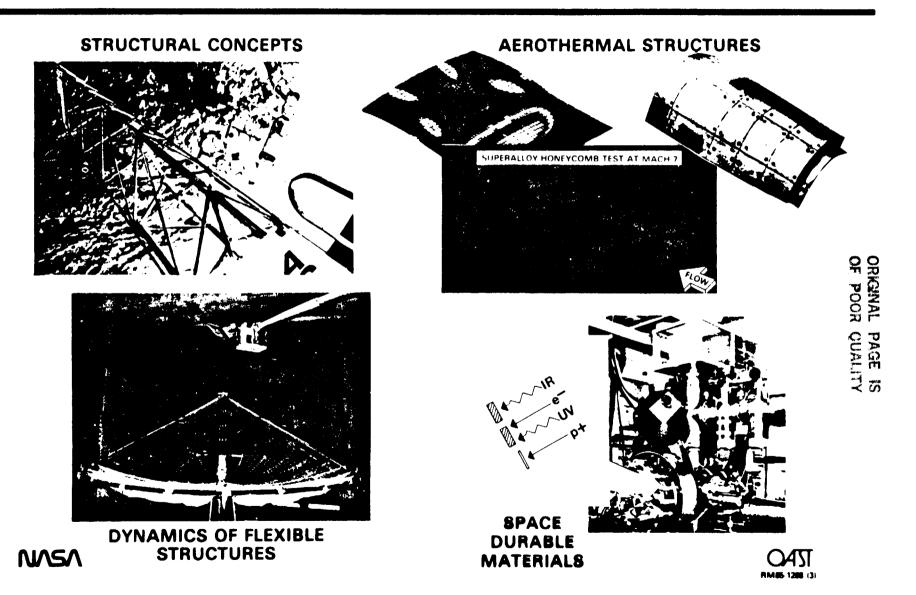
NASA

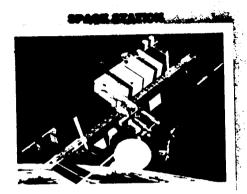

OFFICE OF AERONAUTICS & SPACE TECHNOLOGY

MATERIALS AND STRUCTURES DIVISION

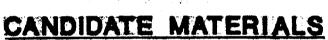
SAMUEL L. VENNERI DIRECTOR

418

MATERIALS AND STRUCTURES


SPACE R&D BUDGET (\$, M)

O ,		S	Ţ
_	-	$\overline{}$	-


MATERIALS AND STRUCTURES DIVISION

		FY 88	FY 89	PLANNED FY 90-94
	R&T BASE			
	MATERIALS & STRUCTURES R&T	17.2	20.0	
317	CSTI			
	CONTROL OF FLEXIBLE STRUCTURES	16.3	14.6	110
	PRECISION SEGMENTED REFLECTORS	4.9	4.9	10
	<u>PATHFINDER</u>			
	SAMPLE ACQUISITION, ANALYSIS & PRESERVATION	-	1.0	30
	IN-SPACE ASSEMBLY & CONSTRUCTION	-	1.0	35
	RESOURCE PROCESSING PILOT PLANT	-	-	25

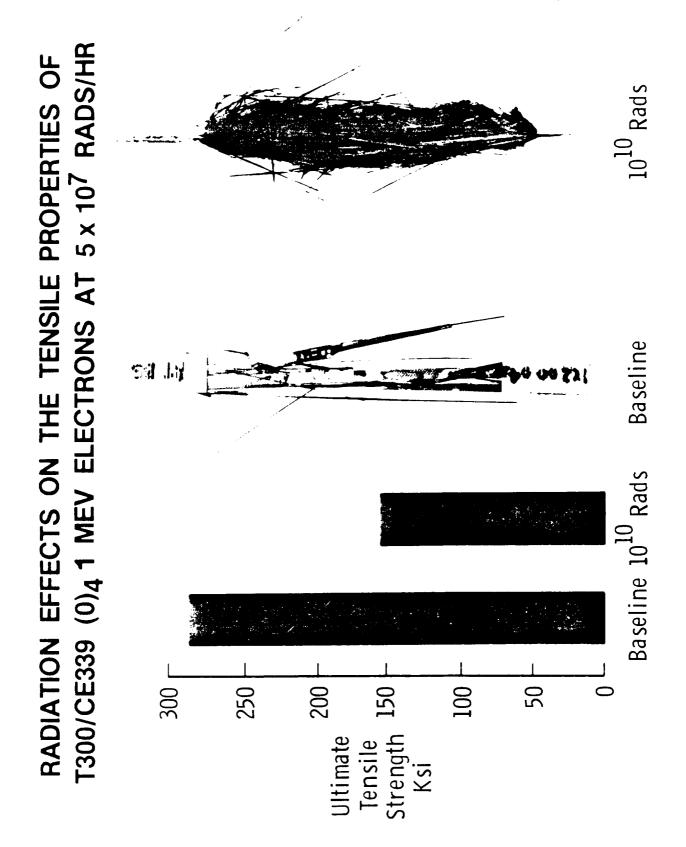
ORIGINAL PAGE IS OF POOR QUALITY

- · LIGHT ALLOYS
- METAL-MATRIX
 COMPOSITES
- · O-C COMPOSITES
- GERAMIGENATRIX • COMP.
- . COATINGS
- POLYMERSELLE
- COMB

RM 500.0

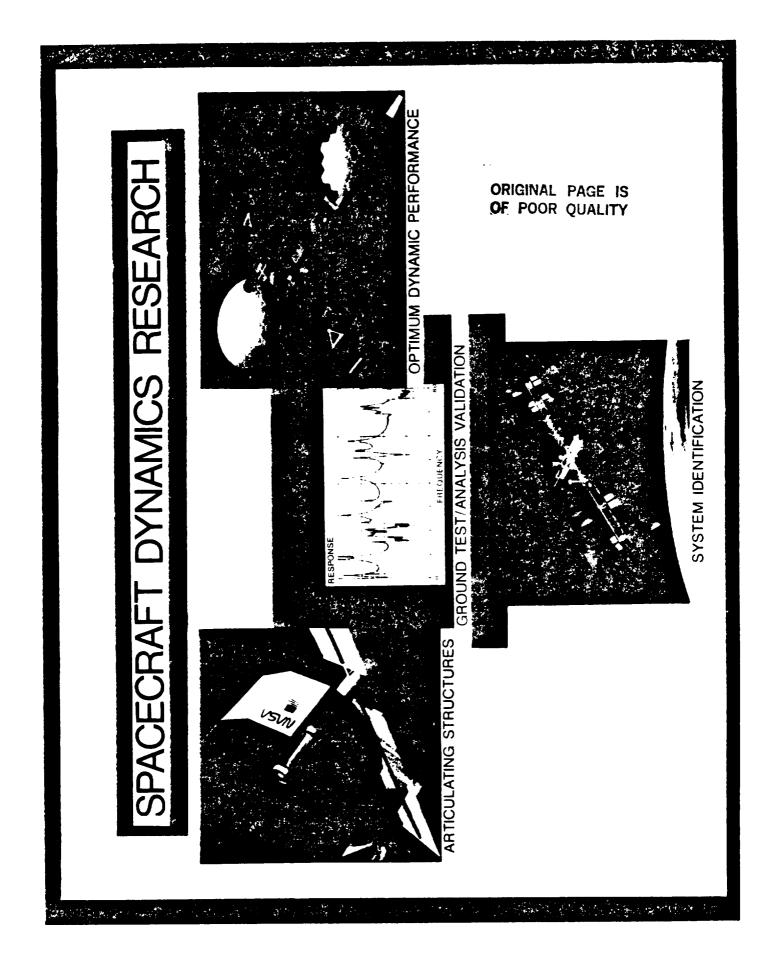
SPACE ENVIRONMENTAL EFFECTS

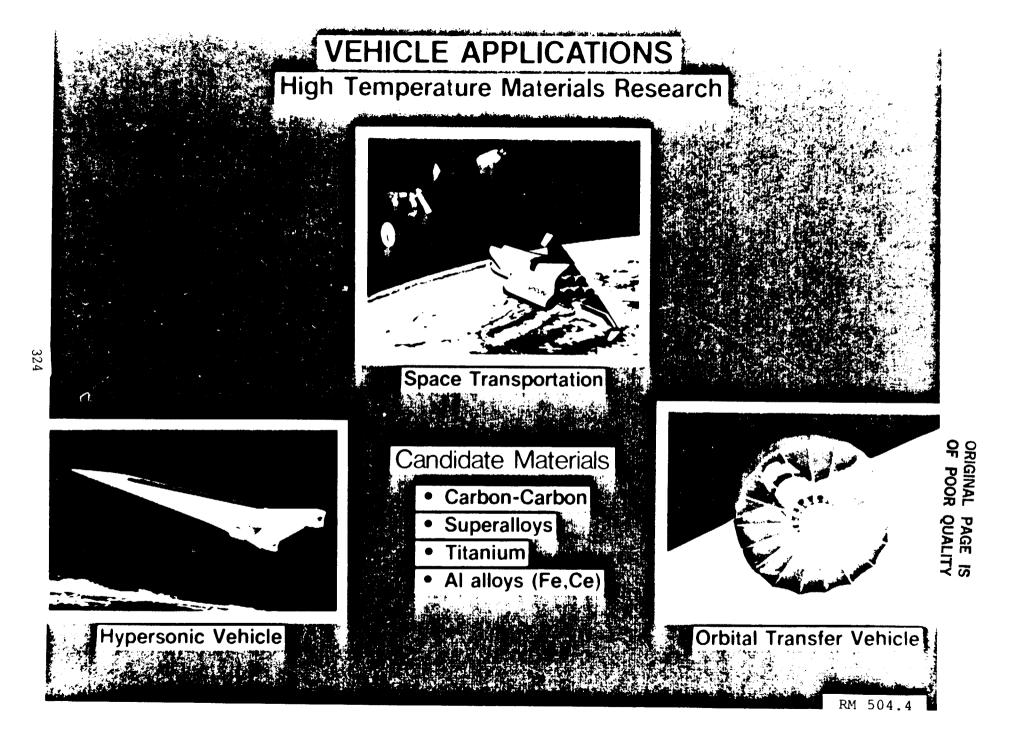
ENVIRONMENT	ORBIT	MATERIALS & SYSTEMS AFFECTED	EXTENT
VACUUM OUTGASSING	ALL ORBITS	OPTICS, THERMAL CONTROL, ELECTRONICS	MEDIUM TERM SEVERE
ATOMIC OXYGEN & GLOW	LEO	STRUCTURAL, TRIBO, OPTIC & THERMAL CONTROL	MEDIUM, LONG TERM SEVERE CATASTROPHIC UNKNOWN
CONTAMINATION	ALL ORBITS	OPTICS, THERMAL CONTROL, ELECTRONICS	SHORT, LONG TERM SEVERE
THERMAL CYCLES	ALL ORBITS	THERMAL CONTROL, STRUCTURAL, SYSTEMS	MEDIUM TERM SEVERE CATASTROPHIC
SOLAR RADIATION	ALL ORBITS	OPTICS, THERMAL CONTROL, STRUCTURAL, ELECTRONICS	MEDIUM TERM SEVERE CATASTROPHIC
VACUUM U.V.	ALL ORBITS	OPTICS, THERMAL, STRUCTURAL, TRIBO	MEDIUM, LONG TERM SEVERE, CATASTROPHIC UNKNOWN
MICRO-METEORITES & DEBRIS	ORBIT DEPENDENT DATA LACKING	STRUCTURAL, LARGE OPTICS, PRESSURE VESSELS, SOLAR	LONG TERM SEVERE CATASTROPHIC
SPACECRAFT CHARGING	GEO, POLAR	THERMAL & OPTIC SURFACES, ELECTRONICS	SHORT, LONG TERM SEVERE, CATASTROPHIC UNKNOWN
ELECTRO-MAGNETIC INTERACTIONS AND PLASMAS	ORBIT DEPENDENT (LEO), MEO, POLAR	THERMAL & OPTIC SURFACES, ELECTRONICS, HIGH POWER	SHORT, LONG TERM SEVERE CATASTROPHIC
VAN ALLEN RADIATION	ORBIT DEPENDENT LEO, MEO, POLAR	THERMAL & OPTIC SURFACES, ELECTRONICS, STRUCTURAL	SHORT, MEDIUM, LONG TERM SEVERE


SPACE ENVIRONMENTAL EFFECTS

OAST

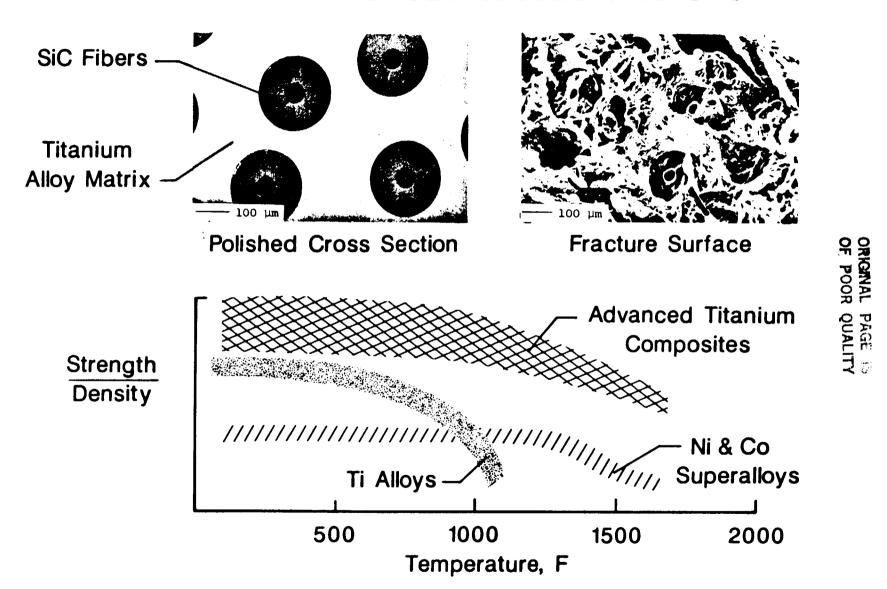
MAJOR ISSUES


- ROLE OF MATERIALS IN SYSTEMS FAILURES
- UNKNOWNS OF COMPLEX NATURAL ENVIRONMENT
- LIMITATIONS OF GROUND-BASED SIMULATION
- USE OF "OFF-THE-SHELF" MATERIALS
- ENGINEERING BASIS FOR CERTIFICATION

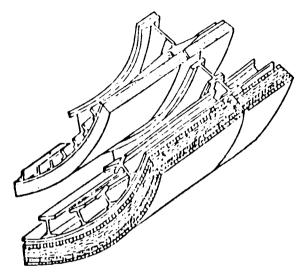

ORIGINAL PARE IS OF POOR QUALITY

LDEF MATERIALS SPECIMENS

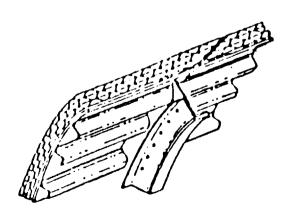
- Polymeric films
- Polymeric matrix composites for tensile, compression, flexure, and CTE testing
- Metal matrix composites for CTE testing
- Polished metals
- Glasses, optical filters, optical fibers
- Ceramics
- Solar cells
- Solid rocket materials

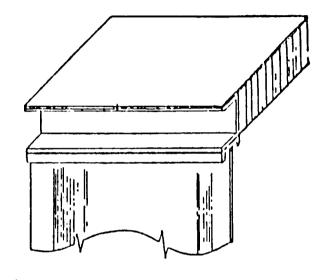

MATERIALS AND STRUCTURES

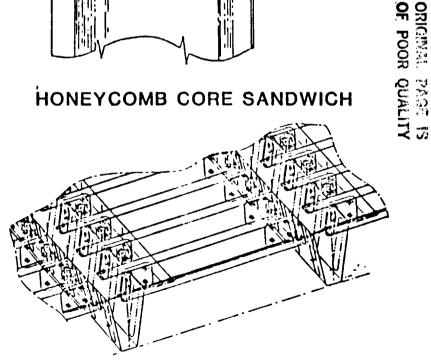
TECHNOLOGY NEEDS


- MATERIALS
- STRUCTURAL CONCEPTS
 - · LEADING EDGES/NOSE CAP
 - ACTIVELY COOLED CONCEPTS
 - · CONTROL CONCEPTS
 - WING
 - · CRYOGENIC TANK STRUCTURE
 - SEALS
- LOADS
 - . CONCEPTUAL WEIGHT ESTIMATION
 - AEROTHERMAL LOADS
 - . AEROTHERMOELASTICITY
 - AEROACOUSTICS
 - LANDING DYNAMICS
- TESTING
 - COMBINED MECHANICAL, THERMAL, LH, LOADS
 - INSTRUMENTATION

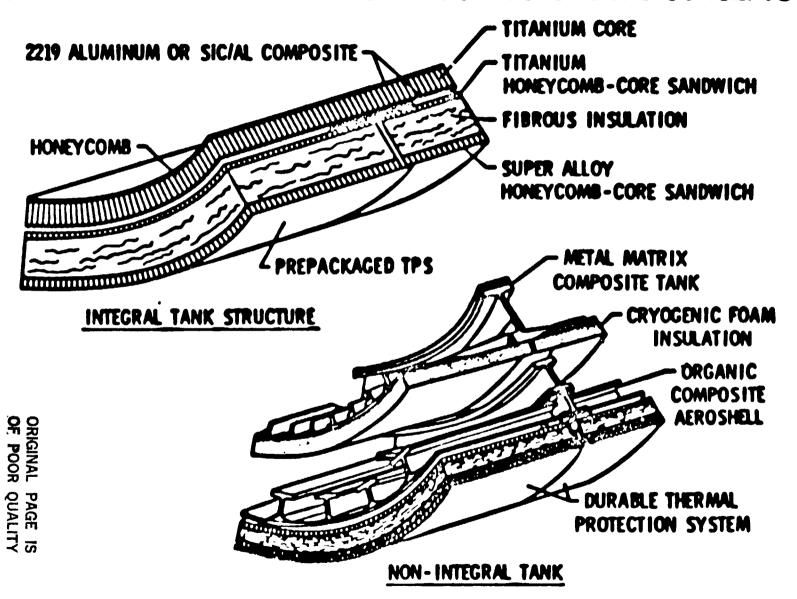
326


HIGH TEMPERATURE METAL MATRIX COMPOSITES SIC FIBER REINFORCED TITANIUM ALLOYS

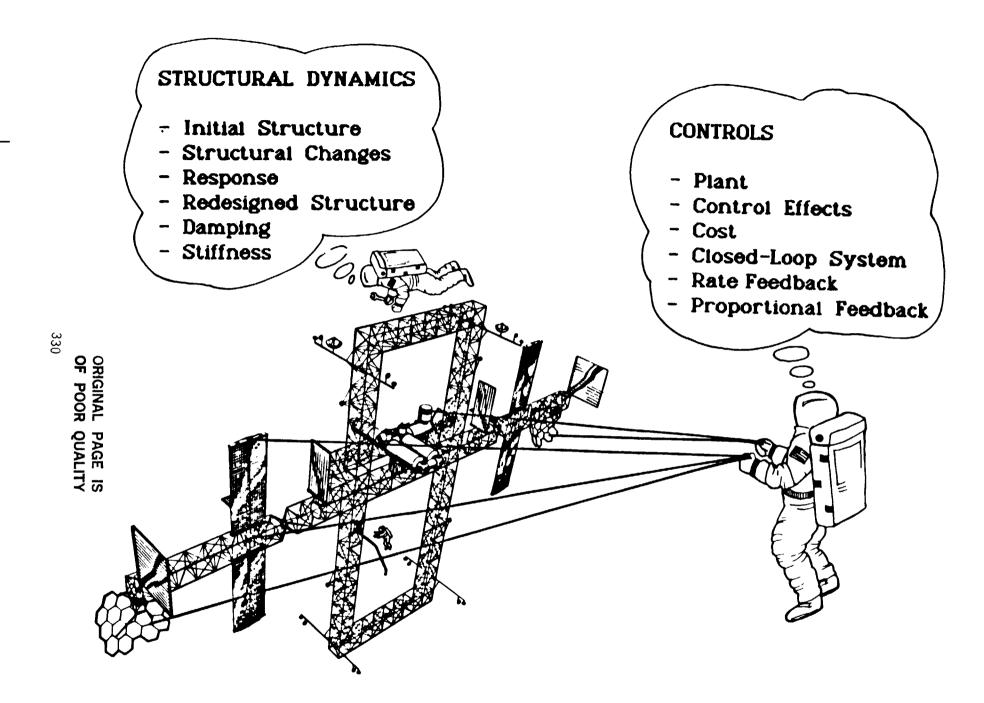

ADVANCED STRUCTURAL CONCEPTS


SIDEWALL CONSTRUCTION

TITANIUM MULTIWALL



HONEYCOMB CORE SANDWICH

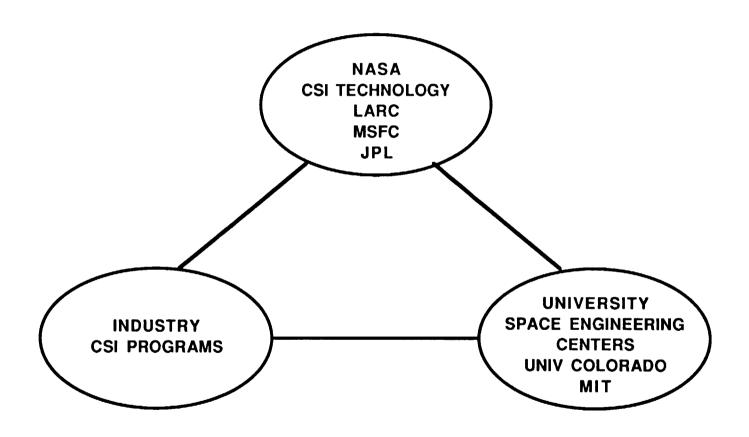

CARBON-CARBON TPS

INTEGRAL AND NON-INTEGRAL TANK STRUCTURE TPS CONCEPTS

CIVILIAN SPACE TECHNOLOGY INITIATIVE (CSTI) LARGE SPACE STRUCTURES AND CONTROL

- CONTROL/STRUCTURE INTERACTION
- PRECISION SEGMENTED REFLECTORS

CONTROLS-STRUCTURES INTERACTION (CSI) TECHNOLOGY


GOAL:

DEVELOP VALIDATED CSI TECHNOLOGY FOR INTEGRATED DESIGN/ANALYSIS AND QUALIFICATION OF LARGE FLEXIBLE SPACE SYSTEMS AND PRECISION SPACE STRUCTURES

OBJECTIVES:

- DEVELOP AND VALIDATE INTEGRATED DESIGN/ANALYSIS METHODS
- DEVELOP AND DEMONSTRATE GROUND TEST METHODS/TECHNIQUES TO PREDICT ON-ORBIT PERFORMANCE
- OBTAIN IN-SPACE EXPERIMENTAL DATA TO VALIDATE DESIGN/ANALYSIS AND GROUND TEST METHODS
- ESTABLISH DESIGN METHODS AND CRITERIA FOR QUALIFICATION OF SPACECRAFT FOR FUTURE SPACE MISSIONS

CONTROL-STRUCTURES INTERACTION TECHNOLOGY

CONTROL OF FLEXIBLE STRUCTURES (COFS) MAJOR DELIVERABLES

INTEGRATED DESIGN/ANALYSIS METHODS

 INTEGRATED CONTROLS-STRUCTURES INTERACTION (CSI) DESIGN/ANALYSIS METHODOLOGY

GROUND TEST EXPERIMENTS

- CSI TESTBEDS AT LARC, JPL AND MSFC
- ACTIVE STRUCTURAL ELEMENTS WITH EMBEDDED SENSORS AND ACTUATORS

IN-SPACE FLIGHT EXPERIMENTS

- SMALL SCALE, LOW COST CSI IN-SPACE FLIGHT EXPERIMENTS
- CONTROLS AND STRUCTURES EXPERIMENT IN SPACE (CASES)
 SCHEDULED FOR SHUTTLE LAUNCH IN 1993

CSTI

PRECISION SEGMENTED REFLECTORS

LIGHTWEIGHT, THERMALLY STABLE, PRECISION SURFACES WITH ACTIVE CONTROL ENABLE

GOALS • VALIDATED DATABACH FOR HYBRID COMPOSITE REFLECTOR MAILRIALS

BELLECTOR PANEL WITH PRECISE SUBTACE FOR BANCE • LIGHTWEIGHT, LOW-COST, THERMAN STAKEL

• RELIABLE SENSORS, ACTUATORS, CONTROL METALODOLOGY

GROUND DI MONSTRATION VALIDATION OF MULTI-PANEL SYSTEM

TECHNOLOGY FOR CONSTRUCTION OF LARGE REFECTORS WITH MICHON SMOOTHNESS DOES NOT EXIST. COST AND WHATH PENALTHE PROHIBIT USING CURRENT AND PROJECTED MATHRIALS DEVELOPMENTS SIGNIFICANCE

PRIMARY CENTER RESPONSIBILITIES

LANGLEY RESEARCH CENTER

JET PROPULSION LABORATORY

PRIMARY TRUSS STRUCTURE

- BASELINE PAC-TRUSS
- ERECTABLE -VS- DEPLOYABLE
- ROBOTIC COMPATIBILITY (BUT NO ACTUAL ROBOTICS)

ADVANCED PANEL MATERIALS

- ADVANCED ULTRA-LOW CTE RESINS
- GRAPHITE/GLASS COMPOSITE (ADVANCED PROCESSING)

ADVANCED MAGNETIC SUSPENSION ACTUATORS

SYSTEM DEFINITION, INTEGRATION AND TEST

PANEL DEVELOPMENT

- CONCEPTS
 MATERIAL SYSTEMS (BASELINE -
 - GRAPHITE/EPOXY) "DEFORMABLE" SURFACE
- SURFACE ACCURACY
- REPRODUCIBILITY (1.- TO 2-METER PANELS)
- DURABILITY
- PANEL MATERIALS ADVANCED GR/EP
- COATINGS AND ADHESIVES

OVERALL CONTROL STRATEGY

- FIGURE AND VIBRATIONCONTROL METHODOLOGY
- BASELINE SENSORS AND ACTUATORS

CONCEPT FOR "ACTIVE" PRIMARY STRUCTURES FOR STATIC AND DYNAMIC TUNING

LIGHTWEIGHT DEPLOYABLE STRUCTURE

LIGHTWEIGHT COMPOSITE PANELS

ORIGINAL PAGE IS

PATHFINDER

- IN-SPACE ASSEMBLY AND CONSTRUCTION
- SAMPLE ACQUISITION, ANALYSIS ANDPRESERVATION
- RESOURCE PROCESSING PILOT PLANT

<u>PATHFINDER</u>

IN-SPACE ASSEMBLY AND CONSTRUCTION

PROGRAM OBJECTIVE:

DEVELOP TECHNOLOGY TO ENABLE THE IN-SPACE ASSEMBLY AND CONSTRUCTION FOR VARIOUS CLASSES OF SPACE STRUCTURAL CONCEPTS TO SUPPORT LONG-RANGE NASA MISSIONS

- **0 MARS TRANSFER VEHICLE**
- **0 LARGE AEROBRAKES**
- **0 DEPLOYABLE FUEL DEPOT PLATFORMS**
- 0 PRESSURE VESSELS, HABITAT AND HANGER ENCLOSURES, FUEL TANKS
- **0 LUNAR CARGO VEHICLE**
- **0 LARGE ASTRONOMICAL INSTRUMENTS**

IN-SPACE ASSEMBLY AND CONSTRUCTION

MAJOR DELIVERABLES

- METHODS TELEROBOTICALLY FABRICATING PERMANENT JOINTS (E.G. WELDING)
- CONCEPT FOR HIGH-LOAD CARRYING MECHANICAL JOINTS.
- "SPACE CRANE" CONCEPT FOR MANIPULATING LARGE MASSES
- ARCHITECTURE AND SPECIFICATION OF A GENERALPURPOSE, SPACE-BASED SYSTEM FOR LARGE-SCALE ASSEMBLY AND CONSTRUCTION
- VALIDATED TELEROBOTIC METHODS FOR PRECISE MANIPULATING, POSITIONING AND HOLDING OF LARGE STRUCTURAL COMPONENTS
- CONCEPT FOR LARGE-SCALE UTILITIES INSTALLATION
- VALIDATED METHODS FOR INTEGRATED TELEROBOTIC MANIPULATION,
 PRECISE POSITIONING AND JOINING OF LARGE, MASSIVE SPACE SYSTEMS
- SOFTWARE SYSTEM FOR IN-SPACE ASSEMBLY AND CONSTRUCTION SIMULATION, OPERATIONAL SEQUENCING AND PROCESS MONITORING

PATHFINDER

SAMPLE ACQUISITION, ANALYSIS AND PRESERVATION (SAAP)

PROGRAM OBJECTIVE:

DEVELOP THE TECHNOLOGY FOR REMOTE COLLECTION, ANALYSIS AND PRESERVATION OF EXTRA-TERRESTRIAL MATERIAL SAMPLES TO ENABLE EXPLORATION, RESOURCE IDENTIFICATION AND SITE SELECTION FOR A PILOTED MISSION (MARTIAN EMPHASIS)

- SITE AND SAMPLE SELECTION
- SAMPLE ACQUISITION
 - SURFACE SAMPLES
 - FRESH ROCK
 - SUB-SURFACE
- SAMPLE ANALYSIS
- CONTAINMENT AND PRESERVATION
- SAAP SYSTEM CONCEPTS

SAMPLE ACQUISITION, ANALYSIS AND PRESERVATION MAJOR DELIVERABLES

- MULTI-SPECTRAL REMOTE SAMPLE SENSING AND SCREENING CONCEPT
- MULTI-PURPOSE SAMPLE ACQUISITION END-EFFECTOR
- MATERIALS AND CONTAINER DESIGN FOR SAMPLE PRESERVATION
- METHODS FOR PHYSICAL/CHEMICAL ANALYSIS
- AUTOMATED ROCK CORING DRILL CONCEPT AND HARDWARE
- SAAP LABORATORY SAMPLE ACQUISITION AND PREPARATION TESTBED
- SAAP LABORATORY SAMPLE ANALYSIS TESTBED
- INTEGRATED TRANSPORTABLE SAAP "FIELD" TESTBED
- SITE SELECTION PHYSICAL/CHEMICAL DATABASE FOR A MARS MISSION
- SYSTEM CONCEPT FOR A MARS MISSION SAAP SYSTEM WITH VALIDATED TESTBED HARDWARE, AUTOMATION AND CONTROL

PATHFINDER

RESOURCE PROCESSING PILOT PLANT

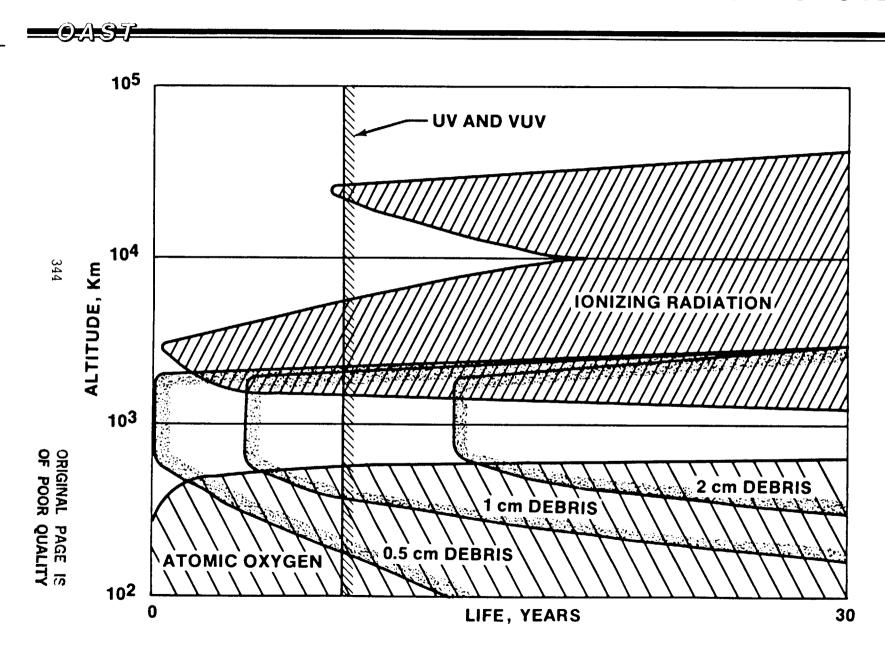
PROGRAM OBJECTIVE:

DEVELOP TECHNOLOGY TO ENABLE THE EXPLOITATION OF EXTRA-TERRESTRIAL RESOURCES FOR LIFE SUPPORT, PROPULSION AND CONSTRUCTION (LUNAR EMPHASIS)

- BASIC PRODUCTION METHODS
 - OXYGEN
 - METALS
 - CONSTRUCTION MATERIALS (E.G. BRICKS, GLASS)
- PROCESS ENGINEERING
- MATERIAL PREPARATION
- PILOT PLANT DEVELOPMNENT
- MINING

MATERIALS AND STRUCTURES TECHNOLOGY

SPACE TECHNOGY NEEDS:


- SPACE DURABLE/DIMENSIONALLY STABLE MATERIALS
- ADVANCED THERMAL PROTECTION CONCEPTS
- ADVANCED SPACE STRUCTURAL CONCEPTS IN-SPACE CONSTRUCTION
- LARGE SPACE STRUCTURES, DYNAMICS AND CONTROL CONTROL-STRUCTURE INTRERACTION
- GROUND TEST/FLIGHT EXPERIMENTS METHODOLOGY

GOAL:

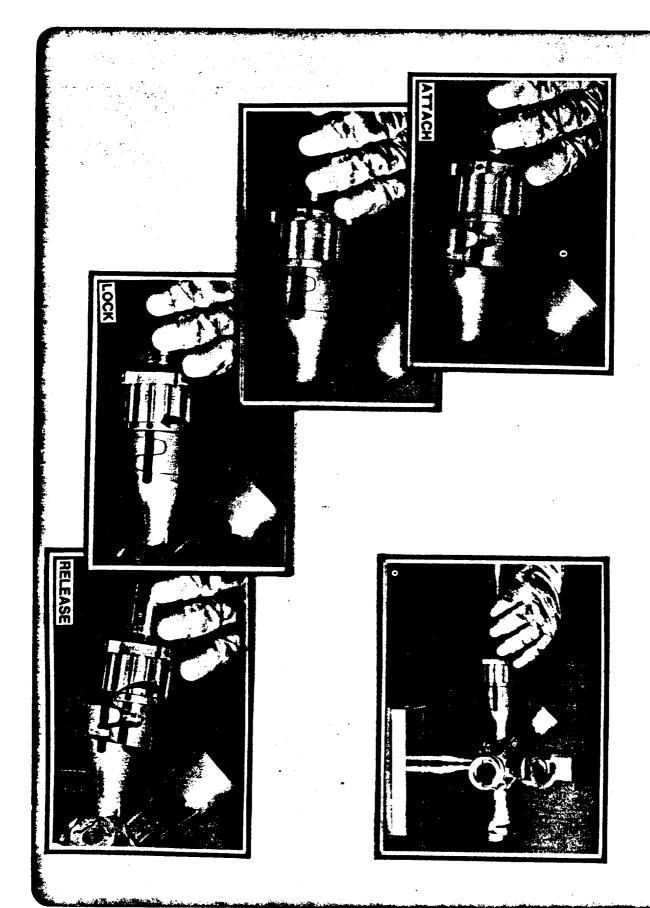
BROAD TECHNOLOGY BASE TO SUPPORT FUTURE NASA MISSION REQUIREMENTS

- •CSTI
- •PATHFINDER

IMPACT OF ENVIRONMENTAL FACTORS ON SYSTEMS

CONCERNS

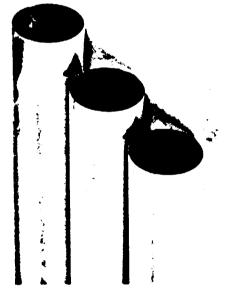
- LARGER SPACECRAFT
- VULNERABLE LIGHTWEIGHT MATERIALS
- MINIMUM GAGE STRUCTURES
- LARGER ONBOARD POWER SOURCES
- LONGER FLIGHT DURATIONS
- HAZARDOUS ORBITS


CURRENT/ADVANCED COATINGS FOR SPACECRAFT

	COATING TYPE / SUBSTRATE	COATING COMPOSITION / DESIGNATION	CONCERNS
	ANODIZED/ ALUMINUM ALLOYS	CHROMIC ACID ANODIZE SULFURIC ACID ANODIZE OXALIC ACID ANODIZE	THERMOMECHANICAL STABILITY
346	ANODIZED AI FOIL/ GRAPHITE-EPOXY COMPOSITES	CHROMIC ACID ANODIZE ON A-1100 FOIL	THERMOMECHANICAL STABILITY ADHESIVE STABILITY
	WHITE PAINTS/ AI, COMPOSITES	ZINC OXIDE-SILICATE / Z-93 ZINC OXIDE-SILICONE / S13GLO ZINC ORTHOTITINATE-SILICATE / YB-71 CHEMGLAZE, A-276	THERMOMECHANICAL STABILITY ATOMIC OXYGEN
	BLACK PAINTS/ AI, COMPOSITES	CHEMGLAZE, Z-306 IITRI, D=111	THERMOMECHANICAL STABILITY ATOMIC OXYGEN
	THIN FILMS (<5000A)/ OPTICS, RADIATORS, SOLAR VOLTAICS	SILICON DIOXIDE ON ORGANICS ALUMINUM LEAD-TIN	ATOMIC OXYGEN DEFECT CONTENT DEBRIS IMPACT

LDEF COATINGS AND COATING SPECIMENS

- White paints with organic and inorganic binders
- Black paints
- Anodized aluminum
- Ceramic sputter deposited coatings
- Mettallic coatings
- Second-surface mirrors
- Optical solar reflectors
- Sputter deposited coatings over graphite/epoxy


QUICK ATTACHMENT JOINT DEVELOPED FOR SPACE STATION DESIGNED FOR ASTRONAUT GLOVE HANDLING

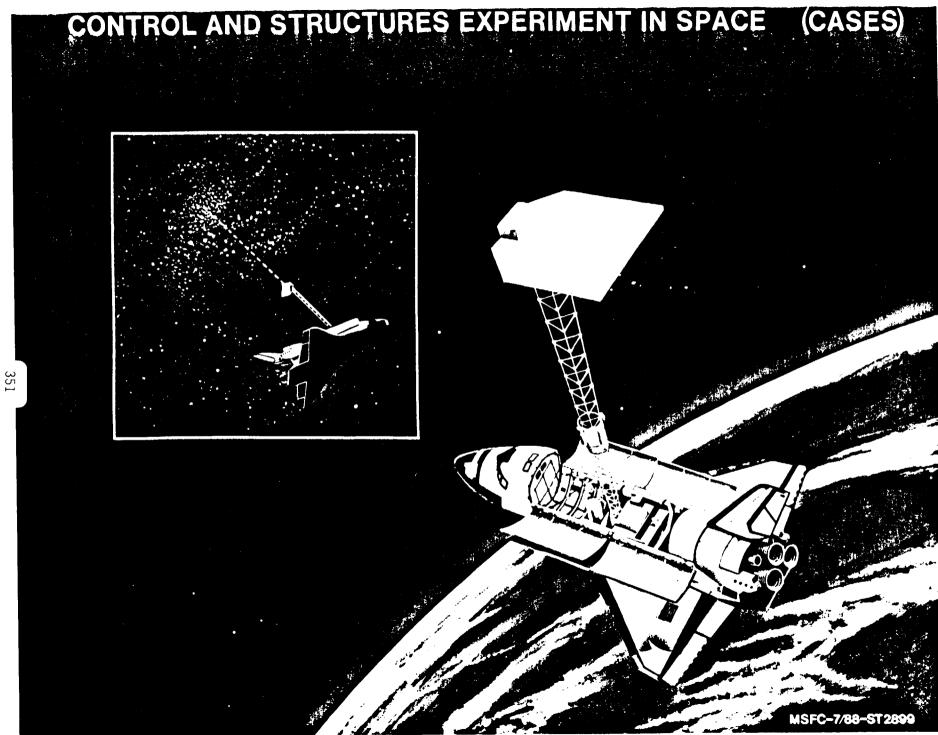
ORIGINAL PAGE IS OF POOR QUALITY


COMPOSITE TUBE WITH AI FOIL COATING

P75/934 (+60,-60,0,0,-60,+60)

COMPOSITE TUBES

2 INCH DIAMETER


TUBE CROSS-SECTION

- AI FOIL (.002 IN.) - ADHESIVE FM-73

- COMPOSITE

NASA CSI PROGRAM ELEMENTS

- CONFIGURATIONS AND CONCEPTS
- INTEGRATED ANALYSIS AND DESIGN
- GROUND TEST METHODOLOGY
- IN-SPACE FLIGHT EXPERIMENTS
- GUEST INVESTIGATOR PROGRAM

- LIGHTWEIGHT
- HIGH TEMPERATURE
- HIGH STIFFNESS AT ELEVATED TEMPERATURE
- HIGH STRENGTH AT ELEVATED TEMPERATURE
- MINIMUM GAGE
- OXIDATION RESISTANT

MATERIALS

METALLICS

- LIGHT ALLOYS AND INTERMETALLICS
- ADVANCED MMC
- PROCESSING AND JOINING

NONMETALLICS

- CARBON-CARBON
- CERAMICS
- CERAMIC MATRIX COMPOSITES

NON-STRUCTURAL MATERIALS

- SEALS AND LUBRICANTS
- COATINGS
- INSULATION

354

PRECISION SEGMENTED REFLECTORS MAJOR DELIVERABLES

PANELS: 1-METER, 3-MICRON RMS PRECISION

MATERIALS

CONSTRUCTION

DURABILITY

2-METER, 10-MICRON RMS, LARGE -SCALE PANEL

1-MICRON RMS, ADVANCED CONCEPT PANEL

BACK-UP TRUSS: 10-METER CONCEPT VALIDATION MODEL

4-METER TESTBED VERSION

• ERECTABLE/DEPLOYABLE

• 1-MM PRECISION

ADVANCED HIGH-PRECISION JOINTS

CONTROLS: PANEL ALIGNMENT SYSTEM

SUB-MICRON PRECISION

SENSORS AND ACTUATORS

• MULTI-PANEL CONTROL ALGORITHM

"ACTIVE MEMBER" VIBRATION SUPPRESSION

MULTI-PANEL INTEGRATED TESTBED (PANELS, TRUSS, CONTROLS)

RESOURCE PROCESSING PILOT PLANT

MAJOR DELIVERABLES

- PROCESSES TO PRODUCE OXYGEN, LUNAR CONSTRUCTION MATERIALS, AND LUNAR METALS
- OXYGEN LIQUEFACTION PROCESS FOR LUNAR ENVIRONMENT
- BENEFICIATION PROCESS FOR LUNAR MATERIALS
- CONCEPTUAL DESIGN OF LUNAR PILOT PLANT
- LABORATORY PILOT PLANTS TO VALIDATE PRODUCTION OF LUNAR OXYGEN, CONSTRUCTION MATERIALS, AND METALS
- SOLIDS HANDLING AND TRANSPORT FOR LUNAR PROCESSING TESTBED, INCLUDING TELEROBOTIC CONCEPTS FOR COLLECTION, HANDLING, AND SORTING LUNAR MATERIALS
- BENCHTOP PILOT PLANTS COMPATIBLE WITH AUTONOMOUS OPERATION WHICH REQUIRE A MINIMAL DEGREE OF MONITORING AND MAINTENANCE
- LUNAR MINING CONCEPT

_		