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A semi-elliptic formulation, termed the interacting parabolized Navler-

Stokes (IPNS) formulation, is developed for the analysis of a class of

subsonic viscous flows for which streamwise diffusion is negligible but

which are significantly influenced by upstream interactions. The IPNS

equations are obtained from the Navier-Stokes equations by dropping the

streamwise viscous-dlffusion terms but retaining upstream influence via the

streamwise pressure-gradient. A two-step alternating-direction-explicit

numerical scheme is developed to solve these equations. The quasi-

linearization and dlscretization of the equations are carefully examined so

that no artificial viscosity is added externally to the scheme. Also,

solutions to compressible as well as nearly incompressible flows are

obtained without any modification either in the analysis or in the solution

procedure.

The procedure is applied to constricted channels and cascade passages

formed by airfoils of various shapes. These geometries are represented

using numerically generated general curvilinear boundary-oriented

coordinates forming an H-grid. Stagnation pressure, stagnation temperature

and streamline slope are prescribed at inflow, while static pressure is

prescribed at the outflow boundary. Results are obtained for various values

of Reynolds number, thickness ratio and Mach number. The regular behavior

of the solutions demonstrates that the technique is viable for flows with

strong interactions, arising due to either boundary-layer separation or the

presence of sharp leadlng/trailing edges. Mesh refinement studies are

conducted to verify the accuracy of the results obtained.

_RECEDING PAGE BLANK NOT FILi_EL_
iii



A new hybrid C-H grid, more appropriate for cascades of airfoils with

rounded leading edges, is also developed. Appropriate decomposition of the

physical domain leads to a multi-block computational domain bounded only by

the physical-problem boundaries. This permits development of a composite

solution procedure which, unlike most found in literature, is not a patching

procedure. Satisfactory results are obtained for flows through cascades of

Joukowski airfoils. The implementation of the IPNS formulation on the C-H

grid exposes two small portions of the grid interfaces and these require

special treatment. However, with a hybrid grid, the use of complete Navier-

Stokes equations is recommended, so as also to avoid inconsistencies in the

parabolization approximation due to changing orientation of the coordinates

at a given location.
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CHAPTER I

INTRODUCTION

The flow through compressors and turbines of gas-turblne engines is

fairly complex. The complexities arise due to unsteadiness, separation,

periodic transition from laminar to turbulent flows and complex

geometries. A clear understanding of these flow phenomena is needed in

order to improve the performance of these components of the engine. It

is well known that the complete Navier-Stokes (NS) equations accurately

describe the important physical aspects of fluid flow occurring in these

components. However, in spite of all the advances made to date in

numerical algorithms and computer firmware, numerical solution of the

complete NS equations can still require large amounts of computer

resources in terms of time and storage. Hence, an approximate form of

the NS equations which accurately depicts the physics is preferred. The

simplest of the approximate forms of the NS equations is provided by the

boundary-layer equations. The classical boundary layer (CBL) equations

with specified pressure gradient are parabolic in nature. Therefore, a

spatial-marching procedure can be employed to numerically solve these

equations very efficiently. However, this formulation does not contain

any mechanism for transmitting downstream disturbances upstream and,

hence, cannot be employed for problems where there is a strong pressure

interaction or when the flow is separated. Goldstein [I] showed that

the solutions to the classical boundary-layer equations exhibit a square

root singularity in the wall shear at the separation point. This

singularity leads to the failure of the weak interaction method wherein



the outer Inviscid flow and the inner boundary-layer region are analyzed

sequentially, with the interaction between the two regions being

modelled through the pressure gradient term. These limitations were

overcomeby the development of Interactlng-boundary layer [2] and triple

deck [3] theories. In interacting boundary-layer (IBL) theory the

pressure gradient is treated as unknown. In subsonic flows, the

pressure gradient is related to the derivative of the displacement

thickness through Cauchy's integral. Detailed discussion on interacting

boundary-layer theory has been given by Veldman [2]. An interacting

boundary-layer model has been used by Rothmayer [4] for analyzing high

Reynolds number flows with large regions of separation. However, the

interacting boundary-layer model also has its drawbacks. For complex

flows, relating the pressure gradient to the displacement thickness is

not sufficient. Also, for flow past bodies with large curvature, the

normal pressure gradient is no longer negligible and should be included.

To account for these effects, Briley [5] and Ghia et al. [6]

developed a non-iterative parabolic procedure for calculating flow

through curved ducts. Their procedure employed parabolized Navier-

Stokes (PNS) equations obtained by neglecting the viscous diffusion

terms in the streamwlse direction, with the streamwise pressure gradient

term being represented by a backward difference. Hence, this procedure

is applicable for flows with little upstream influence and no streamwise

separation.

The thln-layer Navier-Stokes (TLNS) equations of Steger [7]

include the upstream influence. These equations are obtained from the



unsteady NSequations by dropping the streamwlse diffusion terms. The

procedure employed to solve these equations is a 'tlme-marchlng'

technique and has proved to be costly in terms of computer time, in

order to obtain steady-state solutions of flows around isolated

airfoils. Steger, Pulliam and Chima [8] have employed the two-

dimensional TLNSequations and a C-type of grid for solving viscous

flows through cascades. They experienced difficulties in obtaining

steady-state solutions when the pressure is not prescrlbed at the

upstream boundary. Buggeln, Briley and McDonald [9] have computed

laminar and turbulent flows through ducts using the Navler-Stokes

equations. Chima and Johnson [10] employed an explicit multlple-grid

algorithm to solve the NS equations in order to improve convergence.

Shamroth, McDonald and Briley [11] and Hah [12] have computed cascade

flows using the complete NS equations. Rhie [13] has employed the

partially-parabolic NS equations to analyze three-dimensional viscous

flows through curved ducts of arbitrary cross-section. Recently, Chima

[14], Davis et al. [15] and Hhie [16] have developed methods for

predicting cascade flows using NS equations. References [143 and [_6]

have also employed a multigrid algorithm to enhance convergence. Most

of the works mentioned above have incorporated second- and fourth-order

dissipation terms, in order to suppress oscillations in the flow field.

The difference in computational effort involved in obtaining the

solution to TLNS and complete NS equations is not significant. The

numerical solution of both the TLNS and the complete NS equations

require large amounts of computer resources.



In the present study, a single system of equations which can

include the upstream influence is obtained from the full NS equations.

It is termed the interacting parabollzed Navier-Stokes (IPNS)

formulation and belongs to the class of seml-elliptlc models, one form

of which was developed earlier by U. Ghia et al. [17]. Only steady

flows are discussed here and, hence, the tlme-derivative term in the NS

equations is dropped. It should be mentioned, however, that the

analysis can be extended readily to unsteady flows by the inclusion Of

this term. The semi-elliptic form of the equations is obtained by

dropping the viscous diffusion terms in the streamwise direction. This

approximation is supported by the fact that the streamwise diffusion is

negligible compared to the normal diffusion, for the flows under

consideration. Clearly, the approximation is appropriate if the

coordinate system employed is a body-oriented, near-orthogonal system.

The semi-elliptic or IPNS formulation is tested via application to 2-D

flows through channels with varying cross section in the streamw!se

direction and flows through cascades of airfoils of various shapes.

These configurations are chosen as they are akin to the geometries of a

turbomachinery compressor or turbine.

In all of the works mentioned above, either an H- or a C-type of

grid is" employed. In order to analyze flow around airfoils with rounded

leading edges, it is often desired to employ a combination of these

types of grids. Near the leading edge, the channel or the H-type of

grid becomes excessively skewed and non-orthogonal and a C-grid is more

suitable in this region. But, in the latter, the grid density decreases



rapidly with distance away from the leading edge. In this region, an H-

grid can be employed. Norton, Thompkins and Haimes [18] have employed a

mixed sheared and O-type grid for computing flows through turbine

cascades. Rai [19] has employed a patched and overlaid grid system in

order to compute flow through a rotor-stator combination of a

turbomachine. Bush [20] developed a zonal methodology and a time-

dependent procedure to oDtaln solution of the NS equations for flow

through an external compressloh inlet. When the zonal or overlaid grid

systems are employed to solve the governing equations of motion, it is

important to transfer information from one grid system to the other

appropriately. Hence, in the present study, the hybrid C-H grid

generation procedure developed by U. Ghia, K. Ghia and Ramamurti [21]

for turbomachinery cascades is employed. When this hybrid C-H grid is

employed to solve the complete NS equations in a composite manner, the

explicit transfer of information across the zonal boundaries is not

required.

Details of the derivation of the governing equations are given in

Chapter 2. Also, the appropriate boundary conditions to be specified

for solving the governing equations, for both channel and cascade

configurations, are discussed. In Chapter 3, the numerical procedure

employed is discussed. The appropriate form of the pressure gradient

term and the metric terms associated with it and the implementation of

the boundary conditions and modeling for reversed flow, are also

included in that chapter. Results for flows through constricted

channels and cascades of airfoils of different shapes, obtained



employing the channel or H_type of grid, are discussed in Chapter 4. A

composite procedure for generating a hybrid C-H grid for cascades with

rounded leading edges is given in Chapter 5. In Chapter 6, the

implementation of the solution procedure for flow through a cascade of

Joukowski airfolis using a hybrid C-H grid is discussed. Someresults

obtained are presented in this chapter. Details of the implicit

solution of a system of equations subjected to a periodicity boundary

condition arising in cascade flows, the discretized representation of

the metric coefficients and the treatment of the five-slded cell

occurring in the hybrid C-H grid are included in the appendices.



CHAPTER 2

FORMULATION OF THE PROBLE_

2.1 Basic Equations

The governing equations for the mathematical model of fluid flow

can be derived from the Navler-Stokes equations. The nondlmenslonal,

conservation form of the equations for two-dlmenslonal laminar flow of a

compressible fluid can be written in Cartesian coordinates as follows:

Continuity

_P + _ (pu) + _
3t B--x _ (pv) = 0 (2.1 a)

x-Momentum

(pu) + B (pu2+p) + B B ) + B ) (2.1 b)-y _-_ _ (puv) - _ (_xx _ (_xy

y-Momentum

(pv) B (puv) _ (pv_+p) _ B ) (2.1 c)
_-'_ + _-_ + B"'y = _ (_xY) + "_ (Tyy

Energy

( ) _
B--_ Pe t + --_ {(Pet+P)U} + "_ {(Pet+P)V}

B (U_xx+V_xy_qx). ___ + _ (U_xy+VTyy-qy) (2.1 d)

where p is the density, u and v are the Cartesian components of velocity

and e t is the specific total energy given In terms of specific internal

energy e by

U2+V 2

et-e+ T

The stress components and the heat flux terms can be written as

(2.2 a)



I

mxx " R_ {(_+2U)Ux + _Vy}

I

"yy " Re {(A+2U)Vy + Au x}

I

mxy - _-_ {U(Uy + Vx)}

qx Re Pr (Y-I)M_2 Tx

and

- -_ (2 2 b-f)
qy Re Pr (_-I)M 2 Ty .

2
According to Stokes' hypothesis, A is taken as (- _- U).

J

The equation of state is given by

p = (Y-I) pe (2.3

The constitutive equation for viscosity is given by Sutherland's

viscosity law

(I+T> T3/2

(T+T>
(2._

where

- 110°K

Tre f "

The Reynolds number and the Mach number are based on the conditions at

the inlet boundary and are given as

Re - (Pref Uavg L)/ _ref (2.5 a)

and

I/2

M® - Uavg / (YR Tre f) (2.5 b)



where U is the mass-averaged inflow velocity at the inlet given byavg

hU _ pV ds- , (2.6)

avg fho p ds

with h as the cascade blade spacing or the channel height, V the

velocity normal to the inlet boundary and s the distance measured along

the Inlet boundary.

The reference length L is the chord length of the airfoils for

cascade flows and the channel height for channel flows.

Equation (2.1) has been Obtained by the following nondlmenslon-

al izat ion:

x _ t = t u
x =_ = , y= L ' (L /U ) , u- U

avg avg

v 0 P e

, p = , p : U2 , e = aU-_vgv = Uavg Pref Pref avg

and

T = T . (2.7)

Tref

All the dimensional quantities are denoted with a superscript asterisk.

Equation (2.1) can be written in a vector form as

_t _x _y _x @y
(2.8)

where

" [ p, pu, pv, pe t ]T



and

= [ pu, pu=+p, puv, (Pet+P)U IT

= [ pv, puv, pv=+p, (Pet+P)V ]T

v - [ O, Txx, Txy, (U_xx+VTxy-qx) ]T

Fv = [ O, _xy' _yy' (U_xy+V_yy-qy) ]T (2.9 a-e)

2.2 Coordinate Transformation

The success of a numerical solution procedure for the governing

equations of motion depends heavily on the proper choice of coordinates.

One of the first requirements placed on a coordinate system is that the

coordinates be aligned with the problem boundaries. The use of

boundary-fitted coordinates reduces the complexities otherwise

encountered in the treatment of boundaries of arbitrary shape. Hence,

the Navier-Stokes equations in the physical (x,y) coordinates are

transformed to a system of computational (_,_) coordinates through the

following general transformation:

- _(x,y) ,

n - n(x,y)

and _ = t . (2.10)

According to Viviand [22], the transformed governing equations in

the (_,q,T) coordinates can be written in the strong-conservatlon-law

(SCL) form as follows:

I0



a _x _y k nx ny_C ) + _ C3-.--.-_ + 3-- ,_ ) -,. (_ +3-_, )

_x _y _ nx
a ( _ +--_v ) + _ ( _ ÷-_v )" _'-_ _- v J _'- v J (2.11)

where J is the Jacoblan of the transformation and is defined as

la(5,n)] 1
J = det a(x,y) = x5 Yn - Y5 Xn = 5x ny - 5y n x

(2.12)

The metrics 5x' _y' nx and ny are determined after the mapping,

given by Eq. (2.10), has been defined. The metrics are related to the

derivatives x_, y_, etc., by the following relations.

5x = J Yn ' _Y = -J Xn '

nx = -J Y5 , ny = J x_ . (2.13

It is convenient to write Eq. (2.11) in the following form.

___Q+ a_E+ __F= _ (Ev)÷ __ (Fv)_ DE an a_ an
, (2.1_

where

and

Q= j ,

_x _y

n x _ nyF ---_ --_
J J

_x - _y_ .--_ +--_
v J v J v

nx ny
= -- + -- F . (2 15 a-e)Fv J Ev J v

II



An alternative compact representation of the Invlscid flux vectors

E and F is also possible and is obtained by using Eqs. (2.9 b,c) in Eqs.

(2.15 b,c) to yield

m

I
E _ m

J

pU

puU + _x p

pvU + _y p

(Pet+ p)U

I
and F -

J

pV

puV + nx p

pvV + ny P

(Pet+ p)V

(2.16 a,b)

where U and V are the contravariant velocities along the _ and q

coordinates, respectively, and are related to the Cartesian components u

and v by

U - _x u ÷ _y v

and

V _ nx u + ny v (2.17)

Equations (2.14) are the complete Navier-Stokes equations in SCL

form in the general boundary-oriented (_,n) coordinates. As discussed

in Chapter I, certain approximations will be introduced in these

equations so as to optimize the efficiency of their numerical solution

and their ability to represent important physical flow phenomena

accurately.

2.3 Derivation of the Semi-Elliptic Form of the Governin$ Equations

The time-derivative term is dropped from Eq. (2.14) because only

steady flows are considered in the present study. The parabollzed

Navier-Stokes equations are obtained by neglecting all the streamwise

]2



diffusion terms• This involves dropping the second-order derivatives

( 22 /_2 ) and the cross derivatives ( 22 /_ _n ) in the viscous

terms. This approximation is supported by the fact that the streamwise

diffusion is negligible compared to the normal diffusion in most of the

regions of the flows under consideration. This approximation is

appropriate only if the (_,_) coordinate system is a body-orlented,

near-orthogonal coordinate system, that is, the _ coordinate is nearly

aligned with the streamwise direction and the n coordinate is nearly

orthogonal to it. The reduced set of equations can be written as

follows.

_E _F

m + m = __ (Fv) (2.18)

where E, F and F are as given in Eq. (2 15)
V • •

It should be emphasized that the above set of equations is

'parabolized' and not parabolic. The mathematical character of the

system of equations (2.18) depends on the manner in which the streamwise

pressure gradient term p_ is treated. If p_ is prescribed, as in the

case of classical boundary-layer theory, the system is parabolic. In

this case, a marching method can be employed to obtain the solution for

this system. This method of solution is very efficient, but it does not

have any mechanism for including upstream influence and is, therefore,

not suitable for flows with separation and sudden streamwlse changes in

boundary conditions. When the p_ term is treated as unknown and forward

13



differenced, the system of equations is no longer parabolic but has an

elliptic character.

When the parabollzed Navler-Stokes equations are solved as an

Inltal-value problem, as in the case of slngle-sweep marching solutions,

the ill-posedness of the equations leads to 'departure solutions'

similar to the elgensolutions of the viscous sublayer equations proposed

by Lighthill [23]. Vigneron, Rakich and Tannehill [24] have described a

method for suppressing the departure solutions in their study of

supersonic flow over delta-wings. They introduced a parameter, m, to

split the pressure gradient term Px into 'm Px '' which was backward

differenced and treated implicitly, and (1-m)px. The latter term, even

when represented using a backward difference, led to instabilities and,

hence, was dropped entirely. This is appropriate if the flow is

predominantly supersonic, as in the case these authors considered, but

not in general. These authors performed a characteristics analysis for

the inviscid as well as the viscous limits of the equations. From the

viscous analysis, they found that the equations are well posed for space

marching when

y M 2
x

I+(Y-I ) M 2
x

and _- I if f(M x) > I

- f(M x) if f(M x) _ I (2.19 a)

, (2.19 b)

where M - _ . (2.19 c)
x a

In the present study, the pressure-gradlent term is split in the

manner described above, but Is dlscretlzed so as to include upstream

]4



influence in flows with strong interaction by forward differencing the

'(l-m) _pl_ ' term, i.e., by using the representation

_)P m + (l-m) (2 20)
f "

Here, the subscripts b and f denote backward and forward differences,

re spect ively.

2.4 Boundary Conditions

The appropriate boundary conditions to be specified for solving the

governing equations, described in the prevoius section, for flows

through cascade and channel configurations are described in this

section. These conditions are specified along the inflow and outflow

boundaries, and lower and upper wall boundaries for channels and airfoil

portions of the cascade passages. These boundaries are shown in Fig. I.

Also, for cascade flows, the periodicity of the flow variables along the

wake boundaries is considered. A set of wall-wall boundary conditions

is one that is imposed at the ends of a _ = constant grid-line which

starts at a body surface and ends at the facing body surface. A set of

wake-wake boundary conditions is one which is imposed at the ends of a

- constant line which starts at a point in the wake region and ends at

a point in the facing wake region. In the case of staggered cascades, a

set of wall-wake boundary conditions may be needed in regions where a

- constant line starts from a point along a wall and ends at a point

in the facing wake region.

15



2.4.1 Inflow and Outflow Boundary Conditions

For the problems considered in the present study, the flow near the

inflow and outflow boundaries behaves in an almost inviscid manner.

yon Mises [25] has carried out a characteristics analysis for inviscid

systems and found that for subsonic flows, all the characteristics are

real, with two of them being positive and one negative. Using the

counting principle of Courant and Hilbert [26] that one boundary

condition is to be specified per entering characteristic, this requires

that two conditions are to be specified at the inflow boundary, and one

at the outflow boundary.

In Ref. [27], McDonald and Briley have described a specific set of

boundary conditions. They considered a typical duct flow proceeding

from a large reservoir and exhausting into a plenum. The reservoir

conditions and the plenum static pressure were known. This duct flow

model leads to prescribing the reservoir total conditions and the plenum

static pressure. The specified stagnation temperature and pressure

constitute the two required inflow boundary conditions and the specified

static pressure constitutes the one outflow boundary condition.

In the present study, at the inflow boundary, the total pressure

prescribed for cascade flows is that corresponding to a uniform velocity

profile, while the stagnation temperature is taken to be constant. For

channel flows, the conditions prescribed at the inflow boundary are the

velocity and static temperature profiles corresponding to a fully

developed flow in the channel.
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In the problems considered, the outflow boundary is situated far

downstream of the cascade of airfoils or the channel constriction, so

that uniform static pressure Is an appropriate condition.

As the static pressure at the inlet is not specified, the mass flow

in the configuration is not set a priori and pressure waves can escape

upstream, avoiding the problem of reflecting waves discussed by Rudy and

Strlkwerda [28]. To facilitate a marching procedure, the conditions at

the inflow boundary are obtained by assuming the velocity-profile shape,

guessing a representative magnitude characterizing this profile, and

obtaining the static pressure using the prescribed total pressure. The

guessed representative velocity magnitude, Uavg , is then updated as the

overall solution evolves. For channel flows, McDonald and Briley [27]

have suggested updating the total pressure distribution within the

boundary layer, in order to maintain the required velocity- and

temperature-profile shapes prescribed at the inflow boundary. This

implies that for fully developed flow conditions at the inlet, as used

in the present channel-flow studies, the total pressure distribution has

to be updated over t_e entire channel width.

The procedure for updating the velocity profile for cascade flows

will be described in the next chapter.

2.4.2 Wall-Wall Boundary Conditions

The governing equations given by Eq. (2.18) consist of one first-

order equation, namely, the continuity equation, and three second-order

equations, namely, the x- and y-momentum and the energy equations.
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Here, the order refers to the highest-order derivative in the n

direction. These comprise a system of seventh order with respect to n,

so that a total of seven boundary conditions need to be specified along

the two n - constant boundaries. At the wall, the no-sllp boundary

condition is imposed; also, the walls are assumed to be impermeable and,

hence, there is no injection or suction at the surface. In addition,

the temperature, T w , at the surface is specified. These constitute a

total of six boundary conditions at the two surfaces. Therefore, one

additional condition has yet to be specified. A valid flow approxima-

tion such as (_P/_n) = 0 can be imposed as an additional boundary

condition. The resulting solution will reflect the approximations

inherent in the boundary condition. Another method to obtain the

additional condition is to write the governing equations in one-sided

difference form at the wall, as has been done by Rubin and Lin [29] anc

Briley and McDonald [30].

In the present study, an approximate form of the normal momentum

equation, obtained by dropping the viscous terms in that equation and

written at the first cell center near the wall surface, is used as the

additional condition. The viscous terms in the normal momentum equation

can be shown to be negligible near the wall surface for most of the

flows considered in this research.

In order to ascertain that enough independent equations are

available at a particular streamwlse location, a typical grid llne along

the n direction, consisting of five computational points as shown in

Fig. 2a, is considered. Counting four unknowns, namely,
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- (p, pu, pv, Pet)T, per point, this line involves a total of 20

unknowns. The Independent equations that can be written are the

continuity equation written at the 4 points denoted by c in Fig. 2a, and

the momentum equations and the energy equation written at the 3 points

denoted by x, y and e, respectively. This constitutes a total of 13

independent equations. When combined with the six specified wall-

boundary conditions, these equations leave one additional condition to

be specified. This additional condition is taken to be the reduced y-

momentum equation as discussed in this section, and may be imposed near

either wall surface.

These boundary conditions can be stated mathematically as follows.

_t She walls,

U = U = 0 ,
W

V = V = 0
W

and T = T . (2.21)
w

The reduced normal momentum equation near one of the walls can be

written as

2-[ 5 (pvU + &y p)} + _ { I_--_ _ (pvV + ny P)} " 0 . (2.22)

2.4.3 Wake-wake Boundary Conditions

For cascade flows, specification of boundary conditions along the

wake boundary needs to be considered. For symmetric configurations, the

wake boundary, is in addition to being the wake centerline, also a line
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of symmetry. For unstaggered cascades, a 'line-periodic' grid is

employed. In this type of grid, the same n-coordinate line connects the

corresponding periodic points, such as points I and 5 or 0 and 4 in

Fig. 2b. In this case, the periodic-boundary conditions can be enforced

implicitly. The periodicity condition is that the corresponding values

of all the flow variables, Q (p pu pv, Pet)T" , , , and the normal

derivatives, u , vn and Tq, of the velocities and temperature which are

governed by second-order equations, namely, the momentum and energy

equations, must be the same at corresponding periodic points alone the

wake boundaries. It should be mentioned that, in terms of the conserved

variables, Q (p, 0u, pv, Pet)T- , the repeating condition on the n-

derivatives must be satisfied for all four elements of Qq. This

condition can be written as

- or (2.23)

for a typical computational llne consisting of points I through 5 as

shown in Fig. 2b. Imposing the periodicity boundary condition described

above between points I and 5, leaves a total of 16 unknowns counting

four unknown variables per computational point. The system of equations

that can be written along this computational line consists of the

continuity equation at 5 points, and the momentum and energy equations

at 4 points, denoted by c, x, y and e, respectively, in Fig. 2b. As

periodicity has already been imposed, the continuity equation, which is

of the first order, Written employing points 4 and 5, becomes identical
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to that employing points 0 and I. Hence, there are only 16 independent

equations and the system is closed. Also, in the case where symmetry

exists along the wake boundary, the viscous terms in the y-momentum

equation can be dropped, and this reduced first-order equation can be

written employing points I and 2.

2.4.4 Wall-Wake Boundary Conditions

This type of boundary condition is needed for cascades with stagger

when a 'region-periodic' grid is employed. A 'region-periodic' grid is

one in which the corresponding periodic points in the flow are not

connected by the same n-coordinate line. This type of grid has to be

employed for cascades with large stagger in order to avoid excessive

skewness of the coordinates. The use of this type of coordinates, in

conjunction with a marching procedure, forces the p_riodicity condition

to be imposed in an explicit manner.

Figure 2c shows a typical grid consisting of six points along an n-

coordinate line in the wall-wake region. The 18 independent equations

along this line consist of the continuity equation written at 5 points

and the momentum and energy equations written at 4 points, in addition

to the reduced momentum equation written at the wall surface. The six

boundary conditions consist of the zero slip, zero injection/suction and

the specified temperature at the wall surface and the specified velocity

and temperature conditions at the wake boundary. The conditions at the

wake boundary are obtained from the corresponding periodic point along
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the upper wake boundary in the flow. These conditions can be stated

mathematically as follows.

At the wall, the conditions are

u- u - 0 ,
W

V- V - 0
W

and T - T . (2.24)
W

Along the wake, for example, at point 0 in Fig. 2c, the conditions are

U 0 " U a

V 0 _ V a

and T o - Ta . (2.25)

Here, '0' and 'a' are the corresponding periodic points.

2.4.5 Wake-wake Boundary Conditions (Region-Periodic Grid)

Along this type of boundary for staggered cascades employing a

region-periodic grid, the periodicity condition is imposed in an

explicit manner. The independent equations to be considered along a

typical computational line consisting of six grid points 0 through 5 are

the continuity equation written at 5 points and the (x,y) momentum and

energy equations written at 4 points. The boundary conditions consist

of the specified values of Q - (p, pu, pv, Pet )T at point 5, obtained

from the values at the corresponding periodic point in the flow, such as

point b in Fig. 2d. For this purpose, the most recent values of Q are

used. This implies that only three more boundary conditions can be
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supplied for the seventh-order system. Hence, the velocities u and v

and the temperature, which are lagged in time, are specified at point O.

These conditions can be stated as follows.

Along the wake, at point 5,

Ps - Pb ' u5 - ub , vs - vb and T5 - Tb

and at point O,

u0 - ua , v o - va and To - Ta .

(2.26)

(2.27)
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CHAPTER 3

NUMERICAL PROCEDURE

The interacting parabolized Navier-Stokes equations (2.18),

described in the preceding chapter, are a set of nonlinear coupled

partial differential equations. Analytical solution of this system of

equations exists only for a small, special class of problems. Hence,

for the general problems of present interest, a numerical solution of

these equations is scught.

The linearizaticn and discretization of the governing equations,

the solution procedure for the discretized set of equations, the

implementation of tee boundary conditions, including the periodicity

boundary condition f:r cascade flows, as well as the treatment of

problems with flow separation are detailed in the following sections of

this chapter.

3.1 Quasi-lineariza_i}n and Discretization

The system of g=verning equations (2.18) is first re-wrltten here

for easy reference.

aE + a_[. L (F) (3.1)
aF_ an an ,

where

_x _y
E - 3-- _ + 3-- _ ,

nx ny
and F - _-- E + ]-- F . (3.2)
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FO* ,ur,,_,r,,,.,_

As mentioned above, this system of equations is nonlinear.

Therefore, these equations must be linearized or quasi-linearized in

order to obtain a system of algebraic equations amenable to numerical

solution. In the present study, employing forward marching for the

solution vector Q, a quasi-linearlzation of the nonlinear terms at a

given streamwise station is carried out about the solution at the

preceding streamwise location. From Eq. (3.2), it is seen that the

quasi-linearization of the inviscid flux vectors E and F requires that

the flux vectors E and F be quasi-linearized. This is achieved by using

Taylor'8 series expansions. The results can be expressed as follows.

_i+! . _i + _i Ai_ , (3.3

_i+I . _i + _i Ei 5 , (3.2

where

. 6i+I_ 6i

_i . @_i and _i = 8-2i • (3.5 a-c

Here, the superscripts i and (i+I) denote two successive streamwise

locations as shown in Fig. 3. The quantities with superscript (i+I) are

the unknown terms, which contribute to the nonlinearities in the

equations.

Recognizing the fact that the Inviscid flux vectors, E (Q) and

F (Q) are homogeneous functions of degree I in Q, and using the property

of homogeneous functions (see Ref. [31]), one can write
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B___ . _ and B-_FQ I F . (3.6)

This property allows some conceptual simplifications of the equations

and leads to computational efficiency. Using this property of

homogeneous functions, Eqs. (3.3) and (3.4) can be written as follows.

(3.7 a,b)

The Jacoblan matrices A and B, defined in Eqs. (3.5 b,c), are given

as follows.

and

(Y-_)

0 i I I 0
I

I"

¢2 _ Ua I (3-Y)U ;-(Y-I)v
I

t

I
--UV V U

I

= (_E/_Q) = 0

iu (2¢_-Yet) , [Yet-¢ 2 -(Y-1)uv

I -(Y-1 )u2}

i

Yu

0 I 0

-uv I v

I

I

u 0

_2 _ u 2 1 -(7-I)u (3-7)v (_-I)
I

v (2_a-Yet)i TI -(Y-I)uv i {Yet-Oa Yu

I

I 0-(Y-I)u'} l
' i
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where CZ _ (Y-I) (u=+ v= ) (3.8 a-c)
2 _

as

[32].

i+I
E

with

Using Eqs. (3.7) and (3.2), the flux vectors E and F can be written

El+l .  i+1

E

where _l (_)i+1 _i + (_)i+1 _l . (3.9 a,b)

Similarly,

Fi+1 . _i _i+I

h glwhere _i = (j)i+1 _i + . (3.9 c,d)

As the metric terms at (i÷I) station are known quantities, the

metric terms involved in Eqs. (3.9 a-d) are evaluated at station (i+I).

This type of quasi-linearization has been employed by Schiff and Steger

It is different from that employed by Steger [7], who used

= E i + A i AiQ (3.10 a_

A i = a--_Ei . (3.10 b)

at

i
The Jacobian matrix A contains metric quantities evaluated at station

i. The _~ on the Jacobian matrices A and B in Eq. (3.9) is used to

denote that the metrics in these matrices are evaluated at station

(i+I), and distinguishes these matrices from the Jacobian matrix in

Eq. (3.10).
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The viscous term Fv is quasi-llnearlzed as follows. A typical term

of Fv is of the form (_ _ . Starting with the Taylor's series

_8)i+I
expansion for (_ _ and re-arranglng leads to the expression

_8)i+I i+I (_8)i i+I

Further, it is observed that the term 8 is homogeneous of degree zero,

in Q. Hence,

(aS/_Q) Q = O. (3.11 b)

Therefore, Eq. (3.11 a) becomes

_8)i+I i+I 88 i i+I )i _i+I
(a _-_ = _ (-_n) + _ (_8/_Q (3.11 c)

Using Eq. (3.11 c) the viscous term F i+I can be written as
' V

Fi+1 = rZi ÷ _i _i÷I
V V V

where a typical term of _iv is of the form i+I (___)a8i , and of _i _i÷I is
V

i+I i :i+I(_8/_Q) . Again, the ~ denotes that the metrics involved

are evaluated at station (i÷I).

The discretization of the derivative terms is discussed next. The

i+I

term [__m)_ is considered first. This term can be_-derivative
a£

written as

_E I+I _E i+I f_E]i
('_) - e, (_) + (l-e,) ,-_, .

(3.12)
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The values of 61 are chosen depending on whether an implicit, explicit

or the Crank-Nicolson scheme is to be employed. The various values of

8_ commonly employed, and the corresponding schemes, are

01

I I

= 0

I12

for an implicit scheme ,

for an explicit scheme ,

for Crank-Nlcolson scheme (3.13)

Also, depending on the type of differencing and the desired

accuracy, one can write

(_E] I+I Ai E
_, - (1+e_) _

I-I
A E

e.2 A_
(3.14)

where A i is the forward difference operator defined by Eq. (3.5 a).

The type of differencing, and the corresponding order of accuracy, for

various values of 02 are given as

02

I -I/2,

0 ,

I/2 ,

central, O(A_ 2)

two-point backward, O(A_)

three-point backward, O(A_ 2) (3.15)

Combining Eqs. (3.12) and (3.14) leads to,

+ (1-e_) DE i i A i-I E. (i+e2) A E e . (3.16)
A_ 2 A_

An explicit scheme usually has some stability condition such as the

Courant-Frledrichs-Lewy (CFL) condition associated wlth it. Hence, an

implicit scheme, corresponding to e_ - I, is employed in the present

t

work, to enhance the numerical stability of the resulting method. To

facilitate a marching type of procedure, either two-polnt backward
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differencing or three-point backward differencing has to be employed.

In the present work, the two-point backward differencing, with 82 - O,

has been employed.

for (_) from the governing differentialSubstituting equation

(3.1) into Eq. (3.16) gives

a )i+1 aE
i A i E A i-I E

= (I+82) A_ 82 At "

(3.17 a)

Equation (3.17 a) can be rearranged as follows:

A i E 8_ Ai-1 - _ A_ a i+1
= 1+ez E 1+e, _ (F-Fv)

a i
- _ At -_ (F-F v) (3.17 b)1+82

Substituting for the quantities at station (i+I) using the quasi-

linearization given by Eqs. (3.9) and (3.11), Eq. (3.17 b) can be

rewritten as

Ei _i+I _ E i . 82 At-1E - e--_L- A& a {(_i _ _ i) _i+I _ _ i}
1+8= 1+e= T6 -v v

- A6 1-81 a_ (F_Fv)i (3.18)
1+e= an

Equation (3.18) can be re-arranged to contain the unknowns at station

(i+I) in the incremental or delta form, by subtracting

+ e_.L. L {(At_§i)
1+8= an v

from both sides of Eq. (3.18) and is given as
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Here,

l+e= _n

. El _ _i _i _ _i-_
+ 1+82 E - A_ 1+e2

1+e= an v v
(3.19 a)

Ox

and B i _i = O. (3.19 b-d)
v

It may be important to recall that Eqs. (3.19 b,c) are obtained

from the definitions of the Jacobian matrices A and B, given by Eqs.

(3.9 b,d), and by using the homogeneous property [Eqs. (3.6)] of the

flux vectors E and F.

For an implicit scheme employing a two-point backward difference,

e_ -I and 82 " O. Hence, Eq. (3.19 a) reduces to the following.

• a i -i
_i _ + _ {(B _Bv) _i_}

a _i F i ) (3.20). E i _ _i _i - A_ _-_ (B i - v

The next step in the numerical procedure is the introduction of

upstream influence. For flows with strong viscous-lnviscid interaction,

as mentioned in Section 2.3, the streamwise pressure gradient term is

split according to Eq. (2.20) and upstream influence is introduced by
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forward differencing the '(l-u) ap/a_ , term.

the governing equation (3.1) can be written as

where

_p
DE + aF a (Fv) - - a --
a_ an an a_f

a
I

u u

J

0

(I-.,) _x,f

(I-,,,)Ey,f

0

With this 'm - split',

(3.21 a)

(3.21 b)

The subscript f on the pressure gradient term denotes that this

term is forward differenced and those on the metrics _x and _y denote

that these are obtained using coordinate values at station (i+2). This

representation of the metric terms was arrived at by applying the

procedure for a test case in which a fully developed flow was reproduced

in a straight channel using a coordinate system with metrics varying

along the streamwlse direction.

The flux vector E is different from E given in Eq. (2.16), in that

the pressure terms in it are multiplied by the factor m. It is given as

pU

* I

E - "7- puU + _x up

pvU + _y up

(Pet+P) U (3.22)

where U is the contravariant velocity given by Eq. (2.17 a).
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For low subsonic flows considered in the present study, according

to Eq. (2.19), m - O. This implies that the total streamwise pressure-

gradient term is forward differenced. Also, it is clear from

Eq. (3.21 a) that the streamwise pressure gradient term is no longer in

the SCL form. This necessitates that the pressure gradient term pn

should no longer be in the SCL form, as the starting governing equations

were written in the conservation form in Cartesian coordinates.

Accordingly, Eq. (3.21 a) must be written in the following form.

_E _F _P _ (Fv) - - a _p (3.23 a)÷_ ÷ b _-_-_-_ _f

where

I
b -

J

0

(I-_) nx

and F _ F - b p

i (l-m) ny

o
-t

(3.23 b)

. (3.23 c)

The procedure for quasi-linearization of Eq. (3.23 a) is similar to

that used to obtain Eq. (3.20). The resulting equation has an extra

source term on the right hand side, arising out of the pressure gradient

(_p/_)f term. The quasi-linearized form of Eq. (3.23 a) becomes

. E*i_ _*i_i

i+I AI+I- a p . (3.24)
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The asterisk on the Jacoblan matrices A and B denotes that these are

obtained from the corresponding flux vectors E and F , respectively.

A possible method of solution of Eq. (3.24) Is to employ an

alternatlng-dlrection explicit (ADE) method. In the first step of this

method, AIQ is computed starting at the inflow boundary and proceeding

towards the outflow boundary and in the second step, Ai+Ip is computed

starting from the outflow boundary and proceeding towards the inflow

boundary. Such a method requires the inclusion of a tlme-derivatlve

term, Pt' in the momentum equations containing (Sp/S_)f term, in order

to unlock the solution from its initial conditions. This method, llke

the pressure updating procedure used previously by K. Ghia and U. Ghia

[33], is capable of transmitting the downstream disturbances upstream

efficiently. It is, however, algebraically much simpler and has been

successfully used by Barnett and Davis [34], for solving supersonic

external flow problems.

With the inclusion of the time-derivative term, the governing

equation (3.23 a) assumes the following form.

_-_ + _ + b - _ (Fv) = - a _f + a
(3.25)

The quasillnearized form of Eq. (3.25) is obtained by utilizing Eq.

(3.24), in addition to dlscretizlng the (_p/_t) term as

1+1

(_t) " A'-'_-I (pl+l,n*l/2 - Pl+l,'n) (3.26)
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I+I,n+I/2 i,n+1/2
and quasilinearizing p about p . The resulting

equation is

_*i Ai_ + A_ [ __ {(_*i _ _) Ai_} + bi+1 --_ {(_p)i__ Ai_}
_n _Q

I+I

a {(_p)i Ai_ }]
At

_Q

*i _*i _i _ (_*i _i bi+1 _pi _ (_i)}
- E - - a_ {T_ ) + _n - T_ v

+ ai+1 A_ i,n+1/2 i+1,n) I{___ (p _ P _ Ai+ pn} (3.27)

The diseretization of the above equation in the n direction is

considered next. The discretization is performed such that the

discretized form of the inviscid portion of the equations constitute a

consistent set of equations by themselves; the viscous portion of the

equation is also discretized in a self-consistent manner. The inviscid

part of Eq. (3.27) is given by

-*i _ A i " I 3 (_p)i

8Q

i+l

a {(___p)i Ai_}]
at

_Q

+ ai+1 {_._(pA_ i,n+1/2 - pi+1'n) _ AI+I p} (3.28)

All normal derivatives are represented by central differences, with

the first-order derivative representation involving points across one

normal mesh interval only. The discretized equations are second-order
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accurate in the n direction. Equation (3.28) is written at a normal

mesh midpoint, J+I/2 , as

I -*i A_
{(_*i al_ )j + (A AI_ )j+1 } + _ [( _*i AI_ )J+1 - (_*i AI_)j

+ b) +l { --(aPI _ (ap i AI_)j}]+I/2 AiQ)j+l -
aQ aQ

A{ a]+l {(aPi AIQ )J+l + (apl Ai_
2 At +I/2 aQ BQ

)j}

I *i *i • _i)j- _ {Ej + Ej+I _ ( _'i _ ( _*i _i)j+1 }

An )j+1 - (B )j j+I/2 I }

1 a]+l [ A_ i,n+1/2 l+l,n)j++ "2 +I/2 _ {(p - p I

)j _ Ai+1 n] (3 29 a)+ (pi,n+I/2 _ pi+1,n } - Ai+1 P;+I PJ "

where

i+l I i+I i+I

aj+i/2 = _ (aj * aj+ I)

and

b]:1 1 ,bi+1 i+II/2 = 3 _ j + bj+1) (3.29 b,c)

In order to include the viscous terms at mesh point j, the inviscid

part of the equation should also be written at J. This is obtained by

writing a discretlzed equation similar to Eq. (3.29) at location (J-I/2)

and forming the arithmetic mean of this equation and Eq. (3.29). The

resulting equation is
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A_
4- -"--"--

2 An

r i+I

- _ Laj ÷I/2

I *i
---_ { Ej÷I

- (B )j-1
-*i i)j

2 An

i +1 (pij+I
+ bj,1/2

1 i'1 _._._{(pi,n*l/2 _ pi*l'n)j, 1

* --_ a j+l/2 At

i,n+I12

+ -_ aj_i/2 At

1 r i +1
- _" [aj+I/2

_
.i.I {(_p.iAi_ )J*_ _Q

+ bJ ÷I/2 BQ

+ bj_i/2 BQ @Q

@Q

i+I {(_2i AiQ)J + (_i Ai_)j_I} ]

+ aj-1 12 _ _Q

)j+1 + eJ-I -(A. _i)j_1 } + ._ {Ej .(_*i )j}

(p_,O i,_- Pj_l_

1+1
+ (pi,n*I/2 _ p ,n)j

i*1,n) + (pi'n+I/2 - pi+1'n)J -I}
- p j

+ Ai+1 n )]
i+I (Ai+I p_ Pj-I

(Ai+1 n + Ai+1 n) + aj_i/2PJ*I PJ

(3.30)
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The dlscretlzatlon of the viscous terms in Eq. (3.27), for example,

_(B_ AIQ)/_n , is considered next. The viscous flux vector Fv and the

Jacobian matrix B
v:

can be given as follows:

F =
v J Re

0

_l U + _3 V
n n

L s U + _'2 V
n n

t_ uu ÷ _, vv ÷ _, (uv)
n n n

U 2 + V 2

÷ _ (et 2 )n (3.31 a)

v J Re

where

0

- Z_ (_)n

- _'3 (v)
P q

- Za (_v)
p n

.......... l .... " ....

0 I 0 _0

........... i ........ I .....

_,2 (-_) n 0

t, (_u)
p n

, v) (1)+(_-_ ) (_ n _'_ n

= et - (u2+v2),

4 + nYzL s = _ _X2
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4 2

£2 " nx 2 + _ _y

and

£, = (nx ny)13

Y ( 2 + ny2) . (3.31 b-g)£_ s p--{ nx

It should be mentioned that when the term (B
V

AQ) is formed, the AQ term

should be contained in the n-derivatlves appearing in Eq. (3.31 b). A

_(B 5)
_n

]. Fortypical term of this product can be expressed as [a

example, for the element corresponding to the (2,2) location of

The discretlzation of a(B 6Q), a = Z_ , 8 = --I and 6 = A(_v).
v p

typical term _-_ {_ _n (8 6)} is performed by evaluating the quantity

in brackets at two successive mesh mid-points, such as (j+I/2) and

(j-I/2), and forming a difference expression at the mesh point j to

obtain a second-order accurate representation for this term. This is

outlined below.

_n

where

}
j = A--n _ (8 6))j+i/2 _ (8 6))j_i/2

I { (Sj - 8j 6 )}(a _-_ (8 6))j÷i/2 " A-_ aj÷I/2 +I 6j+I j

I (Bj 6j - 8j )}(a _-_ (8 6))j_i/2 " A--_{aJ-I/2 -I 6J-I "

and

(3.32 a-c)
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Using the discretization described by Eqs. (3.30) and (3.32), Eq.

(3.27) can be written in a compact form as

Aj AIQj_I + Bj AIQj + Cj AIQj+I = Dj .

The discretlzatlon described above applies at a general interior

point; the treatment of boundary points will be discussed in the next

section.

Equation (3.33), written at all the mesh locations J along a line

(i+I), results In a block-trldlagonal system of equations, with Aj, Bj

and Cj being (4x4) matrices. This system of equations, can then be

solved using L-U decomposition of the coefficient matrix of the system.

The implicit solution procedure for such a system can be found in

Ref. [35], by Anderson, Tannehill and Pletcher.

(3.33)

3.2 Details of the Solution Procedure

The solution procedure consists of two time steps. In the first

step, the solution proceeds from the inflow boundary towards the outflow

boundary, employing Eq. (3.25) to update Q . The pressure field is

updated in the second step of the procedure. This step proceeds from

the outflow boundary towards the inflow boundary. The outflow boundary

condition on pressure is directly employed during this step. These two

steps can be expressed as follows.

Rn+I/2 (_p]n + a f_p]n+I/2
Step I: - - a "B_'f "@t' (3.34 a)
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Step 2: Rn+I/2 - - a (_p]n+la_jf+ a r_p]n+1,atJ (3.34 b)

where R contains all terms in Eq. (3.25) except the pressure terms which

appear explicitly in the above equation. In Eq. (3.34), superscripts

denote time levels. Thus, for example, the superscript (n+I/2) denotes

that the time derivative is evaluated at time level (n+I/2). Backward-

difference approximations are used for the time derivatives, so that the

time derivative at (n+I/2) employs the pressure at time levels n and

(n+I/2).

A simpler equation for the second step can be obtained by

eliminating Rn+I/2 between equations (3.34 a) and (3.34 b). The

resulting equation is

_atjr_p]n+I/2 r_ap)_+1 + _atjf_p]n+1- {a_)f + = - _a_ (3.35)

The discretized form of Eq. (3.35) at station (i+1) is

(pi+2,n i+I A_ i+I,n+I/2 i+I n_ _ P ,n) + __ (p _ P , )
At

(pi+2,n+1 i+1,n+1 A_ i+1,n+1 i+I,n+I/2). _ - p ) + m (p - p (3.36)
At

i+1,n+1
From this equation, p can be solved for in an explicit manner as

i+I ,n+1 i+I )n i+2,n i+2,n+1
P = [P -p + p

+ A_ (2pi+1,n+1/2 i+1,n) A_A'E" - P ] / {I+_'E) (3.3?)

Equation (3.37) is applied along lines of constant n and the

pressure field is updated by marching upstream. The prescribed

condition on the pressure at the outflow boundary is imposed via the
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i+2,n+1
p term in Eq. (3.37). The two steps described above constitute

one global iteration, during which the flow solution is advanced from

the time level n to time level (n+1).

If the pressure terms are retained in the SCL form, then the

equation for the upstream marching step, corresponding to Eq. (3.35),

will be a set of two equations in the single variable p. This system

can be reduced to an equation similar to Eq. (3.35) by combining the two

equations after multiplying each of them by the appropriate metrics.

This is equivalent to taking a projection of the two equations along a

llne of constant _.

3.3 Updating of Velocity Profile at the Inflow Boundary

The reference velocity, U , characterizing the velocity _rofile
avg

at the inlet, needs to be updated before the next global iteration is

performed. This is necessary because at the inflow boundary the total

pressure and temperature are prescribed as boundary conditions, so that

U has to be guessed to initiate the solution procedure. The updating
avg

of U is as follows. At the inflow boundary, knowing the dimensional
avg

total pressure PO and the dimensional static pressure p (which is

evaluated through the upstream marching step), the local Mach number M

can be obtained using the isentropic relation

PO
m m

P

Y21 M2)7/_-I(I+ --=. (3.38 a)
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Then, using the dimensional total temperature T O prescribed at the

inflow boundary, the static temperature T can be obtained from the

following relation

TO"V - (1+ M')
T

(3.38 b)

The dimensional density p can then be found, using the equation of

state, as

p - p /R T . {3.38 c)

Knowing M = and T , together with the definition of the local sonic

velocity, the local dimensional speed V (- {u .2 + v'2}I/2), can be

determined from the relation

V 2 = M 2 ¥RT (3.38 d)

The Cartesian components of the velocity u and v can be

determined from the given flow direction, e, at the inlet so that

u = {V 2 /(1+tanZ8)} I/2 (3.38 e)

and

v - u tan8 (3.38 f)

The reference velocity U is then obtained using Eq. (2.6) and
avg

all the variables are then re-nondlmensionallzed.
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3.4 Convergence Criteria

The two steps of the solution procedure described in Section 3.2

are repeated until convergence is achieved. To test for convergence,

the maximum absolute value of the error (L®-norm) and the root-mean

square of the relative error (L2-norm) in the pressure field are

monitored. These are defined, respectively, as

max I I.1.IIMAxp] p]n
Cabs J-1 ,JMAX

and

i,n

JMAX IMAX Pj )2 }1121
ere I - { [ [ (I---i,n+1 (At IMAX JMAX)

j-1 i.I p_
J

(3.39 a,b)

< I0-4
Convergence is said to have been achieved when Cab s . and

E < 10-6
rel

3.5 Implementation of the Boundary Conditions along n = Constant

Boundaries

In the present study, the boundary conditions at the walls and, in

the case of cascade flows, along the wake boundaries are implemented in

an implicit manner, consistent with the numerical procedure employed in

the interior of the computational domain. The implicit treatment of

these boundary conditions in an otherwise already implicit solution

procedure removes the mesh spacing constraints encountered in an

explicit scheme and also aids in enhancing the convergence process.
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U " U
W

3.5.1 Wall Boundary Condition

As mentioned in Section 2.4.2, the zero-slip and zero suction/

injection conditions at the wall, together with the wall temperature,

are specified. These are written as

- O,

V = v = 0
w

and T = Tw

Expressed in terms of the increments in the variable

= (p, pu, pv, Pet)T, Eq. (3.40) yields

i+I " Ai i A i- u Alp + (pu) = p u ,

i+I " A i i A i- v Alp + (pv) = p v

(3.40 a-c)

i+I " i i i
and - e t Alp + A (pe t ) = p A e t (3.41 a-c)

In the above equation, all quantities with superscript (i+I) are

known from the conditions given by Eq. (3.40) and the right-hand side of

Eq. (3.41) can be evaluated using the known solution vector _i at

station i. The three equations given by Eq. (3.41), together with

either the continuity equation or the reduced y-momentum equation,

constitute the four equations at the wall boundaries.

3.5.2 Periodicity Boundary Condition for Cascades

For flows through cascades employing a 'llne-perlodlc' grid, the

periodicity boundary condition can be imposed in an implicit manner.

The periodicity condition, as described in Section 2.4.3, requires that

45



the flow variables have the same values at corresponding periodic points

along the wake boundaries. When this condition is imposed, the

discretized equation (3.33) assumes the following form.

At J-l,

A I AiQJMAX_I + B I AIQI + C I AiQ2-D I

and, at J-JMAX-I,

AjMAX- I AIQJMAX-2 + BjMAX_ I AIQJMAX-I ÷ CjMAX_ I AIQI - DjMAX_ I

(3.42)

(3.43)

He.re, JMAX is the index corresponding to the maximum value of n.

Equations (3.42) and (3.43), together with Eq. (3.33) written at each

interior normal mesh point j=2 through JMAX-2, form a system of

equations which is basically a tridiagonal system, except for non-zero

The corresponding coefficient matrix is shown below.

0 O A I AQ I

corner elements.

B I C I

A2 B2 C2 0 O

AjMAX-2 BjMAX-2 CjMAX-2

AjMAX-I BjMAX-I

AQJMAX-2

AQJMAX-_

0 0 0

CjMAX_I 0

D I

DjMAX-2

DjMAX-I]

(3.44)
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Here, A, B and C are (4x4) blocks, while AQ annd D are (4xi) blocks.

The procedure for solving the above periodic block tridiagonal system in

an implicit (non-iterative) manner is detailed in Appendix A.

3.6 Separated Flow Modeling

In this section, the approximations involved in obtaining the

governing equations in separated flow regions are described. It is

known that forward marching in space with the parabolized Navier-Stokes

equations in regions of reversed flow, that is, where the tangential

contravariant velocity component U is negative, is unstable. This

instability can be overcome if all the equations are forward

differenced in the regions of reverse flow. This requires that, in

addition to the pressure, the preceding iterate of the solution vector

be stored in these regions .

.°

Reyhner and Flugge-Lotz [36] have suggested a simple alternative to

this situation. They suggested that, in the reverse-flow region, the

convective term u _u/_x in the momentum equation be represented by C lul

_u/3x, where C is zero or a small positive constant. This

representation, known as the FLARE approximation, assumes that the

convective terms are small in regions of reverse flow and is valid when

the reverse flow velocities are small. This approximation is emploYed

in the present study also, by neglecting all the convective terms in the

momentum and energy equations in the reverse-flow region. Hence, in
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regions of reverse flow, the governing equations take the following

form.

When U - (_x u ÷ _y v) < 0 ,

8E + _F . __ (Fv) (3.45)

where

I
S _ --

J

pU

_x p

_y P

0

I
F am - u

J

pV

nx P

ny P

0

and F is as described earlier in Eq. (2.15).
v

3.7 Discretization of Metric Terms

The numerical representation of the metric coefficients arising

due to a general coordinate transformation from the physical domain to a

computational domain, given by Eq. (2.10), is described in _his section.

The metric coefficients, such as _x' _y etc., are obtained from the

derivatives Xn, Yn' etc., using the relation given by Eq. (2.13).

The discretization of the metric derivatives should be done in a

manner consistent with the dlscretlzation of the governing equations.

Hindman [37] has shown the appropriate representation of the metrics for

solving a l-dimensional wave equation, using MacCormack's scheme and

various forms of the governing equation, such as the strong-

conservation-law (SCL) form, the weak-conservatlon-law (WCL) form, etc.
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In his work, he employed a simple test of reproducing uniform flow,

starting with the entire computational mesh initialized with a uniform

flow and advancing in time, employing a selected numerical integration

algorithm. In the present study a similar test is performed to

determine the appropriate representation of the metric derivatives and

is detailed in Appendix B. As shown in the Appendix B, representation

of the transformed equations in the SCL form requires the following

relation

_x nx
cT) ÷ _ (7-). o

and

_Y _ (_!) . 0-_ (7-) • -_

be satisfied in the discretized form. This implies that the discretized

_x

representation of the q derivative in Yn (" _- ) should be the same as

that employed for the _-derivative in _-_ (y_); also, the G-derivatives

are to be discretized in a similar manner. The results are summarized

here.

At an interior point (i,j), the coordinate derivatives take the

following form.

xnli, j " (xi,j+ I - xi,J_1)/2An ,

Ynll,j " (Yl,J+I - Yi,J-1 )/2An '
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and

I

x{It, j " _-_ [(xi,j+ l - Xl_l,j. 1

1

+ _-_ (xl,j - xl_ 1,j)

) . (xl,j_I -xi_1,j_1)]

I

Y ll.J" [(yi,j+,- Yi-1 ,J+1 ) + (Yl,J-I -Yi-l,J-1 )]

I
+ _ (Yl,J - Yi-l,j ) " (3.46 a-d)

From Eq. (3.46), it is clear that the n-derlvatives are represented

by second-order accurate central differences and the {-derivatives are

represented as averages of first-order accurate backward differences.

At a boundary point J=JMIN or JMAX, the _-derivatives are

represented by

x£li,j " (xi,j - xi_1,j)/AC

and

Y{li,j = (Yi,j - Yi-l,j )/A£ " (3.47 a,b_

The n-derivatives at these boundary points are represented as follows.

At J = JMIN,

x I - (x -x. )/an
ql i,j i,J+1 z.j

Ynll,j = (Yl,j+1 - Yi,j )/An

and at J = JMAX,

Xnli, j = (xi,j - xl,j_1)/An ,

Ynll,J = (Yl,J - YI,J-I )/An " (3.47 c-f)
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CHAPTER 4

RESULTS AND DISCUSSION

The analysis developed in the present study and described in the

preceding two chapters is employed to solve the flow in constricted

channels and several cascade configurations. The channel configurations

considered here are the straight channel, which is employed primarily to

verify the analysis developed, and a channel with an exponential

constriction. The latter configuration is shown in Fig. 4a; its lower

boundary is represented by the relation

X - X
m 2

Yb,lower " Ct exp [- ( C2 ) ] (4.1)

where the subscript b denotes the boundary, x is the x location where
m

the maximum constriction is situated and C_ and C 2 are constants

controlling the maximum height and the extent of the constriction,

respectively. The equation for the upper wall of the channel is written

as

I (4.2)
Yb,upper - Yb,lower

The cascade configurations considered in the present study are the

flat-plate cascade and cascades with exponential, parabolic and

Joukowski airfoils. These configurations are shown in Figs. 4b-e. The

exponential airfoils are obtained using Eq. (4.1) for XLE _ x _ XTE,

where XLE and XTE correspond to the x locations of the leading and

trailing edges, respectively.

The parabolic arc airfoil is generated by the following equation:
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y C z + C 2 (x - xm )2 _ x _ (4.3)- , XTE XLE •

The Joukowski airfoil is generated by the following transformation.

where

z - x + ly

e L8and _ - C_ + C s . (4.3 a-c)

Here, C3 and C_ are real constants and C s is a complex constant.

The parameters C 3 and C S control the maximum thickness and the camber of

the airfoil. As only symmetric airfoils are considered in the present

study, C_ is real.

The results presented in this chapter have been obtained employing

a H-grid or a channel-type of grid. A simple H-grid is the sheared

Cartesian grid in which _ = _(x) and _ = _(x,y).

4.1 Resolution of Spatial Length Scales

In viscous flows, the flow variables vary rapidly near the walls.

To resolve these high gradients, a fine computational mesh is required

near these boundaries. A non-uniform mesh is most suitable as it can

provide a fine mesh in regions of high gradients without unduly

increasing the total number of mesh points.

The scalings obtained from the asymptot{c analysis of Stewartson

[38] indicate the order of resolution required for strong-lnteraction

problems. Accordingly, streamwlse mesh spacings should be of the order
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of magnitude of Re "3/8 and normal mesh spacings should be of the order

of magnitude of Re '5/8. In the grids employed in the present

calculations, at least five computational points are maintained within

these length scales in regions of separation and near the trailing edges

for cascade flows. The coordinate transformations employed to meet

these mesh requirements are discussed next.

In the streamwlse direction, variable mesh spacing Ax i is obtained

using a geometric series for Ax i and the resulting transformation can be

written in a parametric form as follows:

i-I
(r - I)

x i = Ax_ (r - I) '

_i = (i-I) At , i = I, .... ILE . (4.5)

Here, r is the stretching ratio, Ax_ the mesh spacing at the inflow

boundary, At the uniform computational mesh spacing and ILE is the

streamwise index corresponding to the leading edge location. Equation

(4.5) is used with different values of r in various regions such as the

airfoil surface and the wake, in order to obtain the required physical

mesh spacings.

In the n-direction, the following analytical transformation is

employed:

n = b + a tan (y-b) . (4.6)
C

The parameters a and c in Eq. (4.6) provide control over the grid-

point distribution. The constants a, b and c are obtained from the

following conditions.
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At y - Yb, lower: n - nml n and _y - S, a prescribed value.

At y m Yb, upper: _ " nmax " (4.7)

The slope S controls the spacing near the boundaries. The transformation

given by Eq. (4.6) is used to provide identical clustering near both

boundaries, given by y - Yb, lower and y - Yb, upper" Hence, b - 0.5.

A typical grid is shown in Fig. 5. Here, the grid clustering in

both the streamwlse and normal directions has been reduced to improve

clarity of the presentation of the coordinate lines in the figure.

4.2 Results for Flow in a Straight Channel - Validation Study

The analysis and the numerical procedure developed in the present

research are first tested via a model problem of flow in a straight

channel. For this purpose, a fully developed flow profile was

prescribed at the inlet boundary and the pressure field was initialized

so as to yield the known streamwise pressure gradient for a fully

developed incompressible channel flow. This streamwise pressure

gradient is given as

12 (4.8)
Px " "

The velocity and the temperature profiles at the inlet were

obtained not from their known analytical expressions but by numerical

solution of the governing equations for fully developed flow. This

ensures that, if the algorithm is formulated in a consistent manner, the

application of the procedure should recover the a fully developed flow

throughout the entire channel.
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This testing procedure was applied to the straight-channel

configuration with metrics varying in the streamwise direction. From

this study, it was found that the metric terms _x and _y, which are

associated with the streamwise pressure-gradient term p_,f, should be

forward differenced. Also, it was found necessary that the streamwise

pressure-gradient term should no longer be in the SCL form. The proper

form of the pressure-gradient terms should be as given in Eq. (3.21) in

Chapter 3.

4.3 Results for Channels with Exponential Constriction

The geometry of this channel is represented by Eq. (4.1) and is

shown in Fig 4a. Results are obtained for three values of the ratio

t/h of the maximum constriction to the channel width, viz., 0.1, 0.16

and 0.2, for Re : 1500. The Reynolds number is based on the average

velocity and channel height at the inlet station. As mentioned in

Section 2.4.1, the inflow boundary conditions correspond to a fully

developed flow in a straight channel.

Figure 6a shows the distributions of the wall-pressure variable Pb

and the wall shear parameter _ for the case of t/h = 0.1. The wall-
w

pressure variable Pb is defined as the difference between the pressure

at the wall at a streamwise location i and that at the inlet boundary

and can be written as

Pb " Pw, inlet - Pw, i

The wall shear parameter is defined as

(4.9 a)
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_Utgt I (4.9 b)Tw " _n wall

where Utg t is the velocity tangential to the body surface and n is the

direction normal to the body. From Fig. 6a(i and ii), it is clear that

Pb varies linearly in the straight portion of the channel and behaves

approximately similar to the body surface shape in the region of the

constriction. From Fig. 6a(i), the pressure loss Ap across the

constriction can be obtained to be 0.00875. From figures 6a(ill and

iv), it can be seen that, far upstream and downstream of the

constriction, T is asymptotic to the value of 6, corresponding to a
w

fully developed flow. The tendency of the flow to separate downstream

of the constriction is indicated by the wall shear parameter approaching

the value of zero. The grid employed for this case consists of

(141 × 61) points. T_e value of _Xmi n is 0.008 which occurs at

locations upstream anc downstream of the maximum constriction where the

flow is anticipated tc separate. The minimum mesh step _Ymin employed

-3
in the y direction in the straight portion of the channel is 5.7 x 10

Figures 6b and 6c show the wall pressure and the shear-parameter

distribution for t/h of 0.16 and 0.2. From Fig. 6b(i), the pressure

loss across the constriction can be obtained as 0.02, approximately.

It is clear that the flow has separated downstream of the constriction,

as indicated by the negative values of Tw in Fig. 6b(iv). The results

corresponding to the case of t/h - 0.2 are shown in Fig. 6c. Comparison

56



of Figs. 6b and 6c shows that the extent of separated region increases

as t/h is increased from 0.16 to 0.2.

The pressure loss across the constriction, some information about

the grid and the location of the inflow and outflow boundaries with

respect to the constriction are shown in Table I for the three cases

discussed above. One of the important factors in obtaining the above

results is the appropriate location of the inflow and outflow boundaries

with respect to the maximum-constrlctlon location. These locations are

obtained by numerical experimentation, so as to ensure that the flow

near these boundaries is nearly fully-developed. Accordingly, as shown

in Table I, for the case of t/h = 0._, the inflow boundary should be

located at least 5 channel heights upstream of the maximum constriction

and the outflow boundary at least 18 channel heights downstream of the

position of the maxiimum constriction. Moreover, these boundaries mus:

be moved further away from the position of the maximum constriction as

the ratio t/h increases. It is also observed that the pressure loss

across the constriction increases with increase in t/h.

Figure 7 shows the streamwise velocity profiles across the channel

at various streamwise locations for the case with t/h _ 0.2. From the

enlarged-scale profiles shown in Fig. 7b, a small region of reverse flow

can be "observed.

Through this study of the flow in constricted channels, the

analysis has been tested for a variable cross-section channel and for

separated flows. The regular behaviour of the flow solution in the
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presence of separation establishes that the IPNs formulation includes

the appropriate strong upstream interactions occurring in this flow.

4.4 Results for Flat--Plate Cascades

The configuration for this cascade geometry is shown in Fig. 4b.

The primary purpose of examining these flows was to test the implicit

implementation of the periodicity boundary condition for cascade flows

and to test the validity of the IPNS formulation in the strong-

interaction flows around sharp (cusped) leading and trailing edges.

Results are obtained for various values of Re ranging from 1500 to

16,O00 and are shown in Fig. 8a-e. All of these results are obtained

employing a grid containing (186 x 71) points. The point distribution

is such that AXLE is 0.01 and AXTE is approximately 0.005. The step

size in the y-direction at the wall is 1.225 x 10 -3 As menticned in

Section 2.4.1, the inflow boundary conditions for this configuration,

consist of the specified values of total pressure and total temperature,

while static pressure is prescribed at the outflow boundary.

Figure 8a(i) shows the distribution of the pressure Pb and the

wake-centerline velocity. The corresponding behaviour of Pw is inferred

easily through Eq. (4.9 a). As the leading edge is approached, the

pressure Pw rises to its maximum value and drops rapidly immediately

downstream thereof. There is a gradual pressure drop in the flat-plate

region, until the trailing edge, where a sharp drop occurs. Thereafter,

the pressure rises smoothly to approach the prescribed value at the
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outflow boundary. The wake-centerllne velocity shows a smooth

streamwlse variation and is asymptotic to a value of unity near the

outflow boundary. The wall shear, shown in Fig. 8a(iv), attains a

maximum at the leading edge in an almost singular manner while

exhibiting a small peak near the trailing edge of the cascade. The

behaviour near the trailing edge is due to the sudden change In the

boundary condition. Along the wall, the velocity component u was

prescribed to be zero and along the wake centerllne, u is zero. Hence,
Y

there is a discontinuity in u , which is the primary contributor to the

wall shear parameter. Through all this nonlinear behaviour, including

that due to the sudden changes in boundary conditions at the leading and

trailing edges, the solution is quite regular, confirming again that

upstream influence is appropriately included in the IPNS model.

Qualitatively, similar behaviour is observed for Re : 3100 to 16,000, as

shown in Figs. 8b-e.

Figures 9a and b show the distribution of Pb and _w for various

Reynolds numbers. With increase in Re, the peak in Pb at the trailing

edge decreases, whereas that in _ increases.
w

4.5 Results for Cascades of Exponential Airfoils

The exponential airfoil cascade geometry is as shown in Fig. 4c.

The computational grid, the point distribution and, hence, the mesh

sizes employed are the same as for the flat-plate cascade configuration

discussed in the previous section.
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4.5.1 Effect of Thickness

Figure 10a-c shows the distributions of Pb and _w for an

exponential airfoil cascade for Re - 1500 and thickness ratios (t/c) of

0.05, 0.075 and 0.1. Near the leading and trailing edges, the behaviour

of pressure is similar to that for the cascade of finite flat plates.

In the region of the airfoils, as the overall flow accelerates up to the

maximum thickness location, the pressure falls to a minimum, while the

shear parameter increases to a local maximum. The pressure and wall-

shear parameter distributions for various values of t/c are shown in

Figs. 11a and b, respectively. Superimposed on these figures are the

corresponding flat-plate cascade results, i.e., the case of t/c =0.

From Fig. 11a, it is clear that the maximum Pb increases with increase

in t/c, while the peak at the trailing edge diminishes. The value of T
w

at the maximum-thickness location also increases with increase in t/c.

The tendency for the flow to separate downstream of the maximum-

thickness increases with increase in t/c. This can also be inferred

from the pressure gradient, which becomes increasingly adverse in this

region as t/c is increased. Also, the extent and intensity of the

separated region are reduced, in comparison with the corresponding

channel flow. This is because of the upstream influence of the higher

velocity of the fluid downstream of the TE as compared to that of the

fluid downstream of the constriction in the channel with zero slip at

the walls.
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4.5.2 Effect of Reynolds Number

Results for various values of Re between 3_00 and 15,000 are shown

in Fig. 12a-d. The qualitative behaviour of the flow properties

examined for this range of Re is similar to that for Re = 1500,

discussed in the previous section. Figure 13 shows the effect of Re on

the pressure and wall-shear distribution. From Fig. 13a, it can be seen

that the magnitude of Pb at the maximum-thickness location decreases

with increase in Re. The pressure peak near the trailing edge also

diminishes with increase in Re. It can also be seen that the pressure

gradient downstream of the maximum thickness becomes increasingly

adverse with increase in Re. A similar behavior in pressure can be

seen, to a smaller degree, upstream of the maximum thickness. The

possibility of flow separation in these adverse pressure-gradien_

regions is evident from the distribution of _ shown in Fig. IZb° Inw

fact, for the case of Re = 15,000, a small separated region is cresent,

as indicated by the negative values of _w" It is also evident that the

separation region is centered around a point situated downstream of the

maximum-thickess position and upstream of the trailing edge, i.e., as Re

is increased, the separated region extends in both directions about this

point. The analyses of H.K. Cheng and F.T. Smith [39] and Smith,

Stewartson and Kaups [40] show similar results around a cusped trailing

edge.
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4.5.3 Effect of Grid Refinement

The effect of grid refinement is important in order to establish

the reliability of the solutions obtained, especially when there are no

experimental results with which to compare. Therefore, in the present

study, the streamwise grid is refined in the region downstream of the

maxlmum-thickness location, in order to study its effect on the

separated region. For all the cases discussed in the previous section,

the streamwlse step Ax t (i.e., Ax near the maximum-thlckness location)

was approximately 0.045 and the streamwise step size decreased graduall_

to a value of 0.005 near the trailing edge. In the grid-refinement

study, a finer streamwise grid in this region was obtained by ensuring

that Ax t _ 0.025 and AXTE = 0.005, and employing a computational grid

consisting of (191 x 71) points.

A comparison of the results obtained employing the two grids, for

Re - 1500 and 15,000, are shown in Figs. 14a and 14b, respectively. The

wall-shear distribution agrees well and, in the case of Re = 15,000, the

extent of the separated region remains almost the same, as seen from

Fig. 14b(ii). Grid refinement has a slightly more significant effect on

the pressure distribution, particularly for the case of Re = 15,000. In

that case, the peak near the trailing edge diminished with grid

refinement.

4.6 Results for Cascades of ParabDllc-Arc Airfoils

A schematic of this cascade configuration is shown in Fig. 4d.

the results discussed in this section are obtained employing a grid
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consisting of (186 x 71) points, with the streamwlse mesh sizes near the

leading and trailing edges being 0.01 and 0.005, respectively.

4.6.1 Effect of Thickness

Results in the form of the distribution of Pb and _w are shown in

Figs. 15a-c, for t/c of 0.05, 0.075 and 0.1. Figure 15a(ll) shows the

pressure distribution and the development of the wake-centerllne

velocity for the case of t/c - 0.05. An important difference between

the pressure distribution for an airfoil with a wedge-shaped trailing

edge such as the parabolic-arc airfoil and that for an airfoil wlth a

cusped trailing edge such as the exponential airfoil, Is that at the

trailing edge the peak in the Pbdistribution for the exponential airfoil

cascade is replaced by a slope discontinuity for the parabolic-arc

airfoil cascade. Also, from Fig. 15a(iv), it can be seen that the peak

in the _ distribution at the trailing edge has diminished compared to
w

that at a cusped trailing edge. From Fig. 16a, it is seen that Pb at the

maximum-thickness location increases with increase in thickness ratio

and the pressure gradient on the downstream side of maximum-thickness

location becomes increasingly adverse. The wall-shear distribution

exhibits a cross-over, with a small separated region near the trailing

edge for the case of t/c - 0.1.
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4.6.2 Effect of Reynolds Number

Figures 17a-d show the results for various Re ranging from 3100 to

15,000. From the velocity distribution in Fig. 17c(ii) and the wall-

shear distribution in Fig. 17c(iv), corresponding to Re - ;1000, it can

be seen that a separated region exists, starting at a point upstream of

the trailing edge, with the flow reattaching at a point in the wake.

Further increase in Re results in the movement of both the separation

and reattachment points away from the trailing edge. Therefore, for

flows about wedge-shaped trailing edges, the separated region is

centered at the trailing edge. This is due to the continued

deceleration of the fluid up to the wedged TE whereas, for cusped

trailing edges, the deceleration decreases as the fluid approaches the

cusped TE. This result is also supported by the analysis of Cheng and

Smith [39]. Comparison of the pressure and wall-shear distributions fcr

the various values of Re discussed above is shown in Fig. 18.

4.6.3 Effect of Mach Number

In all of the results discussed so far, M® was approximately 0.008.

Results have also been obtained for Math number ranging from 0.035 to

0.49 and are shown in Figs. 19a-c. All of these results are obtained

for Re - 15,000. Figure 20a shows that the effect of compressibility,

resulting from the increase in M®, becomes apparent on the wall-pressure

distribution only for the case with M - 0.49. But the wall-shear

distribution as well as the extent of separation remain almost unchanged
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for all Machnumbervalues considered. This result is due to the fact

that the strong trailing-edge singularity overwhelms the effects due to

the Machnumber change, in the range considered. Figure 21 shows the

contours of the static pressure p, for M = 0.49 and Re _ 15,000.

4.6.4 Effect of Grid Refinement

In order to ensure the accuracy of the behaviour of the flow near

the wedge-shaped trailing edges discussed above, it was considered

necessary to refine the grid in this region. Hence, results were

obtained employing a grid consisting of 231 points in the streamwise

direction, so that the AXTE _ 0.001. Results obtained using this grid

are compared with those obtained with the grid of (186 x 71) points as

discussed above, for Re = 3100 and 11,000, and are shown in Figs. 22a

and 22b, respectively. The shear parameter _ remains unaffected byw

this grid refinement for the two values of Re considered here. Althou_n

there is a slight shift in the level of the pressure as a result of

refining the grid, the behaviour near the trailing edge remains

unchanged.

4.7 Results for Cascades of Joukowski Airfoils (Modified Leading Edge)

The cascade configurations considered in the previous sections were

made up of airfoils with either cusped or wedge-shaped leading edges.

The procedure developed in the present study was applied next to cascade

passages with rounded leading edge blades such as the Joukowski airfoil,

for which a typical configuration is shown in Fig. I. This

65



configuration presented somedifficulties to the numerical solution in

the leadlng-edge region. These difficulties were traced back to the use

of the sheared Cartesian grid for these cascades. It was observed that

this type of grid exhibits a large discontinuity in the coordinate-

transformation metrics at the leading edge. Hence, the leading-edge

region was modified by replacing it with a wedge, as shown in Fig. 4e.

Results have been obtained successfully for the modified configuration,

even with the sheared Cartesian grid, for Re - 150 and 310, and are

shown in Figs. 23a and 23b. The computational grid employed consists of

(121 x 61) points and the value of the ratio t/c for the airfoil is

0.068.

Figures 23a(i) and 23b(i) show the Pb distribution and the

development of streamwise velocity along the wake, for Re =150 and 3TO,

respectively. It is evident that, as Re is increased, the peak in the

Pb distribution near the trailing edge diminishes, as would be expected

for flows over cusped trailing edges and as observed for the

exponential-airfoil cascade. The wall-shear distribution, shown in

Figs. 23a(il) and 23b(ii), has a slope discontinuity near the maximum-

thickness location. This is primarily a reflection of the discontinuity

of the slope of the body surface where it changes from the wedge to the

Joukowskl-airfoil profile.

The difficulty in resolving the flow near the rounded trailing

edges with an H-type grid arises mainly due to the orientation of the

grid in this region. To circumvent this problem, a body-orlented grid

such as a C-grid is more appropriate for rounded leading-edge blades and
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should be employed. Therefore, a major effort was directed, in the

present study, to develop a hybrid C-H grid which Judiciously employs

both C- and H-grlds, thereby benefiting from the advantages of both of

these types of grids. The generatlon and implementation of the C-H grid

for a cascade of airfoils with rounded leading edges is discussed in the

next two chapters.

_.8 Convergence Study

A typical convergence history of the solution is shown in Fig. 24

in terms of the maximum absolute error and the relative r.m.s, error in

pressure, for the case of the parabolic-arc airfoil of thickness ratio

0.05 and Re = 6300. From this figure, it can be seen that convergence is

achieved in approximately T60 iterations. All the other cases discussed

in the previous sections also required a similar number of iterations.

The definition of the errors and the tolerances used in the present

study are described in Section 3.4. In all the results presented thus

far, 3 local iterations were performed at each streamwise location in

order to update the non-linear terms. It was found that quasi-

llnearization about a previous streamwise location was insufficient,

especially in regions of large streamwise pressure gradients, such as

the leading- and trailing-edge regions. Finer streamwise steps alone

cannot resolve these high gradients due to their near-singular

behaviour.

In order to study the effect of the time step At associated with

the pressure gradient term (Eq. 3.25), a simple case of the flat-plate
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cascade was considered. A constant step size of Ax = 0.05 was employed

for this case. The decay of the maximumabsolute error and the relative

r.m.s, error in pressure was studied for various values of At in the

range between 0.03 and 0.1. The corresponding convergence histories are

shown in Fig. 25. For all values of At used, the convergence behaviour

is identical for approximately the first 20 iterations. Beyond this

stage, the convergence rate increases as At is increased from 0.03 to

0.06 and decreases with further increase to a value of 0.1. For the

value of At _ 0.06, a total error-reduction of approximately 6 decades

is achieved in 200 iterations. Hence, it is observed that the procedure

is rather sensitive to the value of the time step At used.

The convergence behaviour for a flat-plate cascade with variable

streamwise meshsize was also studied. For this case, the meshwidth

was varied according to Eq. (4.5). Also, At was varied in the

streamwise direction, according to the following relatien:

_t i = C (xi+ I - xi) (4.10)

Here, C is a constant and subscript i denotes the streamwise location.

Figure 26 shows the convergence history for various values of the

parameter C. It is clear that for the first 40 iterations, the

parameter C does not affect the convergence rate. Thereafter, an

increase in C results in faster convergence rates, for the range of C

considered in the present study.

Finally, a convergence study was performed for the cascade with

exponential airfoils with t/c _ 0.05 and Re s 1500. The grid employed

for this study consisted of (191 x 71) points. Figure 27 shows the
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convergence history for values of C ranging from 2 to 5. As C is

increased from 2 to 4, the convergence rate improves, but further

increase in C results in a slower convergence rate. It can be seen that

the slope of error curve for C = 3 is steeper than that for 4 so that

C = 3 may be considered as a near-optimum value. Then, with At./Ax. =
I i

3, results were also obtained for Re : 25,000 for a cascade of

exponential airfoils and are shown in Fig. 28.
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CHAPTER 5

GENERATION OF HYBRID C'H GRID

5.1 Introduction

The success of a numerical method for analyzing viscous flows in

complex configurations depends on the proper choice of a coordinate

system. It is usually desired that these coordinates be aligned with

the problem boundaries. Also, as the governing equations of motion in

the present study (see Chapter 2) involve a parabollzing approximation

in the streamwise direction, it is important that the coordinate system

employed be body-oriented and near-orthogonal.

For the study of subsonic viscous flows around isolated airfoils,

two types of grids are often used. These are the O-grlds and the C-

grids. For analysis of flow through cascade passages formed by

airfoils, the H-grid or the channel type of grid and the C-grid

configurations are commonly used. Sockol [41] and Dulikravich [42] have

generated C-type of grids for cascades. A typical C-grid is shown in

Fig. 29a. Steger et al. [8] have also employed C-grids for calculations

of viscous and inviscid flows through turbomachinery cascades. The C-

type of grids are especially suited for subsonic viscous flow

calculations, as they provide good resolution near the rounded leading-

edge regions of the blades. From the results described in the previous

chapter for flow through a cascade of Joukowski airfoils, it is clear

that the channel type or H-grid is inappropriate, particularly near the

rounded leading edges. A C-type of grid is satisfactory in most regions

of the cascade flows, except further upstream of the stagnation point on

70



the blades. In this region, the grid density decreases rapidly with

increasing distance upstream of the stagnation point. A possible means

of minimizing this difficulty is to employ a channel or H-grid in the

upstream region. Eiseman [43] has employed Cartesian extensions to an

O-type of grid for cascades, in the regions upstream of the leading

edges as well as downstream of the trailing edges.

Channel grids have been widely used for cascade-flow analyses.

Chima and Johnson [10] have employed the H-type of grid for solving the

Euler and NS equations through a cascade of bicircular-arc airfoils.

Channel grids are easy to generate and can be conveniently aligned with

the inflow. Also, implementation of the periodicity boundary condition

is easy for cascades with low stagger angle. In this case, a grid line

emanating from a particular point on the lower boundary ends at the

corresponding periodic point on the upper boundary. With this grid

distribution it is also possible to impose the periodicity ccndi_ion in

an implicit manner (Ref. [44]). This H-grid distribution is termed

'line-periodic' and is shown in Fig. 29b. For cascade configurations

with large stagger or when the blades have rounded leading edges, the

line-periodic H-grid becomes highly skewed and non-orthogonal. If this

H-grid is modified to minimize the non-orthogonality, the implicit

imposition of periodicity has to be sacrificed. A typical modified H-

grid is shown in Fig. 29c and is called a 'region-periodic' grid. In

this type of grid, the point distribution along the upper and lower

boundaries is periodic, but corresponding periodic points are not

connected by the same coordinate line.
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Therefore, a suitable grid for cascade flows is one that combines

the advantages of both the C- and H-grids while minimizing their

disadvantages. This results in a multi-rectangular computational domain

in terms of the transformed coordinates. The multi-block structure and

the generation of such a grid are described in the following sections of

this chapter.

5.2 Multi-Block Structured Grids

The flow region in the physical domain can be subdivided into

several sub-regions, depending on either the geometrical complexity of

the configuration or the need for different types of grids in various

regions, as mentioned in the previous section. These sub-regions are

termed 'blocks' Lee et al. [45] have generated a 3-D body-fitted

coordinate system around a wing-body-nacelle configuration by dividing

the computational domain into multiple rectangular blocks. A single

rectangular block in the computational domain would be insufficient to

resolve the various physical corners of this complex configuration.

Multi-block structured grids have also been employed for the complex

geometries of the tri-element augmentor wing by Sorenson [46] and the

breaking surface wave by U. Ghia et al. [47]. Also, Coleman [48] has

employed multiple segments for generating alternate grids for flow over

single airfoils. The O-type of grid with Cartesian patches for a

cascade generated by Eiseman [43] can also be viewed as a multi-block

structured grid.
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Multi-block structured grids can be broadly classified into two

types. The first type consists of 'patched' or 'zonal' grids where the

various blocks share a commonboundary called the interface. The other

type of grids consist of 'overlaid' or 'overset' grids. In this case,

the various blocks do not have a commonboundary. The idea of overset

grids has been pursued by Steger [49] in his development of the Chimera

grid, which has also been extended to three dimensions by Benek et al.

[50]. A typical overset grid is shown in Fig. 30a. The solution of the

flow equations employing this type of grid requires additional transfer

of information across the boundaries of various grids.

Patched grids can be further classified into joint and disjoint

types of grids. The disjoint patched grid is one where the family of

the coordinate lines crossing the patch interface are discontinuous

across the interface, as shown in Fig. 30b. In the joint type of grid,

shown in Fig. 30c, the coordinate lines are continuous across the

interface, although their slope may be discontinuous across the

interface. These gradient discontinuities are present when the

coordinates in each of the sub-regions are generated separately and

patched together. Someof these discontinuities can be relieved by

suitable modification of the boundary-point distribution along the

interface, followed by regeneration of the coordinates in the regions

affected by this redistribution. These slope discontinuities can be

eliminated by generating the coordinates in all the sub-regions

simultaneously, without specifying the boundary-point distributions
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along the interface. The disadvantage associated with a such a

procedure is that the computer program can become quite complicated,

depending on the number and orientation of the blocks employed to define

the complex physical configuration. The latter direct multl-block grid

generation concept has been employed by U. Ghla et al. [21] and Coleman

[48]. The composite grid-generatlon procedure developed by U. Ghla et

al. [21] is employed in the present study and the details are discussed

in the next two sections.

5.3 Computational Domain for Hybrid Cascade Grids

For a general staggered cascade, the physical domain can be divided

into sub-regions as shown in Fig. 31. The region BCD'B' is the portion

of the C-grld adjacent to the upper surface of the lower blade. The

regions BIHG and E'D'EM are the channel or H-regions. The computational

regions corresponding to these sub-regions are shown in Fig. 32. Points

E" and B" are 'special-points' at which 5 sub-regions come together.
c c

'Special-points' commonly occur on the domain boundary or on the

interfaces between sub-regions in a multi-block grid system. These

points either have a non-standard number of immediate neighbours when

they are the vertices of a computational cell or have a non-standard

number of faces when they are the cell-centers, as illustrated in Fig.

33.

For the ease of visualization, the multi-block structured grid in

the 2-D physical plane is best represented by a 3-D surface in the
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computational domain. Thls 3-D surface is obtained by bringing the sub-

regions in Fig. 32 together, along the arrows. The subreglons BCG'B"
c

and IBB"L are bent out of the plane of the paper at the speclal-polnt
c

B". Similarly, the sub-reglons HKG"G, GG"E"Bc I and CIBIE"E'c are bent at

E". The resulting computational domain Is shown in Flg. 34. For a

cascade wlth zero stagger, the sub-reglons _ =,,n,,n G"E"B'B" and_I_0 _' c c

B"B'D'G' are not needed. The sub-reglon boundaries in the physical
c

domain for the unstaggered grid are shown in Fig. 35. The solution

procedure for generating the coordinate system is discussed in the next

section.

5.4 Solution Procedure

The numerical transformation procedure consists of determining the

boundary-oriented coordinates as the solutions of the following Poisson

equations:

Vz_ = P (5.1 a)

and

V2n = Q (5.1 b)

where V 2 is the Laplacian operator in Cartesian coordinates,

(_,_) are the transformed surface-oriented coordinates and

P and Q are the forcing functions used to provide control on the

coordinate clustering and orthogonality.

The boundary conditions used for the governing equations (5.1) are
t

of the Dirlchlet type. These consist of the prescribed values of x and
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y along the boundaries _ = _min and _max and n = nmi n and _max" In

order to implement these boundary conditions, the roles of the

independent (x,y) and dependent (_,_) variables have to be interchanged.

Detailed analysis of this inversion is given by U. Ghia and K. Ghia [51]

and the resulting 'inverted' equations can be written as follows:

+ 2b + c x + J2 (P x_ + Q x ) = 0a x_ X_n nn n

and

+ 2b + c + j2 (p Y£ + Q yn) = 0a y&_ Y£n Ynn

2 2

where a = xn + Yn

b : - {x£ xn ÷ y_ yn ) ,

2 2

e = x_ + y_ ,

and J = x__ Yn x y (5.2)n

In the present study, the alternating-direction implicit (ADI)

method is employed to solve the governing equations (5.2). The

computational domain for the D- and the _-implicit sweeps of this

procedure can be obtained from Fig. 34 and are shown in Figs. 36a and

36b, respectively. In Fig. 36, points denoted by alphabets with

superscript ÷ or -, refer to the neighbouring points. It should be

noted that the subregions IL-B_B- + - +G"R',R-, HK G G" and G _ -I-I are encountered

twice in the n-implicit sweep and, hence, the solution in these regions

at the end of this sweep is already at the (n+1) level of the ADI
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procedure. Therefore, these sub-regions must be excluded from the

computational domain in the _-implicit sweep.

The treatment of various derivative terms that appear in Eqs. (5.2)

needs special considerations around the points B" and E". In thec c

present study, these special points are considered to be the center of a

non-standard, 5-sided cell. The selection of the appropriate

neighbouring points involved in the discretized form of the governing

equations at the vertices of the 5-sided cells is detailed in

Appendix C.

5.5 Typical Grids

Figure 37a shows the hybrid C-H grid generated for a staggered

cascade using the composite procedure just described. This grid is

region-periodic and consists of 1620 points. The coordinates are

uniformly spaced at the inflow boundary and are clustered along the

wake. Figure 37b shows a hybrid grid for an unstaggered cascade of

Joukowski airfoils. This grid is line-periodic and consists of 7103

points and is employed for obtaining a flow solution also using a

composite solution procedure. This procedure for calculating the flow

through a cascade employing a hybrid C-H grid is discussed in the next

chapter.
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CHAPTER 6

DETERMINATION OF FLOW THROUGH JOUKOWSKI CASCADE

USING HYBRID C-H GRID

In the preceding two chapters, the inadequacy of the H-grid or the

channel type of grid to resolve the flow around rounded leading edges,

was pointed out. Also, the difficulties of using C-grlds for cascade

flows were discussed simultaneously. The disadvantages of using these

grids in certain regions of cascade flows were observed. Hence, a

viable alternative grid is the hybrid C-H grid. Thls hybrid grid, with

its associated multiple rectangular computational domain, was developed

in the preceding chapter, for use with cascade-flow studies. Analysis

of flow over complex geometries, using multi-block structured grids, has

been performed by many researchers. Benek, Steger and Dougherty [52]

have employed overset grids to obtain the solution of the Euler

equations about a supercritical flapped airfoil. They observed that the

solution in the transonic regime exhibited an ill-defined shock at the

grid boundaries. Eberhardt and Baganoff [53] developed characterestic

boundary conditions, which alleviated the above mentioned difficulty.

Norton, Thompkins and Haimes [18] have employed a patched grid of the

joint type, consisting of sheared grids and O-grids, and a cell-centered

implicit scheme to solve the complete Navier-Stokes equations for flow

in turbine cascades. Rai [19] has used a system of patched and overlaid

grids and obtained the solution of the thln-layer Navier-Stokes

equations for a rotor-stator combination. When such a grid is employed,

the solution on one grid system at the patch boundary has to be
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interpolated and the boundary condition for the other grid system should

be obtained in a manner that conserves all fluxes crossing the interface

boundaries. In the present study, the semi-elliptlc analysis developed

in Chapter 2 is employed to determine the flow through a cascade of

Joukowski airfoils, using the hybrid C-H grid described in the preceding

chapter. The solution procedure for the governing equations of motion

on the hybrid grid is described next.

6.1 Computational Procedure

The solution procedure used with the hybrid grid is, in principle,

similar to that for the H-grid and consists of two steps, as described

in Section 3.2. For a hybrid C-H grid, these two steps are represented

schematically in Fig. 38. The regions denoted by HI and H2 correspond

to the H-grid regions of the hybrid grid and the regions CI and C2

correspond to the two C-regions. The first step of the solution

procedure, during which the flow variables Q are updated from time level

n to (n + I/2), is denoted by a thin arrow; the second step, in which

the pressure field is updated from time level (n+I/2) to (n+1), is

denoted by a thick arrow. The computation proceeds from the inflow

boundary of region HI, with Q being updated first in this region. The

boundary conditions used at the upper and lower boundaries in this

region are the periodicity conditions, described in Section 2.4.3.

Next, the first step of the solution procedure is applied to region CI.

In order to employ a marching type of procedure, conditions should be

prescribed along a line such as AB, in Fig. 38b. The flow conditions
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along AB are obtained from the solution along the corresponding periodic

line EIF I at the time level n. When the first step of the solution

procedure is applied to region C2, the flow conditions along AIB I could

be obtained from the latest available solution along the line EF. But,

in the present study, in order to retain symmetry, even in the transient

stages of the solution procedure, the flow conditions along AIB I are

obtained from the solution along EF at time level n. The boundary

conditions in the C regions are the no-sllp condition and the prescribed

temperature at the airfoil surfaces, while boundary conditions at the

interface are obtained from the solution in region HI. These interface

boundary conditions are discussed in a later section of this chapter.

Next, the solution in region H2 is obtained by marching, knowing the

solution along the outflow boundaries of region HI and the two C

regions.

The second step of the solution procedure, during which the

pressure field is updated, proceeds from the outflow boundary. The

outflow boundary condition on pressure is applied directly during this

step. Using Eq. (3.37), the pressure field is updated from a time level

(n+I/2) to (n+1) in region H2 and then in the two C regions. This step

of the procedure is then continued into region HI, knowing the values of

n+1
p along the boundaries of the C region at the C-HI interface and the

first computational line in the region H2. The flow variables at the

inflow boundary are updated as discussed in Section 3.3. The two steps

are repeated until convergence is achieved.
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6.2 Verification via a Mathematical Model Problem

The correctness of the formulation and programming of the solution

procedure on the hybrid C-H grid was checked through application to a

model problem. The verification of the scheme by recovering the known

solution for fully developed flow in a straight channel cannot be

employed here, as the C-H hybrid grid is not appropriate for this

configuration. Hence, a mathematical model problem is employed. In

order to check the first step of the solution procedure, the system of

governing equations, given by Eq. (3.23) is considered and can be

written as

_F _P _ _P (6 I)
DE + m + b m (Fv) = - a _
_-'_ _n _ _n _f

The quasi-linearized form of this equation is obtained from Eq.

(3.24) and is

~*i '
A AIQ + A_ [ -- {(B

3n
*i __i) Ai_ } + bi+1 3___{(____p)iAi_]

v _n
_Q

*i _i {___(_*i _i) bi+1 _p i _ (f_)}= E _ _*i - A_ 3n + (-_) - 3--_

i+I Ai+1- a P

Next, Q is taken to be an analytical function as follows.

In regions HI and H2,

= QI sin (_l _) cos. (2_ 61 n) + Q2 ,

and, in regions CI and C2,

- _, cos (_ n ÷ _)

(6.2)

(6.3 a,b)
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where

Q_, Q2, Q_, _ and B are specified vectors.

In general, Q chosen as in Eq. (6.3) will not satisfy the governing

equations (6.1). Therfore, the governing equation (6.1) is modified by

including in it an extra source term, R(_,Q), such that Q is a solution

of the modified equation. This modified equation is written as

_.EE + B.._.F + b _p - _-- (F v) + a _p - R(_,n) (6.4)
_ _n _n _n _f

The term R(E,n) could be evaluated analytically using Eqs. (6.3)

and (6.1). In this ease, the solution that would be obtained by solving

Eq. (6.4) numerically will not exactly equal the chosen analytical

function Q(_,n) and, hence, the correctness of the formulation may not

be established accurately. It is, therefore, important that the source

term R(C,n) be evaluated using the discretized form given by Eq. (6.2).

This model problem was studied for various _, u 2, BL and _2- The

model problem of uniform flow when all the boundary and initial

conditions correspond to uniform flow is a degenerate case of the model

problem discussed above and corresponds to _ - constant. In all the

cases considered, the exact solution was reproduced. It was found that

when Q was allowed to vary rapidly in the _ direction, large errors were

observed between the prescribed and computed values of the solution.

This was due to the rather large truncation errors involved due to large
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gradients in Q in the [ direction. This implies that finer grids in the

direction have to be employed to resolve these high gradients.

6.3 Interface Boundary Conditions

The implementation of the semi-elliptic formulation on a hybrid

grid exposes two small portions of the interfaces of the grid. Hence,

the boundary conditions on these interfaces have to be considered.

The boundary conditions in the C-regions consist of the no-slip

condition and the specified temperature at the walls, together with the

conditions specified along the interface of the C and HI regions. These

interface conditions are obtained from the flow solution in the HI

region. As the governing equations are of order seven with respect to

the n direction, 4 conditions are yet to be specified. These conditions

solution, Q = (p, pu, pv, Pet)T , computed incould be obtained from the

region HI. But the physics of the flow dictates how disturbances travel

in the flow and this must be incorporated in the numerical scheme used.

A characteristics analysis for the quasi-one-dimensional Euler equations

suggests that for subsonic flows only three conditions can be specified

along the upstream boundary and that one condition is to be specified at

the downstream boundary. This idea has also been employed by Eberhardt

et al. [53] and Bush [20]. The former reference deals with the solution

of the Euler equations while, in the latter, the complete Navier-Stokes

equations are solved. In regions of flow where viscous effects

dominate, the characteristic conditions obtained from the Euler
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equations are not appropriate. However, these conditions should provide

a reasonable approximation. In the present study, the three conditions

used at the interface consist of specified values of the density p, the

x-component of the velocity u, and the static pressure p. The

additional condition needed to close the system is the reduced normal

momentum equation (2.22) written at the half-mesh point off the wall.

6.4 Application to Joukowski Airfoil Cascade

The procedure described in the previous sections is applied to

determine flow at Re - 150 through a cascade passage formed by Joukowski

airfoils. The hybrid grid that was employed is shown in Fig. 37b. The

extent of the C-region, measured in terms of the physical length of BC

in Fig. 35, is approximately 10% of the airfoil chord. This value was

arrived at from the results obtained previously employing an H-grid and

corresponds to the nearest streamwise location upstream of the leading

edge of the cascade where p_ and u_ are approximately zero. The

streamwise distributions of the surface pressure Pb' the wake-centerline

velocity and the wall-shear parameter T are shown in Figs. 39a and 39b.
w

The surface-pressure distribution is similar to that obtained for an

exponential airfoil cascade, except that the behaviour near the leading

edge is confined to approximately I/4 of the chord. The T distribution
w

near the trailing edge exhibits a rise, as should be expected for low Re

flows around cusped trailing edges. The velocity distribution along the

stagnation line exhibits an overshoot in the C-region. This is probably
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due to the fact that that the stagnation llne represents a singularity

in terms of Q and needs special treatment, paticularly for the y-

momentumequation. Figure 39d shows the pressure contours superimposed

on the hybrid grid. It is clear from this figure that there is an

oscillation present along the first line of H2 region and this anomalous

behaviour starts at the 5-sided cell. This oscillatory nature is due to

the discontinuity in the y-component of velocity v, between C and HI

regions. This discontinuity leads to a sudden jump in v which appearsnn

in the viscous terms. This is supported by the fact that with increase

in Re, the oscillatory behavior in p vanished. The results for Re = 600

are shownin Fig. 40. The pressure contours shown in Fig. 40c do not

exhibit any oscillation, but the anomaly near the special cell persists.

Figure 40e shows the development of velocity profile for Re = 600. The

velocity profiles are well behaved, in spite of the anomaly in pressure,

because these anomalies are of the order 0.01. Figure 41 shows the

convergence history for this Reynolds number. The eabs and ereI,

defined in section 3.3, are reduced by approximately 4 orders of

magnitude in 100 iterations. The anomalous behaviour in pressure is due

to the discontinuity in the metric derivatives along the coordinate line

containing the downstream face of the five-sided cell. Along this line,

the chain rule conservation law (CRCL)form, instead of the SCL form, is

employed. The results are shown in Fig. 42. The pressure contours

shown in Fig. 42c no longer exhibit the unrealistic behaviour near the
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five-slded cell. Effort is being madeto resolve this problem near the

stagnation line in order to obtain solutions at higher Re.
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CHAPTER 7

CONCLUSION

A semi-elllptic formulation has been developed for the analysis of

subsonic viscous flows. The governing equations were obtained from the

NS equations by neglecting streamwise viscous diffusion terms, but

retaining upstream interaction via appropriate treatment of the

streamwlse pressure-gradient term.

A numerical procedure has been developed to solve the seml-elllptlc

equations. The discretlzatlon of the governing equations was performed

such that the terms representing the inviscld contributions form a

consistent set of equations by themselves. Appropriate dlscretlzed

forms of the metric terms associated with the SCL form of the equations

were obtained by requiring that a uniform flow solution be recovered in

the interior when al_ boundary and initial conditions correspond to

uniform flow_ The discretized representation of the streamwise

pressure-gradient term, as well as the metrics associated with it, was

obtained by application of the procedure to the fully developed flow in

a straight channel. Through this study, it was found necessary that the

streamwise pressure-gradient term not be in SCL form and that the

metrics associated with this term be discretized using forward

differences.

The procedure developed was applied to several flow configurations

such as channels with exponential constrictions and cascades of airfoils

of various shapes. The technique was demonstrated to be adequate for

strong-lnteractlon flows, where boundary-layer separation and/or sudden
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changes in boundary conditions due to the presence of sharp

leading/trailing edges are present. A parametric study was carried out

by varying Re for flows through cascades of exponential and parabolic-

arc airfoils. This revealed a considerable difference between the flow

behaviour near cusped and wedge-shaped trailing edges. The effect of

Mach number was studied for a cascade of parabolic-arc airfoils in the

range of M between 0.008 and 0.49, and was found to be minimal on the

shear parameter, but to be evident in the pressure distribution for the

highest M considered. The effect of grid refinement was also studied

in order to establish the accuracy of the results obtained. In all of

the calculations, the grids employed were reasonably fine and the step

sizes near the TE and near the point of separation were chosen to be

within the scalings of the triple-deck theory. The grids employed were

considered to be adequate because the minimum step sizes were well

within the triple-deck scalings. The grid independence of the results

was also supported by the fact that the results remained unchanged with

further refinement of the grid. As regards the convergence rate, for

most of the flow solutions considered here, the maximum error was

reduced by four to five orders of magnitude, within 150 iterations.

However, the procedure remained sensitive to the magnitude and the

spatial variation of the time step At.

The application of the procedure to cascades with rounded leading

edge regions revealed some difficulties. These difficulties are

attributed to the use of an H-grid for such configurations. To resolve

these difficulties, a hybrid C-H grid, which is more appropriate for



such cascades, was generated using a composite solution procedure. The

basic solution procedure was then extended for use with the multl-block

structured computational domain corresponding to the C-H hybrid grid.

Results were obtained for a cascade of Joukowskl airfoils and are

quite satisfactory, except near the stagnation llne and the special,

five-slded cell of the C-H hybrid grid. The unrealistic behaviour of

the pressure near the flve-sided cell was tracked down to the use of the

SCL form of the equations. Use of the CRCL form along a single

coordinate llne containing a downstream face of the flve-sided cell

alleviated this difficulty.

In concluding, two important observations are made regarding the

analysis and solution procedure developed in the present study. The

implementation of the boundary conditions in an implicit manner, that is

compatible with the finite difference equations employed in the interior

of the computational domain, made it possible for the present procedure

to provide satisfactory solutions, without requiring any externally

added artificial viscosity. Also, the procedure is capable of producing

satisfactory solutions for compressible flows, with no modifications

being needed for analyzing nearly incompressible flow as well. This is

generally not true for most other available density-based formulations.

As mentioned earlier, the solution procedure was sensitive to the

time step At. In future work, an alternating-dlrection implicit (ADI)

method, rather than the present AbE type of procedure, could be employed

to solve the semi-elliptic equations. Also, the use of a strongly-

implicit (SI) procedure, which is known to be less sensitive to the
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problem parameters, should be explored, in conjunction with the IPNS

model. The present analysis can also be extended to consider unsteady

flow problems; important practical applications, such as rotor-stator

interactions, could then be considered. Also, turbulent flows can be

analyzed by the inclusion of a turbulence model such as the Baldwin-

Lomax model [54]. Turbulent flow solutions could then be compared with

experimental results.

The usage of the hybrid C-H grid with the semi-elliptic model has

exposed a few other areas for further research. Firstly, for low

subsonic flows, use of the CRCL form is quite satisfactory. It does not

place any requirements on the representation of the metric terms,

especially near special points and cells, where the metrics could be

discontinuous along a particular coordinate direction. Secondly,

decomposition of the conservation form of the governing equations of

motion along the transformed-coordinate directions, using the

contravariant components of velocity instead of the Cartesian

components, may be more appropriate. This form of the equations is more

natural for analyzing flows in general geometries, as they are the

fundamental conservation equations written directly in the body-fitted

coordinate system, rather than being transformed from the Cartesian

coordinates to this system. This interface in the hybrid grid became

exposed as a boundary only because of the semi-elliptic formulation

employed. It would remain as an interior computational llne if the

complete NS equations were employed. Hence, an NS analysis on hybrid

grids is highly desired. The use of complete NS equations would also
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resolve some of the difficulties arising due to the change in the

orientation of the coordinate directions and the use of a coordinate-

related approximation in the vicinity of the five-sided cells.
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APPENDIX A

INVERSION OF COEFFICIENT MATRIX OF BLOCK-TRIDIAGONAL

SYSTSM WITH PERIODIC BOUNDARY CONDITIONS

The system of equations resulting from the discretization of the

governing equations along a periodic boundary, where the peridicity

condition is imposed in an implicit manner, is of the following form.

[P] AQ _ D (A.I a)

In expanded form, Eq. (A.I a) is written as follows.

B I CI S ... 0 0 AI

A 2 B2 32 ... 0 0 0

0 0 _ ... AN_ I BN_ I CN_ I

C N 0 S ... 0 AN BN

-AQI

AQ 2

AQN_ I

_QN

DI "l
D2

DN- I

DN

(A.I b)

Here, the subscript N corresponds to the index (JMAX-I) in Eq. (3.44).

Bj . . andAlso, the individual entries Aj, , Cj are (4x4) blocks, while AQj

D. are (4xi) blocks.
J

The inversion of the coefficient matrix [P] is performed using a L-

U decomposition, i.e., by factoring P into upper and lower triangular

matrices U and L, respectively, such that
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P_LU

where

L m

and

U

LI ,I O . .

L2, I L2, 2 O .

L3, I L3, 2 L3, 3 0

LN,I

I UI ,2

0 I
U2,3

I U3, 4

LN,N

UI ,N

U2, N

U3,N

!

• • • I

J0 . . . I

(A.2 a)

Here, I is the (4X4) identity matrix, and L and U.
j,k j,k

blocks.

(A.2 b,c)

are (4x4)

By forming the product LU and equating it, element by element, to

the coefficient matrix P, the expression for the elemental blocks of L

and U can be obtained and are given as follows.
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L1 1 =BI

L2, I = A 2 ,

L3, L4 = LN_ I =I = ,I = """ ,I 0

LN, I = CN ,

-1

U1,2 = B1 C1

UI = U I = = UI = 0,3 ,4 "'" ,N-I '

-I

UI, N = B I A I

-I

L2, 2 = B 2 - A 2 B I C I

L3,2 = A3 '

= L5, = ... = LN_ I =L4,2 2 ,2 0

-I

LN, 2 = - C N B I C I

-I -I

U2, 3 = (B2 - A 2 B l C l) C 2

U2,4 = U2, 5 .... = U2,N_ 1 = 0

-I CI)-I A2 B?I AIU2, N = - (B2 - A 2 B I

etc.

Hence, the inversion of P is carried out in two steps.

step is a forward elimination step in which the equation

Lq=D

is solved for q.

This is done in the following manner.

(A.3)

The first

(A.4)
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For m-1 ,

LI ,I = BI '

LN, I " CN ,

ql " B1 1 D1 .

For m equal 2 through N_I,

- Um_ ILm,m " Bm Am ,m '

qm " L-I (Dm - A D ) ,m,m m m-1

-I
U - L C
m,m+1 m,m .T.

-I
- A

Um,N - Lm,m - Um-I,N

DN = DN - LN,m-_ qm-1

LN,m " - LN,m-I "m-l,m

The last unknown vect:r qN is obtained as follows.

LN,N_ I " AN _ LN,N_ I '

DN - DN - LN,N_IqN_ I ,

LN, _ " B N - LN,N_ I (CN- I + UN_I, N) ,

SO that, finally,

qN " L-I DNN,N

The second step is the backward elimination step, during which the

equation

tO0



u = q (A.5)

is solved to yield the solution vector AQ. From the structure of upper

triangular matrix U, which has identity block matrices along the

diagonal, and non-zero block matrices along the superdlagonal and the

last column, it is seen that the following recursive relation should be

employed to obtain AQ.

+ U AQ + Um AQ _ for, m = N-I, N-2, IAQm m,m+1 m+1 ,N N qm "'" ' '

with AQN = qN

being used to initiate the determination of the solution vector AQ.

(A.6)
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APPENDIX B

REPRESENTATION OF THE METRIC COEFFICIENTS

The metric coefficients, arising due to the transformation of the

governing equations from the physical (x,y) coordinates to the

computational (_,n) coordinates, should be evaluated in a manner

consistent with the discretizatlon of the governing equations.

The metric coefficients for a general mapping are given in Eq.

(2.13) and are

_x _ J Yn ' _Y _ - J Xn '

nx = - J y_ and ny _ J x_ . (B.I a-d

The metric derivatives xn and Yn are evaluated using central

differences at a general interior computational point (i÷1,j). Hence,

x I -- (xi+ - X )12Ann i+1,j I,j+I i÷I,j-I

and Y_li+1,j -- (Yi+1,j+l - Yi+I,j-I )/2An " (B.2 a,b

At a boundary point, these terms are evaluated using a first-order

accurate representation. Accordingly,

At j = JMIN,

xqli+1, j _ (xi+1,j+ I - xi+1,j)/An ,

Ynli+1, j I (Yi+1,j+1 - Yi+1,j )/An '

and, at j _ JMAX,

x I -- ( - )/An ,n i+l ,j Xi+l ,j Xl+1 ,J-1

YnIll+1,J " (Yi+1,j - Yi+I,J-I)/An • (B.3 a-d)
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In order to determine the appropriate representation of x_ and y_,

a simple test of uniform-flow computation is employed. This test

involves assuming a uniform flow at a streamwise location i and applying

the numerical integration algorithm, along with uniform-flow boundary

conditions, to obtain the solution at station (i+I). If the algorithm

is formulated consistently, a uniform flow should result at station

(i+I)° To this end, it is sufficient to consider the inviscid part of

the governing equations, i.e.,

_E + 8F
_-_ _ _ 0 (B.4)

since G-derivatives appear only in the Streamwise convective and

pressure-gradient terms. The quasi-linearized form of the above

equation can be obtained from Eqn. (3.27) and is

where

*i
S = E

Here,

*i
E =

and

_i _i_) : s

• . nx . ny _,

(B.5 a,b)

(B.6)
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Following the discretization procedure, as discussed in Chapter 3,

for the inviscid terms, the discretized form of the right-hand side of

Eqn. (B.5 b) at location (i+1,j) can be written as

I (5]i r_x]i+1 -*i (Cyli {_y]i+1 - "

1 r_x]i _xli+l -*i r_y]i _ (_yli+l -*i
+ _ [{['J--'j+1 - [J--'j*1 ] Ej+I + [t_-'j+1 J 'j+1 ] Fj+I}

÷ 1]
"J 'j-1 "J "j-1 Ej-I "<J--Jj-1 "J "j-I Fj_I

+ _ _Dx]i+I -*i _ (t]x]i+l -*i
A_ {'J--'j-1 ej-I J--'j-1 Ej-I2 An

iny)i+l -_i _ "+ -_i

In order to recover a uniform-flow solution, it will be sufficient

to show that the source term S is zero, starting from uniform-flow

conditions at station i, and using uniform-flow boundary conditions. To

show this, it is recognized that, for the case with constant density,

velocity and temperature,

P = Pl

U = U 1

V- 0

and T - T I

where p,, u, and T, are constants.

with respect to the n direction, i.e.,

j-I = = , for j _ JMIN+I, ... , JMAX-I

-*i
and F. = 0 , for j = JMIN .... , JMAX . (B.9)

J
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With these conditions, the source term S can be written in the

following mannner.

I _h]i _xs _ {_ [ - (_-Ii+_]"J ,j j

+_[ - ,"J "j+1 _J "j+1 _J "j-1 _T'j-I ]

A_ [(___x)i+l _ rqx]i+l • (B.IO)

Substituting for (_x/J) and (qx/J) from Eq. (B.I) and employing the

discretization given by Eq. (B.2), Eq. (B.IO) can be written as

S = { 4_ [ - Yi+l,j+l - Yi+l,j-1 ) + (Yi,j+l - Yi,j-1 )]

+ _ [ - :i+l,j+2 - Yi+l,j ) + (Yi,j+2 - YL,j )

- vi+1 ,j - Yi+1 ,j-2 ) ÷ (Yi,j - Yi,j-2 )]

(B.11)

For S to be equal to zero, it is clear, from the above equation,

that y_ is to be evaluated, as an average of its neighbours, as follows.

I

Ygli+l,j+l " _ [Yi+l,j+2 - Yi,j+2 + Yi+l,j - Yi,j ]

1

+ -- [Y j+ - Yi ] (B.12)2 A_ i+I, I ,j+1

Similarly, by assuming v = constant and u = O, we can arrive at the

following representation for the term x_.
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i I _ + xi _ xi ]x_ i÷l,j+l : _-_ [xi+1,j*2 xi,j+2 ÷l,J ,j

I

+ 2 [xi+ ,j÷1- xi,j÷1] (B.13)

The representation of x_ and y_ at q = constant boundaries, for

example, at j = JMAX can be obtained by forming the discretized form of

Eq. (B.5 b) at j = JMAX-I.

At the location [i+l,j (= JMAX-I)], the source term is written as

follows.

s--{ I_-_ [ - (Yi+1,j+1 - Yi+I,J-I ) + (Yi,j+I - Yi,j-I)]

I

+ _ [ - (Yi+I,j+2 - Yi+1 ,j ) + (Yi,j+2 - Yi,j )

- (Yi+1,j - Yi+1,j-2 ) + (Yi,j - yi,j_2)]

2 Aq 1,j+l 2 A_ Yi+1,j-1

l (Yi+ " y +4 At l,j i,j Yi+1,j-2 - Yi,j-2)] (B.I_

In order to produce a zero source term S, from Eq. (B.14), y_ term

should be represented in the following manner:

Y_li+1,j = JMAX " (Yi+1,j - Yi,j ) / A_ . (B.15

Similarly, the discretization for the term x_ is performed as follows.

X_li+1,j = JMAX = (Xi+1,j - Xi,j] / At
(B.16)
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APPENDIX C

DISCRETIZATION OF DERIVATIVES AT CORNERS OF FIVE_SIDED CELLS

In a hybrid grid, 'special-points' commonly occur at the congruence

of more than two different types of sub-reglons. As stated in Chapter

5, these 'speclal-points', B" and E" in Fig. 31, are presently
c c

considered to be the centers of non-standard 5-sided cells. In the

discretization of the various derivative terms in Eq. (5.1), special

consideration is required in arriving at the appropriate neighbours for

the vertices of these 5-sided cells, i.e., in defining the computational

molecule at the vertices of these cells. The vertices of these non-

standard cells are B_' , B_ , ... , B_ and E_' , E2," ... , E_ , as shown

in Fig. 31. The eight immediate neighbours for each of these points are

shown as the encircled points in the sketches'below.

At vertex B_ , At vertex B_ ,

]07



At vertex B_ , At vertex B'_ ,

At vertex B_ ,

® immediate neighbours

The computational moleclues shown were arrived at by examining the

multi-block structured computational region and seeking the natural

neighbours of a given computational point. The neighbours at the

corners of the cell around E" are assigned in a similar manner. At a
c

given vertex, the computational molecule employed during one step of the

two-step solution procedure, for the grid-generation equations as well

as the flow equations, is the same as that for the second step of the

procedure. This is essential for consistency of the discretized

equations used during the two steps.
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FIG. 2 (CONCLUDED). TYPES OF BOUNDARY CONDITIONS FOR CASCADE FLOWS.
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114



I

I
I
|

I
I
I
|

I
!

I
I
I
I

! !

]

i
l

i

i :

Z
I-I

[-,

ILl

I=

I--I

&
I-I

,-I

I--I

i.-I

115



ia. 2{}

ia. is

8.1ia

Pb
8, ias

la. iala

-{a. {3s

-_. 10

)

II
I, i I 1 I, J, I [ , , I

0 I_ X Z_ 38

-- ........................ PD (ii) !o

i

[_
i

2 4 X 6 8

ENLARGED HORIZONTAL SCALE

{a,_5

Y

8.18

8 85

_}, [a{a

16.{} i

12.0

(iii)

LL ._,_J_LJ.. _LJ_...L.I..J__L..J__L_

g I0 X 20 3g

L
L
F
5.
L
I

J

(iv)

' ...... J ' J ....... J --_

Z 4 X 6 8

ENLARGED HORIZONTAL SCALE

a. t/h = O. I

FIG. 6. WALL-PRESSURE AND WALL-SHEAR PARAMETER DISTRIBUTIONS

FOR EXPONENTIAL CHANNEL CONFIGURATION, Re - 1500.

116



0.4

0.3

0 2

Pb

0 I

0.0

-0. I

- (i)

b

0 _0 X 40 50

0.48

0,20

14 15 X 16 17

ENLARGED HORIZONTAL SCALE

0.10

0.00

40

30

20

T
W

10

-10

E

(iii)

, ! i I ,,

0 20 X 40 60

i...... .......

, , , I I , i , J I , , , I

14 15 X 15 17

ENLARGED HORIZONTAL SCALE

b. t/h - 0.16

FIG. 6 (CONT'D). WALL-PRESSURE AND WALL-SHEAR PARAMETER DISTRIBUTIONS

FOR EXPONENTIAL CHANNEL CONFIGURATION, Re - 1500.

117



(i)

25 S0 x 75

m

I

(ii) --

100 27 28 29 X 30 31 32

ENLARGED HORIZONTAL SCALE

8 40

0.30

y

0.20

0.10

0,00

40

30

20

T
W

10

0

-10

(iii)

m

0 25 $0 x 75 100

J

(iv)

, ] | [,,I, I ¢ ] i

27 28 29 X 30 31 32

ENLARGED HORIZONTAL SCALE

c. t/h = 0.2

FIG. 6 (CONCLUDED). WALL-PRESSURE AND WALL-SHEAR PARAMETER DISTRIBUTIONS

FOR EXPONENTIAL CHANNEL CONFIGURATION, Re - 1500.

118



O'I 8"0 9"0 _'0 C'O

,3

If9



E;'O

C_
0

('0

C_

c_

O0
CO

c_

Z'O I'0 0"0

O0
o,-)

I"O- Z'"0-

u'_

_'0-

120



,z

I.I

(i)

I , l t

zs x 58

o Pb
u

75

I

I (ii) oP b

I _U

!
9 I_ x II Iz

ENLARGED HORIZONTAL SCALE

1.5

u

i

15Q ---
i

I

•_lll --

5Q _--

Q

_SQ _.___L__

(iii)

Z5 x 58 7S

(iv)

, I , I i

9 I_ x II Iz

ENLARGED HORIZONTAL SCALE

a. Re = 1500

FIG. 8. WALL_PRESSURE, WAKE-CENTERLINE VELOCITY AND

WALL-SHEAR PARAMETER DISTRIBUTIONS FOR A CASCADE

OF FINITE FLAT PLATES.

121



Q.I !
I

_.1_ , b----qN

-0, I --

i

-0, Z

(i)

, l , .i a

Z$ X 5_ 75

oP b

_U

9 18 X II IZ

ENLARGED HORIZONTAL SCALE

1.5

I.Q

u

zQ_ --

I_8 --

T
w

Q

9

(iii)

Z5 x 50 75

(iv)

|1_ x It IE

ENLARGED HORIZONTAL SCALE

b. Re - 3100

FIG. 8 (CONT'D). WALL-PRESSURE, WAKE-CENTERLINE VELOCITY AND

WALL-SHEAR PARAMETER DISTRIBUTIONS FOR A CASCADE

OF FINITE FLAT PLATES.

122



a.t

-Q, Z

I

m -

!

J I I

_8

(i)

7_ 9 t_ tt tZ
X

ENLARGED HORIZONTAL SCALE

I.K

u

208

IS0

IO{a

W

5ta

Q

(iii)

0 ZS 50 7S
X

(iv)

! I i I ,

9 18 X II iZ

ENLARGED HORIZONTAL SCALE

e. Re - 6200

FIG. 8 (CONT'D). WALL-PRESSURE, WAKE-CENTERLINE VELOCITY AND

WALL-SHEAR PARAMETER DISTRIBUTIONS FOR A CASCADE

OF FINITE FLAT PLATES.

123



-8. Z

0

(i)

ZK x S8 7_

-_ _ "___ |

18 X _I IZ

ENLARGED HORIZONTAL SCALE

!

8

1,8

U

T
W

ZC_0

188

$8

8

(iii)

....... --------..4...]

(iv)

8 18 x 11 t_

ENLARGED HORIZONTAL SCALE

d. Re - 11000

FIG. 8 (CONT'D). WALL-PRESSURE, WAKE-CENTERLINE VELOCITY AND

WALL-SHEAR PARAMETER DISTRIBUTIONS FOR A CASCADE

OF FINITE FLAT PLATES.

124



8.1

Pb

-0. I

-1_.Z

o Pb
U

(i)

ZS X 58 7K

o Pb

I :_ ! 1

9 18 X 11 tZ

ENLARGED HORIZONTAL SCALE

I.S

1.g

U

I_8

Iso

w
5o

(iii)

8 Z5 x KS 78

(iv)

, I z I L

g tO X tt IZ

ENLARGED HORIZONTAL SCALE

e. Re - 16000

FIG. 8 (CONCLUDED). WALL-PRESSURE, WAKE-CENTERLINE VELOCITY AND

WALL-SHEAR PARAMETER DISTRIBUTIONS FOR A CASCADE

OF FINITE FLAT PLATES.

125



o o o_

o,I

IP) ,--I _ ,,-I _ •
..... .CI

I_ <I o .(k <>

i I i i

(_ r-. I.F) oJ ou

I-,

I

t
I

I.o

x

x

126



0.Z

01

_b

08

-81

-SZ

t

i

I , {

Z_ _8
x

(i)

I

I • 08

8.7_

y

-- O. 58

8. ZS

8.88

7_

= ci -[
I/k_

II fill II 12
x

ENLARGED HORIZONTAL SCALE

O.Z8- I .5

8.1_

1.0

Y

0.18- u

- 0.5

8.80- 8.8

Z88

"c
W

m

m

w

p

(iii)

"I

I
I
I

I
I

i
!

I

I

I

I

I
I

2_ X _Q 7_

(iv)

, I i I

8 IQ X II I: _

ENLARGED HORIZONTAL SCALE

a. t/e - 0.05

FIG. 10. WALL-PRESSURE, WAKE-CENTERLINE VELOCITY AND

WALL-SHEAR PARAMETER DISTRIBUTIONS FOR A CASCADE

OF EXPONENTIAL AIRFOILS, Re - 1500.

127



0. Z pub --

0.1

Pb

0.0

-0. ! _

-0. z

8 ZK x KO

I. 00 I_. z_-

I_ _ a Pb"i _ _u

8.7_ \ , - 8.1_ !

Y _ Y

O.5_ _ L 8. 10-

8. Z5 _, 85

8. I;_8 "_ - - "-' 8.88-

7_ _ 10 X II IZ

ENLARGED HORIZONTAL SCALE

I.S

1.8

U

_.S

IiI.8

T
W

150

r"

0

i

-50

(iii)

ZK x _Q 7K

(iv)

10 x 11 IZ

ENLARGED HORIZONTAL SCALE

b. t/o - 0.075

FIG. 10 (CONT'D). WALL-PRESSURE, WAKE-CENTERLINE VELOCITY AND

WALL-SHEAR PARAMETER DISTRIBUTIONS FOR A CASCADE

OF EXPONENTIAL AIRFOILS, Re - 1500.

128



Pb

Q.4 I"

Q.3 --

_.Z t--

I

-Q. ! --
I

r
-Q. Z _

i-
I

_Q. 3 i

9

(i)

I I, i l

ZE K_
X

- Q. 7g

Y

- 13.59

- 8.Z_

__ _ o Pb

9 19 11 IZ
X

ENLARGED HORIZONTAL SCALE

8.Zmn I.5

o. lgl

1.9

Y

9.19-I u

8._g I

*-4

8.88-_ 9.8

T
W

Z¢8

i

188 ---

F
E8

9

-E9

I
(iii) ,

____L_________ I
0 Zg X E8 7g

(iv)

, I , I ,

g I_ x II IZ

ENLARGED HORIZONTAL SCALE

e. t/o - 0.I

FIG. 10 (CONCLUDED). WALL-PRESSURE, WAKE-CENTERLINE VELOCITY AND

WALL-SHEAR PARAMETER DISTRIBUTIONS FOR A CASCADE

OF EXPONENTIAL AIRFOILS, Re = 1500.

129



D.

"-- r_ n_ rJ
mm

x
rL

N

I I I I I

I i I

130



-Q. I

&

(i)

Zg g_
x

o Pb
u

1 • _

Q. 7G

x

ENLARGED HORIZONTAL SCALE

.

Y

13.
_.1_-

-- Q.E

w

:_QI_ --

Q

(iii)

2g g_ 7G
X

(iv)

, I , I ,

9 II_ II
x

ENLARGED HORTZONT_J_ SCALE

IZ

a. Re - 3100

FIG. 12. WALL_'PRESSURE, WAKE-CENTERLINE VELOCITY AND

WALL'SHEAR PARAMETER DISTRIBUTIONS FOR A CASCADE

OF EXPONENTIAL AIRFOILS, t/e - 0.05.

131



O Z

Pb _.o

-_. t

-_. z

q

i

, q

0

tl

f , l

Z_; KQ

x

(i)

o Pb

u

7K

1 •O0

Q. 71;

O. 59

Y

8. ='5

Q. QB

- 0

oP b

-- (ii_

G IQ II IZ

x

ENLARGED HORIZONT_ SC_E

O.Z_ 1.5

O,a_l

O. IO_
u

Y -- o.S

O. tM;

t_. OO--- (a.8

aSS --

lSO --

T 10O --
w

gO --

0 -'--

(±ii)

0 _ E;O 7g
X

(iv)

9 I0 II 1::'
x

ENLARGED HORIZONTAL SCALE

b. Re - 6200

FIG. 12 (CONT'D). WALL'PRESSURE, WAKE-CENTERLINE VELOCITY AND

WALL-SHEAR PARAMETER DISTRIBUTIONS FOR A CASCADE

OF EXPONENTIAL AIRFOILS, t/c - 0.05.

132



Q Z

-Q. !

-_ Z

i

o Pb
_' U

(i)

J t [ t

2_ x gB

1 • QQ

g. 7_

y!

_. $0

0 Pb -'

_u g.l_]

--' 1._
-y

"_ :3 U

-- 1_. i_

7£ g I_ II IZ
x

ENLARGED HORIZONTAL SCALE

0.8_ I

_. _t_.-- Q.ta

21ala

lgla

51a

-_ta

1

(iii)
I (iv)

___x ]

9 IG 11 I::'
X

ENLARGED HORIZONTAL SCALE

o. Re l 1 1000

FIG. 12 (CONT'D). WALL'PRESSURE, WAKE-CENTERLINE VELOCITY AND

WALL-SHEAR PARAMETER DISTRIBUTIONS FOR A CASCADE

OF EXPONENTIAL AIRFOILS, t/c " 0.05.

133



Pb

o.z

o.1

0.0

-0. I

-0. z

op b
AU

Zg gO 7_
X

o.zI_ I.s

I.O

I 13.S

I;3,_3S!

z O._3Q-- O.Q

g 10 It IZ
X

ENLARGED HORIZONTAL SCALE

T
W

2Q0

I_

_Q

8

(ill)

0 2_ x 6_ 7_ 0 10 x II IZ

ENLARGED HORIZONTAL SCALE

d. Re - 15000

FIG. 12 (CONCLUDED). WALL,_PRESSURE, WAKE-CENTERLINE VELOCITY AND

WALL'SHEAR PARAMETER DISTRIBUTIONS FOR A CASCADE

OF EXPONENTIAL AIRFOILS, t/c " 0.05.

134



I

_8

_ z

g

135



!

!

0
Q

|

0

|

0

136



X X "_

_ _--"

:

_, I , I ,
I

I

I

.Q

5")

i

._ _: 0

o

r_

, o _

x

_ H

z o

H

m

137



Pb

O Z

0.1

gO

-13. I

(i)

o Pb
u

1 t [ J

X

I . O0

0.7_

Y

0. SO

-- 0.2_;

i

i o._{}

7S 8 18 II 1Z
x

ENLARGED HORIZONTAL SCALE

O. Z_-

0.I_

la. lla-

O. O_

.

O. 013-

1.0

U

0.8

T
W

!

I _8 t-.

L
108 _-

F
5_ L-

I
t"

o I----

(iii)

__L___.__

ZS EO 7S 8

x

(iv)

i I , I ,

18 II
x

ENLARGED HORIZONTAL SCALE

a. tic - 0.05

FIG. 15. WALL-PRESSURE, WAKE-CENTERLINE VELOCITY AND

WALL-SHEAR PARAMETER DISTRIBUTIONS FOR A CASCADE

OF PARABOLIC-ARC AIRFOILS, Re - 1500.

138



Z

3

b _ Pb
,t U

0 Q

•_ "_l (±)

i|

Q :'5 _
X

1 • O0

._ Y

7_

I

9 I1_! x It l_

ENLARGED HORIZONTAL SCALE

I;I.Zl_--1 1.-_

o Pb __

B,IEI

U

•--.., O.g

_.og I

_. o_--_ _._

ZQQ

150

15)O

T
w

5O

0

-gO

(il:i)

, I I i ,

Z5 50
X

75 9

B

i

m

m

(iv)

, I J I ,

18 II
X

ENLARGED HORIZONTAL SCALE

12

b. tlc = 0.075

FIG. 15 (CONY'D). WALL_PRESSURE, WAKE-CENTERLINE VELOCITY AND

WALL-SHEAR PARAMETER DISTRIBUTIONS FOR A CASCADE

OF PARABOLIC-ARC AIRFOILS, Re - 1500.

139



Pb

Q.S

O Z

Q.I

98

-@.!

-Q. Z

I

m

m

= Pb
A u

(i)

I , 90

O. 7t;

Y

Q. 25

Z5 _Q 75
x 18 x I I IZ

ENLARGED HORIZONTAL SCALE

ZOI3

"T
w

150

I O0

58

0

-_9

m

p-

(iii)

0 Z5 x 5Q 75 9

(iv)

, I , I ,
x

18 II

ENLARGED HORIZONTAL SCALE

12

o. 1;/o = 0.1

FIG. 15 (CONCLUDED). WALL-PRESSURE, WAKE-CENTERLINE VELOCITY AND

WALL-SHEAR PARAMETER DISTRIBUTIONS FOR A CASCADE

OF PARABOLIC-ARC AIRFOILS, Re = 1500.

140



bO

O)

141



8.Z

g.8

Pb
ak

u

- f___--
- -- 0 Q

Q Z5 5Q

(±)

7_

I •I_

I_. 76;

y

8.2_

t oPbtALl.

| .... 1

18 II l_
X

ENLARGED HORIZONTAL SCALE

g. Zg-

Y

Q.IB-

m

_. OS

Q. _1_

1.5

I.la

U

_.S

W

Zgg F-- "rl

I

I _g f

I

t-

p.

Z5 x gQ 7N

m

(iv)

, I L I ,

IQ x It

ENLARGED HORIZONTAL SCALE

t2

a. Re - 3100

FIG. 17. WALL-PRESSURE, WAKE-CENTERLINE VELOCITY AND

WALL-SHEAR PARAMETER DISTRIBUTIONS FOR A CASCADE

OF PARABOLIC_ARC AIRFOILS, tlc - 0.05.

]42



Pb

o.z

Q.l

Q.g

-43.t

q

Q

(±)

Q Pb
4 i/

I ._ ,

Q.7S t

Y

7_

g. _Q

Q. 2_

I_ x II t_

ENLARGED HORIZONTAL SCALE

Y

G.IG-

g. g_;

.

8.89"-

I.E

I.la

U

..[
W

ZQQ -'-'----

1_Q
(ili)

S_

s

i

J
__ t_

ZE x EQ 7_

w

(iv)

, I ...i I .,.

I_ x II

ENLARGED HORIZONTAL SCALE

b. Re = 6200

FIG. 17 (CONT'D). WALL'PRESSURE, WAKE-CENTERLINE VELOCITY AND

WALL'SHEAR PARAMETER DISTRIBUTIONS FOR A CASCADE

OF PARABOLIC-ARC AIRFOILS, t/C - 0.05.

143



t_.zo--1 I .sQ.z I .rill .

Q._Q Q. 1

•,-O. 1 I , Q.BO " _ -_":- "- :--- " " " _.6_P- O,B

0 Zg 5Q 75 9 ! 0 t I I Z
X X

ENLARGED HORIZONTAL SCALE

I

5Q --

0

(±i±)

='5 x 5Q 75

I

m

(iv)

I

8 tO x tl lZ

ENLARGED HORIZONTAL SCALE

e. Re - 11000

FIG. 17 (CONT'D). WALI_PRESSURE, WAKF_CENTERLINE VELOCITY AND

WALL_SHEAR PARAMETER DISTRIBUTIONS FOR A CASCADE

OF PARABOLIC_ARC AIRFOILS, t/O - 0.05.

144



Q.Z

-Q. t

i

°

I

!

i

Pb
U

I . 01_ ,

8.7G 1

y _

ca.gQ

- la. 2_

(i)

I I I , 9. Og

Z5 x _0 75 8

(ii)

lg x I I lz

ENLARGED HORIZONTAL SCALE

o.z_ I .5

--4

l_.1_ I

1.1]
Y

Q.tgg u
I

1_.80-- I_.O

T
W

z_,a F q

_Q L.- I
|

I
o

(ill)

Z5 x _0 75

1

I

(iv)

, I , I ,

8 IO x II

ENLARGED HORIZONTAL SCALE

12

d. Re - 15000

FIG. 17 (CONCLUDED). WALL'PRESSURE, WAKE_CENTERLINE VELOCITY AND

WALL_SHEAR PARAMETER DISTRIBUTIONS FOR A CASCADE

OF PARABOLIC_ARC AIRFOILS, t/O = 0.05.

145



LO

u

7

I ,

i
x

.c

146



Q.Z

Pb

q

g

I

S
(i)

I , I

Z5 5_
x

o Pb
A U

I

! . 130

-- cl 7g

Y

-- 1_. 2S

O. gg

75 9 IQ x I I IZ

ENLARGED HORIZONTAL SCALE

B,Z_ I .r

o Pb
u

_._I

•-_ 1.13

Y

(3. I(3 t u

13'0g t

.... g, gO ---_ g.13

T
W

ZI_Q

1_o

IoI_

5_

r_

|

k.,,

I

L_

i

Ii

(iii)

Z5 5Q 75 9
x

m

I

i

]

I

iv) I
I
I

I

I

I
I
I

I

I

IQ II
x

ENLARGED HORIZONTAL SCALE

IZ

a. M - O.032

FIG. 19. WALL_PRESSURE, WAKF_.CENTERLINE VELOCITY AND

WALL'SHEAR PARAMETER DISTRIBUTIONS FOR A CASCADE

OF PARABOLIC_ARC AIRFOILS, tlc - 0.05, Re - 15000.

147



O.Z

B.I

--O.1

0

o Pb
A u

Z5 S8 75 9
x

Q. ZO--

_.1_

(il)

tZ18 x II

ENLARGED HORIZONTAL SCALE

Y

ta. tS-

1.5

U

8,0

Z88

1O0

T
w

SO

-£0

(iii)

• Z5 5_ 7_ 9
x

m

(iv)

, l ,, l ,

tO tt
x

ENLARGED HORIZONTAL SCALE

IZ

b. M = 0.128

FIG. 19 (CONY'D). WALL_PRESSURE, WAKE_CENTERLINE VELOCITY AND

WALLrSHEAR PARAMETER DISTRIBUTIONS FOR A CASCADE

OF PARABOLIC_ARC AIRFOILS, t/o - O.05, Re - 15000.

148



'b

o z

Q.I

-Q. I

(±)

, I , , ]

g Z5 SQ
x

o Pb
A u

I •fig

g. 7E

Y

Q.SQ

°pbt

(ii)

tO f;
x

ENLARGED HORIZONTAL SCALE

tZ

Q.ZQ--1 1 .5

O.tSI

O. 10-1
u

Y

T
w

ZQO

! O0

SO

-£,g

m

m

i

(ill)

0 Z5 x _0 7S

m

(iv)

9 I0 x It IZ

ENLARGED HORIZONTAL SCALE

C. M = 0.49

FIG. 19 (CONCLUDED). WALL_PRESSURE, WAKFrCENTERLINE VELOCITY AND

WALL_SHEAR PARAMETER DISTRIBUTIONS FOR A CASCADE

OF PARABOLIC_ANC AIRFOILS, t/o - 0.05, Re - 15000.

149



00 ur_
0 ¢_ _ oh

o o o o

, I _ I s I ,

1'_ It) _1

t-'

1

I

IZ)

m

x

Lt)

m

m

x

m

O)

,r $

r.,fj u

i-i

150



I1
i

t

I I

I

! |

i

1

/

NO.

!

2

3

5

6

?

8

9

l0

II

12

13

15

16

17

18

19

20

21

VALUE

0.29226E
0.29313E

0.2?q-OOE

0.29_87'E

0.2957q-E

0.29662E

0.297'_9E
0.29836E

0.29723E

0.300] ]E

0.30098E
0.30185E

0o30272E

0.30359E

O. 30'_,?E

0.3053_-E

0.30621E
0.30708E

0.30796E

O,30883E
O.30970E

01

oJ

01

O!

OJ

Ol
01

O!

O]

OJ

Ol
O!

01

O]

01

Ol

O]
OJ

OJ

01
oJ

FIG. 21. STATIC PRESSURE CONTOURS FOR A CASCADE OF

PARABOLIC_ARC AIRFOILS, Re - 15000, M® - O. 49.

15l



///

I

NO. VALUE

! 0.29226E OJ

2 0.293_3E O]

3 0.29_00E O]

? _ 0.29_FB?E OJ

5 0.2957qE 01

6 0.29662E 03
? 0.297_9E Ol

8 0.29836E Ol

9 0.29923E 01

lO 0.3001 1E Ol

11 0.30098E 01

12 0.30185E 01

13 0.30272E 01

I+ 0.30359E Ol

15 0.30q_TE 01

16 0.3053_E 01
12 0.30621E Ol

18 0.30708E 01

19 0.30?96E 01

20 0.30883E 01

21 0.30970E 07

FIG. 21b. ENLARGED VIEW NEAR LEADING EDGE REGION.

152



153



.Q

/-.

m

m

m

o
0
o
v--

q..

I

0

c_

Z 0

o

O

d
Q _

E-,

IN

154



Pb

0.8

-8.3

4.8

O Pb

A U

5.0
X

(i)

8.0 7.8

8.158

0.858

0.088

-- I.88

U

-- g. 58

-- 8.88

40

20

T
W

10

m

38 --

0

-10

4.8 5.8

(ii)

8.0 7.8
X

a. Re - 150

FIG. 23. WALL-PRESSURE, WAKE_CENTERLINE VELOCITY AND

WALL-SHEAR PARAMETER DISTRIBUTIONS FOR A CASCADE

OF JOUKOWSKI AIRFOILS (MODIFIED LEADING EDGE).

155



0.6 0.280 -- 1.50

0.3

Pb

1_.0

-0.3

(i) °Pb

ALl

4.0 5.0 8.0 7.0
X

0. 158

8. 050

0. 800

-- 1. gO

- U

-- g. 58

-- 8.00

4g

30

20

T
W

10

0

-10

(ii)

mL L i_

4.8 5.0 x 8.0 7.0

b. Re l 310

FIG. 23 (CONCLUDED). WALLIpRESSURE, WAKE-CENTERLINE VELOCITY AND

WALL-SHEAR PARAMETER DISTRIBUTIONS FOR A CASCADE

OF JOUKOWSKI AIRFOILS (MODIFIED LEADING EDGE).

156



I

)IIIII I I I

w w

0 <f

IIIII i I

,-4

I _ I

lili I i I I

I I I

lllll I I i

i I

lllll I I i I _I

I I

I

1.4

0
nn

f._
o

LO

-
m cJ
_ u

•,--i _

o =

I.) ,_

157



4-)

-l-J

o

I I (n I I --

@ (:_ ,_ @ @ I

uJ

£-.
I--I

_-_ Z

0
0 r_

II
ra_

°_

Od

I-q

158



I_ _ I I I

_"iX

<_I_

,, (_

(0

O_

(I)
.IJ
I.-I

u,-i
0

Z

I/_ "_
I "Q I I

i-I
Z
I-4

0

Z

Z
0 _,_

Z _J
0 00

0

o4

159



-I
18

£ abs

10-3

C

O 2.0

_, 3.0

D 4.0

5.0

18-4
I I

8

, , , i , , , , I ,

188 288
No. of Iterations

FIG. 27. EFFECT OF At ON CONVERGENCE FOR A CASCADE

OF EXPONENTIAL AIRFOILS.

160



0.2

0.1

Pb

0.0

--0.1
9.0

1.5 "] 0.20

(_ " Pb

o u -I 0.15

' 1.0 |

| Y

u _ 0.10

1" --,, No o.o5

0.0 0.00

10.0 11.0 1 2.0
X

200.

1,50.

100,

W

50.

O.

--50. L I I
9.0 10.0 11.0 1 _,.0

X

FIG. 28. WALL_PRESSURE, WAKE.CEMTERLINE VELOCITY AND

WALL-SHEAR PARAMETER DISTRIBUTIONS FOR A CASCADE

OF EXPONENTIAL AIRFOILS, t/c = 0.05, Re = 25000.

161



a. CONFORMAL C-GRID (AFTER REF. 41)

b. 'LINE'PERIODIC' H'GRID
C. 'REGION'PERIODIC' H-GRID

FIG. 29. VARIOUS TYPES OF GRIDS FOR CASCADES.

162



. \.w _, _.._-V'-T', T---,_-l../" ,., \

_._ ,,'_"_/.J _ +-.__\._, _',_

a. OVERSET GRID

:ONE 4

PATCH
BOUNDARY

PATCH
BOUNDARIES

ZONE1

l ZONE5
ZONE3

ZONE2

PATCH
BOUNDARY

Ii i
I!1 ,

ti ,

'; ! i

I

-, ]]
- ' ! J _1

I I ---

I I i --_

''It

' ///a

• _ _ _ / / _/ / ,i it,

I I

I

b. PATCHED-DISJOINT GRID o- PATCHED-JOINT GRID

FIG. 30. TYPES OF MULTI-BLOCK STRUCTURED GRIDS.

163



/

0

i-i f._
0

m: Z

r._oo=

o_

164



---E)

i

-'t,,)

F--1
I

LI
r,.9 ,_ :

L9

--E}

L9

I --u=rj

0

o
I-t

I

:i
L C._

u

n_

165



/

/

\
_-Interface

a. CELL WITH NON-STANDARD NUMBER OF FACES

bo
POINT WITH NON-STANDARD NUMBER OF NEIGHBOURS

FIG. 33. TYPES OF SPECIAL CELLS AND POINTS.

166



K

L

c1

81

E' D1
_,,//_/////z.,_/z,_/

E II

G

B"

G' D

C

H

F1

FIG. 3_. 3-D VIEW OF THE COMPUTATIONAL DOMAIN.

167



I

I

8

Z

_ Z

0 0

Z
0

f.-, I-I

c_
0 r.'l

H
f.l.,

168



m_

+

i

+

i

i
c.D

i

4.-

1
I

I
I

l
i

I--I

4-

I
D

4-

I

L)

m_
r.'1
r.'l

r._

£..,
I--I

H
,--I

I--I

I

H

0

m_

Fa_

0

= d

.P. ,.

Z _

169



+
D

r._

I

i
-I-

.-c,.i

+
t-I _-1

÷

I

+
D

I

r_

E-,
I--I

I-I
--1

I-4

L

r_
0

r._
D.,
r_

r._
:z:

c/'j

V. =

,=_ c..)

Z
0

I.=4

170



a. STAGGERED CASCADE (GOSTELOW'S CASCADE)

b. UNSTAGGERED CASCADE OF JOUKOWSKI AIRFOILS

FIG. 37. TYPICAL C-H HYBRID GRIDS.
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C. STATIC PRESSURE CONTOURs

FIG. 39 (CONTtD). RESULTS FOR A CASCADE OF JOUKOWSKI AIRFOILS

USING C_H HYBRID GRID, Re - 150.

174



oRIGINAL pAGE |S
OF poOR QUALfP(

d. STATIC PRESSURE CONTOURS SUPERIMPOSED ON THE HYBRID GRID.

FIG. 39 (CONCLUDED). RESULTS FOR A CASCADE OF JOUKOWSKI AIRFOILS

USING C-H HYBRID GRID, Re - 150.

175



0.8

0.4

Pb

0.0

--0.4- -

--0.8_
4-.0

0 u

5.0 x 6.0 7.0

1 .5 - 0.20

u

0.15

0.05

0.0 - 0.00

a. SURFACE PRESSURE AND WAKE-CENTERLINE VELOCITY DISTRIBUTIONS

100.

"1" W

80.

60.

4-0.

20.

O.

1 I--20.
4.0 5.0 × 6.0 7.0

b. WALL_SHEAR PARAMETER DISTRIBUTION

FIG. 40. RESULTS FOR A CASCADE OF JOUKOWSKI AIRFOILS

USING C'H HYBRID GRID, Re - 600.

176



C. STATIC PRESSURE CONTOURS
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C. STATIC PRESSURE CONTOURS

FIG. 42 (CONT'D). RESULTS FOR A CASCADE OF JOUKOWSKI AIRFOILS

USING C_H HYBRID GRID AND COMBINED SCL-CRCL

FORM OF EQUATIONS, Re - 300.
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