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Symbols

Symbols in parentheses are for computer-

generated figures.

cross-sectional area, m?

constant in Arrhenius law
for reaction 1

body force of species ¢ in
z coordinate direction,

N/kg

body force of species ¢ in
y coordinate direction,

N/kg

concentration of species ¢,
kg-mole/m3

speed of sound, m/s

specific heat at constant
pressure, J/kg-K

binary diffusion coeffi-
cient, m? /s

thermal diffusion coeffi-
cient, m? /s

activation energy, cal/g-
mole; total internal
energy, J/kg

flux vector

expansion coeflicients in
Chebyshev series

mass fraction of species ¢

Gibbs energy of reaction,
J/kg-mole

Gibbs energy of species ¢,
J/kg-mole

source vector

enthalpy of species 7,
J/kg

total enthalpy, J/kg

reference enthalpy at
standard conditions, J/kg

identity matrix

Jacobian

RO

Rol

equilibrium constant,
source Jacobian

thermal conductivity,
J/m-s-K

reverse reaction rate
forward reaction rate
third body

molecular weight, kg/kg-
mole; Mach number

number of nodes

constant in Arrhenius law
for reaction 1

number of reactions
number of species
moles of species 1
static pressure, Pa
total pressure, Pa
heat flux, J/m?-s

steady-state residual; gas
constant, J/kg-K

universal gas constant,
J/kg-mole-K

universal gas constant,
cm3-atm/g-mole-K

static temperature, K
effective temperature, K
Chebyshev polynomial
total temperature, K
time, s

time step, s

dependent variable vector
streamwise velocity, m/s

streamwise diffusion
velocity of species ¢, m/s

diffusion velocity of
species ¢, m/s

transverse velocity, m/s

transverse diffusion
velocity of species 7, m/s

species production rate of
species 7, kg/m3-s
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mole fraction of species 2

streamwise spatial vari-
able, m

spatial step size, m

transverse spatial vari-
able, m

transverse spatial step
size, m

stoichiometric coeflicient,
ratio of specific heats

Kronecker delta function;
central spatial difference
operator

computational transverse
coordinate

eigenvalue; second coeffi-
cient of viscosity, kg/m-s

laminar viscosity, kg/m-s

computational streamwise
coordinate

density, kg/m3

normal stress, N/m?; ef-
fective collision diameter

effective collision diame-

ter, A

vi

Qp
A%
Subscripts:

C

f
4]

Y
Superscripts:

n

shear stress, N/m?
equivalence ratio
diffusion collision integral

Laplacian operator

based on chemistry
based on fluids

species indices

mixture

reactions, reference value
species

evaluated spectrally

in z coordinate direction

in y coordinate direction

time level
mass-weighted value

derivative, fluctuating
quantity, reactants

products



Summary

Research has been undertaken to achieve an im-
proved understanding of physical phenomena present
when a supersonic flow undergoes chemical reaction.
A detailed understanding of supersonic reacting flows
is necessary to successfully develop advanced propul-
sion systems now planned for use late in this century
and beyond. In order to explore such flows, a study
was begun to create appropriate physical models for
describing supersonic combustion and to develop ac-
curate and efficient numerical techniques for solving
the governing equations that result from these mod-
els. From this work, two computer programs were
written to study reacting flows. Both programs were
constructed to consider the multicomponent diffusion
and convection of important chemical species, the
finite-rate reaction of these species, and the resulting
interaction of the fluid mechanics and the chemistry.
The first program employed a finite-difference scheme
for integrating the governing equations, whereas the
second used a hybrid Chebyshev pseudospectral tech-
nique for improved accuracy. Both programs were
used to study a spatially developing and reacting
mixing layer, and the results were analyzed to draw
conclusions regarding the structure of the evolving
layer.

1. Introduction

Research is currently underway, both in the
United States and abroad, to develop advanced
aerospace propulsion systems now planned for use
late in this century and beyond. One such program
is being carried out at the NASA Langley Research
Center to develop a hydrogen-fueled supersonic com-
bustion ramjet engine, also known as a scramjet, ca-
pable of propelling a vehicle at hypersonic speeds in
the atmosphere. One phase of this research has been
directed toward gaining a detailed understanding of
the complex flow field present in the engine over a
range of flow conditions. Numerical modeling of var-
ious regions of the engine flow field has been shown
to be a valuable tool for gaining insight into the na-
ture of these flows. This approach has been used in
conjunction with an ongoing experimental program
to develop an effective analysis capability (ref. 1).

The flow field in a scramjet engine is governed by
the Navier-Stokes equations coupled to a system of
equations describing each of the species present ini-
tially and produced by chemical reaction. The gov-
erning equations were solved in prior analyses using
either explicit or implicit finite-difference techniques,
with the chemical reaction process modeled by an
ideal (mixing controlled) reaction model. Using these
approaches, analyses of various ramjet and scramjet

configurations have been carried out, and trends that
were established by experiments have been predicted
(refs. 2 and 3).

Chemical reaction is not mixing controlled
throughout a scramjet combustor, however. Al-
though chemical reaction may equilibrate in the rear-
ward region of a well-designed combustor, chemistry
in the forward portions of the combustor is certainly
kinetically controlled. Finite-rate kinetics is, in fact,
a critical issue in the design of flameholders in the en-
gine, and this phenomenon must be considered along
with the effects of molecular and turbulent fuel-air
mixing to develop an accurate engine flow model. It
is for this reason that attention has turned in the
present work to a more basic and detailed analysis of
chemically reacting flow fields. The long-term pur-
pose of the present research is to develop detailed
models for fuel-air mixing and reaction in an engine
flow field and to develop accurate and efficient nu-
merical methods for solving the equations governing
reacting flow that result from these models.

Because of computer resource limitations, how-
ever, detailed modeling of the complete engine prob-
lem cannot be considered at the present time. A
more tractable problem that relaxes only the com-
plexities introduced by engine geometry is posed by
the spatially developing, primarily supersonic, chem-
ically reacting two-dimensional mixing layer. A ma-
jor portion of the chemical reaction taking place in a
supersonic combustor occurs in mixing layers. All the
difficulties introduced by the fluid mechanics, com-
bustion chemistry, and interactions between these
phenomena are retained by the reacting mixing layer,
making it an ideal problem for the detailed study of
supersonic reacting flow.

Prior studies on supersonic reacting mixing lay-
ers have been quite limited. A fair amount of work
has been carried out, however, on nonreacting mixing
layers, both supersonic and subsonic. Even without
combustion, the results of these studies provided a
significant amount of useful information for under-
standing reacting layers. Carpenter (ref. 4) stud-
ied the development of a laminar, free-shear layer
behind steps and blunt bodies over a Mach num-
ber range of 0 to 10. He concluded that the de-
velopment of the layer could best be understood
in terms of vorticity transfer. The effect of com-
pressibility was to increase the diffusion process in
the layer, leading to more rapid development toward
asymptotic conditions with increasing Mach number.
Brown and Roshko (ref. 5) studied the subsonic mix-
ing layer that developed between nitrogen and helium
streams and found that the layer was dominated by
large-scale coherent vortical structures. They found
that these structures tended to convect at a nearly



constant speed and that the size of the structures
and the space between them changed discontinuously
with movement downstream by the joining of those
structures with their neighbors. Results of their ex-
periment “suggested that turbulent mixing and en-
trainment was a process of entanglement on the scale
of the large structures.” They also found that very
large changes in the density ratio (up to 49) mea-
sured transversely across the mixing layer had only
a small effect on spreading of the layer. The authors
concluded, therefore, that the significant reduction
in supersonic mixing layer growth rate with increas-
ing Mach number was due primarily to compressibil-
ity effects, rather than density effects as had been
thought in the past.

The role of coherent structures in turbulent pro-
cesses in mixing layers was studied further by Roshko
(ref. 6). He found that the size of the coherent struc-
tures and the spacing between them increased with
increasing downstream distance. The vortices were
found to travel at a constant speed of (uj + ug)/2,
where u; and ug are the free-stream velocities of
the two streams making up the layer. Each vor-
tex also had a finite life span that began and ended
abruptly. Coincident with two or more of these end-
ings, a new lifespan began, with two or more vortices
coalescing to form a new larger vortex. As noted
above, each of these vortices was observed to move
at a nearly constant speed, resulting in a fairly con-
stant spacing between a vortex and its neighbor as
they moved downstream during their lifetime. Devel-
oped mixing layers are self-similar, however, requir-
ing that the spacing between vortices should increase
linearly in the mean with increasing downstream dis-
tance. Roshko resolved this contradiction by reason-
ing that changes in the layer must occur discontin-
uously and irregularly along the layer such that the
scale of the structure grew smoothly and linearly in
the mean. Roshko further found that in the transi-
tion region of the layer, there was only one spacing
distance between neighboring vortices, and this spac-
ing represented the most stable wavelength selected
by the laminar portion of the layer. In this region
the scales had not yet become dispersed, as they did
further downstream in the turbulent regime. Also,
three-dimensional effects had not come into play in
the transition region. Finally, Roshko noted that
mixing layer growth likely occurred not just due to
vortex pairing, but also through an entrainment pro-
cess by each vortex that occurred near or during
the pairing event. Entrainment brought together
“pieces” of fluid from either side of the layer, also
enhancing the mixing process. Between each of these
pairing/entrainment events, the vortices appeared to
convect in an apparently passive fashion.

2

Ferziger and McMillan (ref. 7) in studies of the
structure in turbulent shear flows also noted the pres-
ence of coherent structures and pairing in a devel-
oping mixing layer. They went on to discuss the
importance of a tearing mechanism where vortices
tended to be torn apart by shearing and then redis-
tributed in parts to their neighboring vortices. They
also pointed out the importance of three-dimensional
effects in destabilizing the layer. The coherent struc-
tures present in the mixing layer tended to be un-
stable to three-dimensional perturbations that de-
stroyed the spanwise coherence of the structures. Fi-
nally, the authors also noted that three-dimensional
effects could also be introduced by streamwise vortic-
ity produced by the stretching of vortical structures.

There has been additional work in the literature
describing important structures present in develop-
ing mixing layers, but the authors have gone on to
seek specific mechanisms leading to the production
of the structures and their effect on the flow. Several
of these authors have dealt particularly with mech-
anisms associated with retardation of mixing in the
supersonic development of layers. Oh (ref. 8) hy-
pothesized that when the local mean Mach number
exceeded 1, some fraction of the turbulence energy in
the flow was generated by shocks that formed about
the eddies (eddy shocks). These shocks were quite
weak, differing little from Mach waves, but having fi-
nite strength. Some of the eddies in the flow were
decelerated by passing through these shocks, and
the resulting disturbances produced pressure fluctu-
ations. These fluctuations appeared to correlate well
with velocity and density fluctuations in the flow. Fa-
vorable correlations in fluctuations of pressure and
velocity gradient gave rise to values of the pressure
dilation term p'au;-/c')zj that acted as a source or

sink of turbulent kinetic energy in the flow. This
term vanished in incompressible flows and in low-
speed mixing flows where there was a large density
variation. The term took on larger values, however,
in high Mach number free-mixing layers and acted
as a turbulent kinetic energy sink when gradients of
mean Mach number and density had the same sign.
Therefore, Oh reasoned that the pressure dilation
term could act to reduce the turbulent shear level
in high Mach number mixing layers, thereby slowing
the growth of the layer relative to the incompressible
case. This effect agreed with the results cited earlier
in this paper. Oh then carried out calculations by
using these ideas that appeared to validate his hy-
pothesis. Papamoschou and Roshko (ref. 9) also ob-
served that the spreading rate of compressible mixing
layers was significantly reduced over that of incom-
pressible layers, and they attributed that difference
to compressibility effects. They deduced from their



studies of large-scale structures in the layer that it
was appropriate to define a natural coordinate sys-
tem that moved with these structures. With this
system, an alternative Mach number, termed the
convective Mach number M, was defined as M, =
(u — uc)/a, where u is the free-stream velocity, u. is
the convection velocity of the large-scale structures,
and a is the local speed of sound. The reduction
in mixing layer spreading rate (by approximately a
factor of 3 or 4) was shown to correlate well with
increasing convective Mach number beginning with
M, = 0.5 and leveling off for M, > 1.0. Reduced
spreading therefore seemed to the authors to be due
to a stabilizing effect of the convective Mach number.

Hussaini, Collier, and Bushnell (ref. 10) offered
a possible explanation for the correlation of mixing-
layer spreading rate with convective Mach number.
Their explanation was tied to the formation of the
eddy shocklets that were described earlier. The au-
thors studied numerically the behavior of an eddy
convecting subsonically, relative to a locally super-
sonic flow, with a convective Mach number greater
than one. Such flows could therefore support tran-
sient shock structures associated with the eddies.
As the eddy accelerated in the supersonic flow, an
eddy shocklet formed which tended to distort the
eddy. As this process continued, an eddy bifurca-
tion occurred, resulting in the formation of a vor-
tex of opposite circulation. Additionally, the length
scale of the original vortex was reduced. Therefore,
it was seen that eddy shocklets could reduce turbu-
lent mixing through both the production of counter
fluctuating vorticity and the reduction of turbulence
scale. The authors stated that the mechanism for
these effects resulted from the instantaneous inviscid
pressure field induced about the front of the eddy.
The authors further noted that the induced pressure
field would always counter the initial vortex circu-
lation over a portion of its contour, and for long
enough times and weak enough eddies, the forma-
tion of counter vorticity and consequent eddy split-
ting would occur, resulting in a significant alteration
of the mixing-layer structure.

Many, if not all, of the important features de-
scribed above for nonreacting subsonic and super-
sonic mixing layers also occurred in reacting lay-
ers. A majority of the studies on reacting mix-
ing layers were carried out at subsonic rather than
supersonic speeds, however. Yule, Chigier, and
Thompson (ref. 11) found that, consistent with non-
reacting flow, many combusting flows contained co-
herent burning structures that interacted as they
were convected downstream. They termed the burn-
ing region associated and moving with an eddy a
“flamelet” and found that the flamelet formed in

only part of an eddy. They found a range of eddy
types existed in a diffusion flame (that occurred in a
nonpremixed reacting mixing layer). Initially there
existed unstable laminar flow that contained an un-
stable laminar diffusion flame. That region was fol-
lowed by one containing sheets of vortex rings with
smooth tongues of flame at the interfaces between
the vortices and unburned reactants. This region
was followed by a zone of other orderly vortex struc-
tures, including helical vortices, which also produced
relatively smooth tongues of flame. This zone con-
tained the characteristics of transition observed in
nonreacting flow. Here, viscous forces have a stabi-
lizing influence on the flow. As the viscous forces
became less important and inertial forces predomi-
nated further downstream, the authors found that
the orderliness of the eddies decreased and the flow
became increasingly unstable and three-dimensional.
With the introduction of three-dimensional effects,
randomly moving cell-like flamelets also appeared.
Even further downstream, this process evolved into a
fully turbulent flow with eddies containing coherent
ragged regions of burning, forming islands that were
completely separated from the main flame. Yule et
al. (ref. 11) also examined the structure of a single
eddy containing a flamelet in a simple gas diffusion
flame. The basic structure of a transitional eddy be-
fore it interacted with other eddies is given in figure 1,
which was taken from reference 11. The eddy con-
tained separate regions of fuel and air that rolled up
into the vortex, as well as a viscous core containing
a mixture of fuel, oxidants, and products. A flame
existed along the interface region where large trans-
verse gradients of temperature and species concen-
tration occurred. The local thickness of this region
depended on the residence time and strength of the
vortex, the local diffusion coefficients, and chemical
kinetics. The molecular mixing required before fuel
and air react was enhanced in the eddy by stretch-
ing of the fuel/air interface due to the vorticity that
the eddy contained. Preheating of fuel and air then
took place primarily along the interface zone where
mixing was taking place on a molecular scale. Com-
bustion then occurred in the interface at or near sto-
ichiometric conditions. During these processes, the
vortex continued to convect downstream, and the in-
duced velocity within the eddy due to its vorticity
continued to produce valleys and an increase in vor-
tex dimensions. This eddy growth resulted in further
entrainment of fuel and air, producing flame and mix-
ing layer growth.

Yule et al. (ref. 11) then went on to discuss the
evolution of turbulent eddies from transitional ed-
dies. The structure is pictured in figure 2, again
taken from reference 11. The eddy has now taken
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on a three-dimensional structure, and it has begun
to lose the circumferential coherence about its asso-
ciated flamelet. Additionally, there now existed an ir-
regular vorticity distribution within the eddy, which
was interpreted to be due to the presence of smaller
eddy scales now existing within the main eddy. Mix-
ing down to molecular levels was still produced by
vortical stretching, and the process appeared, in fact,
to be more pronounced in the turbulent eddy. In ad-
dition, the irregularity of the structure also produced
a range of flamelet structures, resulting in a “ragged”
flame front trailing the eddy. The authors concluded
their study of large coherent structures in reacting
flow by noting that such structures could lead to
overall reduced combustion efficiency because of un-
mixedness. Unmixedness occurred when fuel and air
could not effectively mix because each gas was bound
up in vortical structures during its passage through
a combustion region. They did suggest that large
eddies could be broken up by increasing the shear
stresses in the flow in regions of steep velocity gradi-
ent or by the imposition of swirl into the flow.

Masutani and Bowman (ref. 12) also studied the
structure of a chemically reacting plane mixing layer.
They examined the reaction in the mixing layer be-
tween a stream of dilute nitrous oxide and a stream
of dilute ozone and observed similar behavior to that
seen by the previous authors. They found that the
mixing layer had three streamwise states. First,
there existed fingers of unmixed free-stream fluid
that sometimes reached entirely across the layer.
Next, there appeared a region of mixed fluid in a
finite-thickness interfacial diffusion zone that bor-
dered parcels of unmixed fluid. Finally, the layer
consisted of regions of mixed fluid of nearly homoge-
neous composition in a global sense.

Keller and Daily (ref. 13) conducted an experi-
mental study of a gaseous, two-stream, reacting mix-
ing layer flow fueled by propane, with one stream
made of hot combustion products and the other
stream containing cold unburnt reactants. They
found that the mixing layer structure was qualita-
tively unaffected by heat release for the range of con-
ditions that they studied. Mungal, Dimotakis, and
Hermanson (ref. 14) experimentally studied the re-
acting mixing layer created between a dilute hydro-
gen stream and a dilute fluorine stream over a wide
range of conditions. They also observed the pres-
ence of large hot coherent structures in the layer that
strongly influenced the mixing and entrainment of
fuel and oxidant and the overall structure of the flow
field.

Hermanson, Mungal, and Dimotakis (ref. 15) ex-
tended the work described in reference 14, but with
significantly higher heat release. They found that at
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the higher temperature resulting in this case, the flow
still appeared to be dominated by large-scale struc-
tures that were separated by cold tongues of fluid
that extended well into the layer. Thus, the struc-
ture did not appear to be altered by heat release
and continued to be predominantly two-dimensional.
They also found that with significant heating and
the resulting large density changes, the shear layer
thickness did not increase, and in fact showed a
slight decrease. This reduction in layer thickness
with increasing heat release was further confirmed
by the resulting velocity profiles that showed no-
ticeably higher values of transverse velocity gradi-
ent with increased heating. The authors then went
further to note that since the layer width did not in-
crease with temperature, and since the density of the
layer was substantially reduced by heating, the volu-
metric entrainment rate of free-stream fluid into the
layer must also be greatly reduced by heat release.
Pitz and Daily (ref. 16) carried out an experiment
to study a turbulent propane-air mixing layer down-
stream of a rearward facing step. They also found
that large-scale structures dominated the flow and
that the growth of these eddies influenced the reac-
tion zone. Reaction took place mainly in the eddies,
although the eddies were not confined to the velocity
gradient region of the layer. Therefore, the result-
ing flame spread faster into the premixed reactants
than did the mixing layer defined by the mean ve-
locity. Thus, the region of the mixing layer defined
by the velocity gradient did not coincide with the
region of high chemical reaction and heat transfer.
Broadwell and Dimotakis (ref. 17) surveyed a number
of recent papers describing experiments on reacting
mixing layers. Based on these papers and their expe-
rience, they then discussed the implications for mod-
eling such flows. Their three principal conclusions
were that molecular transport retained a significant
role in turbulent mixing phenomena, even when the
flow was fully developed; large-scale structures con-
trolled entrainment, which then provided conditions
for the subsequent mixing processes; and mixing lay-
ers remained unsteady at the largest temporal and
spatial scales.

Reacting mixing layer studies using analytical or
numerical approaches have also been carried out.
Carrier, Fendell, and Marble (ref. 18) used a sin-
gular perturbation technique to modify their Burke-
Schumann thin flame solution for a more realis-
tic finite-thickness reaction zone in a mixing layer.
They studied the effect of fluid strain on the flame;
their strain increased the interfacial exposure of fuel
and oxidant, and convected additional reactant into
the flame. Riley and Metcalfe (ref. 19) directly
simulated a subsonic, temporally developing and



reacting mixing layer by using a pseudospectral nu-
merical method and a binary single-step irreversible
reaction with no heat release. Using this approach,
they were able to consider the effect of the turbulence
field on chemical reaction. Their results were shown
to be consistent with similarity theory and in approx-
imate agreement with experimental data. McMurtry,
Jou, Riley, and Metcalfe (ref. 20) extended the pre-
ceding work to consider the effect of chemical heat
release on a subsonic, temporally developing mixing
layer. They solved both the compressible form of
the governing equations as well as a more computa-
tionally efficient form of the equations valid for low
Mach numbers. Reaction was again modeled with a
binary, single-step, irreversible reaction. The authors
found with their simulations that the thickness of the
mixing layer and the amount of mass entrained into
the layer decreased when the heat release rate due to
exothermic reaction was increased. Likewise, the re-
sulting product formation also decreased as the heat
release rate increased.

Menon, Anderson, and Pai (ref. 21) studied the
stability of a laminar, premixed, spatially develop-
ing, supersonic mixing layer undergoing chemical re-
action. They introduced an infinitesimal disturbance
into the layer and examined its spatial stability for
both reacting and nonreacting flows. Chemical reac-
tion was shown to have a significant effect on flow
stability. The authors found that with reaction,
the disturbance amplification rate was higher and
the wave speed lower as compared with nonreactive
cases. Also, the free-stream Mach number was shown
to have little effect on stability when the flow was
reacting.

In this study, a numerical model has been de-
veloped for describing general two-dimensional, high
subsonic or supersonic, chemically reacting flows.
This model was then adapted to a supersonic, chem-
ically reacting mixing layer. Reaction in many prac-
tical devices takes place in mixing layers, so that
the problem chosen, while being geometrically sim-
ple, still retained the fluid mechanical and chemical
complexities that were under consideration. Com-
puter programs have been developed that numeri-
cally solve the governing equations resulting from
the model. The programs used either a modi-
fied MacCormack technique or a hybrid Chebyshev
pseudospectral technique to solve the Navier-Stokes
and species continuity equations that describe mul-
tiple species undergoing chemical reaction. Momen-
tum, heat, and mass diffusion were described by laws
based on kinetic theory; chemistry was defined with
a multicomponent finite-rate scheme; and a real gas
thermodynamics model was employed.

Using the computer programs developed in this
work, detailed studies of the supersonic, spatially
developing and reacting mixing layer were under-
taken. The accuracy of the finite-difference and spec-
tral programs was compared for a simple test case.
No attempt was made at this point, however, to
choose the preferred approach. Several phenomena
observed only for subsonic reacting mixing layer flows
were then sought in the supersonic layer by using
both methods. The studies were undertaken, first,
to verify the existence of the phenomena, and sec-
ond, to explore the effect of the phenomena upon the
development of a supersonic layer relative to that
observed in the subsonic layer.

Because of their importance in subsonic layers,
consideration was given first to the existence of vor-
tical structures in a supersonic reacting mixing layer.
The effects of such structures on the development
of the layer were then explored and compared with
the literature cited earlier. Particular emphasis was
given in this study to the mixing of fuel and oxidant
in the layer, the resulting chemical reaction, the ef-
fect of chemical heat release on mixing, and the ex-
istence of supersonic unmixedness. The stability of
a supersonic reacting mixing layer was also explored
in this work. The existence of a transition zone in
a particular mixing layer configuration was first con-
sidered, and then mechanisms necessary to produce
transition of the layer were examined. Emphasis was
also given to the effects of transition on fuel-oxidant
mixing and chemical reaction in the zone, and the ef-
fects of chemical heat release were again considered
in this region.

The development of the numerical methods em-
ployed in this study is given in section 2 along with
appropriate calculations to check the methods. Sec-
tion 3 describes extensions of the methods developed
in section 2 to two dimensions. The detailed physical
models used to describe the complex reacting flows
to be studied are also described in this section. Fi-
nally, section 4 describes studies of several supersonic
reacting mixing layer cases using the finite-difference
and spectral computer codes that were developed.
Conclusions resulting from the mixing layer studies
of section 4 are given in section 5. Based on these
conclusions, directions for further research in super-
sonic chemically reacting flows are then discussed.

2. Development of Numerical Methods

The numerical methods to be employed for study-
ing chemically reacting flows are developed in this
section. Two classes of algorithms are developed,
the first based on established finite-difference tech-
niques and the second based on spectral techniques.
Spectral schemes are high-order methods and offer
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the high level of accuracy required for combustion
studies. These methods have been used quite suc-
cessfully in studies of transition of lows from laminar
to turbulent states, problems not unlike those to be
considered in this work.

To solve the equations governing chemically re-
acting flows, the spatial derivatives must first be
discretized, and then an appropriate temporal dis-
cretization must be chosen in order to advance the
equations ahead in time. The temporal scheme must
be chosen carefully because the system of partial
differential equations describing chemically reacting
flows can be stiff because of the highly disparate time
scales that exist among the equations. Certain chem-
ical reactions in a combustion kinetics system can
take place on an extremely short scale of the order
of 1079 seconds, whereas the fluid dynamics may re-
quire from 1073 to 10 seconds for a typical case to
reach steady-state conditions. (Time scales as small
as 10712 seconds were observed in these studies, but
these scales were later found to arise from nonphys-
ical behavior of certain global chemistry models at
early integration times.) There are, of course, sev-
eral intermediate scales lying between these two ex-
tremes. Mathematically, stiffness is often defined by
examining the eigenvalues of the Jacobian of the gov-
erning equation system and noting that the ratio of
the real part of the largest to real part of the small-
est eigenvalue is a large number. The former physical
definition is perhaps the more useful test of stiffness;
it is felt directly in the numerical integration of stiff
systems through the required proper choice of the in-
tegration time step. This requirement will be dealt
with now, and then a discussion will follow concern-
ing integration of the spatial part of the problem.

Stiffness in the system of equations governing
chemically reacting flows typically arises from the
source terms in the equations describing production
and loss of the chemical species that are present.
Large values for these source terms produce rapid
changes in the dependent variables being sought and
result in the very short time scales discussed in the
previous paragraph. To explore the problem of mixed
(short and long) time scales, consider the ordinary
differential equation (ODE) system (ref. 22)

df
i [A)f (1)

where f = [fy, f2]T, £(0) = [2,1]T, and

—500.5  499.5
499.5 —500.5

The eigenvalues of [A] are A} = —1000.0 and A; =
—1.0, and the solution to equation (1) follows as

f1(t) = 1.5t 4 0.5¢ 1000t

(2)
f2(t) = 1.5t — 0.5¢ 1000

Note that the solutions f; and f2 have a rapidly de-
caying component corresponding to A; and a much
more slowly decaying component corresponding to
Ag. If this problem were solved numerically, accu-
racy would require that the solution be advanced
from the initial conditions by using very small time
steps. However, once the solution dominated by Aq
decays, it is preferable to advance the solution by
using larger time steps that would still maintain an
acceptable level of accuracy. Care must be taken
in picking a numerical algorithm that will allow this
choice of time step. Otherwise, the numerical stabil-
ity of the solution continues to be dictated by A; even
though its component has decayed, and very small
time steps are still required to maintain stability. In
response to this difficulty, several authors, includ-
ing Bussing and Murman (ref. 23); Stalnaker et al.
(ref. 24); Widhopf and Victoria (ref. 25); and Smoot,
Hecker, and Williams (ref. 26) recognized that the
stiff source terms in the system of equations govern-
ing chemically reacting flow should be evaluated im-
plicitly. Therefore, for these studies, algorithms are
developed with the source terms written implicitly
at the new time level in the integration step. Other
terms in the governing equations that do not lead to
stiffness can still be evaluated explicitly (refs. 23-26).

Next, the computation of spatial derivatives in the
governing equations is considered. The importance
of accurately modeling spatial derivatives cannot be
overemphasized. Chemical reaction does not take
place until fuel and oxidant are brought together and
macroscopically mixed by convective transport and
then mixed down to the microscopic (molecular) level
by diffusive processes. To model these processes, spa-
tial derivatives must be accurately computed. Be-
cause of computer storage limitations, higher order
numerical methods were indicated.

Higher order finite-difference schemes offered one
option for computing the spatial derivatives. An-
other option was apparent from earlier studies where
methods were developed for computing highly accu-
rate solutions of the Euler equations. In one study,
Hussaini et al. (refs. 27 and 28) used a spectral
collocation method to compute the required spatial
derivatives in the governing equations. With this ap-
proach, several problems governed by the Euler equa-
tions were successfully solved and accurate solutions
were obtained on relatively coarse grids as compared



with finite-difference solutions of the same problems.
Spectral methods are based on the representation of
the solution to a problem [ by a finite series of global
functions X of the form

N
flz) = Z GnXn(z) (3)
n=0

where @, are the expansion coefficients of the se-
ries (ref. 29) and X, should be a complete orthog-
onal set. Spatial derivatives of f are then approxi-
mated by taking derivatives of the corresponding se-
ries (eq. (3)). If properly applied, the high order
approximation given by equation (3) yields a very ac-
curate numerical representation for derivatives of f.
Spectral methods therefore satisfy the requirements
for approximating spatial derivatives in the equations
governing a chemically reacting flow field.

Two second-order finite-difference discretizations
of the spatial derivatives are also developed, both
to demonstrate the advantages offered by the higher
order scheme and to provide benchmark results with
more conventional approaches. In the first approach,
second-order central finite differences are used to
discretize the spatial derivatives. In the second
approach, first-order forward and backward finite
differences are used in combination with a predictor-
corrector temporal discretization to yield a second-
order method in space.

With the approaches described above for tempo-
rally and spatially discretizing the governing equa-
tions, three numerical algorithms, one using spec-
tral methods and two using finite-difference schemes,
are developed for solving the equations governing
a chemically reacting flow. The spectral algo-
rithm (ref. 30) employs a two-stage partial implicit
Runge-Kutta scheme for integrating the equations
in time (ref. 23) and a Chebyshev spectral collo-
cation method for computing spatial derivatives in
the equations. The first finite-difference algorithm
uses a partial implicit Adams-Moulton scheme to in-
tegrate the equations in time and central finite dif-
ferences to integrate the equations in space. The
second finite-difference scheme employs a partial im-
plicit MacCormack predictor-corrector scheme to in-
tegrate the governing equations in time and space
(refs. 23, 24, and 31). Computer programs have been
written to apply these algorithms to the solution of
reacting flow problems (ref. 30). The codes are lim-
ited in this section to quasi-one-dimensional inviscid
flows with hydrogen-air reaction, which is appropri-
ate for the development and evaluation of the al-
gorithms. Chemical reaction is represented in the

programs with a finite-rate chemistry model, and a
real gas thermodynamic model is employed.

2.1 Governing Equations

The quasi-one-dimensional Euler equations in
conservation law form with multiple species under-
going chemical reaction are (ref. 32)

U OIF
—aT‘FE-FH—O (4)

where for: =1,2,..., N, — 1,

U= {pA,puA,peoA,pfiA}T (t=1,2,...,Ns—1) (8)
F = {puA,puzA + pA,puhoA,pufiA}T (6)
T
dA(z .
H= {O,—p d:(c ),O,—wiA} (7

and

T ug N,
ho:/ ép dT + 7+Z(H%)if,- (8)
TR 1=1

eo = ho - (%)T 9)

where (Hf); is the reference enthalpy of species 4
at the reference temperature T = 0 K (ref. 33). If
there are N; chemical species, then: = 1,2, ..., (Ns—
1) and (Ns — 1) equations must be solved for the
species f;. The final species mass fraction fy, can
then be found by conservation of mass since

N
Y fi=1
i=1

2.2 Chemistry Model

The chemical reaction of hydrogen and oxygen is
modeled here with the global finite-rate hydrogen-
air chemistry model of Rogers and Chinitz (ref. 34).
This model adequately represents the chemical reac-
tion taking place in the problems to be considered
in this chapter, and it also produces an extremely
large disparity in the time scales in the problems.
This phenomenon allows the ability of the numeri-
cal algorithm to deal with resulting stiffness to be
demonstrated.

The Rogers-Chinitz model assumes that the over-
all reaction of hydrogen and oxygen takes place
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through two reactions, the first resulting in the for-
mation of the hydroxyl radical, and the second com-
bining the hydroxyl radical with hydrogen to form
water. (More general models are needed, however, to
properly represent the ignition stage of hydrogen-air
reaction. These models are used in the more physi-
cally detailed work described in section 3.) The re-
actions are given by

W72
(1) Hy; + O 20H

k)

Erz
(2) 20H+H;  2H,0

-
kya

where k; is the forward reaction rate and kj is the
reverse reaction rate. The reverse rate can be found
given the forward rate and equilibrium constant K
for each reaction, as

ky = k;/K (10)

The forward reaction rates are computed from the
modified Arrhenius law,

kfz’ = A,'TN‘C_E’/ROT (11)

for each reaction 7. For the Rogers-Chinitz model,
the rates are given by (ref. 34)

ke = A,T—10 —4865/R°T cm® (12)
fi=a4 ¢ ! mole-sec
6
kpp = AT~ 13 ¢—42500/R°T cm (13)
mole? —sec
where
31.433
Al = (8.917¢+ - 28.95) 1047

1.333
Ag = (2.0 + 5 0.833¢) 10%4

and

Ky = 26.164 ¢~8992/T
Ko = 2.682 x 10767 89418/

Knowing the reaction rates for the reactions defined
by (1) and (2), the production of the four species

8

present in the model can be found from the law of
mass action. For a general reaction

N, kf,‘ Ns

! " .
Z %5 Cy 7i;Cy (=1,2,...,Ng)
J=1 ky, 7=1

the law of mass action states that the rate of change

of concentration of species j by reaction ¢ is given by
(ref. 35)

Ns ! Ns "
(@), = (% =%) (f o) -t I CJ")

=1 =1

J J (14)

The rate change in concentration of species j by

all Np reactions is then found by summing the
contributions from each reaction,

&= (). (15)
Finally, the production rate of species 7 is found from
w; = CjM; (16)

Applying the law of mass action to the global model,
reactions (1) and (2), gives (ref. 34)

Co, = —ks1Cn,Co, + kp1Cdy (17)
Cryo =2 (kﬂczgﬂcﬂ2 - kbgcﬁzo) (18)
Cn, = Co, - %CHQO (19)
Con = - (2Co, + Ch,0) (20)

The source terms for the last z equations in equa-
tion (4) can now be determined, as a function of the
dependent variables, by application of equation (16).

2.3 Thermodynamics Model

The specific heat at constant pressure, cp, is
nearly a linear function of temperature for each
species present in the flow field (He, Oz, OH, H20,
N32) over the range of temperature being considered
in this section. To simplify the analysis, ¢, versus
temperature data (ref. 33) for each species ¢ is there-
fore fit with

ep,(T) = a;T +b; (21)



where a and b are constants. A mixture specific heat,
Cp, can then be defined by weighting over the species
1 as

N,
&= cpfi (22)
i=1

The total enthalpy of the mixture, made up of the
five species, is given by

Ns T u?

H= Zfi / cp, AT+ (H7), | + —  (23)
i=1 Tr 2

Putting equation (22) into (23) and integrating gives
2

Ns aiT2 o u
H=)f o T+ (HP), | + 5 (24)
1=1

Finally, the mixture gas constant R is found by
weighting the individual gas constants over the
species 7 as

R=3 R (25)

Equations (22), (24), and (25) can then be used to
define all other required thermodynamic variables.

2.4 Chebyshev Spectral Method

2.4.1 Spatial discretization. The Chebyshev spec-
tral collocation method (ref. 28) is used to define the
derivatives OF /0 in equation (4). To define F /9z,
F is expanded in terms of the Chebyshev polynomials

Tn(z) = cos(ncos™! z) (26)

in the truncated Chebyshev series
N -~
F(z) = Z FnTh(z) (27)
n=0

where F, represents the expansion coefficients of the
series. To form a range on z, the change of variables
z =cos 0 (0<6<) (28)

is introduced. Putting equation (28) into (26) and
introducing the resulting expression into (27) gives

N -~
F(z) = ) Fpcos(nf) (29)
n=0

a Fourier cosine series. To discretize equation (29),
a set of collocation points z; is defined by

—cos ™
IJ—COS N

and the discrete form of equation (29) becomes

(7=0,1,2,...,N) (30)

F;=F(z;) = % F, cos ("Nﬂ) (31)

n=0

The inverse of equation (31) gives Fp, and can be
found as follows. First, multiply equation (27) on

both sides by Tyn(z) and weight (1 — z2)~1/2 and
then integrate over the interval [-1,1]. This gives

-1/2

F(z) (1 - 12) Tm(z) dz

11 (1 - :z2) T2 Tn(2)Tm(z) dz

N -~
= ZFH/
n=0

Making the transformation z = cos 8 yields

/_11 (1 - 12)—1/2 Tn(2)Tm(z) dz

0
= —/7r cos(nf) cos(m0) do

T
= Eénénm
where
2 n=0orn=N
En =
1 1<n<(N-1)
Therefore

~ 1 -1/2
F, = 2 (1 - 12) / F(z) Th(z) dz
1

TCn J—
Again let z = cos 6 and

2 nw

£, =

F(8) cos(nd) d(nf)

menn Jo

To generate a discrete set of Chebyshev coefficients,
the trapezoidal rule of integration

N h N
I=Zln=‘2‘2(gn+gn+l)



is employed, where I is the value of the integral, & is
the integration step size, and g is the integrand. The
expression for discrete values of F,, then becomes

N—
= nmw
Fn = wcnn_N Z [FiTn (2;) + Fys1Tn (241)]
N-1
-_—an ZFTn 1:1 ZFTn :z:]
7=0
1 2FoTn(zo) . N~ 9F N Th(zn)
_ oin{ZTo NinlTN
T &N 2 +2ZF’T"(I’)+ 2
=1
:an F T ( :z:’7

Returning for consistency to the trigonometric form
gives the discrete Chebyshev coefficients as

-~ 2 _ nmwj
F, = NcanOE Ip, cos< N’) (32)

Examination of equations (31) and (32) shows that
F,, can be efficiently evaluated using the fast Fourier
transform (ref. 36).

Next, F is differentiated in equation (31) with
respect to x, giving

N -~
= > FuT,(z) (33)
n=1

A form of equation (33) without derivatives of the
Chebyshev polynomials is preferred, so equation (33)
is rewritten in terms of another series

N
F(z)= Y FTu(2) (34)

n=0

and then the coefficients of the two series are com-
pared. The following recursion relation exists be-
tween the Chebyshev polynomials and their deriva-
tives (ref. 28)

Thp1 Ty _ 2
- = —T, 35
n+l1 n-1 Cp, n (35)

2 n=0
c,,:{
1 n>1

where
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Putting equation (35) into (34) and algebraically
manipulating the resulting expression gives

() N 1)

N
Z n Z n+l TI (36)

Introducing equation (33) into (36) and simplifying
then results in

anF, = Cp B, —FY, (37)

(1)

an expression for Fy,’ given F,,. The procedure for

finding 17’,(11) is initialized by setting

1
P, =0

(1

F =0

and then solving for f‘s\l,)_l through f‘(()l) by back sub-

stitution (ref. 28). Then, knowing all 1?‘9), the re-
quired spatial derivatives of F can be calculated from
equation (34). This procedure can again be done ef-
ficiently with the fast Fourier transform (FFT).

When the number of computational grid points
to be used in a calculation is less than 60, it becomes
more efficient to abandon the use of FFT’s and for-
mulate an alternative method for spectrally comput-
ing derivatives of F. The derivative is first written
discretely as

N
"(zk) = D _ Di;F(z;) (38)
7=0

where Dy, is a matrix (termed the Chebyshev ma-
trix) that must be found. An interpolant of F(z)
at any point z must then be constructed. Following
reference 37, the following polynomials are chosen

(1 - 12) T;V(I)(—l)j_*_l
gj(z) - EjNZ(I - 1‘]')

where ¢; is defined the same as ¢, on page 9. The
Nth degree interpolation of F(z) is then given by

N
= z 9y (z)F(z
1=0

To find F/(z), the above expression is differentiated



to give

dr
7=0

N do(x
F(z) =) 95 s
)

and from equation (38

dg;(z)
Phi =4

Differentiating g;(z) results in the following relations
for the Chebyshev matrix (ref. 37):

& (_1)1'+k

Dy; = S (7 #k)
IJ‘ .
Djj=———2— (J=k#0,N) (39)
2 (1 —z2)
M
2N? +1
Doo = —5— =-Dnn

The required derivatives of F can now be found by

using relations (39) in equation (40). Because of the
form of equation (38), this approach for computing
F’ is often termed the direct matrix method.

2.4.2 Temporal integration. Once values for 9F /9z
and H are determined as described above, there
remains a system of ordinary differential equations in
time that must be solved for the dependent variable
vector U. The equations are integrated in time using
a two-stage Runge-Kutta technique. The algorithm
is developed as follows.

Equation (4) is first discretized in time as noted
above, giving

Ut = UT - At

(g-:)rf + H;‘“] +0(At)?
(40)

where n is the old time level, n + 1 is the new time
level, and sp indicates that the spatial derivatives are
computed spectrally. Note that the source term is
written implicitly as previously discussed to counter
the potential effects of stiffness that may be encoun-
tered in the governing equation system. The vector
H"t! is then expanded in a Taylor series in time.

isp

JH\"
n+l _ ¥n 2
H' = HI —+—At(at )i + O(At)

or

H}H = HP + K] (U - U7) + 0(ar)? (41)

where K is the Jacobian of H;, dH/3U. Putting
equation (41) into (40), simplifying the resulting
equation, and then rewriting in delta form gives

n
[I + At KP]AUM! = Ay [(%E) +H?

1sp

(42)
where [I] is the identity matrix and AUT! =
U:H'l — U?. Examination of equation (42) shows
that the bracketed term on the left-hand side is a
block-diagonal matrix, the blocks being n by n sub-
matrices with n the number of equations in equa-
tion (4). Since the matrix in equation (42) is diago-
nal, equation (42) is the most easily solved for AU
by inverting the blocks, i.e.,

AU = At [+ At KP]7IR? (43)

where [ ] 7! represents a block invert, and

n aF " n
RP = ( az)l_ +H

sp
is the steady-state residual vector. The two-stage
Runge-Kutta technique is then applied to equa-
tion (42), yielding the following predictor-corrector
formulas:

Predictor:

AU = _At [T+ At KM "1R?

- __ (44a)
+1 _ +1
Ul =UZ + AUT
Corrector:
AUPH = At [I+ At KPR}
P (44b)
Ut = U7 4 2 (AUPTT 4+ AU

Starting with initial conditions for U, equations (44)
are used to advance the solution from time level n
to time level n + 1. The process is continued until
steady-state conditions, defined as a reduction of
10 orders of magnitude in the steady-state residuals,
are reached.

The magnitude of the time step in equations (44)
is chosen based on the physical time scales present
at any given time in the solution. The fluid-dynamic
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time step At can be shown numerically to be limited
by the Courant condition,

Az
REY:

Atf (45)

The chemical relaxation time for a species 7 is given

by (ref. 38)
to = Pli (46)

Wy

Changes in this relaxation time are then given by

Atc — A(pf,) (47)

Wy

since w; remains nearly constant over a time step.
For accuracy, it is required that the chemical time
step be chosen such that no change in specific mass
fraction (pf;) greater than 0.0001 occurs over that
time step. The computational time step At is then
chosen to be the minimum over all grid points of the
fluid and chemical time step, i.e.,

At = min (Aty, Atc) (48)

2.5 Adams-Moulton Finite-Difference
Scheme

2.5.1 Spatial discretization. Central finite dif-
ferences are chosen to define the spatial derivatives
OF/8z in equation (4) for use with the Adams-
Moulton time-stepping scheme. The spatial dis-
cretization of F then becomes

oF\" FI,-F%, 2
halinll = —*- - 1+ 0O(A 49
(61‘),' 2Azx +0(4q) (49)

Note that the finite-difference representation of spa-
tial derivatives is local in nature, whereas the spec-
tral method of section 2.4 represents these derivatives
globally.

2.5.2 Temporal integration. Again knowing values
for 8F/dz and H, the resulting system of ordinary
differential equations must be integrated in time.
Equation (4) is discretized in time by using the
Adams-Moulton scheme (ref. 39) to yield

Ut = Ut - At {(1 - a) [(%>n+ﬂn]

n+1
o [(Z—F) M
z

} + O(At)? (50)

12

where « is the degree of implicitness. Proceeding
as was done in section 2.4.2, F**! and H"*! are
expanded in a Taylor series in time to give

F L= Fn 4 Jn (UnH - Un) +0(an)? (51
H* = H" + K" (U™ - U") +0(a)?  (52)
where J™ is the Jacobian of F, 0F/dU. Putting
equations (51) and (52) into (50), simplifying the

resulting equation, and rewriting in delta form then
gives

n
[1 + o At (i + K")] AU
oz
n
= —At <6—F> +H" (563)
81 fd

where again AU?T! = U™t! — U™ and fd indicates

that the spatial derivatives are computed using cen-

tral finite differences. In discrete form, equation (53)

becomes

6J" n n+1 nn
I+aAt{—+K AU = —At R!
bz t *

(54)

where 6 is a spatial central difference operator oper-

ating on J and AU, and R is the steady-state resid-
ual given by

~ F*  — F"
R" = 141 1—1 H"
t 2 Az + (55)

The bracketed term on the left-hand side of equa-
tion (54) is a block tridiagonal matrix. This system
can be solved using the Thomas algorithm (ref. 40).
To apply that algorithm, equation (54) is rewritten
as

A7 AUZ 4 BY AU+ OP AT = DT (56)

where
AT = o At

1 _2 A.’I 1—1
B = (I + oK! At)

a At
OF = oAzt
D! = —At R?

It is then assumed that equation (56) can be written
in upper triangular form as

AU = EP + F} AU (57)



Putting equation (57) evaluated for AUZ, , into (56)
and manipulating then gives

AUn+1 (Bn+czn z+1) ( Cn z+1)

- (Bp+orrn,)” Ar AU (s8)
Comparing equation (57) with (58) then yields

E™?

?

I

(B?+C"Fl11)—l (DF - CPER,) (59)

Fl = - (Bl +CPFL,) A7 (60)
Once boundary conditions have been established
(section 2.7), values for E* and F* can be found
by back substitution. Then, knowing these values,

AU:-H’1 can be found by forward substitution from
known values of AU:-‘_“Lll. Starting with initial con-
ditions for U, equation (57) is used to advance the
solution from time level n to n + 1. The process is
continued until steady-state conditions are reached.
The magnitude of the time step used to evaluate
the coefficients in equation (57) is again chosen as
in the spectral algorithm based on the physical time
scales present in the problem. This choice is nec-
essary to preserve the real-time accuracy of the so-
lution. With the Adams-Moulton method, however,
the time step chosen can be significantly larger than
the time step based on physical time scales, since the
method can be made fully implicit with proper choice
of the implicitness factor . The Adams-Moulton
method is still attractive for real-time studies be-
cause of its effective damping of high-frequency com-
ponents present in the solution at early times.

2.6 MacCormack Finite-Difference
Scheme

2.6.1 Spatial discretization. The MacCormack
finite-difference method (ref. 31) is a predictor-
corrector scheme of the Lax-Wendroff type. First-
order forward differences

oF n_ 1+1_Fn
(5), =~ (61

are used in the predictor step of the algorithm, and
first-order backward differences

oF\" F!-F,
(&), =" =" @

are used in the corrector step. When these dif-
ferences are summed in a predictor-corrector pass,

the method becomes second-order accurate in space
(ref. 31). It should be noted that the method can
be made nearly symmetric by alternating the spatial
differencing in the predictor and corrector steps with
each succeeding time step, i.e., forward differences in
the predictor and backward differences in the correc-
tor on the first time step and backward differences
in the predictor and forward differences in the cor-
rector on the second time step, etc. The symmetric
algorithm is applied in this work.

2.6.2 Temporal integration. With a redefinition
of the steady-state residual, the temporal integrator
in the MacCormack scheme is identical to that em-
ployed with the spectral spatial discretization, equa-
tions (43) and (44), in Section 2.4.2. For the first
time step, the predictor step residual is given by

an 2+1 _Fn

. A + H? (63)

and the corrector step residual is given by

—1 L H? (64)

For the second time step, the residual definitions are
alternated, and the process is continued until steady-
state conditions are achieved.

2.7 Initial and Boundary Conditions

Governing equation (4) is hyperbolic and requires
initial conditions at each point to start the calcula-
tion and boundary conditions at the inflow boundary.
Initial conditions are computed by first specifying an
inflow Mach number and estimating an outflow Mach
number. The interior Mach number distribution is
then assumed to have a spatial variation that is lin-
ear. The total pressure and total temperature are
assumed to be constant throughout the domain. Fi-
nally, the initial flow is assumed to be isentropic, so
that isentropic relations can be used to compute the
static pressure and temperature; these conditions are
found from

To_ ’Y—l 2

T—1+ 2 M (65)
Jiie BN

Po E -1

p_(T> (66)

Knowing the static temperature, static pressure, and
Mach number, the velocity distribution can be com-
puted, and the density distribution can be found
from the equation of state. Since the inflow bound-
ary flow remains supersonic, boundary conditions are
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specified there by holding conditions fixed at their
initial values.

The Adams-Moulton and MacCormack finite-
difference schemes also require numerical boundary
conditions at the outflow boundary. The spectral
algorithm requires no such outflow boundary condi-
tions since spatial derivatives can be defined at the
outflow boundary in the same manner as is done at
interior points. Outflow boundary conditions are de-
fined for the finite-difference codes by using a second-
order extrapolation formula. This formula is de-
rived by writing a Taylor expansion to second or-
der of the conserved variable vector U at the outflow
boundary:

ou

Uy =Upn_1+ (—-) A:I:N_1+O(A:E)2
9z ) N—1

In a spatially discrete form, this becomes

Upny-1—-Upn-_
Uy =Un_1 + LAI———N'—gAIN_l + O(A:E)2
IN-2
or
Uy =2Un-1 - Un-2 (67)
since

Azy_1 =AzN_2

Equation (67) is used directly in the MacCor-
mack algorithm to define explicitly the numerical
outflow boundary conditions. Boundary conditions
are defined implicitly in the Adams-Moulton algo-
rithm, however. To satisfy equation (67), equation
(57) must be rewritten at the outflow node N to in-
clude the N — 2 node. This is done by introducing a
new coefficient G%; such that

AU = ER + Fy AU, + G AURT,  (68)

and requiring that Ef, = 0, Fiy = 2, and G}y =
—1. This completes the definition of all required
physical and numerical boundary conditions for the
algorithms.

2.8 Results

Three numerical algorithms have now been devel-
oped for solving the equations governing an inviscid
chemically reacting flow; these algorithms were used
to calculate the reacting flow in a rapid expansion
supersonic diffuser. A rapid expansion diffuser was
chosen such that high concentration gradients existed
near the inflow boundary, providing a rigorous test of
the methods. The comparison also allowed a demon-
stration of performance of the high order accurate
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spectral method on grids that were quite coarse com-
pared with the grids required for equivalent accuracy
using the 2 finite-difference methods. The two finite-
difference codes were also compared with each other
to determine their relative accuracies and efficiencies
when used to compute the test problem.

The rapid expansion diffuser is shown in figure 3.
The diffuser is 2 units long, has an initial cross-
sectional area of 0.79 and a final cross-sectional area
of 3.14. The diffuser wall is defined, as noted, by a
shifted sinusoid. Flow is introduced to the diffuser
at a Mach number of 1.4, a velocity of 1230 m/s, a
temperature of 1900 K, and a pressure of 0.081 MPa.
The chemical composition of the inflow is defined to
be a three-tenths stoichiometric mixture of hydrogen
fuel and air.

Starting from the initial state described above,
the governing equations are solved, using the three
algorithms in a time consistent manner, until steady-
state conditions are reached. A comparison of the
spectral and finite-difference methods, as shown by
the history of the chemical species, is given in fig-
ures 4 through 6 for Hy, O3, OH, and H9O, respec-
tively. Results are presented at the first grid point
interior to the inflow boundary, where the flow field
and species gradients are a maximum. Agreement
between the Runge-Kutta spectral code and the two
finite-difference calculations is excellent in all cases.

Next, spatial results from the methods are com-
pared once steady-state conditions have been
reached. The finite-difference solutions required
101 grid points before a grid independent solution,
defined as a graphically imperceptible difference in
the steady-state result between the present grid and
next coarser grid, was attained. Calculations using
the Runge-Kutta spectral code were carried out on
17- and 9-point grids. Steady-state results for the
methods are given in figures 7 through 12. Figure 7
shows the axial velocity distributions in the diffuser.
The 17-point spectral solution and the 101-point
finite-difference solutions agree quite well throughout
the diffuser. The 9-point spectral solution slightly
overpredicts the velocity near the inflow boundary,
but agrees well throughout the remainder of the dif-
fuser. The overprediction is likely to be due to the
failure of the coarsest spectral grid to predict ade-
quately the high gradients that exist at the beginning
of the diffuser. Temperature distributions, given in
figure 8, follow similar trends, with the 17-point spec-
tral solution agreeing well with the difference calcu-
lations, and the 9-point solution also agreeing well,
except near the inflow boundary. Identical trends
also occur when axial pressure distributions are
compared in figure 9.



Axial species distributions computed by the
methods are given in figures 10 through 12. Pre-
diction of the Hy mass fraction by the spectral
method with 17 grid points agrees well with the
finite-difference solution throughout the diffuser, as
can be seen by examining figure 10. The 9-point spec-
tral solution underpredicts the Hy mass fraction near
the inflow boundary, again due to the high spatial
gradient in fy, there, but agreement again becomes
good away from the inflow boundary. The spatial
distribution of Oy mass fraction is given in figure 11.
The gradients are not as large for this species since
Oq is in excess, and both 17- and 9-point grids agree
well with the finite-difference solution. The steady-
state species distributions for OH and H9O are given
in figure 12. The spatial gradients are again high for
both species near the inflow boundary, and trends
similar to those for Hy are repeated here. Agree-
ment is again quite good when comparing the 17-
point spectral and finite-difference results. The 9-
point spectral solution still underpredicts gradients
near the inflow boundary, however.

A final comparison of methods can be made in fig-
ure 13, which shows the rate of reduction of steady-
state residual with iteration count for each algo-
rithm at the first interior grid point. Since the
17-point Runge-Kutta spectral and the 101-point
finite-difference calculations yield comparable accu-
racy and have the same minimum spatial step size, it
is reasonable to assess the relative efficiency of the
methods by using the results given in this figure.
Note that the residual reduction rate by the spec-
tral code is significantly greater than that provided
by the finite-difference codes. The maximum residual
(at any grid point) is reduced with the spectral code
by 10 orders of magnitude in only 2400 iterations.
The Adams-Moulton finite-difference code requires
4000 iterations to achieve the same level of residual
reduction. The MacCormack finite-difference code
is only able to achieve a 2- to 3-order-of-magnitude
reduction in steady-state residual because of its in-
consistent residual definition between predictor and
correction steps. (Recall that forward spatial differ-
ences are used in the predictor, and they are alter-
nated with backward differences in the corrector.)
Even with this deficiency, however, the MacCormack
method is able to achieve an acceptable level of ac-
curacy in comparison with the Adams-Moulton and
spectral schemes, as can be seen from the previous
results.

To achieve a fair comparison of the three algo-
rithms, the convergence history discussed above must
be combined with the computational grid needed to
achieve the required accuracy and the computational
time required per time step for each scheme. The

Runge-Kutta spectral code on the 17-point grid re-
quired 644 CPU seconds to meet the established con-
vergence requirement. The Adams-Moulton code on
the 101-point grid required 1706 CPU seconds to also
meet the convergence requirement. As noted before,
the MacCormack code did not meet the convergence
criteria, but it did achieve an acceptable level of accu-
racy for a steady-state solution on the 101-point grid
after 4000 iterations. The code required 876 CPU
seconds to reach steady-state conditions.

Based on the above results, algorithms to be ex-
tended to two-dimensional flows were chosen. The
Runge-Kutta spectral method was an obvious choice
because of both its high accuracy and its excellent
computational efficiency. The MacCormack method
was computationally more efficient than the Adams-
Moulton scheme, but it was unable to achieve as
high a degree of steady-state residual reduction. One
other fact, not apparent in the previous calculations,
must be considered in this comparison, however. The
Adams-Moulton scheme resulted in a system of equa-
tions that contained block tridiagonal structure. The
MacCormack scheme resulted in a system of equa-
tions that contained only block diagonal structure if
the system was stiff, and no left-hand-side matrix at
all if the system was not stiff. The work required
to solve a block tridiagonal system varied with 3N3,
where N is the number of equations. The work nec-
essary to solve a block diagonal system increased
with N3, and the work to solve the system with-
out a left-hand-side matrix increased with N. It was
found in section 3 that when detailed (as opposed to
global) chemistry systems were used to model super-
sonic reacting flows, the resulting system of equations
was not temporally stiff. When the points described
above were considered in this light, the MacCormack
algorithm became the preferred finite-difference al-
gorithm of those considered for extension to two-
dimensional flows.

3. Multidimensional Chemically
Reacting Flows

In the previous chapter, three algorithms were de-
veloped for the study of inviscid quasi-one-
dimensional, supersonic, chemically reacting flow.
From those algorithms, two were chosen for exten-
sion to two-dimensional, viscous, supersonic, chemi-
cally reacting flow. Those extensions are carried out
in this section. Additionally, considerably more de-
tailed chemistry and thermodynamics models are de-
veloped here for the programs. Finally, to include the
effects of diffusion of momentum, energy, and mass,
kinetic-theory-based diffusive transport models are
developed and incorporated into the programs. De-
tails of these models are given in the following
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section. They are discussed following a statement
of the general system of equations governing two-
dimensional, viscous, chemically reacting flows.

3.1 Governing Equations

The two-dimensional, Navier-Stokes, energy, and
species continuity equations governing multiple
species undergoing chemical reaction are given by
(ref. 35)
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The diffusion velocities are found by solving (ref. 35)
Xi Xy ~ ~ v
VX, = Z ( ) (Vi - %) + - %) (—”)
p
N,
+ (g) Zfifj (b; — b;)
j=1

S(ER) (-2)(F)

7=1

Note that if there are N; chemical species, then
t=12,..., (Ns — 1) and (Ns — 1) equations must
be solved for the species f;. The final species mass
fraction fy, can then be found by conservation of

mass since
Ns
> fi=1
=1

3.2 Thermodynamics Model

To calculate the required thermodynamic quanti-
ties, the specific heat for each species is first defined
by a fourth-order polynomial in temperature:

% — A;+ BT +CT? + DT} + ET*  (74)
The coefficients are found by a curve fit of the data
tabulated in reference 33. Knowing the specific heat
of each species, the enthalpy of each species can then
be found from equation (71), and the total internal
energy is computed from equation (70).

To determine the equilibrium constant (required
in section 3.3) for each chemical reaction being con-
sidered, the Gibbs energy of each species must first
be found. For a constant pressure process, cp/Rr
from equation (74) is first integrated over temper-
ature to define the entropy of the species, and the
resulting expression is integrated again over temper-
ature to obtain the following fifth-order polynomial



in temperature for the Gibbs energy of each species:
9i _ 4 B2 Cira Diou Ei 5 o .
7 - AT -TiT)- 72 S -t TSy F - GT

(75)
Coeflicients F; and G, are again defined in refer-
ence 33. The Gibbs energy of reaction can then be
calculated as the difference between the Gibbs energy
of product species and reactant species.

AGr= > n;Ag— >

i=products i=reactants

ny A.gz (76)

The equilibrium constant for each reaction is then
found from (ref. 41)

1 \4n AGp
K= (R—O'T) exp (— R”T) (77)

where An is the change in the number of moles when
going from reactants to products.

3.3 Chemistry Model

In the present work, the finite-rate chemical reac-
tion of gaseous hydrogen fuel and air is of concern.
That reaction is modeled by a 9-species, 18-reaction
model described in table I (ref. 42). Eight of the
chemical species (Ha, O2, H20, OH, H, O, HO,,
H203) are active, and the ninth (N3) is assumed in-
ert. The forward rate of each reaction j is given by
the modified Arrhenius law

E.
N
kg, = A;T;" exp <—ROJ ) (78)

Values for A, N, and E are also given in table I.
Knowing the forward rate, and using the equilibrium
constant determined in the previous section, the
backward rate can be defined by

ks, = ky, /K; (79)

Once the forward and reverse reaction rates have
been determined, the production rates of the eight
species can be found from the law of mass action.
For the general chemical reaction

N & Nas
3 D :Ci 3G (G=1,2,...,Np)
1=1 ky . 1=1

the law of mass action states that the rate of change
of concentration of species ¢ by reaction j is given by
(ref. 35)

Ne o o, Ne o,
(@), = (- %) (kf,. Tic™ w1 czﬂ) 0)
=1 i=1

All third-body efficiencies are assumed to be equal
to 1.0. The net rate of change in concentration of
species ¢ by reaction j is then found by summing the
contributions from each reaction,

=3 (%), (81)

Finally, the production of species 7 can be found from
w; = C; M; (82)

The source terms for the last 7 equations in (69)
are now determined as a function of the dependent
variables.

3.4 Diffusion Models

Models for the coefficients governing the diffusion
of momentum, energy, and mass are now determined.
The individual species viscosities are computed from
Sutherland’s law,

u_(T)3/2T<>_+§ (83)

Ko T, T+S
where uo and T, are reference values and S is the
Sutherland constant. All three values are tabulated
for the species in references 43 and 44. Once the
viscosity of each species has been determined, the
mixture viscosity is determined from Wilke's law

(ref. 45),

N
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(85)

17



The species thermal conductivities are also computed
from Sutherland’s law,

3/2 v '
k:(T> T, +S (56)

ko \T} T+ 8

but with different values of the reference values k,
and T, and the Sutherland’s constant S’. These
values are also taken from references 43 and 44. The
mixture thermal conductivity is computed by using
conductivity values for the individual species and
Wassiljewa’s formula (ref. 46),

Ns

k.
km = Z N (87)
=114 ¢ _z:l X055
J:
J#

where ¢:-j = 1.065¢;;, and ¢;; is taken from
equation (85).

For dilute gases, Chapman and Cowling used
kinetic theory to derive the following expression for

the binary diffusion coefficient D;; between species ¢
and j (ref. 43):

0.001858T3/2 [(M; + M;) MM,
iy =

88
P s (58)

Here, the diffusion collision integral Qp is approxi-
mated by

Qp =T 015 4 (T*+ 05)72  (89)

where

T* =T/T.,

Values of the effective temperature T, and effec-
tive collision diameter ¢ are taken to be averages of
the separate molecular properties of each species, giv-
ing (ref. 43)

oy = 5 (03 + 0y) (90)

DO | =

and

Te,-j = (TeiTEj)l/z (91)

Once the binary diffusion coefficients for all
species combinations are known, the diffusion veloc-
ities of each species can be computed from equa-
tion (73). The diffusion velocity of each species is
the species velocity due to all diffusion processes al-
gebraically added to the convection velocity. When
computing the diffusion velocities, it is assumed as
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suggested in reference 35, that the thermal diffu-
sion coefficient Dt is negligible compared with the
binary diffusion coefficient. The solution of equa-
tion (73) requires solving a simultaneous equation
system, with the number of equations equivalent to
the number of species present for each component of
the diffusion velocity. It should be noted that for 1
species, however, the system of ¢ equations defined by
equation (5) is not linearly independent. One of the
equations must be replaced by the constraint

Ns

> pfiVi=0 (92)

i=1

to make the system linearly independent. The re-
sulting system of equations is solved for the diffusion
velocities by using the Householder method (refs. 47
and 48).

3.5 Solution of the Governing Equations

Once the thermodynamic properties, diffusion co-
efficients, and chemical production rates have been
defined, the governing equations can be solved nu-
merically. The finite-difference solution procedure is
discussed in the next section, 3.5.1, and this discus-
sion is followed by the development of the spectral
solution scheme, described in section 3.5.2.

3.5.1 Finite-difference solution method. To
solve the governing equations (69) with the finite-
difference scheme, the equations must first be trans-
formed from the physical domain (z, y) in which they
are written to an appropriate computational domain
(€,7m). The equations are solved on a coordinate grid
that is highly compressed in both z and y in the phys-
ical domain near regions where high gradients exist.
The grid is required to be uniform, however, in the
computational domain to most readily maintain a re-
quired order of accuracy.

To transform the governing equations from the
physical to the computational domain, fluxes F and
G are first written in functional form and differenti-
ated with respect to the computational coordinates.
Therefore, given F = F(z,y) and G = G(z,y), and
proceeding first with F,

FE = szf + Fy’ye (93)
F, = Foz, + Fyy, (94)

Then, substituting Fy from equation (94) into equa-
tion (93) and simplifying gives

_ Feyn — Frye

F; 7

(95)



where

J=zeyn — yexy (96)
is the Jacobian of the transformation. Proceeding in
like manner for G gives

_ Gpze — Geay

(97)
Finally, substituting equations (95) and (97) into
equations (69) gives the governing equations in the
computational domain

where N N
U=JU, H=JH
F= ypF — 2,G
G = zeG -y F

Here (z¢,2yn,y¢,yy) are the transformation metrics
that form the inverse Jacobian matrix, and J is the
Jacobian of the transformation. The metrics can be
computed numerically once the physical coordinate
grid has been prescribed.

To resolve large flow field and concentration gra-
dients, the physical coordinate grid must be chosen
sufficiently fine in those regions. For the mixing layer
problems to be studied in this work, the grid must be
highly refined in a direction transversely across the
layer. Large streamwise gradients may also occur
with movement along the layer, and grid refinement
must also be allowed at those locations. The com-
pression function of Thomas et al. (ref. 49) can be
used to satisfy the refinement requirements in both
the transverse direction and the streamwise direc-
tion. The compression function in the transverse di-
rection is given by
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The degree of transverse compression is determined
by By, and 7, is the value of 5 at which maximum
compression occurs, i.e., the center of the mixing

layer. The compression function in the streamwise
direction is given by
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where
1 1+(eﬁnc —1) €o
A€ = 5111 —
1+ (e Bz -1)¢&
The degree of streamwise compression is determined
by Bz, and &, is the value of ¢ at which maximum
compression occurs.

Having now determined the nondimensional phys-
ical domain (&,7%) from the computational domain
(&,m) by using equations (99) and (100), (£,7) is
then mapped onto the physical domain (z,y) by us-
ing the algebraic-numerical coordinate transforma-
tion of Smith and Weigel (ref. 50). This transforma-
tion is given by

z = X3(&)a(n) + X1 (€)1 —7(n)]  (101)
y = Y2(&)7(n) + Y1()[1 - 7(n)] (102)

where (X1,Y]) are the boundary points at y = 0,
and (Xg2,Y3) are the boundary points at y = ymax.
The generality afforded by equation (101) that allows
transverse coordinate lines to be skewed is not needed
in this work. Therefore, X is chosen equal to X5 and
equation (101) simplifies to

T = Tmax (103)

where ¢ is found from equation (100). The trans-
formation metrics (z¢,zy,ye,yy) are then found by
directly differentiating equations (102) and (103). In-
verse metrics ({z, £y, 7z, y) required for differentiat-
ing terms within the flux vectors are then found by
inverting the inverse Jacobian matrix, i.e.,

YUn —Y¢

§z Mz z¢ yf]_l Ty T
= == > - (104
[fy 'ly] Ln Yn J (104)

to form the Jacobian matrix of the transformation.
It is sometimes advantageous to allow refinement
of the physical grid in a point-by-point fashion. That
option can be quite valuable for defining the stream-
wise grid in the present work, and so such an option
is provided by way of a simple modification of equa-
tions (102) and (103). Rather than defining X; and
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X7 with equation (100), the boundary points are de-
fined manually in point-by-point fashion. Care must
be taken that changes between successive points, Az,
are not too great or discretization errors can be in-
troduced. Having defined the distribution of X; and
X>, the corresponding values of Y7 and Y3, and #
from equation (99), the required transformation met-
rics can be found by numerically differentiating equa-
tions (102) and (103) with respect to £ and n. Once
the choice for streamwise grid definition is made,
all quantities required to describe the physical and
computational domains are defined by equations (99)
through (104).

As noted in section 2, the governing equation sys-
tem (69) can be stiff because of the kinetic source
terms contained in the vector H and because of dif-
fusive terms in the vectors F and G. Only the kinetic
terms introduce stiffness in this work; spatial stiff-
ness is controlled by the choice of grid. To deal with
the stiff system, the approach used in references 23
through 26 is again followed, and the kinetic source
terms are computed implicitly. In a temporally dis-
crete form, equation (69) then becomes

. . oF\" [aG\" -

n+l _ {jn _ °“ el —grtt

v vioa [(‘95) +(3’7> ]
(105)

Following the approach used in section 2.4.2, H is
linearized by expanding it in a Taylor series in time.
Introducing this expression into equation (105), sim-
plifying, and rewriting in delta form then gives

(I — At K?) AU = —At R™ (106)

. aF\" [8G\" -
n_ (&2 ) _Aan 107
K <af) *(an) ton

is the steady-state residual, I is the identity ma-
trix, K™ is the Jacobian of H with respect to U,
(8H/8U), and AU = U+l — U™

Once the temporal discretization used to con-
struct equation (106) has been performed, the re-
sulting system is spatially differenced by following
the approach of section 2.6 and using the unsplit
MacCormack predictor-corrector scheme (ref. 31).
This results in a spatially and temporally discrete,
simultaneous system of equations at each grid point
(refs. 23 and 24). Each simultaneous system is solved
with the earlier noted Householder technique in com-
bination with the MacCormack technique, which is
then used to advance the equations in time. The

where
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modified MacCormack technique then becomes

[1 - acKE) AULT = —at Ry, (108)

n+1 _ n n+1
Ut = Ul + AU

_ ATt
[1 At K;;“] AUTT = —AtR (109)

Urt = Ut 405 (AU"“ n AU"‘H)

—
where R represents a forward spatial difference of R

and R a backward spatial difference. Stress terms
are differenced in the conventional manner (ref. 31).
Equations (108) and (109) are used to advance the
solution from time n to time n + 1 and this process
is continued until a desired integration time has been
reached.

The magnitude of the time step in equations (108)
and (109) is again chosen based on the physical time
scales present at any given time in the solution.
These scales are defined in section 2.4.2; they are
repeated here for convenience. The fluid-dynamic
time step Aty can be shown to be limited by the
Courant or viscous stability limit of the governing
equation (ref. 31). The chemical relaxation time for
a species 17 is given by (ref. 38)

Changes in this relaxation time are then given by

Alpf:)

At =

wy

since w,; remains nearly constant over a time step.
For accuracy, it is required that the chemical time
step be chosen such that no change in mass fraction
greater than 0.01 occurs over that time step. The
computational time step At is then chosen to be
the minimum over all grid points of the fluid and
chemical time steps.

3.5.2 Hybrid Chebyshev spectral solution method.
A hybrid Chebyshev spectral method has also been
used to solve the governing equations (69) in this
work. The spectral method, as discussed in section 2,
is attractive for studies of reacting mixing layers be-
cause it yields high numerical accuracy on relatively
coarse grids. A highly accurate method is necessary
for proper resolution of the large transverse gradi-
ents that exist across the mixing layer. Gradients are
not as large, however, in the streamwise direction of
the mixing layer. A lower order method appeared



adequate in that direction. With these require-
ments in mind, it was decided that transverse deriva-
tives across the mixing layer should be computed
spectrally, whereas finite differences were deemed
appropriate in the streamwise direction.

Spatial derivatives in the transverse direction
were computed spectrally by using the direct
Chebyshev matrix method developed in section 2.4.1.
Required derivatives of the flux vector f;;c were coIn-
puted at each grid point, given the distribution of
the function G ; along the complete column of points
which included point k, i.e.,

N
Gilyj) = Y Dy;G(y;) (110)
J=0
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2N2 +1
Doo = —5—=-Dnn

Streamwise spatial derivatives were again computed
with the MacCormack finite-difference technique as
applied in the previous section, 3.5.1.

The governing equations must again be trans-
formed from the physical (z,y) to the computational
(€,7n) domain, and the procedure described in equa-
tions (93) through (98) is again employed. The
streamwise compression function, equation (100),
and the streamwise transformation, equation (103),
are still equally valid, and they are retained. The
streamwise grid can optionally be obtained in point-
by-point fashion as before. The transformation in
the transverse (spectral) direction must still be ca-
pable of refining the grid at the center of the mixing
layer. A different transformation is used, however, to
preserve spectral accuracy when forming the trans-
verse derivatives. Boyd (ref. 51) found that expo-
nential mappings, such as the mapping employed in
equation (99), gave poor performance. Calculations
with alternate mapping functions indicated that, in
general, the mapping function should decay more
slowly than a function best describing the solution
being sought. Recognizing the general form of the
resulting mixing layer solution, an algebraic mapping
function suggested by Boyd (ref. 51) was chosen and

employed. That function is given by

_ ﬁy"]
y= 1—n2

(111)

which maps the Chebyshev computational domain
[-1,1] onto the physical domain [—o0, 0c]. Maximum
grid refinement occurs at y = 0, and the grid is cho-
sen so that the mixing layer lies near this coordi-
nate location. The function 3, determines the de-
gree of grid refinement. Equations (103) and (111)
therefore complete the transformation from the com-
putational to the physical domain. Elements of the
inverse Jacobian matrix are again determined by di-
rectly differentiating equations (103) and (111), and
the Jacobian matrix is found by using equation (104).

Having now defined the transformation required
for the spectral method, the spatial derivatives are
discretized as described earlier in this section. Once
the spatial terms are differenced, there again remains
a system of ordinary differential equations at each
grid point to be integrated in time. Once the steady-
state residual f{:‘ is redefined to reflect the change
to spectral transverse derivatives, the procedure for
temporally integrating the equations is identical to
that carried out in equations (105) through (109).
Introducing the new residual definition into equa-
tions (108) and (109), the hybrid spectral algorithm
is given by
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where sp indicates that the derivative is to be evalu-
ated spectrally. The time step At is again chosen by
following the procedure described in section 3.5.1.

3.5.3 Boundary and initial conditions. The govern-
ing equations (69) require boundary conditions along
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all four boundaries. For the problems to be consid-
ered, the inflow boundary is always supersonic, so
the velocities, static temperature and pressure, and
species are specified and fixed there. The upper and
lower boundaries always lie in the free stream, and
therefore either the normal gradient of the preced-
ing variables is required to vanish or the free-stream
conditions are enforced along those boundaries. The
gradient conditions not only satisfy the free-stream
conditions, but also provide nonreflective conditions
that pass disturbances through the boundary rather
than reflect them back to the domain. The outflow
boundary is also supersonic, and values of the veloci-
ties, static temperature and pressure, and species are
determined by extrapolation from upstream values.
Finally, no slip boundary conditions (u = 0, v = 0)
are used to specify velocity components along solid
surfaces that occur in the physical domain. Addi-
tionally, along these solid boundaries, adiabatic con-
ditions (8T /dy = 0) are assumed, the boundary-
layer assumption on pressure (8p/dy = 0) is cho-
sen, and the walls are assumed to be noncatalytic
(0f;/0y =0).

The governing equations (69) also require a set
of initial conditions. The equations are initialized
by setting values of the velocities, static temperature
and pressure, and species throughout the domain to
the values chosen initially for boundary conditions
at the inflow boundary. Having specified all required
initial and boundary data, the equation is marched
in time from the initial time to some final specified
integration time.

A general model for chemically reacting flow has
now been developed, and the resulting governing
equations have been defined in this section. Further,
two numerical methods for solving these governing
equations have been developed. In the following
section, the governing equations are solved for several
supersonic chemically reacting mixing layer cases,
and the results are then discussed in light of the
observations given in section 1 for such flows.

4. Simulations of Reacting Mixing
Layers

By using the theory and solution procedure devel-
oped in section 3, the chemically reacting flow field in
a non-premixed laminar, supersonic, spatially devel-
oping mixing layer is numerically simulated in this
section. Two basic mixing layer cases are consid-
ered. The first of those cases involves a hydrogen-air
mixing layer with fuel and oxidant initially separated
by a finite-thickness splitter plate. The second case
considers a hydrogen-air mixing layer that has just
begun to develop downstream of a splitter plate. The
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plate is not included in this calculation; the effects
of the plate on the flow are retained, however. The
first case is computed with only the finite-difference
algorithm, and the results from that analysis are dis-
cussed in the following section. The second case is
computed with the hybrid spectral algorithm. Re-
sults from that analysis are discussed in section 4.2.

4.1 Simulations Using the Finite-
Difference Algorithm

The finite-difference algorithm has been applied
to a non-premixed, spatially developing, laminar, su-
personic, chemically reacting mixing layer. The con-
figuration that is considered is described schemat-
ically in figure 14. The overall domain is 5 c¢m
high and 5 ¢cm long. The height chosen places the
boundaries well into the free stream, and the length
allows initial development of the mixing layer. Ini-
tially, hydrogen fuel and air are separated by a 0.5-
cm-long splitter plate that is 0.02 cm thick and cen-
tered at y = 2.5 cm. Downstream of the plate, the
fuel and air mix and ignition occurs at some fur-
ther distance downstream of the plate base. From
that point, chemical reaction between the fuel and air
takes place. For the problem being considered, cold
gaseous hydrogen is introduced above the plate at
Mach 1.5, a Reynolds number of 3700 based on plate
thickness, a temperature of 293 K, and a pressure
of 0.101 MPa (1 atm). Hot air is introduced below
the plate at Mach 1.5, a Reynolds number of 731, a
temperature of 2000 K, and a pressure of 0.101 MPa.
These conditions result in an initial hydrogen veloc-
ity of 1953 m/s and an air velocity of 1297 m/s; this
yields a hydrogen-to-air velocity ratio of 1.5.

By using the configuration and conditions de-
scribed above, the mixing-layer flow field is marched
in time from the specified initial conditions to the
conditions existing at 0.1 ms. The solution is ob-
tained on a spatial grid with 219 nodes in the stream-
wise direction and 51 nodes in the transverse direc-
tion. The grid is compressed in = near the trailing
edge of the plate and highly compressed in y in the
region of the mixing layer. The resulting flow field
is described in figures 15 through 35, which give pic-
tures of the flow at an instant in time. Figure 15
shows a velocity vector field plot of the flow close to
and on either side of the splitter plate and the de-
veloping mixing layer downstream of the base of the
splitter plate. (Velocity vectors are shown for only
every four streamwise and transverse grid points in
this region.) Expansions of both streams through
Prandtl-Meyer fans can be observed at the trailing
edge of the plate. The higher velocity hydrogen
stream and the lower velocity airstream are appar-
ent as is the wake flow downstream of the plate. The



development of the mixing layer with streamwise dis-
tance can also be seen. Two regions of instability
are also apparent in figure 15. The first region lies
just downstream of the splitter plate approximately
1.0 cm beyond the initial station. The second region
lies well downstream at approximately 4.0 cm from
inflow. The flow is relatively quiescent between these
two regions.

These instabilities can also be observed in fig-
ure 16(a), which shows a plot of streamwise veloc-
ity versus streamwise coordinate at several constant
transverse stations that are well within the mixing
layer. The oscillations are present along all three
lines of constant y and are quite close in phase and
magnitude, indicating that the instability is present
in similar fashion across the layer. The oscillatory be-
havior of the layer is quite typical of that seen numer-
ically and experimentally in nonreacting layers and,
at least in part, appears to be produced by a Kelvin-
Helmholtz instability. To determine whether the in-
stabilities and their locations were functions of time,
several other times in the evolution of the layer are
examined. These results are given in figures 16(b),
16(c), and 16(d) for times of 0.09, 0.06, and 0.02 ms,
respectively, beyond initiation of the flow. The in-
stability near the splitter plate is present at all times
that are given in the figures. The size of the region
and the amplitude of the instability do not change
with time. The location of the waves does change
with time, however. At the latest time plotted the
waves propagate downstream with increasing time,
amplifying between r = 0.6 and 1.2 cm and damping
beyond that streamwise station. The disturbance has
essentially dissipated at 0.1 ms beyond 2.1 cm. At
earlier times, however, the upstream instability prop-
agates further downstream, reaching as can be seen
in figure 16(d) the initiation of the second instability.
With increasing time, though, the initial disturbance
damps, and the central region of the flow between
z = 2.1 and 2.8 cm becomes relatively quiescent.

The initial velocity increase at £ = 0.5 cm is also
present at all times and is due to the expansion of
hydrogen and air off the trailing edge of the split-
ter plate. The velocity decrease that follows results
from each gas being compressed by a recompression
shock that turns the fluids to a nearly streamwise
direction. In this region, in the wake of the plate
Jjust downstream of the splitter plate, the flow also
separates. A recirculation bubble then forms and re-
mains throughout the calculation. (The presence of
the recirculating region can be seen in fig. 17; that is
discussed later.) This separation is not stable with
time; rather, it changes shape and position slightly
with increasing time and acts as a destabilizing mech-
anism for the flow in the wake downstream of the sep-

aration. Changes in the position of the separation
also cause the recompression shock to change posi-
tion with time. The oscillatory motion with time
of both the separation bubble and the recompres-
sion shock thus appears to be the genesis of the first
instability. It should be noted, however, that al-
though the separation and recompression shocks ap-
pear to be the tripping mechanism for the first insta-
bility, the numerical method being employed suffers
to some degree from Gibbs oscillations in the imme-
diate neighborhood of the shock. These numerical os-
cillations may also contribute to the initiation of the
instability.

The second instability is also present at all
times shown in figures 16(a) through (d). Initially
(fig. 16(d)), this region is influenced by the upstream
disturbance. With increasing time, however, the re-
gion preceding this instability becomes stable as can
be seen by viewing figures 16(c), (b), and (a). It
appears that the second region of instability repre-
sents the onset of transition in the mixing layer. The
amplitude of the disturbance grows with increasing
distance downstream from the 2.8-cm station. There
is also some growth in amplitude with time at any
given streamwise station within the region of the
instability.

To examine the contribution to instability from
heat release due to chemical reaction, the identical
flow field is computed without reaction. Those re-
sults are given for two times, 0.1 ms and 0.02 ms,
in figures 16(e) and (f), respectively. By comparing
figures 16(e) and (f) with 16(a) and (d), it can be
seen that both instabilities still remain without heat
release. The upstream disturbance, in fact, appears
essentially unaffected by reaction. The effect of heat
release on the downstream disturbance also appears
quite mild at early times (figs. 16(d) and (f)), but
there is a marked effect at 0.1 ms, as can be seen by
comparing figures 16(a) and (e). The amplitude of
the disturbance is consistently greater without chem-
ical reaction. This result is consistent with the find-
ings of references 15 and 20 for subsonic flow, which
showed mixing is retarded by heat addition.

Another view of the streamwise development of
the velocity field is given in figure 17, which shows
u profiles as a function of the y coordinate at four
(z = 0.51, 1.0, 3.0, and 5.0 cm) streamwise stations.
The initial profile shows that there is a recirculation
region with negative streamwise velocities near the
trailing edge of the splitter plate. A velocity defect
in the wake continues to exist downstream at the
1.0- and 3.0-cm stations. A developed mixing layer
profile is apparent once the 5.0-cm station is reached.
An overall view of the streamwise velocity is given
by using a contour plot in figure 18. The regions
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of instability and the development of the mixing
layer are consistent with figures 16 and 17, but
they can be viewed in a more realistic sense when
shown in two dimensions. The velocity contours
are compared with two-dimensional contours of other
primitive variables later in this discussion.

A plot of static temperature versus streamwise
coordinate for several constant transverse stations is
given in figure 19. The y coordinates are identical to
those given in figure 16. The instabilities present in
the velocity plots of figure 16 are consistent in loca-
tion with those of the temperature field. The ampli-
tudes of the oscillations in temperature are greater,
however, because of a significantly greater temper-
ature difference between hydrogen fuel (293 K) and
air (2000 K) as compared with the velocity difference
between the fuel stream and airstream. The first
disturbance is significantly more pronounced along
the y = 2.5 cm coordinate line where cold fuel and
hot air are initially in contact as compared with the
y = 2.46 cm and y = 2.54 c¢m lines where no mix-
ing occurs. The second disturbance is markedly more
pronounced along the y = 2.46 cm and y = 2.5 cm co-
ordinate lines as compared with the y = 2.54 cm line,
indicating that thermal mixing is occurring mainly
below the location of the splitter plate at y = 2.5 cm.

A plot of temperature profiles versus the trans-
verse coordinate at four streamwise stations (z =
0.51, 1.0, 3.0, and 5.0 cm) is given in figure 20. These
stations are the same as those used in figure 17. The
development of the temperature profile with increas-
ing streamwise distance can be seen in the figure.
Initially (z = 0.51 cm) there is some cooling in the
base region beyond the plate because of expansion
of the fuel and air off the plate and because of the
endothermic reactions associated with ignition early
in the development of the layer. Well downstream
at z = 5.0 cm, the temperature profile is well devel-
oped, and there are temperature increases on either
edge of the layer associated with the exothermic re-
actions that are taking place.

By comparing figures 20 and 17, it can be seen
that the temperature profiles at each z-station are
consistently broader than the streamwise velocity
profiles. This is also apparent by comparing the plot
of temperature contours in figure 21 with the veloc-
ity contours given in figure 18. This result is con-
sistent with the discussion and experimental obser-
vations described earlier from references 1 through
20, and in particular reference 16. Vortical struc-
tures are present in the mixing layer, and the ex-
istence and growth of these vortices influence the
growth and reaction in the mixing layer. The vor-
tical character can be seen in figure 22, which gives
the vorticity distribution in the mixing layer. Chemi-
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cal reaction takes place not only in the interior of the
mixing layer, but also in the eddies on the edges of
the layer. These eddies lie outside the high velocity
gradient region of the layer as can be seen by compar-
ing figure 18 with figure 22. Therefore, the resulting
flame spreads transversely faster into the unreacted
species than did the mixing layer defined by the high
velocity gradient zone. Thus, the region of the mix-
ing layer defined by the velocity gradient is not as
transversely wide as the flame zone defined by tem-
perature gradient in the mixing layer, in agreement
with reference 16.

Figures 23 through 29 show plots at seven stream-
wise stations (z = 0.51, 0.58, 1.0, 2.0, 3.0, 4.0,
and 5.0 cm) of the major chemical species (Hg, Og,
and H20) and minor chemical species (OH, H, O,
HO,, and H303). Contour plots giving the two-
dimensional distribution of the species are given in
figures 30 through 35. Initially, at = 0.51 cm
(fig. 23(b)), fuel and air have just begun to mix, and
no significant amount of water has yet formed. A
very narrow band of hydrogen peroxide (H203) is
present just above the splitter plate center, and a
very small amount of hydroperoxyl (HO3) lies just
below that spike. At z = 0.58 cm (fig. 24), the hydro-
gen and oxygen profiles begin to broaden, but no wa-
ter has yet appeared in the layer. The hydrogen per-
oxide spike is still the most predominant, and, while
the profile has not broadened, the peak has increased.
(Note the ordinate in fig. 24(b) has been rescaled.) A
small amount of hydroperoxyl still lies below the hy-
drogen peroxide peak, and small amounts of atomic
hydrogen (H) and atomic oxygen (O) have appeared
there. At z = 1.0 cm, as described in figure 25, the
hydrogen and oxygen profiles have developed, and a
small amount of water (8 percent by mass) has been
produced in a narrow profile below the splitter plate
centerline. The Hy and O profiles are appropriately
depressed in the region of the water peak. Notice-
ably increased profiles of H, O, and OH also appear
at this station just below the splitter plate centerline
(y = 2.5 cm). The O and OH profiles lie slightly be-
low the water peak, and the H profile lies just above
the water peak; this is consistent with the spatial dis-
tribution of reactant species. Small amounts of HO;
and H9O9 still remain at and just above the plate
centerline.

Figure 26 diagrams the species profiles at z =
2.0 cm. The Hy, O2, and H2O profiles have broad-
ened significantly more at this station, and the wa-
ter peak has risen to approximately 23 percent by
mass. The minor species profiles have also broad-
ened significantly, with atomic oxygen peaking at
3.0 percent, hydroxyl peaking at 2.0 percent, and
atomic hydrogen peaking at 0.8 percent, all by mass.



Small amounts of hydroperoxyl and hydrogen per-
oxide are still present just above the splitter plate
centerline. With further movement downstream at
r = 3.0 and 4.0 cm (figs. 27 and 28), the major and
minor species profiles continue to develop, increasing
both in width and in peak values. There are distinct
distortions in the Hy profiles in both figures because
of eddies being located on the upper edge of the mix-
ing layer. There is also a general migration of each
profile to lower values of y with increasing streamwise
coordinate. The increase in product species along
the lower edge of the mixing layer is a direct re-
sult of preferential burning in this region of the layer.
The mixing layer is most nearly stoichiometric there,
and the temperature reaches values that favor rapid
ignition and combustion. At the last streamwise sta-
tion given in figure 29, z = 5.0 cm, the major and
minor species profiles broaden considerably further
and shift to even smaller values of y. The noticeable
increase in the rate of spread of the species profiles is
associated with the second instability that is present
in the mixing layer in this region and is consistent
with transitioning to a turbulent state.

Two-dimensional contour plots of the species are
given in figures 30 through 35. The resulting struc-
ture as the mixing layer develops, described previ-
ously in figures 15 through 29, can be clearly seen
in these figures. The first and second regions of in-
stability are apparent for each species that is shown.
The more rapid transverse spread of each species in
the latter third of the layer can also be seen. A quies-
cent region between the two instabilities also occurs
for each species, as expected. Additionally, there is a
general downward migration of each of the product
species with increasing streamwise coordinate. The
structure of the product species, typified by water,
in the downstream region of the layer is also inter-
esting. The vortical nature of the flow, seen earlier
in figure 22, results in regions of unreacted hydrogen
gas being captured by regions (or “folds”) of prod-
uct water. Once captured, the regions of hydrogen
have difficulty mixing with oxygen so that they can
ultimately react. This phenomenon, often termed
“unmixedness,” reduces the overall level of reaction
that can be achieved, and contributes to a reduction
in the efficiency of combustion.

This completes the analysis of the spatially evolv-
ing, supersonic, reacting mixing layer case using
the finite-difference method. All the calculations
described above were carried out on the Control
Data Corporation VPS-32 computer (an expanded-
memory CYBER 205) at the NASA Langley
Research Center. The case required 5.1 CPU hours
to reach the integration time of 0.1 m/s and used a
core memory of 8 million 64-bit words.

4.2 Simulations Using the Hybrid Spectral
Algorithm

The hybrid spectral algorithm has also been ap-
plied to a spatially developing, laminar, supersonic,
chemically reacting mixing layer. As noted earlier,
no splitter plate dividing fuel and air is included in
this case. Rather, initial profiles of flow variables are
prescribed that approximate the flow some small dis-
tance downstream of a splitter plate. Except for this
modification, the configuration is identical to that
considered in section 4.1. That configuration is de-
scribed schematically in figure 36. Fuel is again intro-
duced at 293 K, and air is introduced at 2000 K. Both
fuel and air have an initial free-stream Mach number
of 2.0, which ensures that no subsonic zone will occur
in the mixing layer because of chemical heat addition
or overall losses within the flow. The conditions re-
sult in hydrogen and air velocities of 2604 m/s and
1729 m/s, and Reynolds numbers of 4924 and 974,
respectively. The previous study discussed in sec-
tion 4.1 did contain a small subsonic zone in the im-
mediate neighborhood of the splitter plate because
of flow separation and a somewhat larger subsonic
zone produced by heat addition in the later wake of
the layer. It is advantageous to consider flows with
the spectral method that are either fully supersonic
or fully subsonic, as crossing a sonic line with the
method requires special treatment.

The overall domain considered in figure 36 is
again 5 cm long, which allows sufficient length for
initial development of the mixing layer. The do-
main is mapped in the transverse direction to +oo
with equation (111) of section 3.5.2. This ensures
that the transverse boundaries lie well into the free
stream so that the boundary conditions discussed in
section 3.5.3 are properly posed. Initial and inflow
boundary conditions are also chosen to be consistent
with section 3.5.3, but in this case they are distrib-
uted according to a hyperbolic tangent function that
closely approximates the profiles of velocity, static
temperature, and species that exit some small dis-
tance downstream of a splitter plate. These profiles
are also diagramed schematically in figure 36.

By using the configuration and conditions de-
scribed above, the resulting reacting mixing layer
flow field was computed. Before detailed calcu-
lations were begun, the hybrid spectral code was
first checked against the earlier finite-difference code
for this case. The calculations were carried out
on a somewhat more coarse 51- by 51-point grid,
and a simple one-step hydrogen-air chemistry model
(2Hz + O2 — 2H20) was used in both codes to re-
duce computation requirements. The detailed 18-
equation chemistry scheme was common to both
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programs, and therefore it did not require checkout
in the spectral code. Results of the comparison at
0.02 ms are given in figures 37 through 40. Agree-
ment between the two programs is excellent in each
plot, for both the fluid variables and species mass
fractions.

After the compatibility of the spectral and finite-
difference codes was verified, the spectral code was
then used to carry out more detailed calculations of
the mixing layer flow of figure 36. Those calculations
were performed on a grid of 201 points in the stream-
wise (finite-difference) direction and 51 points in the
transverse (spectral) direction. The grid was uniform
in z and highly compressed in y in the region of the
mixing layer. In fact, the spectral grid was chosen to
be identical with the grid used for the finite-difference
calculation in section 4.1 except for the streamwise
compression employed about the splitter plate that
was not included in the spectral calculation. The re-
sulting flow field at 0.02 ms is described in figures 41
through 53.

Figure 41 shows a plot of streamwise velocity pro-
files at four streamwise stations located at = = 0,
1.0, 3.0, and 5.0 cm. Without the splitter plate to
initiate disturbances and destablize the flow, there is
only a small change in the profiles from the initial
to the final streamwise station. Careful examination
of figure 41 reveals the appearance of two-point os-
cillations of small amplitude superimposed upon the
velocity profiles. These are Gibbs oscillations that
occur when a spectral method is used to resolve the
large gradients that occur in this study. Gibbs os-
cillations also occur when other numerical methods
are employed, but the spectral method does not have
sufficient numerical dissipation to damp the oscilla-
tions. In this case, the numerical oscillations grow
quite slowly with time, and a standard Laplacian fil-
ter applied as a postprocessor following completion
of the calculation is sufficient to remove them. Each
dependent variable is therefore filtered by applying

(ij)z 2
Gig—Sigt Ty VG (114)

where ¢ represents p, u, v, E, and f;. When the
coefficient leading the Laplacian is sufficiently small
(Ay?/4 = 6 x 10710 in this case) the filter dissipates
only the two-point oscillations and leaves the values
about their mean unaffected. Results from figure 41
following filtering are given in figure 42. There are
no structural changes in figure 42 relative to figure 41
and the two-point oscillations apparent in figure 41
have been removed in figure 42.

Figure 43 shows a plot of streamwise velocity ver-
sus streamwise coordinate at the three transverse sta-
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tions chosen in the finite-difference study. Note that
the upstream and downstream instabilities that were
present before do not occur in this case. The lack of
the upstream instability is expected since the sepa-
ration just downstream of the splitter plate initiated
the instability in the finite-difference study. The lack
of the downstream instability in this study seems to
be due to the loss of a triggering mechanism for tran-
sition by the upstream disturbance. To resolve this
issue, the identical problem considered here was com-
puted with the finite-difference code of section 4.1.
Results from that analysis, again at 0.02 ms, are
shown in figure 44. The results demonstrate the
same behavior as those given in figure 43. There-
fore, it appears that the downstream disturbance and
transition of the mixing layer is dependent on an ini-
tial triggering by the upstream instability. Signif-
icantly longer calculations in time using the finite-
difference program, in the absence of a splitter plate,
never yielded transition within the 5-cm length of the
physical domain of this problem.

Figure 45 gives a plot of temperature versus
streamwise coordinate at the three transverse sta-
tions chosen in figure 43. Again, there is no evidence
of the upstream and downstream instabilities present
in the study with the splitter plate. Figure 46 de-
scribes temperature profiles in the mixing layer at
the four streamwise stations chosen in figure 42. As
the flow evolves in z, there is a noticeable increase in
temperature just below the center of the layer be-
cause of the exothermic chemical reactions taking
place there. The results of chemical reaction can be
seen more directly in figures 47 through 53, which
show the spatial evolution of the major (Hz, O2, and
H20) and minor (H, O, OH, HO3, and Hy03) chem-
ical species at seven streamwise stations located at
0, 0.4, 1.0, 2.0, 3.0, 4.0, and 5.0 cm.

Figure 47 diagrams the initial distribution of re-
actant species at * = 0 cm. No product species have
formed at this station. Figure 48(a) shows the ma-
jor species distribution a short distance downstream
from the initial station at x = 0.4 cm. Initial re-
action has begun at this location and a small nar-
row profile of water (about 5 percent by mass) has
formed. There are local depressions in the hydrogen
and oxygen mass fraction profiles in the region of
water production. Comparison of figure 48(a) with
46 also shows that this region correctly corresponds
to that of the peak temperature in the flow. As in
the earlier finite-difference calculations of section 4.1,
the zone of water production represents the region
nearest stoichiometric conditions and at the required
elevated temperature for chemical reaction, so it is
reasonable that water initially forms here. The mi-
nor species distributions at £ = 0.4 cm are given



in figure 48(b). Atomic hydrogen lies in the imme-
diate neighborhood of the water profile and peaks
at 0.2 percent by mass, whereas the hydroxyl and
atomic oxygen profiles extend well below the wa-
ter and peak at 0.8 and 0.96 percent, respectively.
Small amounts of hydroxyl (0.002 percent) and hy-
drogen peroxide (< 104 percent) also exist and lie
just above the water peak. These distributions are
again in agreement with the finite-difference results,
with OH and O lying at or below the water where
stoichiometry favors their higher population and H
lying at or above the water for a like reason.

Figure 49 shows major and minor species pro-
files at 1.0 cm downstream from the initial sta-
tion. All product species attain significantly higher
peak values at this location, and the profiles have
broadened considerably. Water peaks at 22 percent
by mass, and hydroxyl, atomic hydrogen, and atomic
oxygen peak at 2.4, 1.1, and 2.8 percent, respec-
tively. The OH and O profiles shift to lower val-
ues of y, whereas the H profile moves to a larger
value. The hydroperoxyl profile shifts to a somewhat
higher value of y but retains nearly the same peak
value, whereas the hydrogen peroxide profile remains
at nearly the same location and reaches a slightly
higher peak (0.0007 percent). Species profiles con-
tinue to broaden at z = 2.0 cm as shown in figure 50.
There are slight increases in the peak values of wa-
ter (23 percent) and atomic hydrogen (1.2 percent),
and a slight decrease in atomic oxygen (2.6 percent).
The remaining species remain essentially unchanged.
There are very slight shifts in the transverse coordi-
nate of the peak species values, but these shifts do
not appear to be significant.

There is no significant change in species profiles
beyond the z = 2.0 cm station, and the chemistry
appears to have reached a local equilibrium with the
flow. Comparison of figure 50 at z = 2.0 cm with
figures 51, 52, and 53 at = = 3.0, 4.0, and 5.0 cm,
respectively, confirms this observation. This down-
stream evolution of the chemistry differs considerably
from the finite-difference study of section 4.1. This
difference in evolution again appears to be linked
to the absence of flow instabilities spawned by the
presence of the splitter plate included in the finite-
difference analysis. The effects of the splitter plate
on flow instabilities were discussed in section 3 and in
section 4.1. Without the presence of the first insta-
bility, early mixing is reduced and transition does not
occur in the layer within the limits of the domain that
is considered. In the absence of downstream transi-
tion, downstream mixing is significantly retarded.

To study the effects of the inflow perturbations
imposed on the flow by the splitter plate, the finite-
difference calculation of section 4.1 was reconsidered.

It was found from analyzing computed results as a
function of time at the first station downstream of
the splitter plate trailing edge that perturbations
imposed on the flow variables could be correlated
quite well by using a single perturbation function.
That function was given by

& = e (09" 4 gin (wt) (115)
where
a = 1000
A =0.064

w = 12271061 rad/s

The exponential term damps the effects of the per-
turbation with transverse movement away from the
plate. The trigonometric function describes the pe-
riodic nature of the disturbance, and A is the am-
plitude of the disturbance, normalized by the free-
stream velocity.

The flow perturbation described by equa-
tion (115) is now applied to the present analysis by
using the spectral program. Recalling the discussion
in section 1, it was noted in reference 21 that for
reacting flows, the eigenvalues that determine flow
stability are only weakly dependent on Mach num-
ber. Therefore, it appears reasonable to apply the
perturbation data from the finite-difference analysis
to this problem. FEach primitive fluid variable was
then perturbed at the inflow boundary as described
by equation (115). The initial streamwise velocity,
for example, is then given by

u=Us(1+¢) (116)

A similar procedure is also used to describe the
inflow density and pressure. All other required fluid
inflow data can then be computed as usual. The
transverse velocity component remains fixed at zero
as in the previous analysis, roughly representing the
flow just downstream of the recompression shock in
the finite-difference study. The spectral technique
cannot capture strong shocks in supersonic flow that
would occur with the imposition of the transverse
velocity, and, therefore, that problem could not be
dealt with here.

Results from the spectral study, again at 0.02 ms,
using the inflow perturbation described above are
given in figures 54 through 70. Figure 54 shows a
plot of streamwise velocity versus streamwise coordi-
nate at the same three transverse stations pictured
in figure 43 for the unperturbed study. Note that the
instability introduced at the inflow boundary now
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persists through the solution domain. The distur-
bance does not appear to be amplified significantly,
however. There are three regions of instability in the
streamwise direction, each separated by a zone where
the oscillations are damped. These damped zones oc-
cur at approximately 0.7 and 3.0 cm. These results
are similar in certain respects to those seen in the
finite-difference analysis at 0.02 ms as given in fig-
ure 16(d). There are three regions of instability in fig-
ure 16(d), but the second damped zone occurs further
upstream. Also, the downstream region of instabil-
ity is larger, of greater amplitude, and of increasing
wavelength. From this comparison, it appears likely
that the mechanism initiating the instabilities in the
finite-difference study is more complex than that as-
sumed in the present study. The assumed form of
the perturbation does, however, allow study of the
effects of such an instability on the development of
the mixing layer and the resulting chemical reactions.
These effects are assessed by comparing results from
perturbed and unperturbed spectral studies.

Figure 55 gives a plot of streamwise velocity ver-
sus transverse coordinate at four streamwise stations.
The unperturbed results at the same four stations are
given in figure 42. Note that now there is a marked
shift in the overall magnitude of each velocity profile
because of the temporal perturbation, but the profile
development is not significantly affected.

Figure 56 shows a plot of streamwise velocity con-
tours in the mixing layer. The structure described
by figure 54 is shown to persist throughout the layer,
and there is no marked growth of the mixing layer
thickness as defined by the velocity gradient. Sim-
ilar results are yielded by the plot of vorticity con-
tours given in figure 57. There again is no signifi-
cant growth of the layer, but the perturbation does
produce vortical structure, albeit of lesser scale than
that observed in the calculation including the splitter
plate.

Figure 58 describes the temperature field with in-
creasing streamwise coordinate at the three trans-
verse locations used in the unperturbed solution of
figure 45. The streamwise structure is again appar-
ent in this plot. Comparison of figure 58 with fig-
ure 19, which gives the streamwise temperature de-
velopment in the flow with the splitter plate, shows
similar behavior of the profiles near, just above, and
below the plate. The profiles are quite different well
downstream of the plate, however, because of the ab-
sence of transition without the plate. Figure 59 de-
scribes transverse temperature profiles with stream-
wise distance in the perturbed layer. The results are
quite similar to those of the unperturbed flow given
in figure 46, although slightly higher peak tempera-
tures are achieved in the perturbed solution.

28

Profiles and contours of the chemical species
present in the perturbed reacting mixing layer are
given in figures 60 through 70. Figure 60 shows pro-
files of the major species (Hg, Og, and H20) at the
initial station of the calculation. No water has been
formed at this station. Since the chemical species
are unperturbed at the inflow boundary, figure 60
is identical to the results for the nonperturbed case
given in figure 47. Figure 61 describes the species
distribution at z = 0.4 cm downstream of the in-
flow boundary. The water profile is somewhat more
broad but has a slightly lower peak than the unper-
turbed solution in figure 48(a). The minor species
also peak about 0.1 percent lower than the unper-
turbed solution given in figure 48(b). The small dif-
ferences in the two solutions appear to be due to a
somewhat higher rate of mixing due to the perturba-
tion, which would increase the transverse spread of
the profile and reduce its peak. The trends in pro-
file spread established at z = 0.4 cm continue at the
z = 1.0-cm station given in figure 62. By compar-
ing figure 62 with 50, it can be seen that the profile
peaks are identical, but the perturbed profiles are
slightly broader. With each succeeding downstream
station beyond z = 1.0 cm, the species profiles of the
perturbed problem continue to become transversely
more broad than the unperturbed study because of
the improved mixing afforded by the perturbation.
The mixing process remains laminar, however, since
the induced instability is never sufficient to trigger
transition in the latter portion of the mixing layer.
This behavior can be seen even more clearly in the
product species contour plots of the perturbed mix-
ing layer, given in figures 67 through 70. The per-
turbation on the fluid variables induces an instabil-
ity in these species that is initially quite strong. The
instability decays with downstream movement, how-
ever, and it has essentially dissipated by the time the
outflow boundary is reached. Therefore, the species
distributions indicate, as did the fluid variable re-
sults, that the mechanism that triggers transition in
the mixing layer flow is more complex than the func-
tion that was assumed. These issues of reacting flow
stability are further addressed in the conclusions dis-
cussed in section 5.

The calculations described above were carried
out on the VPS-32 computer at the NASA Langley
Research Center. The case required 7.0 CPU hours
to reach the integration time 0.02 ms and used a
core memory of 7.2 million 64-bit words on a 201
by 51 grid.

5. Conclusions

Research has been undertaken in this study to
achieve an improved understanding of important



physical phenomena present when a supersonic flow
undergoes chemical reaction. To explore the behavior
of such flows, detailed physical models of convective
and diffusive mixing and finite-rate chemical reaction
in supersonic flow were developed. Two numerical
algorithms were then constructed to solve the equa-
tions governing supersonic chemically reacting flow
that resulted from these models. The first algorithm
was developed around an established finite-difference
technique modified to consider multicomponent re-
acting flow. The second algorithm employed a hybrid
pseudospectral technique in one spatial direction for
improved resolution of the reacting flow field. The
previous scheme was retained in the other spatial di-
rection. Computer programs were written using both
algorithms, and each program was used to study a
spatially developing and reacting supersonic mixing
layer. The results obtained from these studies were
then analyzed, and conclusions were drawn concern-
ing the structure of the reacting mixing layer. Those
conclusions, which were discussed in section 4, are
now summarized.

Supersonic reacting flows exhibited many of the
same features observed for subsonic reacting and
nonreacting flows. In particular, the vortical struc-
ture of the flow, noted in much of the subsonic nonre-
acting flow literature, was shown for the first time to
be quite predominant in supersonic reacting flow as
well. In agreement with the earlier reacting subsonic
literature, the vortical structure had a marked effect
on chemical reaction in supersonic flow. Significant
burning took place in the eddies on the edges of the
mixing layer, broadening the reaction zone relative to
the layer thickness defined by the velocity gradient.
In addition, the vortical flow resulted in the roll up of
unburned reactants inside a layer of partially or fully
burned products. This phenomenon, often termed
“unmixedness” in subsonic flows, prohibited the re-
action of captured reactants and reduced the overall
efficiency of the combustion process. Unmixedness
was thus shown for the first time to be a potential
problem in reducing the efficiency of supersonic com-
bustion as well as subsonic combustion, and tech-
niques will likely be needed to reduce its effects.

Calculations with the present model also showed
that at supersonic speeds the reacting mixing layer
remained laminar for the region studied if no external
disturbance to trigger transition to turbulence was
introduced. When a splitter plate was used to ini-
tially separate fuel and air, however, it provided the
required disturbance. The unstable recirculating flow
that formed at the base of the splitter plate, follow-
ing the Prandtl-Meyer expansion off the plate and the
unstable recompression shock a short distance down-

stream, provided that disturbance. The resulting os-
cillatory flow then propagated downstream triggering
transition-like phenomena in the latter fourth of the
domain being studied. Mixing of fuel and air then
improved dramatically in this region, markedly in-
creasing chemical reaction as evidenced by the spread
of product profiles. To study the effect of heat re-
lease in this region, calculations were also carried
out without chemical reaction. Results showed that
the unstable region near the splitter plate was un-
affected when reaction was removed. There was no
reaction in the early part of this region, and reac-
tion was mainly endothermic further downstream,
so little effect was expected. Well downstream in
the transition-like region, the reaction was highly
exothermic, however, and removing chemical reac-
tion (and therefore, chemical heat release) caused the
amplitude of the disturbance there to increase signif-
icantly. This result was in agreement with earlier
experimental and numerical literature for subsonic
flow, where it was found that heat release retarded
mixing. This effect was thus shown for the first time
to occur in supersonic reacting flow as well.

This study also represented the first application of
spectral methods to study supersonic reacting flows.
The hybrid spectral method employed in this study
was used to predict the spatial development of a su-
personic, chemically reacting mixing layer. The first
case studied considered the development of a mix-
ing layer downstream of a splitter plate separating
fuel and air. No plate was included in the calcu-
lation; rather the effects of the plate were modeled
by using an appropriate initial profile. As in one
of the finite-difference studies, the layer without the
plate never developed a sufficient upstream distur-
bance to trigger transition in the downstream region
of the problem that was studied. To initiate transi-
tion, data were taken from the upstream disturbance
that caused transition in the finite-difference study
and were correlated to form an initial perturbation
function on the inflow field of the spectral study. The
perturbation alone was not sufficient to trigger tran-
sition in the spectral study, although species mix-
ing and chemical reaction were enhanced well down-
stream. It was therefore concluded that transition
was initiated in the finite-difference study by a mech-
anism more complicated than that represented by
the simple perturbation function used in the spec-
tral study.

NASA Langley Research Center
Hampton, VA 23665-5225
September 13, 1988
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Table I. Finite-Rate Chemistry Model and Rate Coefficients for Each Reaction

Reaction rate variables
Activation
Reaction energy,
number Reaction A; N; cal/g-mole

1 Hy + O = OH + OH 170 x 101 0 48 150
2 H+O0,=0H+0 .142 x 1015 0 16 400
3 OH + Hy, =H,O+H .316 x 108 1.80 3030
4 O +H,=0H+H .207 x 1010 0 13750
5 OH + OH = H,0 + O 550 x 1014 0 7000
6 H + OH=H,0+M 221 x 1023 —2.00 0
7 H+H=H,+M 653 x 1018 —1.00 0
8 H + O =HOz+M .320 x 1019 —~1.00 0
9 HO; + OH = Hy0 + Oy 500 x 104 0 1000
10 HO, + H=H; + 0y 253 x 1014 0 700
11 HO; + H= OH + OH .199 x 1015 0 1800
12 HO3 + O = OH + 09 .500 x 1014 0 1000
13 HO3 + HOy = HyO9 + 09 .199 x 1013 0 0
14 HO; + Hy = HyOp + H .301 x 1012 0 18 700
15 Hy0, + OH = HO + Hy0 .102 x 1014 0 1900
16 H202 + H = OH + Hy0 500 x 101% 0 10000
17 H202 + O = OH + HO, .199 x 104 0 5900
18 M + Hy0, = OH + OH 121 x 1018 0 45500
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m/s

Figure 16. Streamwise velocity versus z at y locations.
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Figure 21. Temperature contours in mixing layer.
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Figure 22. Vorticity contours in mixing layer.
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Figure 30. Hydrogen mass fraction contours in mixing layer.
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Figure 31. Oxygen mass fraction contours in mixing layer.

Figure 33. Atomic oxygen (O) mass fraction contours in mixing layer.
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Figure 34. Hydroxyl (OH) mass fraction contours in mixing layer.

Figure 35. Water mass fraction contours in mixing layer.
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Figure 36. Reacting mixing layer schematic for spectral calculations.
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Figure 37. Streamwise velocity versus y.
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Figure 38. Temperature versus y.
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Figure 40. Water mass fraction versus y.
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Figure 41. Streamwise velocity versus y at z locations from spectral program.
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Figure 43. Streamwise velocity versus z at y locations from spectral program.
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Figure 51. Mass fraction versus y at * = 3.0 cm.
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Figure 52. Mass fraction versus y at z = 4.0 cm.
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Figure 53. Mass fraction versus y at z = 5.0 cm.
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Figure 57. Vorticity contours in mixing layer.
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Figure 62. Mass fraction versus y at z = 1.0 cm.
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Figure 63. Mass fraction versus y at z = 2.0 cm.
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Figure 64. Mass fraction versus y at z = 3.0 cm.
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(a) Major species.

Figure 65. Mass fraction versus y at z = 4.0 cm.
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Figure 66. Mass fraction versus y at z = 5.0 cm.



Figure 69. Hydroxyl mass fraction contours in mixing layer.

Figure 70. Water mass fraction contours in mixing layer.
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