https://ntrs.nasa.gov/search.jsp?R=19890002863 2020-03-20T05:54:53+00:00Z

NASA Technical Memorandum 4077

<u>,</u>

A Method for Monitoring the Variability in Nuclear Absorption Characteristics of Aviation Fuels

(NASA-1M-4077) A METECE FOR FONITOBING THE VARIAETLITY IN NUCLEAR ABSORFTICE CHARACTERISTICS OF AVIATION FUELS (NASA) 28 p CSCL 098 335-12234

09B Unclas G3/61 0167197

A Method for Monitoring the Variability in Nuclear Absorption Characteristics of Aviation Fuels

Danny R. Sprinkle Langley Research Center Hampton, Virginia

Chih-Ping Shen Old Dominion University Norfolk, Virginia

National Aeronautics and Space Administration

Scientific and Technical Information Division

1988

÷

Abstract

A technique for monitoring variability in the nuclear absorption characteristics of aviation fuels has been developed. It is based on a highly collimated low energy gamma radiation source and a sodium iodide counter. The source and the counter assembly are separated by a geometrically well-defined test fuel cell. A computer program for determining the mass attenuation coefficient of the test fuel sample, based on the data acquired for a preset counting period, has been developed and tested on several types of aviation fuel.

Introduction

We have recently demonstrated (ref. 1) the feasibility of a nuclear gauging system for fuel quantity measurement onboard an aircraft. It is based on monitoring the number of photons arriving at a counting station located a predetermined distance from an Am²⁴¹ source capsule. Several such source capsule-counting station assemblies are judiciously located throughout the fuel tanks. When the entire pathlength between the source capsule and the counter station is occupied by the fuel, the number of surviving photons will be minimal. If, on the other hand, there is no fuel in the photon path, the number of surviving photons will be maximum. By combining the information about the counting rates and the geometrical locations of the source-counter assemblies in the tanks, a reliable measure of the total fuel content of the tank can be obtained at any time. This, of course, is true only if the quality of the fuel remains constant. Recently, the Airlines Electronic Engineering Committee (AEEC) has reported concern about the variability of aviation fuel characteristics as a function of the season and geographical origin (refs. 2, 3, and 4). The concern arises from variations in the fuel composition as well as the nature and amount of contaminants. In an effort to identify the degree of variability in fuel quality, we have set up a fuel characteristics monitoring system. This system and the computational procedure used to measure changes in the nuclear absorption coefficients of the fuel samples are described in this report.

Fuel Characteristics Monitoring System

The fuel characteristics monitoring system is made up of a highly collimated 10 μ Ci Am²⁴¹ (59.5 keV) gamma radiation source and a 2-indiameter × 2-in. NaI(Tl) crystal mounted on a photomultiplier. The source and the counter assembly are separated by a 2-in-diameter × 4-in. glass fuel cell. The number of photons arriving at the NaI(Tl) crystal depends on the quality of the fuel in the fuel cell.

$$I_x = I_o e^{-\mu x} + B$$

where

 I_x number of photons arriving at the NaI (Tl) crystal

- *l_o* number of photons incident on the fuel cell
- *i* linear attenuation coefficient of the fuel
- t fuel path length (fuel cell length)
- B background count (counts recorded in the absence of the source)

By using a well-characterized medium in the fuel ell—such as air or distilled water—the value of I_o can be determined from a measured value of I_x . Once I_o is determined for a fixed source-detector assembly, I_x becomes the critical measurable parameter in the fuel quality study. An independent measurement of the density of the test fuel, coupled with a value of linear attenuation coefficient determined from the preceding equation, then permits a direct computaion of mass attenuation coefficient $(\mu/\rho, \text{ cm}^2/\text{g})$ of the sample (where ρ is the density of the test fluid).

Computational Procedure

Basic description. A computer program for gamma radiation mass attenuation coefficient PGRMAC) has been written in MS-FORTRAN 77 Version 3.31 for personal computers with a fixed-disk system, using MS-DOS Version 3.3. The program requires 12 156 bytes of disk space for storage.

The program models the experimental procedure or calculating gamma ray attenuation coefficients n the test medium. The geometrical details of the est system are summarized in figure 1. Figure 2 is a photograph of the experimental system. As shown in igure 1, gamma rays have to pass through air, glass uel cell walls, the test fluid, and a thin aluminum iousing to reach the detector surface. The intensity number of photons) of gamma radiation arriving at he detector can be written as follows:

$$I_{x} = I_{o} \left(e^{-\mu_{\mathrm{air}} x_{\mathrm{air}1}} e^{-\mu_{\mathrm{glass}} x_{\mathrm{glass}}} \right) \\ \times e^{-\mu_{\mathrm{fluid}} x_{\mathrm{fluid}}} e^{-\mu_{\mathrm{al}} x_{\mathrm{al}}} + B$$
(1)

where

x	intensity of gamma radiation arriving at the detector
0	intensity of gamma radiation incident on fuel cell

$\mu_{ m air}$	linear attenuation coefficient for air
μ_{glass}	linear attenuation coefficient for glass
$\mu_{ m al}$	linear attenuation coefficient for aluminum
$\mu_{ ext{fluid}}$	linear attenuation coefficient for the test fluid
x_{airl}	air path length
$x_{\mathbf{glass}}$	glass path length
x_{al}	aluminum path length
x_{fluid}	fluid path length
В	background count (counts recorded in the absence of the source)

In equation (1), μ_{air} , x_{air1} , μ_{glass} , x_{glass} , μ_{al} , x_{al} , and x_{fluid} are known parameters (refs. 1, 5, 6, and 7). The intensities I_o and I_x need to be calculated or measured. To determine I_o , we can choose air as the reference medium. Equation (1), after subtracting the background count, can be written as follows:

$$I_x - B = I_o \left(e^{-\mu_{\rm air} x_{\rm air1}} e^{-\mu_{\rm glass} x_{\rm glass}} \right)$$
$$\times e^{-\mu_{\rm fluid} x_{\rm fluid}} e^{-\mu_{\rm al} x_{\rm al}}$$

$$I_{x(\text{air})} = I_o \left(e^{-\mu_{\text{air}} x_{\text{air}1}} e^{-\mu_{\text{glass}} x_{\text{glass}}} \right) \times e^{-\mu_{\text{air}} x_{\text{fluid}(\text{air})}} e^{-\mu_{\text{al}} x_{\text{al}}}$$
(2)

This gives the following relation for I_o :

$$I_{o} = I_{x}(\text{air}) \exp\left\{\mu_{\text{air}}\left[x_{\text{air1}} + x_{\text{fluid}(\text{air})}\right] + \mu_{\text{glass}}x_{\text{glass}} + \mu_{\text{al}}x_{\text{al}}\right\}$$
(3)

$$I_o = I_x(\operatorname{air}) \exp\left(\mu_{\operatorname{air}} x_{\operatorname{air}2} + \mu_{\operatorname{glass}} x_{\operatorname{glass}} + \mu_{\operatorname{al}} x_{\operatorname{al}}\right)$$
(4)

where

$$x_{air2} = x_{air1} + x_{fluid(air)}$$

Since $I_x(air)$ can be determined experimentally, I_o is readily calculated from equation (4).

Once I_o has been obtained from equation (4), the program proceeds to compute the linear attenuation

coefficient of the test fluid from equation (1). When the glass cell is filled with the test fluid, equation (1)can be written as

$$I_x = I_o \exp\left(-\mu_{\rm air} x_{\rm air1} - \mu_{\rm glass} x_{\rm glass} - \mu_{\rm fluid} x_{\rm fluid} - \mu_{\rm al} x_{\rm al}\right)$$
(5)

Then

$$\mu_{\text{fluid}} = [\ln(I_o/I_x) - \mu_{\text{air}} x_{\text{air}1} - \mu_{\text{glass}} x_{\text{glass}} - \mu_{\text{al}} x_{\text{al}}]/x_{\text{fluid}}$$
(6)

The calculated value from equation (6) is the linear attenuation coefficient of the test fluid. Since the mass attenuation coefficient of the medium is of more fundamental importance than the linear attenuation coefficient, the density of the test fluid should be determined beforehand independently. In this program, the density of the test medium, measured experimentally, is read as an input value, and the mass attenuation coefficient is simply equal to the linear attenuation coefficient divided by the density, i.e.,

$$(\mu)_{\rm mass} = \frac{(\mu)_{\rm linear}}{\rm Density}$$
 (7)

The region of the gamma ray spectrum in which we are interested is selected, and it is marked as the region of interest (ROI) in figure 3. This includes most of the area under the total capture peak in the spectrum. The energy distribution of the gamma source forms a peak in the ROI, and the area under the peak in the ROI is interpreted as I_n for each medium in the program. The background counts within the ROI have to be determined and then subtracted from the full spectral counts in the ROI before it can be used to determine I_x or I_o . The ROI in this program is selected to be from channel 241 to channel 421. The peak falls at the middle of the region, as seen in figure 3; this range is quite adequate to monitor and analyze the characteristics of each test fluid.

Program input, output, and usage. The program input is made of two parts containing several parameters and related file names. The first part of the

input consists of 10 essential parameters that are assigned as constants in the program. They are listed below:

MUAIR=0.0002132	XGLS=0.680
MUGLS=0.46654	XAL=0.079
MUAL=0.6639	XFUEL=10.062
XAIR1=5.080	LBEG = 241
XAIR2=XAIR1 + XFLUID(AIR)	LEND=421

In the list above, MUAIR, MUGLS, and MUAL are the linear attenuation coefficients of air, glass, and aluminum, respectively (refs. 5, 6, and 7); XAIR, XGLS, XAL, and XFUEL are the air, glass, aluminum, and test medium pathlengths, respectively. The parameters LBEG and LEND correspond to the beginning and ending channel numbers for the ROI. The second part of the input is an eight-character string, which is read interactively from the keyboard, and which corresponds to two binary file names and one specific record in a data base. These two binary files, which are generated from the multichannel analvzer (MCA), refer to the gamma spectra through air and the test fluid taken on the same day. Each record in the data base has nine terms of information: density, temperature, type of medium, etc., in it.

The program generates four formatted output files. Two of them are data files, converted from the binary spectra through air and the test medium, that list channel numbers and counts in each of them as shown in tables I(a) and (b). Plots of the data in tables I(a) and (b) are shown in figures 4 and 5, respectively. From the data file of the air spectrum, the program calculates the value of I_o and determines the location of the centroid of the peak channel, MAXAIR, for air on that day. The program then computes I_x from the converted data file of the test fluid and determines the location of the peak centroid, MAXFLUID.

MAXAIR and MAXFLUID should coincide and should remain constant as long as the electronic system gain remains unchanged. Thus a determination of MAXAIR MAXFLUID serves as a system calibration check. Once I_o and I_x have been determined by the above procedure, the linear attenuation coefficient of the test fluid (MUFLUID) can be obtained from equation (6). Subsequently, the mass attenuation coefficient (ATCFM) is readily calculable. The other two output files, the printout and monitor display, provide a record of the desired information about the test medium.

Program flowchart and listings. The program flowchart and listings are summarized in appendices A and B, respectively.

Test of the Sensitivity of the System

To test the sensitivity of the monitoring sysem, mass attenuation coefficient measurements were nade in common salt solutions in water containing different amounts of salt. The experimental results, along with the corresponding calculated values, are summarized in table II and illustrated in figure 6. It is apparent from the data shown in this table that the neasured and calculated values of the mass attenuation coefficients for different solutions agree within ± 0.5 percent.

Applications

The program PGRMAC has been applied to the measurement of mass attenuation coefficients for several types of aviation fuel. These fuels have been investigated previously and can thus provide a good test of the validity of the computational procedure. Results for JP-4, JP-5, and Jet A are summarized in tables III(a), (b), and (c), respectively.

The results for the three types of fuel are further consolidated in table IV.

Concluding Remarks

A simple technique for monitoring nuclear absorption characteristics of aviation fuels, based on low energy gamma ray attenuation in the test fuels, has been developed. It has been tested on three types of aviation fuels. It is noted that the mass attenuation coefficients of the three fuels are almost equal, even though their linear attenuation coefficients and densities are slightly different. It would therefore appear that a simultaneous measurement of linear and mass attenuation coefficients and densities is a highly informative procedure. It is further noted that the values of mass attenuation coefficients calculated by using the present procedure agree with the previously reported values to within ± 1 percent. It is therefore concluded that the procedures developed here are quite adequate for monitoring variability of ≥ 0.5 percent in fuel absorption characteristics as a function of the season and geographical points of origin of the fuels.

The international aviation consortium has agreed to provide us fuel samples from various parts of the world over the next 12 months. The linear and mass attenuation coefficients for 59.5 keV Am²⁴¹ gamma rays, as well as densities of the fuel samples, will be measured to assess the fuel composition variability.

NASA Langley Research Center Hampton, VA 23665-5225 September 26, 1988

Table I. Summary of Gamma Ray Spectrum

(a) Through air

ć

Channel		Channel		Channel		Channel	
number	Counts	number	Counts	number	Counts	number	Counts
1	0	56	6	111	24	166	195
2	0	57	7	112	19	167	176
3	0	58	11	113	30	168	169
4	0	59	9	114	12	169	178
5	0	60	6	115	19	170	163
6	0	61	5	116	19	171	175
7	0	62	2	117	30	172	155
8	0	63	4	118	34	173	157
9	0	64	7	119	25	174	171
10	0	65	9	120	32	175	182
11	0	66	7	121	43	176	173
12	0	67	5	122	34	177	164
13	0	68	6	123	45	178	181
14	0	69	0	124	27	179	140
15	0	70	0	125	30	180	155
16	0	71	3	126	56	181	151
17	0	72	9	127	40	182	153
18	0	73	11	128	44	183	128
19	0	74	0	129	39	184	147
20	0	75	8	130	50	185	199
21	0	76	2	131	61	186	141
22	0	77	1	132	61	187	191
23	Ō	78	ñ	133	78	188	113
24	Ő	79	1	134	72	180	110
25	Ő	80	Â	135	80	109	110
26	0	81	1	136	80	190	93
27	0	82	15	137	61	191	99
28	Õ	83	5	138	72	192	09
29	Ő	84	5	130	02	195	104
30	ñ	85	ğ	140	86	105	74
31	õ	86	15	141	101	106	07
32	Õ	87	10	149	80	190	01
33	õ	88	8	142	125	197	
34	Ő	80	1	145	120	196	
35	Õ	00	0	144	120	199	54 57
36	õ	01	2	146	100	200	50
37	n l	02	7	140	109	201	58
38	õ	03		147	105	202	39
30	n	35 Q4	15	140	123	203	51
40	0	05	10	150	144	204	30
41	ñ	06	10	150	194	200	24
42	5	07	11	151	1.04	200	34
43	2	08	2	152	140	207	39
44	ñ	90	22	153	114	208	32
45	0 0	100	12	154	142	209	14
46	14	100	16	155	100	210	28
47	0	102	20	157	133	211	16
48	1	102	12	107	142	212	9
40	10	103	10	100	149	213	41
50	0	104	10	109	150	214	24
51	1	100	10	100	101	215	18
50	- 12	100	12	101	103	216	16
52	<u>з</u>	100	12	102	172	217	17
54	y c	100	10	103	165	218	13
55	U E	109	11	104	168	219	13
00	б	110	10	165	162	220	16

Table I. Cont nued

(a) Concluded

Channel		Channel		Cl annel		Channel	
number	Counts	number	Counts	nu nber	Counts	number	Counts
221	10	276	123	\$31	1082	386	101
222	17	277	140	332	1067	387	97
223	13	278	165	333	1039	388	107
224	18	279	176	334	1032	389	111
225	19	280	214	335	1032	390	105
226	13	281	191	336	1017	391	76
227	1	282	227	337	1035	392	62
228	3	283	232	338	939	393	56
229	12	284	247	339	992	394	45
230	9	285	231	340	969	395	61
231	4	286	264	341	973	396	60
232	7	287	301	342	949	397	43
233	3	288	315	343	967	398	52
234	8	289	307	344	963	399	26
235	0	290	373	345	919	400	45
236	21	291	384	346	922	401	34
237	11	292	359	347	845	402	13
238	23	293	395	348	866	403	13
239	22	294	424	349	823	404	16
240	22	295	424	350	775	405	55
241	20	296	481	351	719	406	0
242	20	297	468	352	721	407	4
243	14	298	512	353	728	408	22
244	16	299	506	354	701	409	16
245	12	300	526	355	672	410	5
246	26	301	581	356	672	411	30
247	27	302	580	357	638	412	0
248	20	303	622	358	571	413	1
249	13	304	643	359	563	414	12
250	24	305	720	360	595	415	0
251	38	306	702	361	515	416	15
252	24	307	713	362	527	417	0
253	24	308	787	363	469	418	4
254	24	309	816	364	458	419	0
255	22	310	799	365	408	420	0
256	28	311	818	366	398	421	U
257	31	312	851	367	398	422	
258	48	313	847	368	324	423	9
259	37	314	866	369	364	424	7
260	68	315	919	370	364	425	16
261	57	316	897	371	344	420	10
262	40	317	961	372	294	427	0
263	39	318	960	373	201	420	6
264	73	319	949	3/4	209	429	0
265	70	320	1036	3/5	209	430	8
266	83	321	976	310	200	431	0
267	86	322	1010	311	105	432	14
268	108	323	976	3/0	190	433	0
269	83	324	1034	319	170	404	13
270	106	325	1085	380	114	430	10
271	92	320	1019	201	1/4	437	0
272	96	327	1034	382	140	428	0
273	120	328	1050	384	125	439	7
274	112	329	1000	295	110	440	
275	147	1 330	1049	1 200	113	110	1

Table I. Continued

Channe	1	Channel		Channel		Channel	
number	· Counts	number	Counts	number	Counts	number	Counts
1	0	56	11	111	163	166	19
2	0	57	3	112	172	167	38
3	0	58	5	113	165	168	42
4	0	59	10	114	168	169	40
5	0	60	5	115	162	170	53
6	0	61	0	116	195	171	27
7	0	62	4	117	176	172	32
8	0	63	1 1	118	169	173	43
9	0	64	3	119	178	174	38
10	0	65	0	120	163	175	35
11	0	66	8	121	175	176	30
12	0	67	10	122	155	177	30
13	0	68	2	123	157	178	20
14	0	69	6	120	171	170	29 51
15	ŏ	70	4	124	192	1/9	51
16	ŏ	71	1	120	172	180	20
17	ŏ	72	0	120	173	101	31
18	ň	73	4	127	104	102	32
10	ů ů	74	4	120	101	183	30
20	0	75	6	129	140	184	36
20	0	76	0	130	155	185	34
21	0	70	4	131	151	186	29
22	0	79	5	132	153	187	23
20	0	70	0	133	128	188	29
24 95	0	19	8	134	147	189	33
20		00 81	0	135	122	190	24
20	0	81	0	136	141	191	10
21		82	6	137	121	192	33
20	0	83	9	138	113	193	19
29	0	84	2	139	110	194	22
30	0	85	4	140	93	195	8
31	0	80	4	141	99	196	20
32	0	87	1	142	89	197	14
33	0	88	3	143	104	198	27
34	0	89	8	144	81	199	7
35	0	90	10	145	74	200	12
30	0	91	0	146	87	201	14
37	0	92	0	147	55	202	6
38	0	93	0	148	71	203	15
39	0	94	0	149	54	204	22
40	0	95	5	150	57	205	0
41	0	96	0	151	33	206	8
42	0	97	0	152	22	207	11
43	0	98	0	153	46	208	7
44	2	99	13	154	30	209	15
45	0	100	0	155	36	210	18
46	5	101	134	156	35	211	16
47	2	102	140	157	25	212	9
48	1	103	114	158	29	213	3
49	3	104	142	159	33	214	6
50	0	105	160	160	22	215	4
51	7	106	133	161	39	216	10
52	8	107	142	162	31	217	4
53	9	108	149	163	54	218	2
54	0	109	186	164	32	219	0
55	2	110	151	165	35	220	0

(b) Through fuel (Jet A)

Table I. Concluded

(b) Concluded

		Channel		Channel		Channel	
Channel	Counts	number	Counts	numt er	Counts	numbe r	Counts
number		276	50	33	251	386	13
221	7	277	28	33	255	387	27
222	11	278	43	33	219	388	6
223		279	54	331	214	389	18
224	5	280	44	33.)	238	390	18
225	1	281	58	336	235	391	13
220	13	282	44	337	240	392	5
221	6	283	58	33 🕇	234	393	6
220	Ő	284	53	33)	188	394	28
230	6	285	54	34)	235	395	20
231	8	286	83	341	218	396	19
232	11	287	64	342	228	397	22
233	12	288	57	343	181	398	D e
234	15	289	71	344	213	399	10
235	2	290	105	345	180	400	
236	0	291	83	346	171	401	0
237	5	292	91	347	211	402	2
238	9	293	82	348	184	403	1
239	10	294	103	349	178	404	0
240	8	295	98	3:0	194	405	l ñ
241	12	296	94	3:1	109	400	3
242	9	297	104	3.2	170	407	2
243	1	298	128	3-3	1/0	408	16
244	0	299	150	3:4	109	405	3
245	8	300	126	3.5	109	410	0
246	8	301	130	3.10	143	412	5
247	14	302	113	3.17	145	413	16
248	0	303	134	300	120	414	0
249	7	304	141	2:0	106	415	0
250	18	305	100	3:0	116	416	2
251	19	306	152	3.32	113	417	0
252	10	307	100	3.33	113	418	0
253	17	308	173	364	117	419	4
254	10	309	107	365	66	420	2
255	15	310	187	366	89	421	0
256	12	311	174	367	75	422	0
257	10	313	189	368	84	423	0
230	10	314	184	369	57	424	1
209	3	315	194	570	61	425	5
200	25	316	209	371	76	426	0
201	14	317	224	:72	71	427	4
263	13	318	227	: 73	70	428	0
203	9	319	208	: 74	49	429	0
265	18	320	234	: 75	54	430	3
266	3	321	198	: 76	44	431	11
267	17	322	242	77	50	432	6
268	15	323	246	.:78	32	433	8
269	8	324	244	:79	26	434	0
270	23	325	234	380	33	435	
271	25	326	244	381	30	436	17
272	19	327	232	182	33	437	11
273	25	328	243	383	27	438	3 11
274	33	329	225	384	0	439	7
275	32	330	259	385	20	440	

Solution		$\frac{\mu}{\rho}$ (experimental),	$\frac{\mu}{a}$ (calculated),*
number	Salt solution composition	cm^2/g	$\int cm^2/g$
1	100 percent saturated solution (35.14 g of salt per 100 cm^3 of H ₂ O)	0.2242 ± 0.0021	0.2243 ± 0.0013
2	80 percent saturated solution (28.11 g of salt per 100 cm^3 of H ₂ O)	0.2191 ± 0.0020	0.2189 ± 0.0014
3	60 percent saturated solution (21.08 g of salt per 100 $ m cm^3$ of H ₂ O)	0.2132 ± 0.0019	0.2128 ± 0.0015
4	40 percent saturated solution (14.06 g of salt per 100 $ m cm^3$ of H ₂ O)	0.2051 ± 0.0019	0.2061 ± 0.0016
5	20 percent saturated solution $(7.03 \text{ g of salt per } 100 \text{ cm}^3 \text{ of } H_2\text{O})$	0.1989 ± 0.0019	0.1985 ± 0.0019

Table II. Summary of Mass Attenuation Coefficients of Common Salt Solutions

* $\frac{\mu}{\rho}$ (calculated) values were obtained as follows:

 $(\frac{\mu}{\rho})_{\text{solution}} = W_1(\frac{\mu}{\rho})_{\text{water}} + W_2(\frac{\mu}{\rho})_{\text{common salt}}$

where W_1 and W_2 are fractions of the solution by weight.

Table III. Summary of Results

(a) JP-4	fuel	
----	--------	------	--

File name																JN2	802	61.CHN
Sample I.D.					•													. 026
Run number .																		. 1
Data collected at														0	9:12	on	27	June 88
Fuel type																		. JP-4
Source																		NASA
Airline																		I.R.D
Location																		Langley
Delivery date																	(02-10-88
Peak centroid loc	ation	(air)									•		\mathbf{C}	han	inel	nur	nbe	r 329.04
Peak centroid loc	ation	(fuel) .				•	•			•		C	har	nel	nur	nbe	r 328.51
ROI			•••					•	•			С	hanr	nel	nun	nber	24	1 to 421
Real time, sec										•		•					•	. 1800
Live time, sec										•		•				•	•	. 1797
I ₀						•				•		•		•		10	274	4 ± 321
I_x										•	•	•		•		1	7 43	6 ± 132
Fuel temperature	e, °C						•							•		• •	•	. 25.0
Fuel density, g/c	m ³ .																	0.7520
Linear attenuatio	on coe	efficie	nt. c	m ⁻	1										. ().139	92 =	± 0.0015
Mass attenuation	1 coef	ficient	t, cn	$1^2/\epsilon$	g.	•						•			. ().18	51 =	± 0.0020

(b) JP-5 fuel

File name																J	N2	702	51.CHI	N
Sample I D	•••																		. 02	5
Description of the second seco	• •	• •	·	•••	•	•														1
Run number	• •	• •	٠	• •	·	•	• •	·	•	•••	·	•	·	۰.	: ,	•	• •			0
Data collected at .			٠		•	•	• •	·	·	•••	•	•	·	1	1:0	J4	on	20	June o	0 -
Fuel type		• •				•			•		٠	•	٠	•	•	•		•	. JP-	5
Source						•					•	•	•		•	•	• •	•	NAS	Ŧ
Airline									•				•	·	•	•	•	•	I.R.L).
Location									•				•	•		•	•		Langle	у
Delivery date															•		•		02-10-8	8
Peak centroid location	on (ai	r)											\mathbf{C}	hai	nne	el	nur	nbe	er 330.0	1
I can centrola locatio	(,																		
Peak centroid location	on (fu	eĺ)											\mathbf{C}	haı	nne	el	nui	nbe	er 329.2	1
Peak centroid location	on (fu	eĺ)	•	 	•	•	 		•	· ·	C	'ha	C] anr	haı 1el	nne nu	el 1m	nui bei	nbe r 24	er 329.2 1 to 42	1
Peak centroid location ROI	on (fu 	iel) 	•	 	•		 			 	C	'ha	C anr	haı ıel	nne nu	el 1m	nur bei	nbe r 24 	er 329.2 1 to 42 . 180	1 1 0
Peak centroid location ROI	on (fu 	iel) 		 			 			 	C	'ha	C anr	haı ıel	nne nu	el 1m	nur iber	nbe r 24 	er 329.2 1 to 42 . 180 . 179	1 1 0 7
Peak centroid location ROI	on (fu 	iel) 	• • •	· · ·			 			· · · · · ·	C	Cha	C anr	hai nel	nne nu	el 1m	nun Ibei 10	nbe r 24 	$\begin{array}{c} {\rm er} \ 329.2 \\ {\rm er} \ 1 \ {\rm to} \ 42 \\ {\rm .} \ 180 \\ {\rm .} \ 179 \\ {\rm .} \ 179 \\ {\rm .} \ 32 \end{array}$	1 1 0 7 0
Peak centroid locationPeak centroid locationROIReal time, secLive time, sec I_o I	on (fu	iel) 		· · ·		• • •	· · · ·		• • • •	· · · · · ·	C	Cha	C anr	hai iel	nn(nu	el 1m	nun Ibei 10 1	nbe r 24 · · · 26' 57;	$\begin{array}{c} \text{er } 329.2 \\ 1 \text{ to } 42 \\ . 180 \\ . 179 \\ . 179 \\ 79 \pm 32 \\ 56 \pm 12 \end{array}$	1 107 106
Peak centroid location Peak centroid location ROI Real time, sec Live time, sec I_o I_x Evel temperature of	on (fu	iel) 		· · · · · · · · · · · · · · · · · · ·	• • • •	• • •	· · · · · · · · · · · · · · · · · · ·		• • • •	· · · · · ·	C	Chε	C) anr	hai iel	nn(nu	el 1m - - -	nui ibei 10	nbe r 24 · · · 26' 57! · ·	$\begin{array}{c} \text{er } 329.2\\ 1 \text{ to } 42\\ . 180\\ . 179\\ 79 \pm 32\\ 56 \pm 12\\ . 25\end{array}$	1 1 0 7 0 6 0
Peak centroid location ROI	on (fu	uel) 		· · · · · · · · · · · · · · · · · · ·		• • • •	· · · · · ·		• • • •	· · · · · · · ·	C	Chε	C anr	han nel	nn(nu	el 1m - - -	nun Iben 10	nbe r 24 · · · 26' 57! · ·	$\begin{array}{c} \text{er } 329.2 \\ \text{i1 to } 42 \\ 180 \\ 179 \\ 79 \\ \pm 32 \\ 56 \\ \pm 12 \\ 250 \\ 280 \end{array}$	1 1 0 7 0 6 0 6
Peak centroid location ROI Real time, sec	on (fu	uel) 	• • • •	· · · · · · · · · · · · · · · · · · ·		• • • •	· · · · · · · · · · · · · · · · · · ·		• • • • •	· · · · · · · ·	C	Chε	C anr	han nel	nne nu	el 1m - - - - - -	nun iber : 10 1 :	nbe - 24 26' 57! 	$\begin{array}{c} \text{er } 329.2\\ \text{er } 41 \text{ to } 42\\ 180\\ 179\\ 79 \pm 32\\ 56 \pm 12\\ 256 \pm 25\\ 0.808 \end{array}$	1 1 0 7 0 6 0 6
Peak centroid location Peak centroid location ROI Real time, sec Live time, sec I_o Fuel temperature, ° Fuel density, g/cm ³ Linear attenuation of	on (fu	iel) 		 	•		· · · · · · · · · · · ·		• • • • •	· · · · · · · · · · · ·	C	Cha	C anr · · · ·	hai iel	nn(nu	el 1m	nun ibei 10 1 14	nbe - 24 26' 57 92 -	$\begin{array}{c} \text{ ar } 329.2\\ \text{ at } 1 \text{ to } 42\\ \text{ . } 180\\ \text{ . } 179\\ 79 \pm 32\\ 56 \pm 12\\ \text{ . } 25.\\ 0.808\\ \pm 0.001 \end{array}$	1 1 0 7 0 6 0 6 6

Table III. Concluded

(c) Jet A fuel

	· · · · · · · · JN270271.CHN
Sample I.D.	
Run number	
Data collected at	
Fuel type	Jet A
Source	NASA
Airline	I.R.D.
Location	Langlev
Delivery date	02-10-88
Peak centroid location (air)	Channel number 330.01
Peak centroid location (fuel)	Channel number 328 80
ROI	Channel number 241 to 421
Real time, sec	1800
Real time, sec	· · · · · · · · · · · · · · · · 1800
Real time, sec \ldots \ldots \ldots Live time, sec \ldots \ldots \ldots \ldots I_0 \ldots \ldots \ldots \ldots \ldots	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Real time, sec Live time, sec I_o I_x	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Real time, sec	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

f. 1)	Mass attenuation	coefficient, cm ⁻ /g	0.190 ± 0.004	0.185 ± 0.003	0.185 ± 0.003	0000 H 0010
Reported values (rei	Linear attenuation	coefficient, cm ⁻¹	0.143 ± 0.003	0.150 ± 0.002		700'0 ± 001'0
	Density,	$ g/cm^3$	0 7546	0.000	0.0091	0.8107
	Mass attenuation	l coefficient. cm ² /g		0.1001 ± 0.0010	0.1845 ± 0.0019	0.1841 ± 0.0019
Present study	Tinnen attanuation	confficient cm ⁻¹		0.1392 ± 0.001	0.1492 ± 0.0015	0.1489 ± 0.0015
	с.	- / 3	g/cm	0.7520	0.8086	0 8092
	ł	TCSL	tuel	JP-4	JP-5	Tot A

Table IV. Summary of Attenuation Coefficients for Aviation Fuels Studied

ORIGINAL PAGE IS OF POOR QUALITY

Figure 2. Photograph of experimental system.

L-88-7755

Figure 3. Gamma ray spectrum through air.

Figure 4. Spectrum of gamma rays transmitted through air.

Figure 5. Spectrum of gamma rays transmitted through Jet A fuel.

Figure 6. Experimental and calculated values of mass absorption coefficient of common salt solution in water as a function of concentration.

Appendix A

Flowchart of Program (PGRMAC)

-

Appendix **B**

Listing of Computer Program (PGRMAC)

```
THIS PROGRAM PRINTS A SPECIRUM FILE FROM THE EMULATOR
1 0
2 C
        INTEGER#2 TYPE, MCA, SEG, STRTCH, LNGTDT, SPCOUI (64)
3
        INTEGER#2 SPCINI(64), BEGREC, ENDREC
4
        INTEGER#4 SPCIN(32), LVETME, RLTIME, AREA, DAREA, IDSMPL
5
        CHARACTER*1 SRITHE(4), SRISEC(2), SRIDIE(8), OUTPUT(30)
6
7
        CHARACTER*1 CRCTRL, ANS, NRUN, NSMPL+3
        CHARACTER FUTP+8, SORC+10, LOCA+10, DLDT+10, AIRLN+8
В
ò
        CHARACTER*30 BUT30, FILNM*15, FN1*15, FN2*15
        CONMON/PARTI/ SRTTME, SRTSEC, SRTDTE, FN1, FN2, NRUN, NSMPL, MAXELUID
10
        COMMON/PART2/ RLTIME, LVETME, MAXCHN, MAXSPN, LBEG, LEND, MAXAIE
11
        COMMON/PART3/ ATCFL, ATCFH, NCHN (700), NCNT (700), DIO, DIX, DNL, DNM
12
        COMMON/PART4/ AREA, DNSTY, IO, IX, POWER, LUNINN, LUNDUT, IREC, THP
13
        COMMON/PARTS/ FUTP, SORC, LOCA, DLDT
14
        EQUIVALENCE (SPCOUT, SPCOUI), (SPCIN, SPCINI)
15
        EQUIVALENCE (OUT30, OUTPUT)
16
        REAL MUAIR, MUGLS, MUAL, MUFUEL, MUMAX, MUMIN, MAXCHN, MAXAIR, MA FLUID
17
         DATA LUNCON/0/,OUTPUT/30*' //
18
         DATA CRCTRL/'1'/, IER/0/
19
20 C
21 C
         START
22 C
         LUNINN=1
23
24
         LUNOUT=3
         DPEN(17,FILE='PRN',STATUS='NEW')
25
26
         WRITE(LUNCON, 90)
      27
                ****************
28
        .
         WRITE(LUNCON, 100)
29
30 100 FORMAT(/20%, SPECTRUM PRINT ROUTINE', //1%,
               (ENTER THE DESIRED FILE NAME FROM MCA: ())
31
        1
         READ(LUNCON, 5, ERR=B010) FILNM
32
      5 FORMATIA15)
33
34 C
         35
         NSMPL=FILNM(5:7)
36
         NRUN=FILNM(8:8)
37
         FN1(1:4)=FILNM(1:4)
38
         FN1(5:15)='AIR1,CHN'
39
         FN2(1:B)=FN1(1:8)
         FN2(9:15)=',DAT'
40
         ------
41 C
         CALL CONVERT (NSMPL, IREC)
42
         OPEN(19, FILE= 'FUELDATA. DAT', STATUS= 'OLD', ACCESS= 'DIRECT'
43
              FORM='FORMATTED', RECL=70)
44
        .
         READ(19,25,REC=IREC) IDSMPL,DNSTY,TMP,FUTP,SDRC,LOCA,DLD",
45
                               AIRLN, ADTV
 46
         ŧ
      25 FORMAT (13, 11, F6. 4, 11, F4. 1, 11, A5, 11, A10, 11, A10, 11, A8, 11, A0,
 47
                1X,F5.2)
 4R
         ŧ
```

49 C	***************************************
50	RPEN (LEINTINN, ETLESSIN) STATUS= 'RUD' ACCESS- INTERT
51	
57	
51	OFENILUNUUI,FILE-FRZ,JINUUS- NEW) DEAD/LUNIANN DEC-IL IVEF MEN OFD ODTOTO DUTINE UNTER
J) F1	READ (LUNINN, REL=1) TYPE, MUR, SEG, SRISEC, RLTIME, LVETME,
34	SRIDIE, SRITNE, STRTCH, LNGTDT
22	IF(TYPE .NE1) GD TO 8010
56 C	
57	CALL CALCHTS(LUNINN,LUNBUT)
58 C	计通常元 医甲基苯基 医医子科 医静脉 医子宫 化化合金化 化化合金 医化合金 化化化合金 化化合金
59	CALL CALAREA(LUNDUT)
6 Û	MAXAIR=MAXCHN
61 C	****
62	IAIR=ARFA
63	MHATR=0_0002132
60 64	MIRIS=0 AL45A
15	
0J 11	
00	ARINI=3.08
6/	XA1R2=10.062+XA1R1
68	X6LS=0.68
69	XAL=0.079
70	POWER=(MUAIR*XAIR2)+(MUGLS*XGLS)+(MUAL*XAL)
71	IO=IAIR*EXP(POWER)
72	DIO=SQRT(REAL(10))
73 C	************
74 C	CHANGE FN1.FN2 FOR EACH SAMPLE
75 C	
76	FN1(1:8)=F7(NN(1:8)
77	EN1/9/15)=' CHN'
78	FN2(1+0)=F11NH(1+0)
70	5 M2 (1:0/-) 12MI(1:0)
00 00	F 142 (7 ; 107 0 H)
0V 01	
91	
82	UPEN(LUNINN,FILE=FNI,STATUS='OLD',ACCESS='DIRECT',RECL=32)
83	OPEN(LUNOUT,FILE=FN2,STATUS='NEW')
84	READ(LUNINN, REC=1) TYPE, MCA, SEG, SRISEC, RLTIME, LVETME, SRIDTE,
85	SRITME, STRTCH, LNGTDT
86	IF(TYPE .NE1) GD TO B010
87 C	
88	CALL CALCHTS(LUNINN.LUNDUT)
89 C	,
90	CALL CALAREA (LINOUT)
91	MAYEL ULDEMAYCHN
92 0	
97	11=0950
7.5 O.K	
74	
73	KHMHX=KEAL(IU+DIU)/REAL(IX-DIX)
96 95	KAMIN=KEAL(IO-DIO)/REAL(IX+DIX)
97	POWER1=MUAIR+(XAIR1)+MUGLS+XGLS+MUAL+XAL
98	XFUEL=10.062
99	MUNAX={1.0/XFUEL}*(LOG(RAMAX)~POWER)
100	MUMIN=(1.0/XFUEL)*(LOG(RAMIN)-POWER)

NUFUEL + (NUMAX (MUMIN) /2.0 101 UM1=NUFUEL-HUMAX 102 103 DM2=HUFUEL-HUMIN DML=SQRT (DM1##2.0+DM2##2.0) 104 DMM=DML/DNSTY 105 ATCFL=MUFUEL 106 107 ATCFN=ATCFL/DNSTY 108 C CALL PRNTI 109 110 C WRITE(LUNCON, 50) 111 50 FORMAT(//, DO YOU WANT TO PRINT OUT CURRENT DATA (Y/N)? () 112 READ(LUNCON, 55, ERR=8010) ANS 113 55 FORMAT(A1) 114 IF (ANS .EQ. 'Y') THEN 115 116 CALL PRNOUT ELSE 117 GO TO 999 118 ENDIF 119 120 999 CLOSE (LUNINN) 121 1000 STOP 122 8000 IER=IER+1 123 8010 IER=IER+1 WRITE(LUNCON, 8110) IER 124 125 8110 FORMATC PRINT ERROR= ,14) GO TO 1000 126 END 127

Subroutine PRNOUT

```
129
            SUBROUTINE PRNOUT
  130
            INTEGER*4 LVETME, RLTIME, AREA, DAREA
  131
           CHARACTER*1 SRTTME(4), SRTSEC(2), SRTDTE(8)
  132
           CHARACTER*1 NRUN, NSMPL*3, FN1*15, FN2*15
 133
           CHARACTER FUIP*8, SURC*10, LUCA*10, DLDT*10, AIRLN*8
 134
           COMMON/PART1/ SRTTME, SRTSEC, SRTDTE, FN1, FN2, NRUN, NSMPL, MAXELUID
 135
           COMMON/PART2/ RLTIME,LVETME,MAXCHN,MAXSPN,LBEG,LEND,MAXAIR
           CONMON/PART3/ ATCFL, ATCFH, NCHN (700), NCNT (700), DIO, DIX, DHL, DHM
 136
 137
           COMMON/PART4/ AREA, DNSTY, 10, IX, POWER, LUNINN, LUNDUT, IREC, TMP
 138
           COMMON/PART5/ FUTP, SORC, LOCA, DLDT
 139
           REAL MAXCHN, MAXAIR, MAXFLUID
 140 C
 141
           WRITE(17,*) CHAR(14).
                                        AVIATION FUEL STUDIES
 142
           WRITE(17.10) FN1
        143
 144
          : '.A15)
 145
          WRITE(17,20) NSHPL, NRUN, SRITHE, SRISEC, SRIDTE
       20 FORMAT(/5%, SAMPLE I.D. : ', A4, //5%, RUN NUMBER : : ', A2, //,
 146
 147
                 5%, DATA COLLECTED AT : ',2A1, ':',2A1, ':',2A1,2%,
         ŧ
 148
         ŧ
                 ' ON ',2A1,'-',3A1,'-',3A1)
 149
          WRITE(17,25) FUTP, SORC, LUCA, DLDT
       25 FORMAT(/SX, 'FUEL TYPE : ',A8,//SX, 'SOURCE
 150
                                                            : ',A10,
151
         # //5X, 'LOCATION : ',A10,//5X, 'DELIVERY DATE : ',
152
         # A10)
153
          WRITE(17,30) MAXAIR, MAXFLUID, LBEG, LEND, MAXSPN
154
       30 FORMAT(/5X, 'PEAK CHANNEL(AIR) : ', F7.2, //5X,
155
         # PEAK CHANNEL (FUEL) : ',F7.2,//5X, 'R. D. 1.
                                                               : 15,
         # ...., 15,//5X, 'PEAK COUNTS(FUEL) : ', IS)
156
157
          WRITE(17,35) RLTIME, LVETME, 10, DIO, 1X, DIX
158
       35 FORMAT(/SX, 'REAL TIME : ', IS, ' seconds', //SX,
159
         # LIVE TIME : ,15, seconds ,
160
         # //5X,'IO : ',IB,' +/-',F5.0,//5X,'IX : ',IB,' +/~ ,
161
         # F5.0)
162
         WRITE(17,45) TMP
163
       45 FORMATI/5X, FUEL TEMPERATURE
                                        : '.F7.1.' C')
164
         WRITE(17,40) DNSTY, ATCFL, DML, ATCFH, DMM
165
      40 FORMAT(/5X, FUEL DENSITY : , F9.5, ' (g/cm3)', //5X,
166
        +
                'LINEAR ATTENU. COEFF. : ,F9.5, +/-',F8.5, (1/cm)',
167
        # //5X, MASS ATTENU. CDEFF. : ', F9, 5, ' +/-', F8.5, ' (cm2/0)')
169
         RETURN
169
         END
```

Subroutine PRNT1

172	SUBROUTINE PRN11
173	INTEGER*4 LVETME, RLTIME, AREA, DAREA
174	CHARACTER*1 SRITHE (4), SRISEC (2), SRIDTE (8)
175	CHARACTER*1 NRUN, NSMPL*3, FN1*15, FN2*15
176	CHARACTER FUTP*8,SORC#10,LOCA*10,DLDT*10,A1RLN*8
177	COMMON/PARTI/ SRITHE, SRISEC, SRIDTE, FNI, FN2, NRUN, NSNPL, NAXFL JID
178	COMMON/PART2/ RLTIME, LVETME, MAXCHN, MAXSPN, LBEG, LEND, MAXAIR
179	COMMON/PART3/ ATCFL, ATCFM, NCHN (700), NCNT (700), DIO, DIX, DHL, DHH
180	COMMON/PART4/ AREA, DNSTY, 10, IX, POWER, LUNINN, LUNDUT, IREC, THE
181	COMMON/PARTS/ FUTP, SORC, LOCA, DLDT
182	REAL MAXCHN, MAXAIR, MAXFLUID
183 C	
184	WRITE(0,5)
185	5 FORMAT(30X, 'AVIATION FUEL STUDIES', /5X, '************************************
186	* ***********************************
187	WRITE(0,10) FN1
188	10 FORMAT(5X, FILE NAME : ',AIS)
189	WRITE(0,20) NSMPL, NRUN, SRITME, SRISEC, SRIDIE
190	20 FORMATISX, SAMPLE I.D. :', A4, /SX, RUN NUMBER :', A2, /,
191	5X, DATA COLLECTED AT : ',2A1,':',2A1,':',2A1,2X,
192	≱ ′ ON ′,2A1,′-′,3A1,′-′,3A1)
193	WRITE(0,25) FUTP, SORC, LOCA, DLDT
194	25 FORMATISX, FUEL TYPE : A8,/5X, SOURCE : A10
195	# /5X, LOCATION : ',A10,/5X, DELIVERY DATE : ',A10)
196	WRITE(0,30) MAXAIR,MAXFLUID,LBEG,LEND,MAXSPN
197	30 FORMAT (5X, 'PEAK CHANNEL (AIR) : ', F7.2, /5X,
198	# 'PEAK CHANNEL (FUEL) : ', F7.2, /5X, 'R. 0. 1. : ,13,
199	<pre># '',15,/5%,'PEAK COUNTS(FUEL) :',15)</pre>
200	RLTIME≠RLTIME/50
201	LVETHE=LVETHE/50
202	WRITE(0,35) RLTINE, LVETME, 10, DIO, IX, DIX
203	35 FORMAT(5X, REAL TIME : 15, 7, 5X, LIVE TIME : 15, 75X,
204	¥ '10 : ',18,' +/-',
205	# F5.0,/5X,'IX : ',IB,' +/-',F5.0)
206	WRITE(0,45) TMP
207	45 FORNAT (5X, FUEL TEMPERATURE : ,F7.1)
208	WRITE(0,40) DNSTY, ATCFL, DML, ATCFM, DHM
209	40 FORMAT (5X, FUEL DENSITY : , FY.D, / DX,
210	# 'LINEAR ATTENU. COEFF. :',FY.5, +/-',FU.5,/3%,
211	# MASS ATTENU. CDEFF. : ,FY.5, +/- ,FB.5)
212	RETURN
213	END

Subroutine CALCNTS (LIN,LOUT)

	21	5	SUBROUTINE CALCHTS(LIN,LOUT)
	21	6	INTEGER#2 BEGREC, ENDREC
	217	7	INTEGER*4 LVETME, RLTINE, AREA, DAREA, SPCIN(32)
	218	3	CHARACTER+1 SRTTHE (4) . SRTSEC (2) . SRTDTE (8)
	219	7	CHARACTER#1 NRUN, NSHPL#3, FN1#15, FN2#15
	220)	CHARACTER FUTP+8, SORC+10, LOCA+10, DLDT+10, ATRIN+9
	221		COMMON/PARTI/ SRTTME.SRTSEC.SRTDTE.FNI.FN2 NRIIN NSMPI MAYELITT
	222	2	COMMON/PART2/ RLTIME, LVETNE, MAXCHN, MAXSPN, LAFE, LEND MAYAIR
	223		COMMON/PART3/ ATCFL, ATCFM, NCHN (700), NCNT (700), DIO DIY DNI DNM
	224		COMMON/PART4/ AREA. ONSTY. 10. 1X. POWER. LUNINN. LUNDIT THE THE
	225		COMMON/PART5/ FUTP, SORC, LOCA, DLOT
	226		REAL MUAIR, MUGLS, NUAL, MUFUEL, MAXCHN
	227	C	
	228		ICHNNL=0
	229		CHANLI=ICHNNL-1
	230		LCHNNL=510
	231		CHANLL=LCHNNL-1
	232		BEGREC=CHANLI/B.
	233		ENDREC=CHANLL/8,
	234		DO 450 1=BEGREC+2,ENDREC+2
1	235		READ(LIN, REC=I, ERR=8000)(SPCIN(K), K=1.8)
1	236		KCHNL=8+(1-2)
1	237		DO 400 J=1,8
2	238		IF (KCHNL .GT. 1000) GO TO 8000
2	239	420	WRITE(LOUT, 410) KCHNL, SPCIN(J)
2	240	410	FORMAT(1X,15,19)
2	241	500	KCHNL=KCHNL+1
2	242	400	CONTINUE
1	243	450	CONTINUE
	244	8000	RETURN
	245		END

Subroutine CALAREA (LOUT)

	247	SUBROUTINE CALAREA(LOUT)
	248	INTEGER#2 BEGREC, ENDREC
	249	INTEGER+4 LVETME, RLTIME, AREA, DAREA, SPCIN(32)
	250	CHARACTER+1 SRITHE(4), SRISEC(2), SRIDIE(8)
	251	CHARACTER+1 NRUN, NSMPL+3, FN1+15, FN2+15
	252	CHARACTER FUTP+8, SORC+10, LOCA+10, DLDT+10, AIRLN+8
	253	COMMON/PART1/ SRTTME, SRTSEC, SRIDTE, FN1, FN2, NRUN, NSMPL, MAXFLUID
	254	COMMON/PART2/ RLTIME, LVETME, MAXCHN, MAXSPN, LBEG, LEND, MAXAIR
	255	COMMON/PART3/ ATCFL, ATCFM, NCHN (700), NCNT (700), DIO, DIX, UNL, DMM
	256	COMMON/PART4/ AREA,DNSTY,IO,IX,POWER,LUNINN,LUNGUT,IRE(,TMP
	257	COMMON/PART5/ FUTP,SORC,LOCA,DLDT
	258	REAL MUAIR, MUGLS, MUAL, MUFUEL, MAXCHN, MY
	259 C	
	260	REWIND LOUT
	261	DO 300 I=1,500
1	262	READ(LOUT, 310, END=300) NCHN(I), NCNT(I)
1	263	310 FORMAT(1X,15,19)
1	264	300 CONTINUE
	265	LBEG=241
	266	LEND=421
	267	AREA=0
	268	MY=0.
	269	BEGI=REAL (NCN11LBEG+1))
	270	BEG2=REAL (NENT (LBEG+2))
	271	BEG3=REAL (NCN1 (LBEG+3))
	272	HBEG=(BEG1+BEG2+BEG3)/3.0
	273	ENDI=REAL(NUNI(LEND+1))
	274	ENDZ=REAL (NUNT (LEND))
	275	ENUS=REAL(NUR)(LERU=1))
	2/6	HENDE (ENVIREDAUEND)
	277	HAYSEV, J# (HOESTREND) Doubedral (LEND-LECE)
	2/8	DUNN=KEAL (LEND=LBED)
	279	5LURE=(AEAD-ABED//JULAN
	280	DODEA-WENT())
1	201	
1	201	U-CIODEX (DEAL (NCNN (1) -1 REG-1))+HBEG
1	200	MV=MV+(REA) (NCNT(1))-H)+REAL(NCHN(L))
4	295	T20 CONTINIE
1	203	FYCESSED, 5# (HREG+HEND) #DCHN
	200	MAYCHNENY/(RFAI (AREA)-EXCESS)
	288	00 350 I=LBE6+1.LEND+1
1	289	ERR=REAL (NCHN (I)) -MAXCHN
i	290	IF (ABS(ERR) .LT. 0.5) THEN
1	291	MAXSPN=NCNT(1)
1	292	GO TO 400
1	293	ELSE
1	294	60 TO 350
1	295	ENDIF
1	296	350 CONTINUE
-	297	400 RETURN
	298	END

•

•

Subroutine CONVERT (NSPL, IRC)

300	SUBROUTINE CONVERTINED TOCY
301	INTEGERAA LVETNE DI TINE ODEA BADEA
302	CHARACTERAL CRITICIAL CRICECOL CRIDIELA
707	CUARACTERAL SRITELA/, SRISELIZ/, SKIDIE(8)
303	CHARACTER*1 NRUN, NSAPL*3, FN1*15, FN2*15
204	CHARACTER FUTP#8,SORC#10,LOCA#10,DLDT#10,AIRLN#8
305	CHARACTER#1 CR1, CR2, CR3, NSPL#3
306	COMMON/PARTI/ SRTTME.SRTSEC.SRTDIE ENI EN2 NRUN NEMPL MAYELUTO
307	CONMON/PART2/ RETINE I VETME MAYCHN MAYCAN I DEC I END MAYATO
308	COMMON/PARTS/ ATCEL ATCEN. NCHN/700) NCNT (700) DIA DIA DIA DIA
309	COMMON/PARTA/ AREA. DNSTV. 10. TY POWED LINNING LINDUT LODG THD
310	COMMON/PARTS/ FUTP. SORC. I OCA DIDT
311 C	
312	CR1=NSPL(1:1)
313	CR2=NSPL(2:2)
314	CR3=NSPL (3:3)
315	N1=ICHAR(CR1)
316	N2=1CHAR(CR2)
317	N3=ICHAR(CR3)
31B	1D=(N1-48)+100+(N2-4A)+10+(N3-4A)
319	
320	RETIRN
771	
941	ERV

References

- 1. Singh, Jag J.; Mall, Gerald H.; Sprinkle, Danny R.; and Chegini, Hoshang: Feasibility of a Nuclear Gauge for Fuel Quantity Measurement Aboard Aircraft. NASA TM-87706, 1986.
- Featherstone, D. H.: Douglas Initiates Jet Fuel Properties Study. AEEC Lett. 87-042/FQS-07, Aeronautical Radio, Inc., Mar. 26, 1987.
- Featherstone, D. H.: Airlines Requested To Sample Fuel. AEEC Lett. 88-010/FQS-11, Aeronautical Radio, Inc., Jan. 12, 1988.
- 4 Featherstone, D. H.: Circulation of Procedural Information for Participants Involved in Industry Fuel Study. AEEC Lett. 88-103/FQS-12, Aeronautical Radio, Inc., July 7, 1988.
- 5 Davisson, Charlotte Meaker; and Evans, Robley D.: Gamma-Ray Absorption Coefficients. *Reviews Modern Phys.*, vol. 24, no. 2, Apr. 1952, pp. 79–107.
- 6 Grodstein, Gladys White: X-Ray Attenuation Coefficients From 10 kev to 100 Mev. NBS Circ. 583, U.S. Dep. of Commerce, Apr. 30, 1957.
- 7 McGinnies, Rosemary T.: X-Ray Attenuation Coefficients From 10 kev to 100 Mev. Suppl. to NBS Circ. 583, U.S. Dep. of Commerce, Oct. 30, 1959.

National Aeronaulics and Space Administration	Report Docum	entation Pag	e		
1. Report No. NASA TM-4077	2. Government Accessi	on No.	3. Recipient's C	atalog No.	
4. Title and Subtitle A Method for Monitoring the V	Variability in Nuclea	r Absorption	5. Report Date December 1988		
Characteristics of Aviation Fuel	8	•	6. Performing Organization Code		
7. Author(s) Danny R. Sprinkle and Chih-Pin	ng Shen		8. Performing C	rganization Report No.	
0. Desfermine Operation No. 1.1			10. Work Unit N	No.	
9. Performing Organization Name and A NASA Langley Research Conter	ddress		141-20-10-10		
Hampton, VA 23665-5225			11. Contract or Grant No.		
12. Sponsoring Agency Name and Addres	38		13. Type of Rep	ort and Period Covered	
National Aeronautics and Space	Administration		lechnical Memorandum		
Washington, DC 20546-0001			14. Sponsoring A	14. Sponsoring Agency Code	
15. Supplementary Notes Danny R. Sprinkle: Langley R Chih-Ping Shen: Old Dominio	esearch Center, Ham n University, Norfolk	npton, Virginia. ., Virginia.	· · · · · · · · · · · · · · · · · · ·		
been developed. It is based on iodide counter. The source and test fuel cell. A computer prog sample, based on the data acq several types of aviation fuel.	a highly collimated h d the counter assemb gram for determining uired for a preset cou	the mass attention of the mass attentis attention of the mass attention of the mass atte	ma radiation so ad by a geomet nuation coeffici nas been develo	purce and a sodium rically well-defined ent of the test fuel oped and tested on	
 17. Key Words (Suggested by Authors(s)) Am²⁴¹ gamma ray source Mass attenuation coefficient Aviation fuel Variation in fuel properties Sodium iodide counter 	18. Distribution Statement Unclassified–Unlimited				
		Subject Category 61			
Unclassified	his page)	21. No. of Pages 26	22. Price A03		

For sale by the National Technical Information Service, Springfield, Virginia 22161-2171

The second s