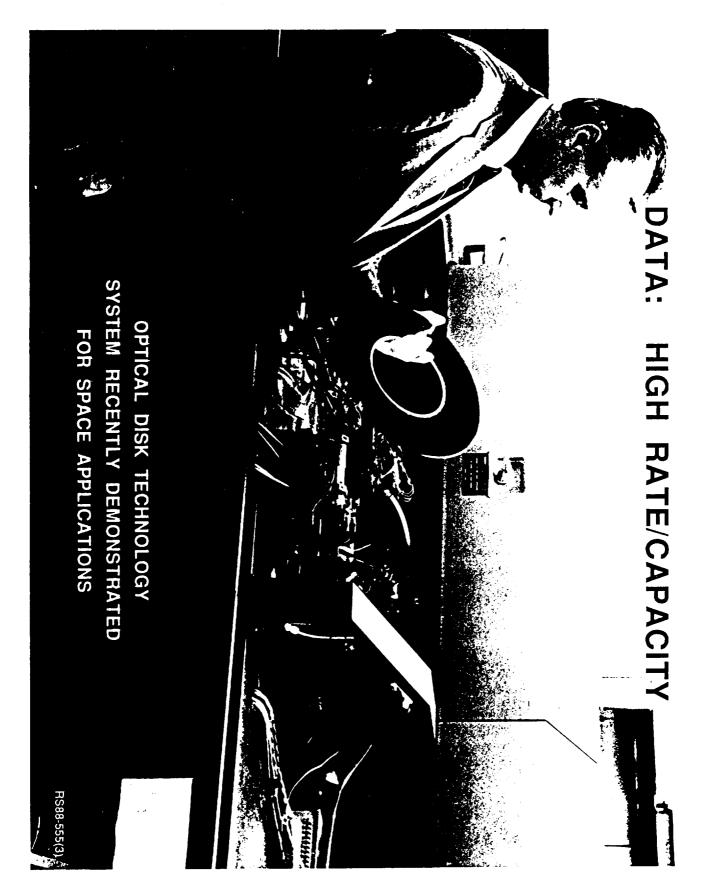
074-S-1

• LEAD OAST DIVISION

INFORMATION SCIENCES AND HUMAN FACTORS DIVISION

• LEAD NASA FIELD CENTER

LANGLEY RESEARCH CENTER


PARTICIPATING CENTERS

GODDARD SPACE FLIGHT CENTER JET PROPULSION LABORATORY

• FY 1989 BUDGET : \$ 8.1 M

(0)/1<S\]

CSTI 88-019

21 39A9 ANGE 13 ORIGINAL PAGE 13 OF POOR QUALITY

36

CONTROL OF FLEXIBLE STRUCTURES

OBJECTIVE:

DEVELOP STRUCTURES AND CONTROLS TECHNOLOGY THAT WILL ENABLE THE DESIGN VERIFICATION AND QUALIFICATION OF PRECISION SPACE STRUCTURES AND LARGE FLEXIBLE SPACE SYSTEMS

• INCREASE SURFACE AND POINTING PRECISION AND USE OF ARTICULATED MOVING COMPONENTS

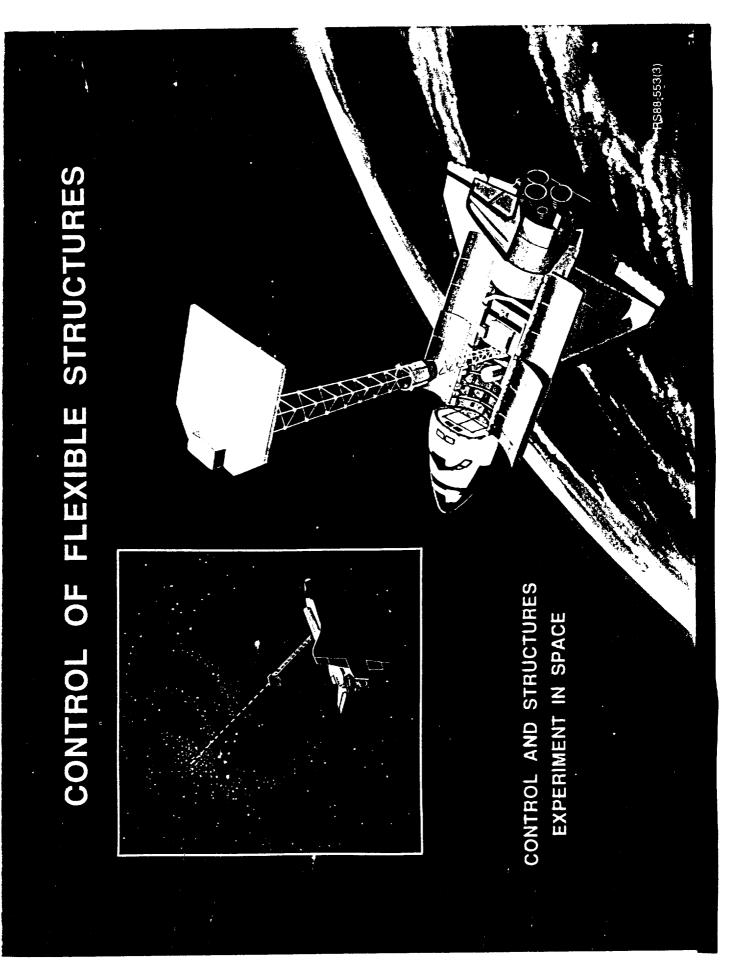
APPROACH:

VERIFY THE ANALYSIS AND DESIGN METHODS THROUGH GROUND TESTS AND IN-SPACE FLIGHT EXPERIMENTS

CONTROL OF FLEXIBLE STRUCTURES

MANAGEMENT

- MATERIALS AND STRUCTURES DIVISION
- LEAD NASA FIELD CENTER


LANGLEY RESEARCH CENTER

• PARTICIPATING CENTERS

MARSHALL SPACE FLIGHT CENTER JET PROPULSION LABORATORY GODDARD SPACE FLIGHT CENTER

• FY 1989 BUDGET: \$15.7 M

(0)/4\\$\T

ORIGINAL PAGE IS OF POOR QUALITY

42

Т

PRECISION SEGMENTED REFLECTORS

OBJECTIVE:

DEVELOP THE MATERIALS, STRUCTURES, AND CONTROL TECHNOLOGY TO ENABLE THE DESIGN OF LARGE, LIGHT-WEIGHT, HIGH PRECISION ORBITING ASTRONOMICAL INSTRUMENTS

• DEVELOP LIGHT-WEIGHT AND SPACE ERECTABLE/DEPLOYABLE SYSTEMS FOR MAKING DEEP SPACE OBSERVATIONS IN THE SUB-MILLIMETER AND SMALLER PORTION OF THE SPECTRUM

APPROACH:

FABRICATE HIGH SURFACE PRECISION PANELS AND CONDUCT SYSTEM LEVEL VALIDATION TESTING

PRECISION SEGMENTED REFLECTORS

MANAGEMENT

- LEAD OAST DIVISION
 MATERIALS AND STRUCTURES DIVISION
- LEAD NASA FIELD CENTER JET PROPULSION LABORATORY
- FY 1989 BUDGET: \$4.9 M

CSTI 88-019

PRECISION STOMENTED REFLECTORS ADVANCED PRECISION SEGMENTED REFLECTOR STRUCTURE

45

- -4

RS88-554(3)

HIGH CAPACITY POWER

OBJECTIVE:

DEVELOP THE TECHNOLOGY BASE NEEDED TO MEET THE LONG DURATION, HIGH CAPACITY POWER REQUIREMENTS FOR FUTURE NASA SPACE INITIATIVES

- INCREASE SYSTEM THERMAL ELECTRICAL ENERGY CONVERSION EFFICIENCY AT LEAST FIVEFOLD
- ACHIEVE SYSTEMS COMPATIBLE WITH SPACE NUCLEAR REACTORS

APPROACH:

EXPERIMENTAL VERIFICATION OF ADVANCED ENERGY CONVERSION TECHNOLOGIES, SUCH AS THE FREE-PISTON STIRLING ENGINE AND HIGH EFFICIENCY THERMOELECTRIC MATERIALS

HIGH CAPACITY POWER

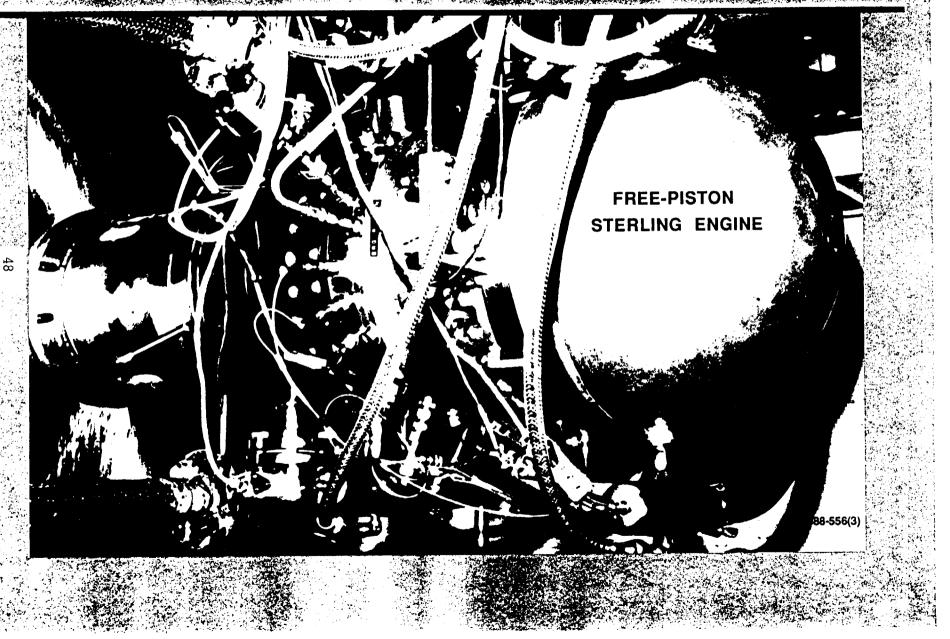
MANAGEMENT

• LEAD OAST DIVISION

PROPULSION, POWER, AND ENERGY DIVISION

LEAD NASA FIELD CENTER

LEWIS RESEARCH CENTER


• PARTICIPATING CENTER

JET PROPULSION LABORATORY

• FY 1989 BUDGET: \$ 11.1 M

___(0)/4\s\df

HIGH CAPACITY POWER

ORIGINAL SHINAL

CSTI PROGRAM BUDGET

		GS-FI
		PLANNED
FY 88	<u>FY89</u>	FY 90-94
13.0	13.8	80
12.1	12.1	70
15.8	29.1	160
8.0	9.0	20
15.0	13.3	150
7.8	7.8	40
8.7	8.1	30
17.1	15.7	100
4.9	4.9	10
12.8	11.1	40
115.2	121.8	700
	13.0 12.1 15.8 8.0 15.0 7.8 8.7 17.1 4.9 12.8	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

TECHNOLOGY TRANSFER TO THE USER

INCLUDE NASA USER REPRESENTATIVES IN

ADVISORY GROUPS

WORKING GROUPS

- INCLUDE INDUSTRY AND UNIVERSITY REPRESENTATIVES AS APPROPRIATE
- DISSEMINATE INFORMATION TO SPACE COMMUNITY VIA

REPORTS

PAPERS

PRESENTATIONS

este