357

FLIGHT PROJECTS OVERVIEW

BY

JACK LEVINE

DIRECTOR,

OAST FLIGHT PROJECTS DIVISION

N 8

AIAA/OAST-L1 725/88

SPACE R&T STRATEGY

REVITALIZE TECHNOLOGY FOR LOW EARTH ORBIT APPLICATIONS

DEVELOP TECHNOLOGY FOR EXPLORATION OF THE SOLAR SYSTEM

MAINTAIN FUNDAMENTAL R&T BASE

BROADEN PARTICIPATION OF UNIVERSITIES

EXTEND TECHNOLOGY DEVELOPMENT TO IN-SPACE EXPERIMENTATION

FACILITATE TECHNOLOGY TRANSFER TO USERS

FLIGHT PROJECTS DIVISION

FUNCTIONS

- COLLABORATE WITH OAST DISCIPLINE DIVISIONS IN ANALYSES, FEASIBILITY STUDIES, EVALUATIONS, & SELECTION OF POTENTIAL FLIGHT RESEARCH & TECHNOLOGY PROJECTS
- IMPLEMENT & DIRECT CONCEPT DEFINITION STUDIES
- DIRECT APPROVED FLIGHT PROJECTS
 - EXPERIMENT DESIGN & DEVELOPMENT
 - INTEGRATION OF EXPERIMENTS WITH FLIGHT TEST VEHICLE SYSTEMS
 - FLIGHT OPERATIONS
 - DATA RETRIEVAL, ANALYSIS, DISSEMINATION

CURRENT SPACE FLIGHT EXPERIMENTS

 9497		1918EX	! =0 = \$ <u></u> D!Y \\$\!@
FLIGHT EXPERIMENTS	<u>HQ</u>		EAD CENTER
LONG DURATION EXPOSURE FACILITY	JOHN LORIA	_	LANGLEY
ORBITER EXPERIMENTS	RICHARD GUALDONI		JOHNSON
LIDAR IN-SPACE TECHNOLOGY EXPERIMENT	RICHARD GUALDONI		LANGLEY
ION AUXILIARY PROPULSION SYSTEM	JOHN LORIA		LEWIS
ARCJET FLIGHT EXPERIMENT	JOHN LORIA	_	LEWIS
TELEROBOT INTELLIGENT INTERFACE FLIGHT EXPERIMENT	CLOTAIRE WOOD	_	JPL
CRYOGENIC FLUID MANAGEMENT FLIGHT EXPERIMENT	JOHN LORIA		LEWIS
OUT-REACH (INDUSTRY/UNIVERSITY TECHNOLOGY EXPERIMENTS)	JON PYLE		
IN-REACH (NASA TECHNOLOGY EXPERIMENTS)	JON PYLE		
AEROASSIST FLIGHT EXPERIMENT	JOHN SMITH	_	MARSHALL

LDEF LONG DURATION EXPOSURE FACILITY

-0-A-S-T

:ZLIGHT—PROJECES—DEVESION—

OBJECTIVES:

- DETERMINE LONG-TERM SPACE EXPOSURE EFFECTS ON MATERIALS, COATINGS, & OPTICS
- MEASURE SPACE ENVIRONMENTAL PHENOMENA OVER EXTENDED TIME

STATUS:

- 34 EXPERIMENTS ADVERSELY AFFECTED BY LDEF RECOVERY DELAY
- 23 EXPERIMENTS EITHER IMPROVED OR NOT AFFECTED
 - COMPOSITE MATERIALS
 - PHASED ARRAY ANTENNA MATERIALS
 - HOLOGRAPHIC DATA STORAGE CRYSTALS
 - SOLAR ARRAY MATERIALS
 - GLASS MATERIALS
- LDEF STRUCTURE AVAILABLE FOR STUDY OF ENVIRONMENTAL EROSION & DEBRIS IMPACT
- SCHEDULED FOR RETRIEVAL NOVEMBER 1989

LEAD CENTER CONTACT:

 ROBERT L. JAMES, JR. LANGLEY RESEARCH CENTER PHONE NO. (804) 865-4987

OEXOBITER EXPERIMENT PROGRAM

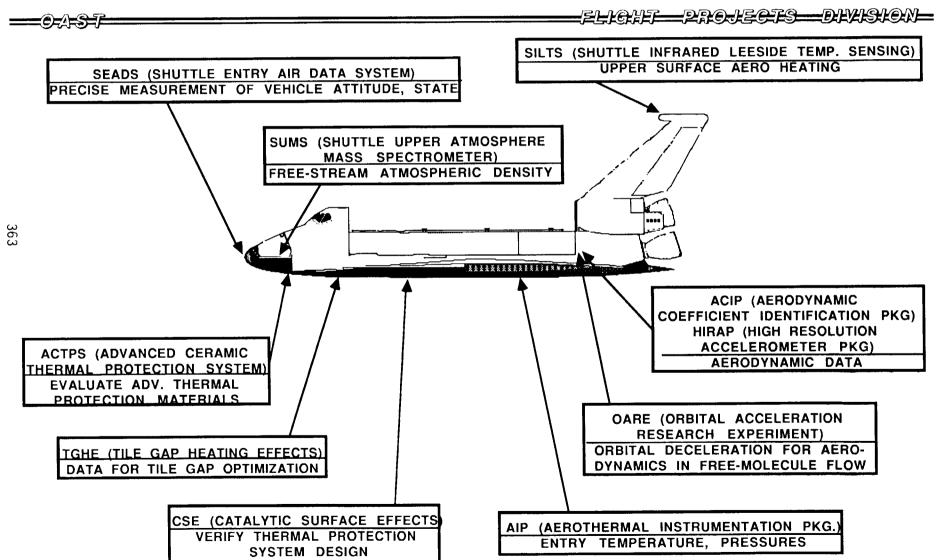
=0-A-S-T-

-ZLIGHT - PROJECTS - DIVISION -

OBJECTIVES:

- OBTAIN BASIC AEROTHERMODYNAMIC & ENTRY ENVIRONMENT DATA FROM R&D INSTRUMENTATION INSTALLED IN SPACE SHUTTLE ORBITER
- FLIGHT-VALIDATE GROUND TEST RESULTS TO IMPROVE BASIS FOR DESIGN OF ADVANCED SPACECRAFT

STATUS:


- DATA COLLECTION ON-GOING SINCE 1985 WILL CONTINUE INTO 1990'S
- SOME EXPERIMENTS STILL TO BE DESIGNED & DEVELOPED

LEAD CENTER CONTACT:

ROBERT SPANN
 JOHNSON SPACE CENTER
 PHONE # (713) 483-3022

OEX OBITER EXPERIMENT PROGRAM

364

LITE LIDAR IN-SPACE TECHNOLOGY EXP.

OBJECTIVE:

- EVALUATE CRITICAL ATMOSPHERIC PARAMETERS & VALIDATE OPERATION OF A SOLID-STATE LIDAR SYSTEM FROM A SPACEBORNE PLATFORM, MEASURING:
 - CLOUD DECK ALTITUDES
 - PLANETARY BOUNDARY-LAYER HEIGHTS
 - STRATOSPHERIC & TROPOSPHERIC AEROSOLS
 - ATMOSPHERIC TEMPERATURE & DENSITY (10KM TO 40KM)

STATUS:

- LASER TRANSMITTER MODULE, CASSEGRAIN TELESCOPE,
 & ENVIRONMENTAL MONITORING SYSTEM IN DEVELOPMENT
- FLIGHT MANIFESTED FOR 1993

LEAD CENTER CONTACT:

• RICHARD R. NELMS
LANGLEY RESEARCH CENTER
PHONE NO. (804) 865-4947

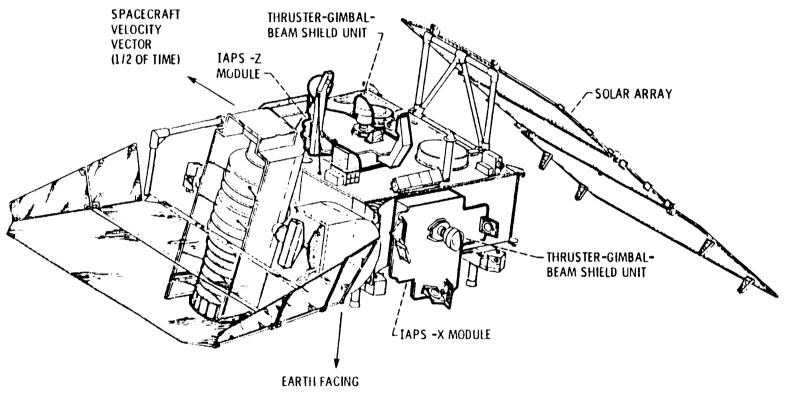
IAPS ION AUXILIARY PROPULSION SYSTEM

=Θ-Λ-S-T=

OBJECTIVES:

- EVALUATE & VALIDATE ION AUXILIARY PROPULSION SYSTEM ON A FUNCTIONAL SPACECRAFT
 - MERCURY PROPELLANT
 - 0.2 KW, 1mLB THRUST, Isp 2700
- DEMONSTRATE LONG-LIFE CONTROL OF A SPACECRAFT

STATUS:


- ON MANIFEST FOR STS FLIGHT #37 (1990) ON TEAL RUBY SPACECRAFT
- SPACECRAFT INTEGRATION & TESTING COMPLETED

LEAD CENTER CONTACT:

 LOU IGNACZAK LEWIS RESEARCH CENTER PHONE NO. (216) 433-2848

IAPS ION AUXILIARY PROPULSION SYSTEM

IAPS ON TEAL RUBY SATELLITE

ORIGINAL PAGE IS

366

ARCJET FLIGHT EXPERIMENT

-0-1-S-T

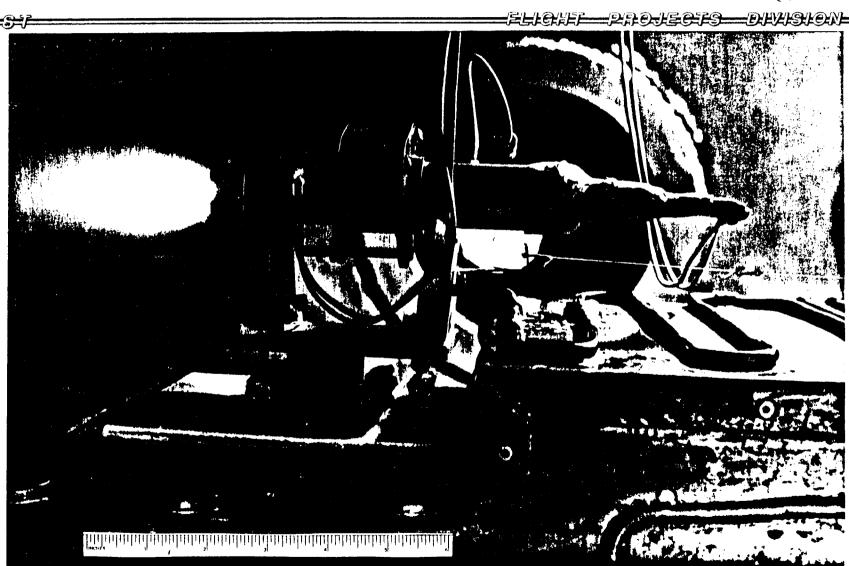
ELKANE—PRONECES—DIVISION—

OBJECTIVES:

- ASSESS ARCJET AUXILIARY PROPULSION SYSTEM OPERATION IN SPACE ENVIRONMENT
 - HY DRAZINE PROPELLANT
 - 1.4 KW, 50 mLB THRUST, Isp 450
- EVALUATE PLUME EFFECTS & THRUSTER/THERMAL INTERACTIONS ON A COMMERICAL COMMUNICATIONS SATELLITE

STATUS:

- PRELIMINARY DESIGN & ARCJET COMPONENT DEVELOPMENT COMPLETED
- FLIGHT HARDWARE DESIGN, DEVELOPMENT & TESTING SCHEDULED TO START IN 1989
- FLIGHT TEST TENTATIVELY PLANNED FOR 1991


LEAD CENTER CONTACT:

 JERRI S. LING LEWIS RESEARCH CENTER PHONE NO. (216) 433-2841

ORIGINAL PAGE IS

ARCJET FLIGHT EXPERIMENT

368

TRIIFEX

TELEROBOTIC INTELLIGENT INTERFACE FLIGHT EXPERIMENT

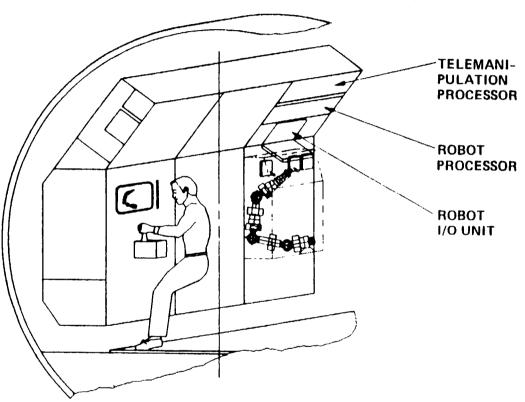
OBJECTIVES:

- EVALUATE & VALIDATE TELEOPERATION OF A ROBOTIC MANIPULATOR UNDER CONDITIONS OF MICRO-G & COMMUNICATION TIME DELAYS
- VALIDATE ADVANCED SPACE TELEROBOT CONTROLS INCLUDING HIGH-FIDELITY HYBRID POSITION & FORCE CONTROL TECHNIQUES

STATUS:

- CONCEPTUAL DESIGN IN PROGRESS AT JPL
- DEVELOPMENT & INTEGRATION SCHEDULED TO START IN LATE 1988
- FLIGHT TEST PLANNED IN COMBINATION WITH GERMAN ROTEX EXPERIMENT ON SPACELAB D-2 MISSION (1991)

LEAD CENTER CONTACT:


• DANIEL KERRISK JET PROPULSION LABORATORY PHONE NO. (818) 354-2566

TRIIFEX

TELEROBOTIC INTELLIGENT INTERFACE

FLIGHT EXPERIMENT

MOCK-UP OF TRIIFEX HARDWARE ON SPACELAB D-2 MISSION

CFMFE CRYOGENIC FLUID MGMT FLIGHT EXP.

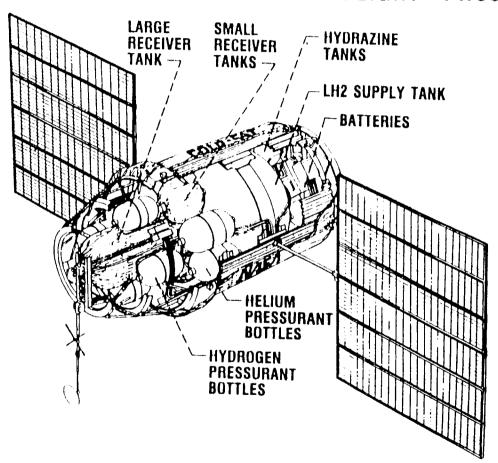
-ELYAYEE—|2R0-YECES—DYYSYON—

OBJECTIVES:

- DEVELOP TECHNOLOGY REQUIRED FOR EFFICIENT STORAGE, SUPPLY & TRANSFER OF SUBCRITICAL CRYOGENIC LIQUIDS IN LOW-GRAVITY SPACE ENVIRONMENT
- FLIGHT VALIDATE NUMERICAL MODELS OF THE PHYSICS INVOLVED

STATUS:

- CONTRACTOR FEASIBILITY STUDIES CURRENTLY UNDER WAY
- 1992 NEW START PROPOSED


LEAD CENTER CONTACT:

• E. PAT SYMONS LEWIS RESEARCH CENTER PHONE NO. (216) 433-2853

ORIGINAL PAGE IS OF POOR QUALITY

CFMFE CRYOGENIC FLUID MGMT FLIGHT EXP.

COLD-SAT SPACECRAFT

INDUSTRY/UNIVERSITY IN-SPACE TECHNOLOGY EXPERIMENTS

OUT-REACH PROGRAM

OBJECTIVES:

 PROVIDE FOR IN-SPACE FLIGHT RESEARCH EVALUATION & VALIDATION OF ADVANCED SPACE TECHNOLOGIES FOR THE INDUSTRY & UNIVERSITY COMMUNITY

STATUS:

- 7 MAJOR THEME AREAS
- 41 FLIGHT EXPERIMENT PROPOSALS SELECTED

PROGRAM CONTACT:

JON PYLE NASA HEADQUARTERS PHONE NO. (202) 453-2831

NASA IN-SPACE TECHNOLOGY EXPERIMENTS

IN-REACH PROGRAM

OBJECTIVES:

- EXPAND THE NASA IN-SPACE R&T PROGRAM BY THE PROMOTION OF SPACE FLIGHT EXPERIMENTS WITHIN THE NASA CENTERS
- FORMALIZE THE PROCESS FOR SELECTION OF CANDIDATE EXPERIMENTS IN THE SPACE STATION ERA

STATUS:

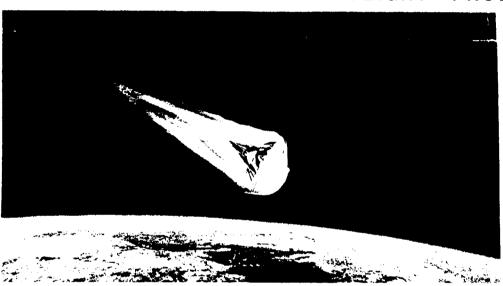
- 58 EXPERIMENT PROPOSALS SUBMITTED
- 7 FLIGHT EXPERIMENTS SELECTED FOR DEFINITION & DEVELOPMENT

PROGRAM CONTACT:

JON PYLE NASA HEADQUARTERS PHONE NO. (202) 453-2831

AFE AEROASSIST FLIGHT EXPERIMENT

OBJECTIVE:


INVESTIGATE CRITICAL VEHICLE DESIGN &
 ENVIRONMENTAL TECHNOLOGIES APPLICABLE
 TO THE DESIGN OF AEROASSISTED SPACE
 TRANSFER VEHICLES

STATUS:

- PHASE B DEFINITION COMPLETE
- EXPERIMENT/INSTRUMENT COMPLEMENT ESTABLISHED
- PRELIMINARY DESIGN INITIATED

LEAD CENTER CONTACT:

● LEON B. ALLEN MARSHALL SPACE FLIGHT CENTER PHONE NO. (205) 544-1917

SCIENCE & TECHNOLOGY OBJECTIVES:

- UNDERSTAND RADIATIVE HEATING WHERE THE SHOCK LAYER IN CHEMICAL NON-EQUILIBRIUM
- DETERMINE CATALYTIC EFFICIENCY WHERE NITROGEN IS MOSTLY
 DISASSOCIATED & SOME IONIZATION IS PRESENT IN THE SHOCK LAYER
- EVALUATE ADVANCED THERMAL PROTECTION SYSTEM MATERIALS
- VERIFY PREDICTIVE TECHNIQUES FOR THE BASE FLOW & WAKE REGION
- ASSESS CONTROL ISSUES RELATED TO ATMOSPHERIC VARIABLES WHICH AN ASTV MIGHT ENCOUNTER
- VERIFY COMPUTATIONAL CODES FOR PREDICTION OF ASTV HEATING ENVIRONMENT & AERODYNAMIC PERFORMANCE

or Po

> ALITYROD SI BOYLL

> > AIAA/OAST-L13 8/22/88

SUMMARY

O-A-S-T-

ZLIGHT—DRONECES—DIVERIONL

- LONG & SUCCESSFUL HISTORY IN THE CONDUCT OF SPACE FLIGHT TECHNOLOGY EXPERIMENTS
- PROGRAM IS BEING EXPANDED TO EMPHASIZE THE DEVELOPMENT OF ADVANCED SPACE FLIGHT TECHNOLOGIES
- OAST PLANS TO PROVIDE ACCESS TO SPACE FOR THE AEROSPACE TECHNOLOGY COMMUNITY (NASA, DOD, INDUSTRY & UNIVERSITIES)

	•		
_			