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Summary

The full-approximation-scheme (FAS) multigrid methcd is applied to several implicit flux-split algorithms
for solving the three-dimensional Euler equations in a bedy-fitted coordinate system. Each of the splitting
algorithms uses a variation of approximate factorization and is implemented in a finite-volume formulation.
The algorithms are all vectorizable with little or no scaler computation required. The flux vectors are split
into upwind components using both the Steger-Warming «nd Van Leer splittings. Results comparing pressure
distributions with experimental data using both splitting types are shown. The stability and smoothing rates
of each of the schemes are examined using a Fourier anzlysis of the complete system of equations. Results
are presented for three-dimensional subsonic, transonic, znd supersonic flows that demonstrate substantially
improved convergence rates with the multigrid algorithm The influence of using both V-cycle and W-cycle
strategies on the convergence is examined. By using the multigrid method in both subsonic and transonic wing
calculations, the final lift coefficient is obtained to within (.1 percent of its final value in as few as 15 multigrid
cycles for a mesh with over 210000 points. A spectral radius of 0.890 is achieved for both subsonic and transonic
flows over the ONERA M6 wing, whereas a spectral radius of 0.830 is obtained for supersonic flow over an
analytically defined forebody. Results compared with exp :riment show good agreement for all cases.

Introduction

Upwind difference methods for solving the Euler equations are becoming increasingly popular for several
reasons. The time-dependent Euler equations form a systcm of hyperbolic equations, and upwind differencing
models the characteristic nature of the equations in thet information at each grid point is obtained from
directions dictated by characteristic theory. Upwind methods have the advantage of being naturally dissipative.
Separate spatial dissipation terms, such as those generally required in a central difference method to overcome
oscillations or instabilities arising in regions of strongly v rying gradients, need not be added. Some examples
of upwind methods include the A-method (ref. 1), the spli -coefficient method (ref. 2), the flux-vector-splitting
method (refs. 3, 4, and 5), and the flux-difference-splittin; method (ref. 6).

Although the A-method and the split-coefficient methcd closely mimic the method of characteristics, they
are both applied to the nonconservative form of the equations and consequently require the use of shock-fitting
techniques to obtain the correct location and strength of sl.ocks in transition flows. Use of the conservation-law
form of the Euler equations allows shock waves to be captured as weak solutions to the governing equations
and circumvents the difficulty in applying shock-fitting te: hniques to arbitrary flows. Both the flux-difference-
splitting and flux-vector-splitting methods can be applied to the conservation-law form.

The upwind method used in the current work is the flux-vector-splitting method in which the flux vectors
are split into forward and backward contributions based on an eigenvalue decomposition and are differenced
accordingly. The splittings investigated include those o Steger-Warming (refs. 3, 4, and 7) and Van Leer
(refs. 5, 8, and 9). In comparison with unsplit methods, the advantages of flux splitting are obtained at the
cost of increased computational work since two sets of flixes are computed for each coordinate direction and
implicit schemes require two sets of flux Jacobians for ccasistent linearization of the fluxes. In addition, the
split fluxes and flux Jacobians are also generally more cor iplicated than the unsplit terms because of the logic
involved with eigenvalue sign changes.

In order to offset the additional computational worl: of the upwind methods, it is highly desirable to
accelerate the convergence rate, especially when only steady-state solutions are sought; the objective is to
reduce the computer time required while still maintainin:; the high level of robustness and accuracy attained
from upwind differencing. Accelerating the convergence rate becomes increasingly important as the mesh is
refined since the log of the spectral radius for single-grid methods generally increases linearly with the mesh
size, thus making computations on very fine meshes impractical.

One method that has been successful in accelerating the convergence rate of elliptic problems, 1.e., attaining
a spectral radius independent of the mesh spacing, is the multigrid method (refs. 10 and 11). Although most
of the existing theory on multigrid methods pertains speifically to elliptic equations, it has been shown in a
number of references (refs. 12 to 22) that the multigrid method can greatly accelerate the convergence rate of
numerical schemes used for solving the Euler equations.

One of the earliest applications of multiple grids in solving the Euler equations was presented by Ni (ref. 12)
who used coarse grids to propagate corrections rapidly throughout the domain. His original idea was first
incorporated into a one-step Lax-Wendroff method and was later extended for use into predictor-corrector
types of methods by Johnson (ref. 13). Johnson and C‘hima (refs. 14, 15, and 16) subsequently used the



method to calculate both inviscid and viscous flows over several two-dimensional geometries. In 1984, Mulder
applied a linear multigrid method to the Euler equations in two space dimensions by using upwind differencing
to calculate flow over a circular arc and for a weakly barred galaxy (ref. 17). Jespersen also used upwind
differencing in two spatial dimensions to calculate flow over airfoils (ref. 18). In this approach, the Euler
equations were solved by Newton iteration where the linear system arising at each step was solved using the
multigrid method. One of the first uses of the nonlinear multigrid method in accelerating the convergence rate
for both the two- and three-dimensional Euler equations was reported by Jameson who used central differencing
in a four-stage Runge-Kutta algorithm to advance the solution (refs. 19 and 20). In two dimensions, recent
work by Jameson and Yoon also used central differencing and incorporated the multigrid algorithm into some
implicit schemes with good success (refs. 21 and 22).

The purpose of the current investigation is to combine the full-approximation-scheme (FAS) multigrid
method with flux-vector splitting to obtain efficient solutions to the Euler equations in three dimensions. The
full-approximation scheme for a general nonlinear problem is discussed as well as its implementation for the
Euler equations. Both V- and W-type cycling strategies are also investigated. Several smoothing algorithms
are given involving mostly vectorizable computations on the Control Data Corporation VPS-32 supercomputer
(a CYBER 205 with 32 million words of memory) at the NASA Langley Research Center. In addition, both the
Steger-Warming and Van Leer splittings are considered for splitting the flux vectors into upwind components.
Numerical pressure distributions are compared with available experiment for subsonic and transonic flows over
the ONERA M6 wing and for supersonic flow over an analytically defined forebody.

Symbols

A, B, C flux Jacobians in Cartesian coordinates, OF /dQ,3G/0Q, and 0H/3Q,
respectively

A* BT C= flux Jacobians in generalized coordinates, aﬁi/aQ, aéi/a(}, and aﬁi/aQ,
respectively

A matrix from similarity transformation

a speed of sound

CFL Courant-Friedrichs-Lewy number

Cp pressure coefficient

c airfoil chord

¢y lift coefficient

€ total energy per unit volume

F,GH flux vectors of mass, momentum, and energy

fenergy energy component of flux vector

Simass mass component of flux vector

GnN grid level N

grad( ) gradient operator

1 identity matrix

I::‘l restriction operator used for transferring functions on grid ¢ to grid 1 —1

I::—l prolongation operator used for transferring functions on grid :—1 to grid ¢

i::_l restriction operator for the residual

i = VI

{,} z and y components of a unit vector

J transformation Jacobian
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denotes £,1n, or ¢

generic nonlinear operator

Mach number

local Mach number in ¢-direction
implicit operator

unit normal vector

forcing function added to residual
pressure

conserved variables representing m iss, momentum, and total energy per unit
volume

change in dependent variables, Qrt-qQn

approximate value of conserved variables on grid 1

residual

Riemann invariant

components of a vector in z-, y-, and z-directions, respectively
forcing function

entropy

length of cell face

arc length, as used in appendix C

similarity transformation matrix v.hose columns are the right eigenvectors of
the flux Jacobians; also denotes a rotation matrix in appendix B

similarity transformation matrix vhose rows are the left eigenvectors of the
fiux Jacobians; also denotes inverse of rotation matrix in appendix B

time
components of a vector in z-, y-, and z-directions, respectively

time step

contravariant velocities; V also denotes the volume of a computational cell
where indicated

a constant vector

Cartesian velocities

correction on grid level ¢
eigenvector for Fourier analysis
Cartesian coordinates

angle of attack

coefficients for stability analysis
ratio of specific heats
incremental change

difference operator in z-, y-, and z-directions



s percent of spanwise location on wing, as used in figures 15, 16, 18, and 19

A diagonal matrix of eigenvalues

A amplification factor

AL,y Ag eigenvalues of Jacobian matrices

I smoothing factor

&n,¢ general curvilinear coordinates

s, Ey, £, components of a unit vector normal to a & = Constant face

P density

T time

T relative truncation error

|| magnitude of a vector

Subscripts:

A large mesh cell in appendix C

a,b,e,d smaller mesh cells in appendix C; b also denotes values on boundary in
equations (34) to (36)

1,7,k cell indices

N, N-1, ... discretization on grid N,N—-1,...

r reference values

T, Y, 2 spatial derivatives

Superscripts:

¢ most current value of a quantity

n time level

+ positive and negative flux and eigenvalue contributions; also denotes forward
and backward spatial differencing or extrapolation where indicated

(7) quantities in locally orthogonal coordinates

") fluxes and flux Jacobians in generalized coordinates; also denotes Fourier
symbol where indicated

Euler Solution Method

Euler Equations in Generalized Coordinates

The governing equations are the time-dependent equations of ideal gas dynamics, i.e., the Euler equations,
that express the conservation of mass, momentum, and energy for an inviscid nonconducting gas in the absence
of external forces. The conservation form of the equations in generalized coordinates is given by

where
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The pressure p is related to the conserved variables through the ideal gas law
p=(v-Dle—pu? v +w?)/2) (6)
The equations have been generalized from Cartesian coordinates using a steady transformation of the type
£=¢€(z,y,2) n=nlzyz) s=szy2) 7=t (7)

where the contravariant velocity components are

U==¢&u+ &+ Ew (83)
V =nzu+nyo + n.w (8b)
W = SeU + Sy’ + ¢ w (SC)

The transformation to generalized coordinates is given in appendix A.

The equations, although written in generalized coordinates, are used in a finite-volume formulation.
Equation (1) can be interpreted as describing the balance of mass, momentum, and energy over an arbitrary
control volume. In this connection, the vectors grad(£)/J. grad(n)/J, and grad(s)/J represent directed areas
of cell interfaces in the contravariant é-, n-, and ¢-directions; i.e., in directions along normals to the £ =
Constant, n = Constant, and ¢ = Constant surfaces, respectively. The Jacobian J represents the inverse of the
cell volume. Likewise, the quantities pU/J, pV/J, and plV/J represent the contravariant mass flux crossing
the cell interfaces in the contravariant &-, 7-, and ¢-directions.

Flux-Vector Splitting

The upwind differencing in the present work is effected through the technique of flux-vector splitting. The
generalized fluxes F, G, and H are split into forward and hackward contributions according to the signs of the
eigenvalues of the Jacobian matrices and are differenced i.ccordingly. For example, the flux in the £-direction

can be differenced as

g 9)

H— s
§cF =6, FF +6;
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since F* has all nonnegative eigenvalues and F~ has all nonpositive eigenvalues. For the current study, two
methods are considered for splitting the flux vectors into upwind components. Although the details of each
method can be found in references 3, 4, 5, 7, and 9, both methods are briefly discussed below.

The first method presented is the technique outlined by Steger and Warming in reference 3. Since the
flux vectors are homogeneous functions of degree one in Q, they can be expressed in terms of their Jacobian
matrices. For example, considering the flux vector in the ¢-direction allows F to be written as

F=AQ-=

|5

7]

5 Q (10)

o

Using a similarity transformation allows equation (10) to be rewritten as
F=AQ=TAT1Q (11)

The matrix A is a diagonal matrix composed of the eigenvalues of A and is given by

21 0 0 0 01
0 2 0 0 o0
A=10 0 X3 0 0 (12)
0 0 0 X O
L0 0 0 0 il
where
A23=U=&u+ &u+ Lw
Aq = U + [grad(¢)[a (13)
As = U — |grad(¢)]a
The eigenvalues can then be decomposed into nonnegative and nonpositive components
A=Al +A7 (14)
where
A A
+
A= % (15)
Similarly, the eigenvalue matrix A can be decomposed into
A=A%T +A™ (16)

where AT is made up of the nonnegative contributions of A;" and A~ is constructed of the nonpositive
contributions of A; . This splitting of the eigenvalue matrix, combined with equation (11), allows the flux
vector F to be rewritten as

F=TAT+A7)T '1Q=(AT+A)Q=F* +F- (17)

The flux vector F has three distinct eigenvalues given by equation (13) and can therefore be written as a
sum of three subvectors, each of which has a distinct eigenvalue as a coefficient (ref. 7):

ﬁ':F1+ﬁ‘2+f‘3 (18)
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and the direction cosines of the directed interface in the -d rection are

gz = EI/'gradCE)l (21a)
éy = fy/‘gl'adifﬂ (21b)
€. = £/|grad(€)| (21c)

The forward and backward flux vectors ¥+ and F~ are formad from equations (18), (19), and (20) by inserting
A= A;.F and A; = A7, respectively.

For supersonic and sonic flow in the ¢-direction, i.e., |M¢| = |@/a] 2 1, where & = U/|grad(&)| represents
the velocity normal to a £ = Constant face, it should be noted that the fluxes in this direction become

~

Ft=F F =0 (M¢ > 1) (22a)
Ft=0 F =F (M < -1) (22b)

The split fluxes in the other two directions are easily obtained by interchanging 7 or ¢ in place of €.

The fluxes split in the aforementioned manner are not continuously differentiable at zeros of the eigenvalues
(i.e., sonic and stagnation points). (See ref. 23.) This is illustrated in figure 1 where the split mass flux
contributions for the one-dimensional Euler equations, nondimensionalized by pa, are shown as a function of

Mass flux

1.5r
E— fmass/"a

Mach
number

| 1

1.25

Figure 1. Variation of Steger and Warming split mass flux with Mach number.



Mach number. The gradient discontinuities in the split fluxes are evident as the eigenvalues pass through zero.
The lack of differentiability of the split fluxes has been shown in some cases to cause small oscillations at sonic
points that are rarely noticeable for most aerodynamic applicatiogs.

It should also be noted that the Jacobian matrices of F* and F~ that are required for proper linearization
for an implicit scheme do not have the same eigenvalues as A" and A~ defined in equation (17). (See ref. 23.)
However, the Jacobian matrices of F+ and F~ do have the same sign as A™ and A~ so that upwind differencing
the spatial derivatives remains appropriate (ref. 23). Although A¥ are easier to form, their use in implicit
schemes, instead of the correct linearizations Ai, has been shown in many cases to cause severe time-step
limitations (refs. 3, 24, and 25).

In 1982 a new method of splitting the flux vector was proposed by Van Leer (ref. 5). Here, the fluxes were
split so that the forward and backward flux contributions blended smoothly at eigenvalue sign changes, i.e.,
near sonic and stagnation points. Just as for the Steger-Warming splitting, it was required that the Jacobian
matrices 9F* /BQ have nonnegative eigenvalues and 9F~ /6Q have nonpositive eigenvalues so that upwind
differencing could be used for the spatial derivatives. In addition, it was required that both Jacobians have
one zero eigenvalue for subsonic Mach numbers which leads to steady transonic shock structures with only
two transition zones (ref. 5). In practice, when second-order spatial differencing is used, shocks with only one
interior zone are usually obtained (ref. 9). This feature is not observed with the Steger-Warming flux splitting.

The three-dimensional splittings of Van Leer were originally given for Cartesian coordinates. The extension
to generalized coordinates is given in appendix B with the resulting split fluxes given below. Only the splitting
for the flux in the £-direction is given, as the others can be obtained similarly. The flux vector F is split according
to the contravariant Mach number in the &-direction, defined previously as M, = 4/a. For supersonic flow

(IM¢| > 1),

FT=F F =0 (Mg > +1) (23a)
F-=F Ft=90 (M < -1) (23b)
and for subsonic flow (M| < 1),
fr:ril:ass
[hass {[Ea(—2 £ 20)/] +u}
i = BN o {6 (o 20)/4) 4 0] (242)
Thass {[E:(-a % 20)/7) +w}
félr:lergy
where
Finass = £pa(Mg +1)2/4 (24b)
Sanersy = fasa {[=(v = )& £.2(3 - jaa + 2%/(12 = 1) + (a2 + 02 +w?)/2) (24c)

For forming ﬁi, the direction cosines éz, éy, and éz are given by equations (21) and % is the velocity normal
to a £ = Constant face. The fluxes in the other two directions are easily formed by interchanging ¢ with n
or . In figure 2 the nondimensionalized mass flux using the Van Leer splitting is shown as a function of Mach
number for the one-dimensional Euler equations. The split fluxes are continuously differentiable at sonic and
stagnation points; the improvement over the Steger-Warming splitting is apparent.

Baseline Solution Algorithm

The baseline algorithm for updating the steady Euler equations stems from a backward Euler time
integration of the unsteady equations, which yields (ref. 8)

[I + A6 AT +87AT) + A6 BY +67B7) + At(s- G + 67€7)] aQ=-at R (25a)



Mass flux

Figure 2. Variation of Van Leer split mass flux with Mach number.

where the residual at time level n is given by

e pt L st P o st L stE- 2 s HY +6TH
R"=6,F" +§F +6, G +6,G +6. HT + 6 H (25b)

The split-flux differences in equations (25) are implem:nted as a flux balance across a cell, corresponding
to MUSCL-type differencing (Monotone Upstream-Center ed Schemes for Conservation Laws). (See ref. 26.)
For example, the flux balance in the {-direction across a cell centered at point (7, 7, k) can be written as

5 BT + SFFT =[FTQ7)+ F(Q)iy 172 - FHQ) +F(QN)i-qiy2) (26)

The notation IA“+(Q—),-+(1 /2) denotes the forward flux evialuated using the metric terms at the cell interface

i + (1/2) and the conserved state variables on the upwind side of the interface, obtained by a fully upwind
second-order state variable interpolation:

Q7 (1/2) = 1:5Qi —0.5Qis (27a)

Q;’:—(I/Z) =1.5Q;41 — 0.5Q;+2 (27b)

As seen in figure 3, Q?jk denotes the average value of () in the cell centered on (Ei,nj,ck) at time t"; for

simplicity, wherever the index notation is (1, 7, k) or n, it .s most often dropped.

In equations (25), if second-order differencing is use:d on both sides of the equation, Newton iteration
for the steady Euler equations is obtained as At approaches infinity. The solution however requires a large
banded block matrix to be solved at each step, a procedure that is generally not feasible because of the large
number of operations required to invert the system. Even if the differencing on the left-hand side of the
equation is reduced to first order, which would not affect the second-order accuracy of the final solution, the
resulting system of equations usually remains uneconomical to solve. Therefore, the solution is obtained using
approximate factorization, which splits the implicit operator into a sequence of easily invertible equations.

When using flux-vector splitting, there are numerous ways of factoring the implicit operator into a sequence
of simpler operators (ref. 3). For the results shown below, three ways of factoring are considered. Each
of the schemes uses first-order spatial differencing on ‘he implicit side of the equation, whereas second-
order differencing is maintained for the residual calculations. Since the steady state does not depend on
the differencing of the left-hand side, the final steady-state result will have spatially second-order accuracy.
The computational modules for each of the schemes is shown in figure 4. All the schemes employ simple explicit
boundary conditions. Since only steady-state solutions a-e sought, each cell is advanced at its own time step
corresponding to a given CFL number defined by

CFL = At {|U| + [V| + W] + a[lgr1d(€)| + lgrad(n)} + |grad(<)Il} (28)
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Figure 4. Computational modules.

The first scheme considered is a spatially split algorithm given by
[I+At(6, AT + §SATNI + At(6;BY + 67B7)|[1 + At CT +67CT)AQ = -At R” (29)

The computational module for the left-hand side of equation (29) is shown in figure 4(a) for the & sweep. Since
the solution at each point is directly coupled to the two neighboring points, the scheme requires the solution
of a system of block tridiagonals. Similarly, the other two factors also require a block tridiagonal inversion.
This scheme has the advantage however of being completely vectorizable, and viscous effects can be easily
incorporated into the left-hand side. Since the VPS-32 computer is much faster for long vector lengths than
for short ones, the computations in the present implementation take advantage of the large memory available
on the VPS-32 and solve the block matrix equations over multiple planes simultaneously, thus yielding longer
vector lengths and faster processing rates. As seen in figure 5, the block tridiagonal matrices can be solved with
vector lengths corresponding to the number of lines in a plane times the number of planes taken. The residual
calculations, on the other hand, can be made with vector lengths corresponding to the number of points in
the grid. To decompose the implicit operator into lower (L) and upper (U) matrices (LU decomposition) and
perform the back-substitutions requires 695 multiplications and additions per factor resulting in a total of 2085
operations for each sweep through the grid.

The second method considered to factor the left-hand side of equation (25a) is a two-factor method in which

10
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Figure 5. Vectorization of LU decomposition and back-substitution over multiple planes.

The second method considered to factor the left-hand side of equation (25a) is a two-factor method in which
the implicit operator is split such that one operator contains the Jacobians with all positive eigenvalues and
the other operator contains the Jacobians with all negative eigenvalues. The scheme can be written as

1+ At(s; AT +6;BF + 57CHI+ AL(6TAT + 6B + §rCT)AQ = -AtR" (30)

and requires only the solution of block lower triangular equations. Each factor is solved by starting at one
corner of the grid and solving for each point by marching across the field to the opposite corner. From the
computational module shown in figure 4(b) for the first factor in equation (30), the solution at the center node
requires that the solution of each of the points behind it be previously obtained. These terms are taken to the
right-hand side of the equation and added to the residvcal. A similar procedure is carried out for the second
factor. For the present implementation of this scheme only 270 operations are required for each factor to
invert the left-hand side and perform the back-substitutions, and most of the algorithm is vectorizable. This
scheme requires that a 5 x 5 matrix be inverted at each point in the grid. These inversions can be carried
out with vector lengths corresponding to the number of points in the grid. However, since the solution of each
plane requires that the solution of the previous plane be known, the back-substitution cannot be performed
over multiple planes. The maximum vector lengths in the back-substitution process correspond to the number
of points in a plane. Scalar computations are used to perform the back-substitution along a line and comprise
roughly one-third of the total operations. Although the scheme requires only about 25 percent of the operations
required for the spatially split scheme, the scalar computations degrade the processing rate significantly so that
the overall computer time per iteration on the VPS-32 is about twice as much as that for the spatially split
scheme.

The last scheme considered is another two-factor schieme that is spatially split in two directions, with the
third direction split according to the sign of its eigenvalues. The resulting scheme, which is referred to as
combination splitting, is given by

I+ At(s; AT + 5SAT + 657G I+ At(e; BT +6,B7 + §XC7)AQ = -AtR” (31)

11



and the computational module for the first factor is shown in figure 4(c). This scheme also requires the solution
of block tridiagonal systems and requires about 635 multiplications and divisions for each factor. This scheme
is completely vectorizable; however, as in the previous two-factor scheme, the solution of each plane requires
that the solution of the previous plane be known, thereby eliminating the possibility of extending the vector
operations over several planes. The result is that even though this scheme requires only two-thirds of the
operations of the three-factor scheme, the computational rate is actually degraded by about 10 percent. A
summary of operations required to solve the left-hand side for each of the three schemes is given in table I.

Table I. Operation Counts for Solving the Implicit Operators

Operations required per point
per factor with associated
vector lengths® for—
Total operations
Scheme LU decomposition Back substitution per point
Three-factor spatially split 550 ML 145 ML 695 x 3 = 2085
550 ML
Two-factor combination split { 50 L } 145 L 745 x 2 = 1490
75 MP
. . 50 P
Two-factor eigenvalue split 50 L 458 270 x 2 = 540
50 S

%L—vector length corresponds to number of lines in a plane.
LU-—lower and upper.
ML—vector length corresponds to number of lines in a plane times number of planes.
MP—vector length corresponds to number of points in a plane times number of planes.
P—vector length corresponds to number of points in a plane.
S—scalar computation.

Boundary Conditions

The boundary conditions for the solutions presented below are applied explicitly. On the body,
the normal velocity is set to zero, whereas the pressure and density are determined by zeroeth-order
extrapolation from the interior. For subsonic flow in the far field, the velocity normal to the boundary
and the speed of sound are obtained from two locally one-dimensional Riemann invariants given by

2a
Rf=a+
a pom (32)
These invariants are considered constant along characteristics defined normal to the outer boundary
given by
d7 +
(ﬁ) =a+a (33)

For subsonic conditions at the boundary, R~ can be evaluated locally from free-stream conditions outside
the computational domain and R is evaluated locally from the interior of the domain. The local normal
velocity and speed of sound on the boundary are calculated using the Riemann invariants as

1
2y = §(R+ +R7) (34a)
~1
ap = 1-4—(R+ ~R") (34b)
12



The Cartesian velocities are determined on the cuter boundary by decomposing the normal and
tangential velocity vectors into components yielding

Uup = ur + /;JI(JI, - ﬁr)
vy = vp + i(ty(‘lb - ﬁr) (35)
wy = Wr + l;z‘ab - 'Ufr)

where the subscript 7 represents values obtained from one point outside the domain for inflow and from
one point inside the domain for outflow.

The entropy S is determined using the value from cutside or inside the domain, depending on whether
the boundary is an inflow or outflow boundary. Once the entropy is known, the density on the far field
boundary is calculated from the entropy and speed of sound as

1
2 -1
_[{%.\

The energy is then calculated from the equation of st ite.

For supersonic free-stream conditions along inflow boundaries, quantities are extrapolated from the
exterior; along outflow boundaries, quantities are extrapolated from the interior of the computational
domain.

Stability Analysis

In order to examine the stability characteristics »f the three-dimensional approximate-factorization
algorithms considered previously, a Fourier analysis 8 conducted on the complete system of equations
in Cartesian coordinates (refs. 8 and 25). Because »f the mixed signs of the eigenvalues of the Euler
equations and the fact that the three-dimensional I-uler equations cannot be diagonalized to yield a
system of convection equations, stability analysis of the scalar convection equation is not sufficient to
determine stability properties of the three schemes. (For example, consider the two-factor eigenvalue
split scheme that would reduce to only a one-factor scheme for scalar analysis.) The complete system of

equations can be written as
NAQ=-L= -AtR" (37)

where, for Cartesian coordinates,
R" =6 Ft +6]F +6;G +6/G +5;H" + FH” (38)
and N is an implicit operator corresponding to the s-heme considered. Linearizing the residual R™ as
R"=AT6,Q"+A 6,Q"+BY 6, Q" + B 6;Q"+C"6, Q" + c 6 Q" (39)
and assuming that the Jacobians are locally constan allows the stability to be analyzed by letting
Q" = A"Uj exp(iBsz, exp(i7sy) exp(iasz) (40)

where Uy is an initial constant vector. Upon substitution into equation (37) and dividing out the common
factors, the generalized eigenvalue problem for A, which is the vector of amplification factors, can be
obtained as

N-L)v=Niv (41)
(N-1)

where N and I are the Fourier symbols of N and L, respectively. The stability characteristics are
determined by cycling through a fixed number of eact of the spatial frequencies, in this case 16 frequencies,

in the range
0< B Az, 7 boy, 0 Az <27
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for a series of CFL numbers between 0.1 and 50. Each time the generalized eigenvalue problem is
solved using a routine from the International Mathematics and Statistics Library (IMSL). Each time the
maximum eigenvalue, the average eigenvalue, and the smoothing factor are determined. The smoothing

factor is defined as
i = max(|A) (42a)

when
7/2 < max(Bs Az, s Ay, as Az) < 37/2 (42b)

This corresponds to the damping of the high frequencies and serves as an indication of how effectively
the multigrid procedure can accelerate convergence for a given scheme.

Results are shown using the Van Leer splitting for each of the factorization schemes given previously.
Identical cases were run using the Steger-Warming splittings with little change in the results, and these are
therefore not shown. Each result was obtained by using first-order differencing on the implicit side of the
equation and fully upwind, second-order differencing for the residual computations. All the calculations
assume Cartesian coordinates, a Mach number of 0.8, and 0° yaw and angle of attack.

The average eigenvalue, the smoothing factor, and the maximum eigenvalue are shown in figure 6 for
the three schemes given previously. For the three-factor, spatially split scheme shown in figure 6(a), the
maximum eigenvalue indicates that this scheme is conditionally stable with a maximum CFL number

(a) Three-factor spatially split.

i 1 i 1 i

& Maximum elgenvalue
0O Average eigenvalue
—— Smoothing factor
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2 b

0 1 L 1 ) 3
1.2

.04
i I IYVVYY

8 DDQDDDDDDDDDD

P 8 pood
ao®
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Figure 6. Stability analysis of three-dimensional approximate factorization schemes. Mo, = 0.8; a =0°.

of approximately 20. Note that this is contrary to the unconditional instability obtained when central
differencing is used with the same algorithm (ref. 27). The minimum smoothing factor occurs at a CFL
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of about 5 which is somewhat less than the CFL numb:r where the maximum eigenvalue is lowest. In
contrast to the spatially split algorithm, both of the two-factor schemes shown in figures 6(b) and 6(c)
appear to be stable for all CFL numbers considered. T1e maximum eigenvalues and smoothing factors
also exhibit less sensitivity to the CFL number than th: three-factor scheme with minimum smoothing
factors also occurring at a CFL number of about 5. However, the two-factor eigenvalue split scheme
has a somewhat higher smoothing factor than the othrr two schemes. This indicates that the three-
factor spatially split and the two-factor combination spl t algorithms are more appropriate for multigrid
applications than the two-factor eigenvalue split scheme.

Multigrid Algorithms

General Algorithm

The multigrid method used in the current study is the full-approximation scheme (FAS) that appears
in many references (refs. 10, 28, 29, and 30) and is sum marized below. It is most easily understood by
first considering the solution of a general nonlinear equasion

L(Q) = (43)

Equation (43) is to be solved numerically by dividing the domain into discrete cells yielding a system
of equations to be solved simultaneously at each point a3

Ln(QnN) =SSN (44)

where Q is the exact solution to the discretized systein and Ly is the discrete analog of the operator
L. If initial conditions are close enough to the final soiution, equation (44) could be solved iteratively
by using Newton iteration. This approach however may be prohibitively expensive if the number of
unknowns is large as typically occurs in multidimensional problems. Many other iterative schemes have
therefore been devised that require significantly fewer operations. After a few iterations, however, these
methods generally exhibit a slow convergence rate, thu: reducing the residuals by a very small amount
each time (ref. 29). The reason for the slow asymptotic convergence rate is inadequate damping of the
low-frequency errors (ref. 11).

The multigrid method efficiently damps the low-{requency errors by using a sequence of grids
Go, Gy, ...,GN, where G denotes the finest grid from v.hich successively coarser grids can be formed by
deleting every other mesh line in each direction. In this context, the high-frequency-error components
on a given grid are those that cannot be resolved on the next coarser mesh because of the increased grid
spacing. If an iterative method is chosen that quickly damps the high-frequency errors on a given grid,
then the remaining errors will be only the low-frequency smooth components after a few iterations. A
sequence of coarser grids can then be used to accelerate the convergence rate on the finest grid by reducing
the remaining low-frequency errors since some of these zame frequencies appear as high-frequency errors
on a coarser grid. Therefore, the errors on the fine grid that are usually responsible for slow convergence
are quickly damped when using the coarser grids where the computations are relatively inexpensive.

In order to use the coarser grids, it is necessary to vbtain an equation on the fine mesh that can be
accurately represented by the coarser mesh. It is important to realize first that neither the solution nor
the high-frequency-error components on the fine grid can generally be resolved on a coarser grid. The
high-frequency errors however can be sufficiently damped on a fine grid by using appropriate iterative
schemes so that the remaining errors will be composed of only smooth, low-frequency components that
can be adequately represented on coarser meshes. For his reason, it is necessary to obtain an equation
on the fine mesh in terms of the errors.

When solving in an iterative fashion, equation (44) is solved approximately at each step as

Ly(ay) =S, +Ry (45)

where qf is the most current approximation to Qu and Ry is the residual that will be zero only when
q% = Qn and, hence, the exact solution is obtained. Subtracting equation (45) from equation (44) yields
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an equation on the finest grid in terms of the residual

Ly(Qn) - Ly(gy) = -Rn (46)

If the high-frequency errors have been previously smoothed, then the fine-grid residual equation (46) can
be adequately approximated on a coarser mesh by

Ly_1(Qn-1) =1 "H-Ry) + Ly, (IN'q%) (47)

where I%_l and i%_l are restriction operators for transferring the dependent variables and the residual

from the fine grid to the coarse grid, respectively. Here, I%_quv serves as an initial approximation to
the solution on the coarse mesh, whereas Qp_; is the exact solution which is the sum of the initial
approximation and a correction (ref. 30). Since the full solution is computed and stored on each grid level
as opposed to only the corrections, this process is referred to as the full-approximation scheme (FAS).

On a sufficiently coarse grid, equation (47) can be solved exactly using a variety of numerical techniques
to obtain Qp_; from which the correction can be formed as

Vyo1=Qn_1 - IN71q% : (48)

This can then be passed up to the fine grid and used as a correction to Q> which is replaced by its
previous value plus the correction

adfy — oy +IN_ VN_y (49)

This process yields a simple FAS two-level algorithm where the operations on the coarse grid (egs. (47) to
(49)) that are used to update the fine-grid solution are termed the coarse-grid correction. Often, however,
the exact solution of equation (47) can still be quite expensive to obtain. Also, since the correction
on the coarse grid serves only as an approximation to the fine-grid correction, the exact solution of
equation (47) is not required. Therefore, instead of solving equation (47) to completion, several iterations
can be carried out to get a reasonable approximation to Qu_;. After each iteration of equation (47), the
equation satisfied by qf;_; is given by

Ly_i(afy_,) =1 (-Ry) + Ly_1(IN"1a%) + Ry_; (50)

which differs from the solution of equation (47) only by the residual term Ry _1 which will be zero when
q%y_; = Qn—1- If the errors are smooth, then subtraction of equation (50) from equation (47) yields
an equation that can be well-represented on yet a coarser mesh, G _,. Writing this equation on G _q
yields

Ly 2(Qn-2) = Ly_2(¥ " 2q%_;) + IN"2(-Ry_,) (51)

where equation (50) is used to determine Ry _1. The solution may be obtained by solving equation (51)
exactly, by approximating by several iterations, or by introducing more coarse-grid levels. On all coarse
grids, one or more FAS cycles (smoothing followed by coarse-grid correction) are completed. In this
manner, each of the coarse meshes is used to obtain a correction for the solution on the next finer mesh.
Since only the equations for smooth error components may be represented well on coarser grids, it is
important to only pass corrections and not the full solution from a coarse grid up to the next finer one

(ref. 28).
Using equation (45), note that equation (47) can be recast
Ly-1(QN-1) =Sn_1+7n_1 =Py (52)
where
Sy_1=1N"18y (53)
-1 =Ly (1§ 'ay) - IV L (ek)) (54)
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Here, Tpy_1 is the relative truncation error (or defect cor rection) between the grids so that the solution on
the coarse grid is driven by the fine grid, and the defect correction accounts for the difference in truncation
error between the coarse and fine grids (ref. 28). The a:1alogous equation for grid Gy _ is given by

Ly_2(Qn-2) =Sv_2+7Tn-2 (55)
where )
Sy_2=IN"'Sn- (56)
and N o R
rv—2 = Ly-a (1N 2afy_1) — INZF [Lv-a(af-0)] + I8 T irwo (57)

Note that the relative truncation error on the N — 2 grid is the sum of the relative truncation error
between grids N and N — 1, as well as N — 1 and N — 2.

Algorithm for Euler Equations

For the steady Euler equations in generalized coordinates, equation (44) can be written as

Pt L stR 1Ot L6TE + 67 F T
Ly(Qn) =8, FT +6/F™ +6,G™ +67G +6 HY +67H™ =0 (58)
In the multigrid-solution process, a forcing function arises on the coarse grids from restricting the residual
equation on a fine mesh down to the coarser one. Since S = 0 in equation (44) for the Euler equations,
the forcing function is the relative truncation error bet ween the two meshes. The resulting equation to
be solved on any mesh G, can be written as

Li(Q) = = (59)

where 7; = 0 on the finest mesh and is the relative trancation error on each of the coarser grids. The
solution of equation (59) is updated by introducing a time derivative of the dependent variables to the
left-hand side so that the solution can be advanced in fime using the approximate-factorization methods
previously described. The resulting scheme written on mesh G, is given by

N Aqf = —At[Li(qj, — 7] = —At R, (60)

where N is the implicit operator of the scheme considered and L;(qf) on the right-hand side is due to the
linearization of L;(Q;) from the backward Euler time integration. Note that even on the coarse meshes
where 7; is nonzero, equation (60) maintains the same form as the equation on the fine mesh. The result
of this is that the coarse meshes can be updated using the same scheme as that used on the fine mesh
with only a slight modification to the right-hand side.

Several strategies exist for deciding when to switch {rom one grid level to another, and they generally
fall under the categories of fixed- or adaptive-cycling algorithms. The strategy used in the present study
is a fixed-cycling strategy in which each global cycle coasists of a set number of FAS cycles on each of the
coarser grids. Recall that one FAS cycle on any grid consists of a smoothing step followed by a coarse-grid
correction. A predetermined number of iterations are performed on each grid level to smooth the errors.

The conserved variables are transferred to the next coarser grids each time by the rule

Qi =L7'Q; (61)

where I;:_l is a volume-weighted restriction operator that transfers values on the fine grid to the coarser

one and is defined by
E,a=>ve/Yv (62)

and the summations are taken over all the fine-grid cells that make up the coarse-grid cell. As shown in
appendix C, restriction of the dependent variables in t}is manner conserves mass, momentum, and energy
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in each of the cell volumes. The relative truncation error is calculated on the coarse grid as
1 Fi-1
ri1 =L (7 qf) - TR, (63)
where i:_l is the restriction operator for the residual defined as
2i—1
IR, =) R, (64)

where, again, the summation is over the cells on the fine grid that make up the coarse-grid cell. By
summing the residuals, the surface integral of the fluxes crossing the cell boundaries on the coarse grid
is the same as would arise by integrating around all the fine-grid cells making up the coarse grid. (See
appendix C.) Several iterations of the approximate factorization scheme can be conducted to get an
approximation to the steady solution on G;_; with the right-hand side modified to include the relative
truncation error. If only one coarse grid is used to correct the finest grid, the result is the simple FAS two-
level cycle. On the other hand, if more grid levels are introduced so that one or more FAS cycles can be
recursively carried out on each subsequent coarse-grid level to get a better approximation to Qp_1, then
a multilevel algorithm results. When only one FAS cycle is carried out for each of the coarser grids, the
resulting global cycling strategy is termed a V-cycle and is depicted in figure 7. Another cycling strategy
of interest, which is shown in figure 8, is termed a W-cycle and results when two FAS cycles are used on
each of the coarser meshes. Results will be shown in the next section using both types of cycles where,
on the coarsest mesh, three smoothing iterations are performed in lieu of solving the equations exactly
on the coarsest mesh. The corrections on coarse meshes are passed to the next finer mesh using trilinear
interpolation with no additional iteration steps between meshes. When a W-cycle is used, however, note
that an iteration is carried out at the beginning of each FAS-cycle correction in order to smooth the high
frequencies.

Grid
Q" n+1
Q Gy
G
E: Euler calculation N-1
C: Residual/Q collection
I - Correction interpotation
Gn-2
GN-S

Grid
n n+1
Q Q Gn
GN-1
E: Euler calculation
C: Residual/Q coliection
I Correction interpolation G
N-2
GN.3

Figure 8. Multigrid W-cycle.
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In order to clarify the multigrid procedure further, the overall process is summarized as follows for an
exemplary case where three grid levels are used in a V-cycle:

1. Start on the finest grid and smooth the errors by doing one iteration of equation (60) with 7; = 0.

2. Calculate the residual on the fine grid from equition (45) where Ly (qy) is given on the right-hand
side of equation (58) and Sy = 0.

3. Restrict the dependent variables to the first coarse grid Gn_; by using equation (61).

4. Restrict the residual from the finest grid to Gy_; using equation (64) and calculate the relative
truncation error using equation (63).

5. Calculate the right-hand side of equation (60) aad update the solution on mesh Gy_1. (This serves
to smooth the errors on this grid so that a coarser giid can be introduced.)

6. Calculate the residual on this mesh using equation (50). Note that this can be written as

Ry_1=Ly_1(ldy_1) —™N-1 (65)

Since 7n_; has been previously calculated, the residual is easily calculated by simply calculating
LN_l(qfv_l) from the most current values of the dependent variables on the mesh and subtracting
TN-1-

7. Restrict the dependent variables on Gy _1 to (N_2 by using equation (61).

8. Restrict the residual from equation (65) to the N — 2 grid and calculate T)y_o from equation (63).

9. Calculate the right-hand side of equation (60) and update the solution on this mesh. Since this is
the coarsest mesh used in the present example, three iterations of equation (60) are undertaken to get an
approximation to Qp _z. During each step, the right-hand side is updated to use the most current values
of the dependent variables ig LN_?(qjv__z). Note' that 7y _o will not change.

10. Calculate the correction on this mesh to give

N-=-2
VN 2=dy_:— IN—1‘1‘1:V—1 (66)
11. Pass the correction to the next finest mesh vsing trilinear interpolation and update the solution
to give
N-1
ay_1 < ay-1 +In 2VN-2 (67)
Note that steps 5 to 11 make up one FAS cycle on g id N — 1 where steps 6 to 11 constitute a coarse-grid
correction. At this point, if a W-cycle were being employed, another FAS cycle (steps 5 to 11) would be

repeated to update g% _, further.
12. Calculate the correction on the N —1 mesh 1s

Vy-r=ak .1 - Iy al
13. Pass this correction to the finest mesh and vpdate the solution to give
ay —ak 4 IN-1 V-1
14. Perform one smoothing iteration using equa ion (60) to smooth the errors.
Presentation of Results

ONERA M6 Wing

Three-dimensional subsonic- and transonic-flow computations over the ONERA M6 wing are now
presented. Comparisons are made with experimentl data at a Reynolds number of 11.7 x 105 (ref. 31),
corresponding to conditions for which viscous effects are relatively small. The wing consists of symmetrical
airfoil sections with a planform swept 30° along the leading edge, an aspect ratio of 3.8, and a taper ratio of
0.56. Solutions are obtained for two mesh types, C-H and C-0, both of which are C-type mesh topologies
around the airfoil profile. The C-H mesh has uniform spacing in the spanwise direction, whereas the
C-O mesh wraps around the wingtip, consequently leading to a more precise definition of the actual
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rounded-tip geometry tested in the experiment. The C-O mesh has been generated with a transfinite
interpolation procedure given in reference 32. The C-H mesh was obtained by simply stacking a series of
two-dimensional cross sections along the span. The surface meshes for both are shown in figure 9.

The first computation is on the ONERA M6 wing at transonic conditions: a Mach number of 0.84 and
an angle of attack of 3.06°. Figure 10 shows the effect of using multigrid on the residual and lift coefficient
histories for a mesh with over 210000 points. The mesh is a 193 x 33 x 33 C-H mesh. This corresponds
to 193 points along the airfoil and wake (110 of which are on the airfoil), 33 points approximately normal
to the airfoil, and 33 points in the spanwise direction (17 of which are on the wing planform). For this
case, the Van Leer splittings are used with a V-cycle and four grid levels (a fine grid and three coarser
ones). The multigrid method is very effective in accelerating convergence of both the residual and lift
coefficients. The residual is reduced to “machine zero” in 400 cycles, whereas the single-grid method has
reduced the residual only between one and two orders of magnitude. The benefit of multigrid is especially
pronounced in the lift coefficient history where the lift coefficient value is obtained to within 0.1 percent
of its final value in 41 cycles. This is a dramatic improvement over the single-grid result that required
more than 400 iterations to converge to the same level of accuracy for the lift coefficient. It should be
noted that for all the cases considered, several multigrid V-cycles (usually five) were run with first-order
spatial differencing before switching to second order.

2(‘ Multigrid
-~-- Single grid

Log
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A0 (a) Residual history.
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15~ (b) Lift history.
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Figure 9. Surface mesh for ONERA M6 wing. Cycles

Figure 10. Effect of multigrid on
convergence on ONERA M6 wing
with 193 x 33 x 33 C-H mesh.
Moo = 0.84; a = 3.06°.
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A comparison of convergence rates between the three schemes discussed earlier is shown in figure 11 for
identical conditions as given above with the exception that only every other point from the 193 x 33 x 33
mesh is used, thus resulting in a 97 x 17 x 17 C-H mesh. For this mesh size, only two coarser grids are
used. The three-factor, spatially split algorithm demcastrates a faster rate of convergence than either
of the two-factor schemes. The spectral radius indicating the error reduction per cycle is 0.898. The
two-factor scheme in which the implicit operator is split according to the sign of the eigenvalues displays
the slowest convergence rate with a spectral radius of ().93. It should be pointed out however that even
though the spectral radius using this scheme is not as good as that for the spatially split scheme, this
still represents a good improvement over a corresponding single-grid spectral radius of 0.98. All the runs
on the 97 x 17 x 17 meshes were made at a CFL number of 7. This was determined experimentally to
be nearly optimum and agrees well with the CFL number for best smoothing predicted by the stability
analysis.

In 64-bit precision on the VPS-32, the computational rate using a three-grid V-cycle for the three-factor
scheme is about 75 usec per grid per cycle, whereas the two-factor eigenvalue-split and combination-split
schemes exhibit computational rates of 140 and 85 psec per grid point per cycle, respectively. The
computational rates obtained using one grid level are cecreased about 15 percent from those using three
grid levels. Computational times are decreased approximately 40 percent when the computations are
done in 32-bit precision on the VPS-32. Because of the higher performance of the three-factor spatially
split algorithm in both convergence rate and computat:onal rate, it is used exclusively in the results that
follow.

A comparison of the residual convergence histories for a W-cycle and the previously used V-cycle is
shown in figure 12 for the 97 x 17 x 17 C-H mesh. An improvement in the convergence rate using a
W-cycle is apparent. In addition, the lift coefficient is obtained to within 0.3 percent of its final value in
only 14 cycles and to under 0.1 percent in 24 cycles. This is an improvement over the V-cycle that took
37 cycles to get the error in lift below 0.1 percent. Although the work involved for a W-cycle is more than
that for the V-cycle because of the extra smoothing iterations on the coarser grids, the time required per
cycle increased only about 13 percent over a V-cycle. Therefore, even though more work is involved for
each cycle, a net gain is achieved by employing the W .cycle. A summary of results for this case is given
in table II for 193 x 33 x 33 and 97 x 17 x 17 grid points for both C-H and C-O types of grids. This table
includes the spectral radius based on cycles, the number of cycles required to obtain the lift coefficient to
within 0.3 and 0.1 percent of its final value, and the number of cycles required to obtain the lift to five
significant digits. Note that the number of cycles required for the W-cycle to obtain the lift coefficient is
relatively insensitive to the number of grid points, thus indicating that the multigrid algorithm is working
successfully.

Figure 13 shows the upper-surface pressure distributions on the 193 x 33 x 33 C-H mesh as well as on
the 193 x 33 x 33 C-O mesh. The wing under these -onditions exhibits both a swept shock emanating
from the root leading edge and a nearly normal shock emanating from the root. Both shocks coalesce at
about 80 percent of the span to form a single shock. Figure 14 shows upper-surface pressure contours for
the C-O mesh.
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Table II. Summary of Results for ONERA M€ Wing With Moo = 0.84 and & = 3.06°

Number of cycles requirec to obtain ¢ within—
Type of 0.3 percent of 0.1 percent of Five decimal Spectral
cycle final value final vaiue places radius
97 x 17 x 17 C-H mesh size
V-cycle 20 37 75 0.898
W-cycle 14 24 42 0.871
97 x 17 x 17 C-0O) mesh size
V-cycle 34 45 91 0.912
W-cycle 15 27 44 0.879
193 x 33 x 33 C- mesh size
V-cycle 37 41 153 0.948
W-cycle 12 23 47 0.923
193 x 33 x 33 C-O mesh size
V-cycle 27 68 149 0.952
W-cycle 14 19 47 0.926

In figure 15, pressure coefficients obtained using the Van Leer splitting on both the 97 X 17 x 17
and 193 x 33 x 33 C-O meshes are compared with experimental data at six spanwise locations.
The computations are obtained at the experimental spanwise locations by linear interpolation. The
computations on both meshes agree reasonably well with experiment for each spanwise location; the
effect of the finer mesh is to resolve the leading-edge suction pressures and shock positions and improve
the agreement with experiment at the most outboard station. Results obtained with the Steger-Warming
splitting on the same two meshes are compared with experimental data in figure 16. The computations
are nearly identical to the previous ones with small differences occurring near the shock regions.

The next three-dimensional test case is the ONERA M6 wing at a free-stream Mach number of 0.699
and an angle of attack of 3.06°. At these conditions, the flow remains subsonic over the entire wing.
Results were obtained for this case on a 97 x 17 x 1" C-O mesh, a 97 x 17 x 17 C-H mesh, and both a
193 x 33 x 33 C-H mesh and C-O mesh. Figure 17 shows the residual history for both the 97 % 17x 17 C-O
and C-H meshes using the Van Leer splittings and a three-grid V-cycle. The convergence rate on the C-H
mesh is slightly better than on the C-O mesh. Machine zero is reached in approximately 200 cycles for the
C-H mesh and in approximately 300 cycles for the C-O mesh, corresponding to an asymptotic spectral
radius of 0.891 and 0.926, respectively. For both meshes, the lift was obtained to less than 0.1 percent of
its final value in less than 28 cycles and required only about 46 sec of computer time. On the 193 X 33x33
C-H mesh, a spectral radius of 0.929 was obtained with the multigrid algorithm, whereas a spectral radius
of 0.950 was obtained on the same size of C-O mesh When using a W-cycle, a spectral radius of 0.866
is obtained for the 97 x 17 x 17 C-H mesh and one of 0.891 is obtained for the C-O mesh. With the
193 x 33 x 33 mesh, the spectral radius using the W-cycle is also about 0.890 for the C-H mesh and
about 0.912 for the C-O mesh. A summary of results that is similar to those shown in table II is given in
table IIL.

The pressure distributions on the 97 x 17 x 17 C-O mesh and the 193 X 33 x 33 C-H mesh are compared
with experiment at six spanwise stations in figure 18 vsing the Van Leer splittings and in figure 19 using the
Steger-Warming splittings. At the inboard stations, the results for both meshes are essentially identical
and compare well with experiment. At the outboa-d station, however, the pressures computed on the
C-O mesh agree much closer with experiment becatse of the increased resolution at the tip. Again, the
Steger-Warming and Van Leer splittings give nearly identical results.
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0

Log
(residual)
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Figure 17. Multigrid convergence for C-H and C-O meshes or. ONERA M6 wing for V-cycle. Mo = 0.699; o = 3.06°.

Table I1I. Summary of Results for ONERA M5 Wing With Moo = 0.699 and a = 3.06°

Number of cycles required to obtain ¢; within—
Type of 0.3 percent of 0.1 percent of Five decimal Spectral
cycle final value final value places radius
97 x 17 x 17 C-1 mesh size
V-cycle 19 28 38 0.891
W-cycle 11 1€ 33 0.866
97 x 17 x 17 C-*) mesh size
V-cycle 21 2% 48 0.926
W-cycle 13 1: 31 0.891
193 x 33 x 33 C-H mesh size
V-cycle 29 3i 71 0.929
W-cycle 11 21 37 0.891
193 x 33 x 33 C-O mesh size
V-cycle 21 3t 55 0.950
W-cycle 11 1° 36 0.912

Analytic Forebody

The last test case considered is an analytically defined forebody for which experimental data are
available at supersonic Mach numbers (ref. 33). The grid used was a 49 x 49 x 49 grid with a symmetry
plane along the centerline. Figure 20(a) shows a cross s:ction of the grid around the body, and figure 20(b)
illustrates the body surface together with contours of the static density in the upper symmetry plane. The
conditions correspond to a free-stream Mach number of 1.7 and an angle of attack of 0°; this leads to an
oblique shock at the nose and supersonic flow over the entire length of the body. In this case, it is known
that a pure axial marching scheme can obtain the solut on quite efficiently, as the equations are hyperbolic
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in the axial coordinate as long as the axial velocity is supersonic. However, if subsonic pockets of flow
develop, an axial marching scheme will fail and thus mu:-t be modified to include some iterative scheme
to solve the subsonic pockets. Hence, it is of interest to study the efficiency of the present multigrid
algorithm in this fully supersonic flow. The occurrence of the subsonic pockets presents no difficulty to

the present approach.
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(b) Grid on body surface with con-
tours of static demsity in upper
symmetry plane.

(a) Cross section of grid around body.

Figure 20. Grid for analytic forebody.

The residual and lift histories obtained using a V cycle and the Van Leer splittings are shown in
figure 21. As can be seen, the residual is reduced 3 orders of magnitude in only 50 cycles (the first 10
of which were first-order accurate), and an asymptotic spectral radius of 0.830 is achieved based on the
last 30 cycles. The lift coefficient is obtained to withi1 0.3 percent of the final value in 22 cycles. The
computed pressure distribution is compared with experimental data at the forebody symmetry plane in
figure 22 for both the upper and lower sides of the bodv. The pressure coefficients compare well with the
experimental data over both the lower and upper surfaces of the body.

061
T U
-6 \ Lift 02
coefficient
Log 8 r 0
(residuol) o} (a) Residual history. ) (b) Lift history.
12 ___l—_—l—-J —.OLN—J——‘L—_l
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Figure 21. Convergence history for anelytic forebody. Moo = 1.7; a = 0°.
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Concluding Remarks

A multigrid algorithm has been developed, analyzed, and applied to the three-dimensional, flux-split
Euler equations in generalized, body-fitted, curvilinear coordinates. Three implicit smoothing operators
were studied, as well as two flux-splitting schemes. Applications were demonstrated for subsonic and
transonic flows over a wing and for fully supersonic flow over an analytic forebody shape. Results were
compared with experiment.

A linearized stability analysis of the three-dimensional system of difference equations representing the
Euler equations was carried out numerically for a range of simulated free-stream conditions. Sixteen
modes of discrete frequency in each spatial direction were examined. The results indicated that the
three-factor, spatially split implicit scheme is conditionally stable for the upwind, flux-vector-splitting
difference scheme. This is in contrast to the unconditional instability of the three-factor scheme with
central differencing. The two-factor eigenvalue-split and combination-split schemes were found to be
unconditionally stable. However, since extremely large time steps are not necessary for a multigrid
smoothing algorithm, the conditional stability of the three-factor scheme is not a penalty.

Of the three implicit iteration schemes used for multigrid smoothing operators, the three-factor,
spatially split operator was found to be superior to the two-factor operators. Its superiority is due
to a combination of a better smoothing rate and more complete vectorization.

Two fixed-cycle multigrid methods were tested. The W-cycle was more efficient than the simpler
V-cycle. Either algorithm was an order of magnitude faster than the single-grid iteration. The multigrid
method proved efficient for subsonic, transonic, and fully supersonic flows.

Of the two flux-splitting schemes tested, the Steger-Warming and Van Leer splittings, both yielded
similar results for pressure distributions. Although not shown, the convergence rates using the Steger-
Warming splittings were very similar to those obtained with the Van Leer splittings.

NASA Langley Research Center
Hampton, Virginia 23665-5225
August 25, 1988
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Appendix A

Transformation to Generalized Coordinates

The three-dimensional Euler equations in Cartesian coo:dinates and strong conservation-law form are given
by
0Q O8F J0G OJOH
= + =0

ETR R (A1)
where
p pu pv pw
pu pu2 +p puv puw
Q=1 F=1{ puw G=1{ p?+p H={ pow (A2)
pw puw prw pw2 +p
€ (e+pu (e + p)v (e+p)w
and )
p=(y—1) [e— 5o 7 + 0 +w2)]
When using the chain rule and the body-fitted coordinate system given by the steady transformation
¢=¢(z,y,2) n=nzy2) <=d=zy2) 1=t (A3)
the Euler equations can be recast as
oQ OF OF oF oG aG oG oH JH oH
= = — hdl = = = - = = = A
8T+£Ia€+nzan+gzac+€ya€ +nyan+§yac+€zaf+nzan+§zac 0 ( 4)

Now, again using the chain rule, the derivatives with respect to 7, £, 71, and ¢ can be written in matrix form

as
a3 d
ar 1 0 0 0 3t
i) 3
o _ 0 Te Le 2 3z (A5)
38; 0 zyp 4 2 3%
a 0 z¢ v % 3
3 a3z

from which Cramer’s rule can be used to solve for the z, y, 2, and ¢ derivatives. Using these to evaluate the
metric terms gives

€r = J(unze — 2q¥c) 1z = J(2e¥s — vez) Sz =J(Yezn — 2¢¥n)
&y = J(znzs — Inzc) Ny = J(zszc - fo‘?c) Sy = J(sz‘n - Ifzn) (A6)
& = J(znys — ynxc) Nz = J($Cy£ o ycIE) Sz = J(zeyn - y{“’n)

where
IV =ze(ynzc — 2q¥c) — ye(znz. - 2n) + 2¢(Tn¥s — Yne) (A7)

In order to regain the strong conservation-law form, equaion (A4) can now be multiplied through by J~! and
rearranged using the chain rule on certain terms. For exzmple, the term J —1¢,F ¢ can be rewritten as

JleFe = ?93_6 [(J‘lfx)lé‘] ~F {%(rlgz)] (A8)
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After rewriting all the appropriate terms and noting that many parts of the resulting equation can be shown
to be zero by substituting equations (A6) for the metrics, the Euler equations can be written in generalized
coordinates and maintain the strong conservation-law form as

aQ oF 8G SH
8_T+a_f+%+5;_0 (Ag)

where

~

Q=J1qQ

F = J Y&F + €,G + €,H)
(A10)

G = J_I(TIIF + nyG + nzH)

ﬁ = J—I(C:cF + CyG + CzH)

Substituting equations (A2) into (A10) allows the flux vectors to be further written in an alternate form as

pU 1% oW
pulU + &:p puV + nzp puW + ¢.p
F= } pvU + Eyp G= } pvV + nyp H= } poW 4+ cyp (Al1)
pwlU + Ep pwV +n,p pwW +¢.p
(e+p)U (e+p)V (e+p)W

where U, V, and W are the contravariant velocities defined as
U=¢&u+ fy“ + &w
V =nzu+nyv + nw (A12)

W =cru+cyv + cw
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Appendix B

Splitting Flux Vectors in Generalized Coordinates

The Van Leer method of splitting the flux vectors was criginally given only for a Cartesian coordinate system
(ref. 5). For example, the flux-split vectors in the z-direc ion were given in terms of the local one-dimensional
Mach number M, = u/a. For supersonic flow, i.e., |IMz| > 1, we have

Fr=F F =0 (M;2>1)

(B1)
Ft=0 F - =F (M;<-1)
and for subsonic flow, i.e., |[Mz| < 1, we have
2
+pa [%(MI ‘£ 1)] = fr:ga.ss
SEass (v - Du£2a] /v
F* = i ass? (B2)

k|
fmassw

o Il = Du 20? [ [202 )] 4 07+ w)/2

For many applications, however, it is advantageous to construct generalized (body-fitted) coordinate systems
of the type
£=¢€(z,y.2) n=nlgyz) c=dzyz) 1=t (B3)

where, in the present work, the transformation is chosen s> that the grid spacing in the computational domain is
uniform and of unit length. In the discussion that follows, the superscript (°) indicates variables in generalized
coordinates and the superscript () indicates variables in a localized Cartesian coordinate system. If no
superscript is used, Cartesian coordinates are assumed. The strong conservation form of the Euler equations
in generalized coordinates is given by
9Q W oF oG OH_, (B4)
or o€ a1 o<

For the purpose of determining a generalized splittin ; for F, only the derivatives in the §- and t-directions
are considered, whereas the n and ¢ derivatives are treated as source terms. For determining the splitting
of F, equation (B4) is transformed by a local rotation matrix in order to decompose the flux vector F into
components normal and tangential to a { = Constant cell face. The rotation matrix is given by

(B5)

- o @ © O

1
0
T=S0 i, ity iz
0
0

where éz, éy, and Ez are components of a unit vector & normal to a ¢ = Constant line. The t; and 7, are
components of vectors that are normal to A and to each other so that the three vectors form a localized
Cartesian coordinate system. Note that an infinite numrber of vectors normal to fi exist that form a localized
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Cartesian coordinate system. These vectors however are arbitrary and their exact specification is unnecessary.
Multiplication of equation (B4) with the matrix T then yields

Qi+ F; = —TG,, +T:Q+ Tgf“ - TH, (B6)
where
p
pu
Q=TQ=-{ p (B7)
pw
e
Pt
puu +p
?:Tﬁ:@ puv ¢ (B8)
puw
(e +p)a

The rotated velocity component % is the velocity normal to a line of constant £, representing the scaled
contravariant velocity component, whereas # and @ are normal to & and to each other. Thus,

= ézu + éyv + ézw (B9)
v =tzu+tyv + tw (B10)
W = fru+ Fyv + Fow (B11)

The transformed flux F is of the same functional form as the Cartesian flux vector and thus can be split
according to any splitting developed for Cartesian coordinates. Therefore, equations for both the Steger-
Warming and Van Leer splittings can be used to split the flux vector F after replacing the Cartesian velocity
components u, v, and w by the rotated velocity components #, 9, and @, respectively. Applying the rotation T
to equation (B4) simply allows the flux vector to be split in a one-dimensional fashion along a coordinate axis
perpendicular to the cell interface. After splitting F, the appropriate splitting for F is determined by applying
the inverse transformation matrix T~1 to equation (B6), thus leading to

Qi+ (Ft+F )+ G, +H. =0 (B12)
with ffﬁass
Fass { [Ga(—u £ 20)/7] +u}
S - I YA PR
f%ass { [EZ(_H + 2“)/'7] + w}
feiergy J
where
s = £a(Mg £ 1) /4
ﬁ;my=L;H{L4w—lwzi%v—1Ma+2#]/vﬁ—1»+w2+v?+w%ﬂ} (B13)
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Note that the inverse transformatlon restores the original for
arise and the form of G and H is unaffected. This allows @

shown above.

-m of the equatxons i.e., no additional source terms
o splitting of G and H sxmllar to the splitting of F

Duplicating the derivation with the Steger-Warming Cartesian splitting, starting with equation (B8), yields

F=F1+F2+F3

where

=]
I

jgrad()l; 71 _

J ! ~

Foa= lgrad(f)l&é )
2,3 J 2~

, A
A = !

where
s M5

25 = Torad(6)]

pw
ue-}-p:tpaf]
U

lgrad(€)]  Jerad()]

i7 £ algrad(¢)
lgrad(6)

Applying the inverse transformation to equation (B14) gives

F=T"IF =

=51
—

Il
>
i

2
|
—

J

. 1
Fo3= /\4’572_1

This result is identical to the generalized splitting given “n references 3 and 7.

F; +Fy+F3
p
pu
pv
pw
5(1‘2 + 02 4+ w?)
p

pu + paés
pv £ pady
pw + paé,

al/
etpx ]—L(_ﬂgrad 3

(B14)

(B15)

(B16)

(B17)

(B18)

(B19)

(B20)

(B21)
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Appendix C

Restriction Operators

The dependent variables are transferred from a fine mesh to a coarse mesh so that the mass, momentum,
and energy contained in the coarse-grid cell are the same as those contained in the fine-grid cells that compose
the coarser grid. For a two-dimensional example, referring to figure 23 shows that the mass, momentum, and
energy in any given cell are given by QV, where V is the volume of the cell and Q is the column vector of
dependent variables representing the conserved quantities per unit volume. Since cell A is comprised of the
smaller cells a, b, ¢, and d, a relationship that conserves mass, momentum, and energy is easily established for
transferring the dependent variables. Thus,

QA _ QaVa+ vab‘;‘Achc + ded (Cl)

The restriction of the residuals is also guided by conservation laws. The steady Euler equations can be
written in integral form as

/F-ﬁds=o (C2)

—
Here, the integral is the surface integral over the volume considered, F is the flux of mass, momentum, or
energy across the boundaries, and 1 is the outward pointing unit vector normal to the boundary.

2A
2c X 2d
]
i
3¢ c 1c, 3d d 1d
!
' 4d
4c i
QA - - - - p-o2O 1A
2a ',A 2b
I
:
3a a 1a : 3b b 1b
n )
i
1
4a ! 4b
4A
3

Figure 23. Control volumes for restriction of dependent variables and residual.

Considering the two-dimensional case given above for simplicity shows that the integral around the large
volume shown in figure 23 is given by

—_ N —_ ~ - N —_— - —_— -
/F Bds=(F -0)14814+(F -0)3484 + (F - )34554 +(F -n)g4554 (C3)

Now, the integral along each of the larger faces is the sum of the two integrals along each of the smaller ones.
For example,
(F -8)14514 = (F -8)15815 + (F - 0)14514 (C4)

Also, note that since the outward pointing normals on adjacent cell boundaries point in opposite directions,
several terms that share a common boundary will cancel. For instance,

(F  8)1cS1c = —(F - )395 (Cs)
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Therefore, by performing the integrations around each of tiie smaller cells and adding them together, it is seen
that the integral around the larger cell is simply the sum «f the integrals around each of the smaller ones:

F - hds= /f’-ﬁds Cé
/I:.C. ZS.C. ()

where the limits L.C. and S.C. indicate large cells and smull cells, respectively.
In order to better relate this specifically to the Euler equations, consider the steady continuity equation
given by

/p'ﬁ-ﬁd.:o (CT7)
U =uitv) (C8)
PP grad(k)
—k ko7 = C
B =Kol Ryl = {orad (k) (G9)

A normal to a € = Constant line is given by using k = £ in equation (C9), and the normal to an n = Constant
line is obtained by using 7 in the same manner. Now, the length of each face is given by

_ lgradik)|

S, 5

(C10)
where k is again chosen to be £ or 1, depending on which fuce is desired, and J represents the inverse of the cell

volume (i.e., the Jacobian). Using equations (C3) (with W= pﬁ), (C7), (C8), and (C9) allows the integral
around cell a in figure 23 to be written as

—— pU pU 1% pV
e (), (41, ()~
/ J la J 3a J 2a J 4a ( )

U=¢E&u+ Sy

where

(C12)
V =nu+ o

When calculated numerically, equation (C11) is simply the residual for the continuity equation. Similar results
are obtained for the momentum and energy equations. Therefore, the residuals on a fine grid can be transferred
to a coarser grid so that the integral of the fluxes over the cell boundary is conserved simply by summing the
fine-grid residuals that make up the coarse grid.

35



References

10.
11.

12.
13.
14.

15.
16.

17.

18.
19.

20.

21.

22.

23.

24.

25.

26.

27.
28.

29.
30.

31.

36

Moretti, Gino: The A-Scheme. Comput. & Fluids, vol. 7, no. 3, Sept. 1979, pp. 191--205.

Chakravarthy, Sukumar R.; Anderson, Dale A.; and Salas, Manuel D.: The Split Coefficient Matrix Method for Hyperbolic
Systems of Gasdynamic Equations. AIAA-80-0268, Jan. 1980.

Steger, Joseph L.; and Warming, R. F.: Flux Vector Splitting of the Inviscid Gasdynamic Equations With Application to
Finite-Difference Methods. J. Comput. Phys., vol. 40, no. 2, Apr. 1981, pp. 263-293.

Steger, Joseph L.: A Prelimunary Study of Relazation Methods for the Inviscid Conservative Gasdynamics Equations Using
Fluz Splitting. NASA CR-3415, 1981.

Van Leer, Bram: Flux-Vector Splitting for the Euler Equations. Etighth International Conference on Numerical Methods in
Fluid Dynamics, E. Krause, ed., Volume 170 of Lecture Notes in Physics, Springer-Verlag, 1982, pp. 507-512. (Available
as ICASE Rep. No. 82-30.)

Lombard, C. K.; Oliger, Joseph; and Yang, J. Y.: A Natural Conservative Flux Difference Splitting for the Hyperbolic
Systems of Gasdynamics. ATAA-82-0976, June 1982.

Janus, Jonathan Mark: The Development of a Three-Dimensional Split Fluz Vector Euler Solver With Dynamic Grid
Applications. M.S. Thesis, Mississippi State Univ., 1984.

Thomas, James L.; Van Leer, Bram; and Walters, Robert W.: Implicit Flux-Split Schemes for the Euler Equations.
ATAA-85-1680, July 1985.

Anderson, W. Kyle; Thomas, James L.; and Van Leer, Bram: A Comparison of Finite Volume Flux Vector Splittings for
the Euler Equations. ATAA J., vol. 24, no. 9, Sept. 1986, pp. 1453-1460. (Available as AIAA-85-0122.)

Hackbusch, Wolfgang: Multi-Grid Methods and Applications. Springer-Verlag, ¢.1985.

Stuben, Klaus; and Trottenberg, Ulrich: Multigrid Methods: Fundamental Algorithms, Model Problem Analysis and
Applications. Multigrid Methods, W. Hackbusch and U. Trottenberg, eds., Volume 960 of Lecture Notes in Mathematics,
Springer-Verlag, ¢.1982, pp. 1-176.

Ni, Ron-Ho: A Multiple-Grid Scheme for Solving the Euler Equations. AIAA J., vol. 20, no. 11, Nov. 1982, pp. 1565-1571.
Johnson, Gary M.: Multiple-Grid Acceleration of Laz- Wendroff Algorithms. NASA TM-82843, 1982.

Johnson, Gary M.: Multiple-Grid Convergence Acceleration of Viscous and Inviscid Flow Computations. NASA TM-83361,
1983.

Johnson, Gary M.: Convergence Acceleration of Viscous Flow Computations. NASA TM-83039, 1982.

Chima, Rodrick V.; and Johnson, Gary M.: Efficient Solution of the Euler and Navier-Stokes Equations With a Vectorized
Multiple- Grid Algorithm. NASA TM-83376, 1983.

Mulder, Wim A.: Multigrid Relaxation for the Euler Equations. J. Comput. Phys., vol. 60, no. 2, Sept. 15, 1985,
pp. 235 252.

Jespersen, Dennis C.: A Multigrid Method for the Euler Equations. AIAA-83-0124, Jan. 1983.

Jameson, Antony: Solution of the Euler Equations for Two Dimensional Transonic Flow by a Multigrid Method. MAE Rep.
No. 1613, Princeton Univ., June 1983.

Jameson, Antony; and Baker, Timothy J.: Multigrid Solution of the Euler Equations for Aircraft Configurations. AIAA-
84-0093, Jan. 1984.

Jameson, Antony; and Yoon, Seokkwan: Multigrid Solution of the Euler Equations Using Implicit Schemes. AIAA-
85-0293, Jan. 1985.

Jameson, Antony; and Yoon, Seokkwan: LU Implicit Schemes With Multiple Grids for the Euler Equations. AIAA-
86-0105, Jan. 1986.

Buning, Pieter G.; and Steger, Joseph L.: Solution of the Two-Dimensional Euler Equations With Generalized Coordinate
Transformation Using Flux Vector Splitting. AIAA-82-0971, June 1982.

Von Lavante, E.; Claes, D.; and Anderson, W. K.: The Effects of Various Implicit Operators on a Flux Vector Splitting
Method. ATAA-86-0273, Jan. 1986.

Jespersen, Dennis C.; and Pulliam, Thomas H.: Flux Vector Splitting and Approximate Newton Methods. A Collection
of Technical Papers— AIAA 6th Computational Fluid Dynamics Conference, July 1983, pp. 535-543. (Available as AIAA-
83-1899.)

Van Leer, Bram: Towards the Ultimate Conservative Difference Scheme. V. A Second-Order Sequel to Godunov’s Method.
J. Comput. Phys., vol. 32, no. 1, July 1979, pp. 101-136.

South, Jerry C., Jr.: Recent Advances in Computational Transonic Aerodynamics. AIAA-85-0366, Jan. 1985.

Brandt, Achi: Guide to Multigrid Development. Multigrid Methods, W. Hackbusch and U. Trottenberg, eds., Volume 960
of Lecture Notes tn Mathematics, Springer-Verlag, c.1982, pp. 220-312.

Brandt, Achi: Multi-Level Adaptive Solutions to Boundary-Value Problems. Math. Comput., vol. 31, no. 138, Apr. 1977,
pp. 333-390.

Brandt, Achi: Multilevel Adaptive Computations in Fluid Dynamics. AIAA J., vol. 18, no. 10, Oct. 1980, pp. 1165-1172.
Schmitt, V.; and Charpin, F.: Pressure Distributions on the ONERA-M6-Wing at Transonic Mach Numbers. Ezperimental
Data Base for Computer Program Assessment, AGARD-AR-138, May 1979, pp. B1-1-B1-44.



32. Eriksson, Lars-Erik: Transfinite Mesh Generation and Computzr-Aided Analysis of Mesh Effects. Ph.D. Diss., Uppsala

Univ., 1984.
33. Townsend, James C.; Howell, Dorothy T.; Collins, Ida K.; and I ayes, Clyde: Surface Pressure Data on a Series of Analytic
Forebodies at Mach Numbers From 1.70 to 4.50 and Combined Angles of Attack and Sideslip. NASA TM-80062, 1979.

37



il Report Documentation Page
g e A

1. Report No. 2. Government Accession No.

NASA TP-2829

3. Recipient’s Catalog No.

4. Title and Subtitle
Three-Dimensional Multigrid Algorithms for the Flux-Split Euler
Equations

5. Report Date
November 1988

7. Author(s)
W. Kyle Anderson, James L. Thomas, and David L. Whitfield

6. Performing Organization Code

8. Performing Organization Report No.

L-16416

9. Performing Organization Name and Address

NASA Langley Research Center
Hampton, VA 23665-5225

10. Work Unit No.
505-60-01-03

11. Contract or Grant No.

12. Sponsoring Agency Name and Address
National Aeronautics and Space Administration

13. Type of Report and Period Covered
Technical Paper

Washington, DC 20546-0001

14. Sponsoring Agency Code

15. Supplementary Notes

W. Kyle Anderson and James L. Thomas: Langley Research Center, Hampton, Virginia.
David L. Whitfield: Mississippi State University, Mississippi State,

Mississippi.

16. Abstract

convergence is examined.

The full-approximation-scheme (FAS) multigrid method is applied to several implicit flux-split
algorithms for solving the three-dimensional Euler equations in a body-fitted coordinate system.
Each of the splitting algorithms uses a variation of approximate factorization and is implemented in
a finite-volume formulation. The algorithms are all vectorizable with little or no scalar computation
required. The flux vectors are split into upwind components using both the Steger-Warming and
Van Leer splittings. The stability and smoothing rates of each of the schemes are examined using
a Fourier analysis of the complete system of equations. Results are presented for three-dimensional
subsonic, transonic, and supersonic flows that demonstrate substantially improved convergence rates
with the multigrid algorithm. The influence of using both V-cycle and W-cycle strategies on the

17. Key Words (Suggested by Authors(s))
Multigrid algorithms
Upwind differencing
Flux splitting
Euler equations

18. Distribution Statement

Unclassified—

Unlimited

Subject Category 64

19. Security Classif.(of this report) 20. Security Classif.(of this page)

Unclassified Unclassified

22. Price
A03

21. No. of Pages
38

NASA FORM 1626 ocCT 86

NASA-Langley, 1988

For sale by the National Technical Information Service, Springfield, Virginia 22161-2171



