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Abstract

In this pap,'r the synthesis of a constant Imia.x(tter OUtl)Ut fix_dback

control law of constrained structure is set in a multil)le objective bnear

quadratic regulator (MOLQR) framework. The use ofiutuitiw_ohj,rc|iv,,

funclions such *Ls model-follc_wing ability and oh)sod-loop trajectory sen-

sitivity, allow multiple objective decision making techniques, such as the

surrogate worth trade-off nlethod, to be applied. ["or the continuous-tinle

deterministic problem with an infinite time horizon, dyllaluie c()iiipeus;d()rs

_Ls wet[ ;u_ stalic OUllml feedbark con(rolh'rs cant he syuthcsized ushlg ;t (h'

sc,,m ,Aud,'rs,,i_-M(_(,r,' algc.rilhtu 1hat is m,,dilid I,,_ imlmS,' li.,':u V(lualily

c(ms_ramls _>n the fi','dba,'l_ gains by n)_)viug iu f,.;Ldble dir,'cli,u)s, hr,'.-nlb,

of thrc,' ,lill,'r,'nl ,'x;uupl,'s arc pre.',,'nh'd, m,.hMmg at mli,lU,, rN;,rluuhd.hu_

of the sensitivily r,'ducli,m im)blcnl.

Introduction

In synthesizing a control law a designer has two objectives ill mind

meLximize performance and nfinimize the cost of implementation. A sinq)ler

control law, wi_ich is less complicated and less costly to implement thou,

fur example, a full state feedback controller, may be preferred by the

designer. The designer may have a m]mber of structural alternalives in

mind such ,as full outl,ut fi.'edback, decentralized control, or low order

dynamic compensation. In this paper the problem of minimizing the cost

of in@,m_entation is viewed as a problem of selecting a control law among

a number of alternative control law structures. The trade-offs between the

performance ob3ective and the cost of implementation can only be examined

fairly if the free parameters of each structure optimize tim performance

objective The performance objective itself may be characterized as asct

ofohjectives The objectives considered in this paper are integral quadratic

objectives uf state ,mergy, control energy, model following ability, trajcclory

sensitivity, aml subsystem objectives. These objectives are often conflicting,

therefore a multiple objective approach can be taken.

Algorithms for constant parameter output feedback controllers have

been extensively studied [1]-[17]. Few algorithms however, allow the de-

signer '_o arbitrarily prespecify the control law structure [6J, [7], [n], B43,

[17]. Fewer still consider the multiple objective nature of the problem [13]-

[15]. Three functional sealarization methods have been applied to MOLQR

problems-.the weighted sunr, e-constraint, and goal attainment methods.

All three methods convert the multiple objective problem into a siugle ob-

jective problem A single noninferior solution may then be found by solving

the single objective problem using any one of a number of nonlinear pro-

gramming techniques or algorithms that solve tire necessary conditions.

The weighted sum method is used in this paper. The solution algorithrn

used is a descent Anderson-Moore algorithm modified to move in feasible

directions. This algorithm was chosen for modification because it has been

shown by example to be faster than the Davidon-Fletcher-Powell method

[8], and because proofs of convergence to a local stationary point of the

cost function of Anderson-Moore type algorithms have been reported on

[8], [1 l] (tl .... proofs are contested however in [15].)

rFhis paper is organized into two parts. In part one, the constrained

optimal output feedback problem is formulated and a solution algorithm is

presented. In part two, multiple objective LQR problems are formulated

and results of examples are summarized.

1.0 Optimal Controllers of Constrained Structure

1.1 Full output feedback controllers

The linear dynamic multiple-input multiple-output plant model is in

the standard state space form

x(t) = A_(t) + Burr)
(l-l)

u(t) = c_(t)

where z E h ''_ is the state vector, u 6. R "_ is the input vector, and y (5 R p is

the output vector. The outputs are assumed to be the sensor measurements.

The initial state, or initial condition, is given by x(0) = x0.

'l'h,. _o.l,(d law is dclin,,d ;Ls

,,(I) : (;.u(;) (1 '2)

where (; 6. h''''xv.

The olLi,', live rulu.litm to be minimized Ill;ll will I.. c,msid,.v,.d h,u.,. ,s

(h'fii..d as

.;(,;,',.,,,1 I*;(I)(#(I) t "'(;)/""(;)t'" (t :l)

wh<'r,. Q is a I,,,siliv,' s,'mi d,.Ih_ih, n x _+ malrix, It' is a i,,,.itiv,',h.lh,it,.

m × m nr;dtix, a.d b,_lh m,' symn.qric lu (w&'r I'-r .l((,', .I'Ll) {1' l,'' Iilli{('

Ihc Males wcigldud I)y r I I_' malrix Q) IllllSl hi' I('mh'r,'d ;tsyml,l(,th ali ? sl;,I,h.

by applicatiou of a liuite, iunounl of conlrd ,mergy

For any femlhack gain matrix (; thal slahilizcs Ihe closed h,op system

= ,,1 -- I_(,'(' (lit: vabl,? ()f the ,,ILwctiv,' fun_ li()n may ()(. ,'va[ual(.d its

.1((; ..... ) = +if:,+,,
(b4)

wbere B" is tIre nniquc positive semi-definite solution of the linear m:_lrtx

equatiou

,¥;' Z," + K 2. + q + ( C;c)'r I_GC = 0. (1-5)

Tiros what may have appeared to be a dynamic optinrization problem

(eqs. (1-1)-(1-3)), is now fornmlated _Ls a static objective function (1-4)

that is to be minimized with respect to G and B" subject lo the equality

constraints (1-5). Finally, the problem may be restated as: Given the

dynamic system (1-1), initial condition xo, and a control law of tbe form

u(t) = -Gy(t), choose G* to minimize the objective function J(G, xo),

The first-order necessary conditions are found by first forming the

Lagrangian

£(C;, 1_,L) = tr{ l(_o*_'} + tr{[Xr K + I_ 4 Q + (C;o)rleo'ClL "r} (l-(0

where L 6. R "×'* is a matrix of Lagrange multipliers. By using gradient

matrix operations [4], the first-order necessary condilions for G', h", and

L ° to be optimal are given by

0G8£" . = 2[RG'CL*CT - BT I( ,L.CT ]= 0 (1-7)

0;c°-£. = _.]. + z._.,,_ + _'0d = o 0-s)

a£ .=]ffrA,.+A.._.+Q+(G.c)TRG.C= ° (t-a)ok

where +4" = A - BG'C. l'_quation (1 7) may be rewritten as

G" = le-: B'r A" L'C'?'(CL'C_') -1.

The optima] ,',,st is J'(G'*, ..re)= tcl£"a:0x_'}

(l-tO)

1.20utl)ut fl.'edback controllers of constrained strueture

A full output feedback fornmladon assumes all the elements of G

are free to be optimized. Although full output feedback uses only those

measurements that are available, it does not allow the designer freedom to

choose feedback paths. Feedback paths may be eliminated by constraining

elemenls of G to be zero. In addition, if the set of available measurements

is too restrictive, dynamic compensation may be necessary to stabilize

the systenL Eveo if a constrained control law stabilizes the system, the

addition of a dynamic compensator may improve perforlnance. Dynamic

compensators may be designed by augmenting the state and output vectors

and constrahliug apl)z'opriatc elements of lhe output feedback matrix to be

Z(_l'O or ,me.



Theonlydifl_rencebetweenthefirst-ordernecessaryconditionsfor
oi_timalityforafulloutputfeedbackcontroller(I-7)(1-9)andanoutput
h+edback controller of constrained structure (elements of G constrained to

be constant) is that unly the partials of/: with respect to the free parameters

of (7 need to equal zero. The additiomd .ecessary condition G" G _2 re.st,
of coursr, be satisllcd.

In order to constrain the structure of an output feedback controller,

elements of the feedback gain matrix (; are co.strained to he coustallt

These constraints are a special form of linear equality constraints. Linear

equality constraints are useful for other purposes as well ms constraining the

structure of the gain matrix. A robust control law for multiple phmts can be

designed using a multiple objective approach by constraining correspoudmg

elements of the fi_edback nlatrix to be equal (section 2.4.3). Trade-offs

between closed-loop trajectory sensitivity and other LQR objectiw.s can

also be examined by constraining elements of the fi_edback matrix to be

equal to {!_LCh other (suction 2.4.5). 'l'he initial values of some elements

of the control vector may be specified by realizing that the initial control

vector is u(0) = -GCx(O). [14]. Calise and Raman use linear equality

constraints to impose a degree of modal inse.sitivity on the closed loop

system [16].

The ol,timizalion prolden_ fi)r the coustrahled nl_timal oulput t)wdMck

probleln cau b,! stat,,d +is: Giv.u the dynamic systcln (l-I), hlitial condil+ion

xu, a conl rol law ,:+I"the form u(l) = -(;y(t), and th,+ cnustraint set

+_,_ [(:l],,((;) - I,, =0, i---I ........ ) (l-r_)

where Ihe scalar fattction h,((;) is a linear comlmlatio.lof the eh:tnents<)f

G, choose (;" G _2 to miuimize the objective funcliou .l(G.a:+ O.

1.3 Solution Techniqtu+

'1'o enforce the linear equality constraints (1-12) the following penMty

functiou is defined
m

v _(h,((;_ -,',,,,-'. (t-13)7(c;) =
i=l

The objective functiou tu be minimized becomes J(G, xo) :- J(G, xo) +

7(G). The Moerder-Calise algorithm [11] may be applied directly to this

problem formulation, tlowever with the penalty function method the solu-

tion is never feasible and the stationary points of )" are not the stationary

points of J unless "r(G) = 0. The constraints must be forcedto be satisfied,

and then the resulting feasible solution evaluated. Increasing the weight-

ing factor v to a large value may cause problem_ with convergeuce of the

algorithm.

[n order to avoid any problems associated with penalty functions, a de-

scent Anderson-Moore algorithm is modified to move in feasible directions

only. A feasible direction is obtained by projecting the unconstrained direc-

tiou onto the linear equality constraints at each iteration of the algorithm

Defiue the vector )2 as the vector of element,s of the matrix G. The linear

equality constraints (1-12) can also be representc,! by the matrix equation

+-,t0_= t,+ (l-t4)

If dk is the uncoastraiued direction at, step k of the algorithm, then (i+ the

projected fl_asible direction is [24]

(+'_= -[! - A+T(A_A_')-tA+]&. (t-l_,)

Define AG to be the unconstrained direction and AG to be the pro-

jected direction. In this paper the following two constraints and associated

projections are used:

l) To coust_rain the gain element glj equal to a constant eli, the projection

is

2) To constrain 9,; equal to 9k+, the projection is

Agij + Agkl). (1-17)

Two rules were used to change the sign of the elements of A_ in order

to ensure an improvement in cost at, each step of the algorithm:

l) For gi.i unconstrained, change the sign of A0ij to ensure that

a---_-_+_ _<0. (t-is)
ij
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2) l"or the constraint, .5},: = A_, change the sign of both A_U and A_t
to (?llS[ll'l' _hD+t

.1 i) ,1
°-- A._ + --_+ < 0 (l-I!))
O!lij O:]tl --

To a lirst order apl)roximation , this restllts il, a reduction m cost aloug

each vector of a l)asis formed by the unconstrame(l gains A.qi/ aud the

<'onstraints '_'+qU = _kYkl' Nol.c that, in general, l,ll,'sc tyl.. o[ 'sigtl ('h;mg(:'

rules only apply when the linear equality constraints hi((;),i = 1,.... m are

independent

1.3.1 7'he /ll(loT"tlhttt

'l'l,(' modilied descent Andrrsou-Monrc algoril.hnt for C(llllpUlil,g (;" is:

0) (;hoose (;u (.z itsuch thai /i = /1 - II(;u('isst;tbh' St'l i- 0.

1) Solve (1-9) for Ni and (1-8) for Li.

2) I';vahtat,'

_(]i = H-i/j'rl{i/,,(fl'(('L.('T)-I _ (2,

3) lJs<.rqmd+ions(I I1;) m,,l(I-JT) Iol,roj,wt A(,',..t.th,.+'(,t,slraml s,+l

_.2 aim .blaiu A(_',

,1) Use rul,'s (I-18) and (I-19) I(_ (:hang,' signs ,A',dr,u<'l,ls ,,f A[;i if"

Ilttress+l iy+ where

OJ

O_ = 2[RGiCLI C T - B "r l'(i l,i C r]

5) Set

Gi+t = G, + oACg.

where _ E [0, 1) is chosen to ensure

Jt+_ < Ji = tr{K, xoz_'}.

6) Seti=i+l,gotol).

Practical methods for determining an initial stabilizing gain Go may b_"

found in [9]. The algorithm was programmed in Turbo-Pascal on an IBM

PC-XT. Step 1 requires the solution of two Lyapunov equations (l-S) and

(1-9). See Smith [25], or the more efficient algorithm of Bartels-Stewart

[26]. A method for selecting _ is needed in step 5. The convergence proof

of Moerder and Calise [11] shows that there exists an cr small enongh so

that Ji+_ < Ji. Therefore the simplest method is to start with a = l

then reduce a if necessary to ensure a reduction in cost. The algorithm, as

described, lacks a stopping criteria, however the criteria lOJ/OGd < q or

di - di+_ < (_ may be used to stop the algorithm.

2.0 Multiobjeetlve LQR Problems

2.1 Problem statement

The problem is to optimize simultaneously N objective functions. Tbe

multiple objective problem, or vector optimization problem, is stated as:

rain (J. (G), J_(G) ..... Jr,,(G) }
Grill

(_-1)

where G is a vector (or matrix) of decision variable or optimizing parameter

values and t2 is a constraint set. Each objective function Ji(G) is an integral

quadratic objective function similar to J(G, xo). The explicit reference to

the initial condition x0 is omitted for notational convenience.

If the objective functions are conflicting, which is often the case, the

global optimums of Ji(G), i = 1,..., N, are not achieved at the same G'.

Clearly there is no unique solution to the problem. However, a set f2* of

noninferior solutions (or Pareto optimal solutions), can be defined.

DEFINITION: A decision G" is said to be a noninferior solution to

the problem posed by (2-I), if there does not exist another G so that

Jj(-G) < Jj(G*), j = 1,2,...,N, with strict equality holding for at

least one j [18].

Therefore a noninferior solution is one in which a further optimization

of any Ji(G) is at the expense of at least one of the others. (i.e., all Ji(G)'s

cannot be reduced simultaneously). The concept of a noninferior surface is

graphically illustrated by the two objective, single dccision variable problem

in figure 1 where objective fimetions J:(g) and J_(g) are plotted versus the

single dccision variable 9. The objective functions Jr(g) and J2(9) achiew_



tlwirc,;)tiumuls at YT and g_ respectively. The values of g between g_ and

!;; are nomnferior solutions to the problem becanse a further decrease in

,.il]wr olLj,*etN'_ I<_ads io an increase iu the otlwr. The nomnferior surf;zet_

(,or trade-off_,urface) is IdOlted in the decision spuce in figure 2.

Thus tlw prubl,mk of finding a solution that is acceptable to t.he control

s)_.t,_tu d,'sigm'r is ,,'deem to, finding an accel,tahle solution iu the uc.uin-

ferior sel, {!', rather than the entire feasible set, _. To solve the overall

pl,)t,lem t iwtt, a tmlmique for gem, rating noninferior solalions is neod,,d as

w_'ll as a I_,_lmiqm, fl,r determining which noninferior solution the decision

maker (toni ud sys|_'ms d_siguer) prefi_rs.

2.2 Gen_rating nonintl,rlor sMutlons

lu this pap,>r the weighted sum method is used, Noninferior solutions

are generated by solving a single objective problem that is the weighted

_-UHI (>f the N objc('tive fmlclions. The l)robhnl is staled as:

\ N

_,_i,'>" a,,.1,((,'), Z'" : 1, _ _<,,,,< I (2-el
(;Ell, 1 i=l

(h,_,nl,,lii_;dty, IZr ;, Iw,_ ul>.i,_cti'-' pr, dd,'n,, II.' snlution of (2 2) is

rvlm'senl<_d b_ t lw ,losd'sl Ira,' i(> Ihe origin, of slope --w2/uq, that is lang,_nl

t,) Ih,' Ik<amd'mi-r sml'acr (liter<' 2) Vur ;li_ r set of wriglds salisl'ying

_" ,r', = i Ihe sohmon to (2-2) is a uoniuferkn' solutiou, llowever, the

w,gght,'d smH m,'lll-d fails t. Ihul all poinls ou a nouconvex trade-off

surface. I_1 ligure 3 I Iw nomnferior solutions between points A and B cannot

bu f.uud using II.' weighted sulN method. 'l'h,_ weighted sum method has

the advanlage that if the weigbted sum of objective functions maintains the

same form +is a tangle ohjective function, an algorithm that applies to t,l.:

single objective problem may be directly applied to the multiple objective

vrobhml 'this will be shown to be the case fi_r MOLQRprobh'ms.

2.3 Deciding on an acceptable noninferior soluticm

Although a nonlinear programming algorithm may be nsed to find a

single noninferior solution, the problem of finding a noninferior solution

that is preferred by the decision maker (the control systems designer) must

still b+, addrcss,'d. In making a decision it is typically assumed the decision

mak,'r maximiz,.s a utility function i.e.,

tnax U[JI(G) ..... JN (G)] (2-5)
GEfl"

wixere _''[-] is a monotonic decreasing function of the objective functions

Ji((;), and f2* is the set of all noninferior solutions. There are many

interactive techniques that can be used for extracting from the decision

maker the additional information necessary to solve (2-5) [19]. A technique

which requires a minimum amount of information is the surrogate worth

tradeolf(SW'F) method [18], [19]. The SWT method uses the values of

lhe trad,' +_[I fuu,:tions, defined

)_,3 = -_ a_a- (2-_)

iu ,.iuestkJuing the decision maker. The decision maker (DM) is asked a

trade off question such as: "Given levels of objectives JI(G),..,,JN(G)

how willing are you to trade Ai.; units of Ji to reduce J) by one unit?." The

DM is questioned about a sequence of noninferior points until a point is

found such that the decision maker is indifferent to moving in any direction.

All iterative methods assume the decision maker can judge the worth of

the obje< rives Ji(G). I"or all MOLQR formulation to be valid the designer

must have enough understanding of each single objective in order to answer

the trade off question effectively.

2.4 MOLQR fi>rmulatlons and examples

The purpose of this section is to formulate some useful multiple objec-

ti'._ linear quadratic regulator (.MOLQR) problems in wbich the designer

can address the trade-off question.

2.1 1 The geneyal hnear qaadrahc regulator problem

I'h,+ iut_%ral quadratic objective function

_ T "/
Jr(; .... ) = [x (t)Qx(t) + u "(t)R,,(t)] dt (%7)

iS a SIII[1 Qf [erlllS

_xi(t)._'j(t)dt i,j = 1, n (2-8)± q,_. "".,

±rx.l u_(t)ut(t)dt k,l= 1..... m (2-9)

with the weights qi., >_ 0 and r_t > 0 chosen to ensure Q _> 0, It > O,

aud t;oth Q and R sylnmetrie. The weights l_l;_)r I)e normalized s,) that

_,, +1,3 + _-,,,_ r,_ = 1 'l'il,,s the sohltion to (2-7) inay be interim:ted _u,

a nouinferior solution to the multiple objective problem consisting of IIw

objeclives weighted in (2-8) and (2-9). Toarrive at a nolmlferior solution

lha, t is acc(T4abh+ to l, he designer the weights are ,,:hatlged and the l_rol)lem

is solved again. Ilowever the objectives in (2-8) aml (2-9) containing cross

terms reg., xi(t)zj(t), i ¢ j) in general have no physical meaning to the

d,'sigm'r Thus il is dillh'ull, if ill,I iml._nnibh. , f(_,- the dr,sign,or I. ;mswrr

the question: "Are you wining to trade A0 units of Ji for our unit of J_T+

The probh_m may t)e r('fl_rmul;fl('d ;us fiflh_ws: C()n>.ider (dLi,'('live fm.'ii,ms

of LIm form

.L_x_(t)dt, L_(xi(t)- xj(t))2dt, L_(x,(t) + x:(t))2dt, (2-10)

L+ L in'_(t)dt, rut(t)- nstt))Udt, (t,,(t) + u2it))'-'dt (2-11)
. J u

A :qvald;,t<l I.(_lt (+lLi,.,.ir.,,, f'un,'ti,a+ (2-7) is ,dflah;,,d hy ;v,.ighih,g Ih<.n,.

six terins such IhaL Q) 2> II, ]t ) II, and bolh (2 aml h> ar,' syliun,q+ric '1'1..

hll,rgrands -I' Ih,. inh+gral cquati<ni'., iu (2 10) aud (2-II) el,+ i,<,,.iliv+, f<a

all I, I,h<'l,q',+l<_ wcigliiiug IIw M>jc<iiv,.n iu (2 111) hy qu :> 0 ,'nsul<'s that

(7 _ (I alld w,'ightiug I,he ohj,wlivus il, (2 I I ) I_) v,.,,ighls r,j > II t.llSllre,'-,

Ihal J_' > 11 '11"'_ ob',.crvMi<in ni,>livMcs ilw lidh)wiiig ih,._,irin

TIII';OI'_I';M 2 I;

(liven ;,. iuultilde <;bj,,ctiv<' li.,'ar quadiai ic reKulal-r (M()I.Qll) iq'oh-

lelit Ihat is d,'fim+d as a '.v,'ighl,ed Slllll of oI,j,.cliv(' I'm.'ii,ms re-.

/YJ(G) = [x'I'(t)Q+(t) + n'r(t)R_(t)] +It

N

= Z wiJi_

i=l

the noninferior surface between the N objectives Ji is convex for a full state

feedback control law if for every set of weights tbat satisfies

1) 0<wi < 1, i= l,..,N

2) _'--I wi = 1

I,he penulty luatrices Q and l/_ satisfy

3) Q positive semi-definite (Q _> 0), arm symmetric

4) R positive definite (R > 0) and symmetric.

P Re O F:

The proof is by eontradictiou. Assume that the noninferior surface is

nonconvex, Then there must exist a set of weights such that there are two

(or more) different G* that mininfize J(G). By _kssumption, for every set

of weights satisfying 1) and 2), Q _> 0 and R > 0, therefore the miummm

of J(G) is unique. Thus there does not exist a set of weights satisfying 1)

and 2) which results in two (or more) different G ° minimizing J(G). The

nonmferior surface therefore must be convex, []

Tbe objectives in (2-10) and (2-11) have more meaning t,o the designer,

in that they are easier to trade-off, than those of (2-8) and (2-9).

2.4.2 Integrated control system design

Integrated control system design deals with the integrated design of

subsystem controllers. The overall system is viewed as consisting of / sub-

systems with the system state and control vectors x(t) and u(t) separated

into subsystem state vectors xi(t) and control vectors u,(t), i = 1 .... ,1.

Each subsystem has a different objective function

/YJi(G) = [z:T(t)Qixi(t ) + uT(t)Riui(t)] dt. (2-12)

To solve this problem using the weighted sum method the single objective

±J(a) = n,iJi(G), Zwi = 1, 0 _< w+ <_ 1 (2-13)

i=1 i:1

which is of the form (2-7), is mininfized subject to any constraints on the

control law. The weighting matrices Q and R take on the form

Q = block diag{wlQl, w_Q_ ..... w_Qt}
(2-t4)

I_ : block diag{wl li'i, 1t)2]_2 .... , lUll_t}

ORIGINAL PAGE IS
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Fei,nel and Black compute a single noninferior point for an integrated

airframe and propulsion control problem using tile weighted sum method

[23]. The weights were chosen to be the inverse of tile optimums of the

single objective probleins, i.e., wi = l/J: where J_" is the optimum for

tile single objective problem of mininfizing J;. The objective function was

optimized for a full state feedback structure by solving a Riccati equa-

tion. Suboptimal sobitions of different structures, including a decentralized

structure, were obtained by zeroing elements of the optinimn full state feed-

|Jack gain matrix Caglayan, Ilatyo, aml Ilroussard reforrnulah_ l?elmel and

Black's integrated airframe and i)ropuision control problem ,_s a discrete

time stochastic proldem [t0]. The weighted sum of objective fmlctions is

optimized subject to a decentralized control law using an iterative algo-

rithin developed i,, {10]. Ilowcver, neither of the above references ([10],

[2:11) investigate the trade-oils between airframe and engine perfornlance,

or the trade-oils between controllers of different structures. Tiffs was done

in [27] usingth_'l_,Milh'd algorilhm Thelrade_ffsaresmnmarized illlig-

ur_,l Significant c_sl. r_'duclion wa.sobtaincd usiHgthe nL_Mifi,'d alg(,rithlu

compared to the suboptimal lechniques il_ [23], I;tble l.

2.13 Mulludc rcglmr: c_mlT.l sy.,tem dcmgn

In a illull iph' regime c,mtrol system design proldem it is a.ssunmd |.ha.t

th,, phJnt may Iw ally planl in a fi.ite s_,t of l tilll,,-invarial_t plaldrS. Th"

pr_dq_:lU is to lind the h(_st cou(rol law that simultaneously optilldZes the

perl'or_um_ce obj,.cliv,'sof,'ach Idanl in the s,q Each i)lant has adil])'r,'ld

objectiw' function

I"

((;) = .l/" [xT (t)Qixi(t ) + nlr (t)l¢,u,(t)] dz (2-13)

where ri(t) aim ui(t) are the state anti control vector for the i th plant. To

solve this problem using the weighted sum method, vectors x(t), y(t), and

u(t) are defined which consist of the vectors xi(t), yi(t), and ui(t), of the /

plants. ]'lie scalar objective function J(G) then satisfies (2-13) and (2-7)

with weighting matrices

Q = block diag{wiQl,w2Q2 .... ,wIQi}

(2-1_)
R - block (tiag{w 1Rt,w_R2 .... ,wtRt}.

in order to find the single best control law for all the plants in the set, the

control laws of the plants must be constrained to be equal to each other by

the constraint

G = block diag{Gl,G2,...,G:}
(2-17)

GI =G2--'"=Gt.

The plants in the set could represent different operating conditions or

failure modes. The expected cost E{J} = Y'_i piJi(G) could then be min-

imized, where Pi is the probability of occurrence of plant i. In terms of

decision theory, the problem is now one of decision making under uncer-

tainty. The expected cost slmuld be modified to include a weighting term

w1 for each term piJi(G). The term wi is determined based on the decision

makers trade-offs. For example the decision maker may be unwilling to take

the risk of incurring a large cost J_(G) even if there is a small probability

of occurrence of plant k.

Fleming and Pashkevich use the goal attainment method to design a

controller for a robot arm that operates in three different regimes [13]. The

weighting coefficients wi = J/*, where J/" is the single objective minimum,

were chosen so that the same degree of under-attainment is achieved in each

objective. In [27] a proportional plus integral controller is tuned for two

possible plants, Gl(s) = (1/s + 1), G2(s) = 2/(4s + 1). The objective is to

minimize the model following error of the closed loop step input response

of both plants, where the model is G,_(s) = 36/(s _ + 7.2s + 36). A slowly

decaying exponential is used to approximate a step input. The trade-off

surface between model-following objectives Jl(G) and J2(G) is shown in

figure 5. The closed loop step responses for both plants for a weighting

factor of .5 is shown in figure 6. Greater model-following for plant 2 may

be obtained (at the expense of plant 1) by solving the problem for a weight

of < .5.

2.4.4 Model-followin 9 ob3ectives

If a model of the desired closed-loop plant is known, the model-

following objective

(x.,(t) - x(t))TQ,n(x_(t) - x(t))dt, (2-18)
_O

may be used to minimize model-following error where xm(t) is the state

vector of the model. The problem can be formulated by defining a state

vector which inch|des both x(t) and x_n(t).

The e-constraint method is used by Fleming [14] on two flight control

system examples. A longitudinal controller for a helicopter is designed by

ininhriizing a model-following terlll subject t.o control ene.rgy con-

straints on each of the helicopter's two inputs, lu the second example

a control system for all aerodynamically imsl.alde aircraft is designed by

ntinimizing s_msitivity subject to constraints on model-following errors aml

control energy The trade-_[l's between nmdel-followiug and sensitivity an'
exaulin(!d.

2.4.5 (:loscd-hwp l'rajc,r'lory scnsilil_ily a,; Jr,it ohjt cltm

(:onsi(h'r systems or the fornl

_(t) = A(p)x(t) + 13(l,)J,(t )

v(t) = ('_:(t)

where x(t), u(t), and y(t) are delilmd earlier (I-1) and p E IU is a vector

of Ilaranteters. 'l'o silnplify not;xli()n ouly the singl, i+;u';nneter (';us<' will be

di._cusned helow although the results e;usily _'xleiM Io the illultildt, p;ir;uneter

c_m('. The closed-loo I) trajectory sensitivity due h) changes in a i)aran_eter

p_ u_ay he i'ed_wed by ;uhling the terlu

l '_ i)x 'r its:

I 7;-- Q)l ,7- dl ('2-211)
./_ opl (]pl

to the ,)hjective fuuctioa, (2-7) [20], [22] TI,, ,:hJ._ed-loop Ira.iectory s,'_,si

tivity fmwtio,i .U_ (t) = i)x(l)/i)p_ is (h'scril)ed by the sl.atc ,_qu;diOl_S

aA(p) .. 0/_(p) .. ,'),,(tj
_;)'_(t) = A(p)Si(t) + T---p XU)+ o--SU-.(t) + _(p) ap, (2-2_)
,_'_(0) = 0.

Tile term Ou(t)/Opl depends on the form of the control law. Fleming and

Newmann [20] augment the state vector x(t) with the sensitivity vector

S_(t). A full state feedback controller is then

u(t) : -Fix(t)- F2Sl(t ), (2-22)

To implement this control law Sa (t) must be simulated. Itowever when the

control law (2-22) is substituted into (2-21) a term OS_(t)/Opx appears.

Fleming aml Newmann neglect this terin, llafez and Loparo [22] derive tile

necessary conditions for optimality for the control law

u(t) = -Fx(t). (2-23)

Unfortunately the algorithm of section 1.3.1 cannot be directly applied to

the necessary condition in [22] because the matrix Q is a function of the

feedback gain matrix F.

However, the problem can be put into a form in which the algorithm

can be applied directly. This is done by augmenting the control vector u(t)

with Ou(t)/Opl and constraining the control law so that (2-21) holds. Given

the control law (2-23) the formula for Ou(t)/Op_ is

Ou(t) = -FS_(t). (2-24)
Opt

Substituting (2-24) into (2-21) and evaluating at p = p0 the state equations

describing Sl(t) become

_;_(t) = ASa(t) + A_x(t) - B,u(t) - Bus,(|) (2-25)

where the input usa(t) = Ou(t)/Opl = -FSl(t) has been defined and the

following notation has been used

A = A(p°), A_ = OA(p) p° p°B = B(p°), B; = OB(p) (2-26)

Tile problem is then formulated as an optimal output feedback problem

with a constrained control law as follows:

\ o) : n(,)\._,(t)/

(x(t) )v(t) = I _s_(_) (2-27)

as,(t) / = \ s,(t) ]

0 0(0 (0
The closed-loop trajectory sensitivity may be further reduced by in-

cluding a dynamic compensator with state vector z(t) described by

OE POOR QU,:_!' :¢



t ht'rcI'_ ar

,')+,(t) ax(t)
i_,,_ - I',-57(p, - + I/ °_t ) (2+a0)

1'he st ate vector InlJM b<' furl hrr ,xlcnd('d by th<+ o.>niF, ensal, or state l.rajec-

it,r) s,'nsitivi{y [ullcti(>+l h'z+ (1) = O2(t)/OIq, b'adi.g to tim rolluwing slat,.+

<.q nilt ]otis

.,,':,(¢) __..l:.'.,':.(t) +/¢: v.,.(t) (2-:u)
Dl,i

Tb,' st ate equati,m t],r ,'+;1(t) is fo,nd by delinmg tim inl>ut

,,,, (t) = "-J'-:(J-!= t,::-,'_(t) + H+%,(t) (2<12)
0t' i

rlL," 1,.[,.+rn,ul;,I,'d i+r+d>b.nl f(,r ,+l,+i,niziug (2 7) pin:-. (2 20) suld,.cl l(+ th,'

,(,ulr(,I law (2+211) is:

0

,Q, i I

.: ill

() 0 0

..1 () (} .";L +

(1 0 I} 5,'+,

.I. (I (1 z

I) /'.' II .S't

0 it: A, .<;.+

(,)()0 I 0 0

/I I It /t 0 u:+;,

0 It 0 /' ._',,

(2-3:1)

(._ b],,ck <Ji.',g((?.(},,'2,. 0} /} = block (liag{lL,l,+l,+I, } (2-:14)

It is iuq>ortant to note that m sonic cases greater insensitivity of the

response dtw to a change in commanded variables might be obtained using

+q_,u I(>_,i_ coinl)ensalion _LS opposed to feedback control. Tbe closed-loop

Iraj,'ctory sensitivity to additimial paralneters Pi may be considered by

,,xt,,nding tile state vector with the sensitivity functions &(t).

The closed-loop trajectory sensitivity to tile relative position of tile

,,:utcr of gravity of an unsl able aircraft is investigated in references [21],

fill, awl [27] lies,ills using the modified algoril, hm [27], for a full state

f,,_ (lback (:ontrol law, are presenl,ed in tables 2 and 3, and figures 7 and 8.

Fhe objectiv,, function is J = (1 -w)dm + wd, + du, wliere Jm is the model

following error, .1, is the sensitivity measure, and .I,, is tile control energy.

i'he main trade off in the reduction of sensitivity is the increase in control

energy.

3,0 S tlllZlllary

In this paper the synthesis of a linear output feedback control law of a

specified structure tins beeu set in a multiple objective framework. Tile de-

signer may trade-off any number of individual integral quadratic objectives

stich a.s state energy, control energy, model-following, trajectory sensitiv-

it), and subsystem objectives. Noninferior solutions may be generated by

applying the modified descent Anderson-Moore algorithm of section 2.5 to

a single objective problem that is the weighted slim of the objective rune-

t tc)ns Dynamic c,)nlt,ensators as well as static output feedback controliers

,'a. b, _ designed using linear equality constraints on the parameters of the

¢)ulput f,+edlmck matrix to impose the structural constraints.
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TABLE I. - COMPARISON OF COSTS BETWEEN REFERENCE [23] AND

CONSTRAINED OPTIMIZATION, FOR THE INTEGRATED AIRFRAME

AND PROPULSION CONTROL EXAMPLE, _ : 0.4848

Controller

structure

Centrallzed

Decentralized

st4(.l)

Reference [23]

J

1367
3330
1759

Ja Je

29.89 2624
29.40 6422
33.10 3329

Constrained optimizatlon

J* * *Ja Je

1373
1444

26.95
42.37

2641
2763

TABLE 2. - OPTIMAL COSTS FOR MODEL FOLLOWING VERSUS

SENSITIVITY EXAMPLE OF SECTION 2.4.5

W

0.0

0.1

Js Jm Ju J

5.2697 4.1116xi0 -12 7.767x10 -2 4.1116xi0 -12
.1277 1.2278xi0 -01 2.086x|0 -I 1.2303xi0 -0]

W

0.0
0.I

TABLE 3. - OPTIMAL GAINS FOR MODEL

FOLLOWING VERSUS SENSITIVITY

EXAMPLE OF SECTION 2.4.5

g_1 g_2 g_3 g_4
-i4760 0.307-0238-0.903

-.0739 -3.297 -3.436 -2.308
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