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SUMMARY

A semi-elliptic formulation, termed the interacting parabolized Navier-
Stokes (IPNS) formulation, is developed for the analysis of a class of
subsonic viscous flows for which streamwise diffusion is negligible but
which are significantly influenced by upstream interactions. The IPNS
equations are obtained from the Navier-Stokes equations by dropping the
streamwise viscous-diffusion terms but retaining upstream influence via the
streamwise pressure-gradient. A two-step alternating-direction-explicit
numerical scheme is developed to solve these equations. The quasi-
linearization and discretization of the equations are carefully examined so
that no artificial viscosity is added externally to the scheme. Also,
solutions to compressible as well as nearly incompressible flows are
obtained without any modification either in the analysis or in the solution
procedure.

The procedure is applied to constricted channels and cascade passages
formed by airfoils of various shapes. These geometries are represented
using numerically generated general curvilinear boundary-oriented
coordinates forming an H-grid. Stagnation pressure, stagnation temperature
and streamline slope are prescribed at inflow, while static pressure is
prescribed at the outflow boundary. Results are obtained for various values
of Reynolds number, thickness ratio and Mach number. The regular behavior
of the solutions demonstrates that the technique is viable for flows with
strong interactions, arising due to either boundary-layer separation or the
presence of sharp leading/trailing edges. Mesh refinement studies are

conducted to verify the accuracy of the results obtained.
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A new hybrid C-H grid, more appropriate for cascades of airfoils with
rounded leading edges, 1s also developed. Appropriate decomposition of the
physical domain leads to a multi-block computational domain bounded only by
the physical-problem boundaries. This permits development of a composite
solution procedure which, unlike most found in literature, is not a patching
procedure. Satisfactory results are obtained for flows through cascades of
Joukowski airfoils. The implementation of the IPNS formulation on the C-H
grid exposes two small portions of the grid interfaces and these require
special treatment. However, with a hybrid grid, the use of complete Navier~
Stokes equations is recommended, so as also to avoid inconsistencies in the
parabolization approximation due to changing orientation of the coordinates

at a given location.
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CHAPTER 1

INTRODUCTION

The flow through compressors and turbines of gas-turbine engines 1is
fairly complex. The complexities arise due to unsteadiness, separation,
periodic transition from laminar to turbulent flows and complex
geometries. A clear understanding of these flow phenomena is needed in
order to improve the performance of these components of the engine. It
is well known that the complete Navier-Stokes (NS) equations accurately
describe the important physical aspects of fluid flow occurring in these
components. However, in spite of all the advances made to date in
numerical algorithms and computer firmware, numerical solution of the
complete NS equations can still require large amounts of computer
resources in terms of time and storage. Hence, an approximate form of
the NS equations which accurately depicts the physics is praferred. The
simplest of the approximate forms of the NS equations is provided by the
boundary-layer equations. The classical boundary layer (CBL) equations
with specified pressure gradient are parabolic in nature. Therefore, a
spatial-marching procedure can be employed to numerically solve these
equations very efficiently. However, this formulation does not contain
any mechanism for transmitting downstream disturbances upstream and,
hence, cannot be employed for problems where there is a strong pressure
interaction or when the flow is separated. Goldstein [1] showed that
the solutions to the classical boundary-layer equations exhibit a square
root singularity in the wall shear at the separation point. This

singularity leads to the failure of the weak interaction method wherein



the outer inviscid flow and the inner boundary-layer region are analyzed
sequentially, with the interaction between the two regions being
modelled through the pressure gradient term. These limitations were
overcome by the development of interacting-boundary layer [2] and triple
deck [3] theories. 1In interacting boundary-layer (IBL) theory the
pressure gradient is treated as unknown. In subsonic flows, the
pressure gradient is related to the derivative of the displacement
thickness through Cauchy's integral. Detailed discussion on interacting
boundary-layer theory has been given by Veldman [2]. An interacting
boundary-layer model has been used by Rothmayer [4] for analyzing high
Reynolds number flows with large regions of separation. However, the
interacting boundary-layer model also has its drawbacks. For complex
flows, relating the pressure gradient to the displacement thickness is
not sufficient. Also, for flow past bodies with large curvature, the
normal pressure gradisnt is no longer negligible and should be included.

To account for these effects, Briley [S5] and Ghia et al. [6]
developed a non-iterative parabolic procedure for calculating flow
through curved ducts. Their procedure'employed parabolized Navier-
Stokes (PNS) equations obtained by neglecting the viscous diffusion
terms in the streamwise direction, with the streamwise pressure gradient
term being represented by a backward difference. Hence, this procedure
is applicable for flows with little upstream influence and no streamwise
separation.

The thin-layer Navier-Stokes (TLNS) equations of Steger [7]

include the upstream influence. These equations are obtained from the



unsteady NS equations by dropping the streamwise diffusion terms. The
procedure employed to solve these equations 1is a 't ime-marching’
technique and has proved to be costly in terms of computer time, in
order to obtain steady-state solutions of flows around isolated
airfoils. Steger, Pulliam and Chima [8] have employed the two-
dimensional TLNS equations and a C-type of grid for solving viscous
flows through cascades. They experienced difficulties in obtaining
steady-state solutions when the pressure is not prescribed at the
upstream boundary. Buggeln, Briley and McDonald [9] have computed
l1aminar and turbulent flows through ducts using the Navier-Stokes
equations. Chima and Johnson [10] employed an explicit multiple-grid
algorithm to solve the NS equations in order to improve convergence.
Shamroth, McDonald and Briley [11] and Hah [12] have computed cascade
flows using the complete NS eguations. Rnie [13] has employed the
partially—parabolic NS equations to analyze three-dimensional viscous
flows through curved ducts of arbitrary cross-section. Recently, Chima
[14], Davis et al. [15] and Rhie [16] have developed methods for
predicting cascade flows using NS equations. References {147 and [16]
have also employed a multigrid algorithm to enhance convergence. Most
of the works mentioned above have incorporated second- and fourth-order
dissipation terms, in order to suppress oscillations in the flow field.
The difference in computational effort involved in obtaining the
solution to TLNS and complete NS equations is not significant. The
numerical solution of both the TLNS and the complete NS equations

require large amounts of computer resources.



In the present study, a single system of equations which can
include the upstream influence is obtained from the full NS equations.
It is termed the interacting parabolized Navier-Stokes (IPNS)
formulation and belongs to the class of semi-elliptic models, one form
of which was developed earlier by U. Ghia et al. [17]. Only steady
flows are discussed here and, hence, the time-derivative term in the NS
equations is dropped. It should be ment ioned, however, that the
analysis can be extended readily to unsteady flows by the inclusion of
this term. The semi-elliptic form of the equations is obtained by
dropping the viscous diffusion terms in the streamwise direction. This
approximation is supported by the fact that the streamwise diffusion is
negligible compared to the normal diffusion, for the flows under
consideration. Clearly, the approximation is appropriate if the
coordinate system employed is a body-oriented, near-orthogonal system.
The semi-elliptic or IPNS formulation is tested via application to 2-D
flows through channels with varying cross section in the streamw:se
direction and flows through cascades of airfoils of various shapes.
These configurations are chosen as they are akin to the geometries of a
turbomachinery compressor or turbine.

In all of the works mentioned above, either an H- or a C-type of
grid is employed. In order to analyze flow around airfoils with rounded
leading edges, it is often desired to employ a combination of these
types of grids. Near the leading edge, the channel or the H-type of
grid becomes excessively skewed and non-orthogonal and a C-grid is more

suitable in this region. But, in the latter, the grid density decreases



rapidly with distance away from the leading edge. In this region, an H-
grid can be employed. Norton, Thompkins and Haimes [18] have employed a
mixed sheared and O-type grid for computing flows through turbine
cascades. Rai [19] has employed a patched and overlaid grid system in
order to compute flow through a rotor-stator combination of a
turbomachine. Bush [20] developed a zonal methodology and a time-
dependent procedure to obtain solution of the NS equations for flow
through an external compression inlet. When the zonal or overlaid grid
systems are employed to solve the governing equations of motion, it is
important to transfer information from one grid system to the other
appropriately. Hence, in the present study, the hybrid C-H grid
generation procedure developed by U. Ghia, K. Ghia and Ramamurti [21]
for turbomachinery cascades 1is employed. When this hybrid C-H grid is
employed to solve the complete NS equations in a composite manner, the
explicit transfer of information across the zonal boundaries is not
required.

Details of the derivation of the governing equations are given in
Chapter 2. Also, the appropriate boundary conditions to be specified
for solving the governing equations, for both channel and cascade
configurations, are discussed. In Chapter 3, the numerical procedure
employed is discussed. The appropriate form of the pressure gradient
term and the metric terms associated with it and the implementation of
the boundary conditions and modeling for reversed flow, are also
included in that chapter. Results for flows through constricted

channels and cascades of airfoils of different shapes, obtained



employing the channel or H=type of grid, are discussed in Chapter 4, A
composite procedure for generating a hybrid C-H grid for cascades with
rounded leading edges is given in Chapter 5. 1In Chapter 6, the
implementation of the solution procedure for flow through a cascade of
Joukowski airfolis using a hybrid C-H grid is discussed. Some results
obtained are presented in this chapter. Details of the implicit
solution of a system of equations subjected to a periodicity boundary
condition arising in cascade flows, the discretized representation of
the metric coefficients and the treatment of the five-sided cell

occurring in the hybrid C-H grid are included in the appendices.



CHAPTER 2

FORMULATION OF THE PROBLEM

2.1 Basic Egquations

The governing equations for the mathematical model of fluid flow
can be derived from the Navier-Stokes equations. The nondimensicnal,
conservation form of the equations for two-dimensional laminar flow of a

compressible fluid can be written in Cartesian coordinates as follows:

Continuity

(<%

22 . % (pu) + g—y (pv) = O (2.1 a)

x-Momentum

—a—— _a— 2 _a_. ga_- —a
g (pw) + 53 (pu +p) + 5y (puv) = == (1 ) + 3y (t..) (2.1 v)
y-Momentum

(t. ) (2.1 ¢)
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Energy
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t

- 3 _
+vrxy qx) + 3y (ut. +vt._—q.) (2.1 d)

- (ur
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XX
where p is the density, u and v are the Cartesian components of velocity

and e is the specific total energy given in terms of specific internal

t
energy e by
2 2
e, = e+ L ;v . (2.2 a)

The stress components and the heat flux terms can be written as



1
Tex " Re {(A+2u)ux + Avy} .

1
Tyy * Re {(A+2u)vy + Xux} ,

1
Txy = ‘R'é {u(uy + Vx)} ’

)
%Y " Re Pr (T-DME 'x

and

~u

Yy = Repr (-ME Ty (2.2 b-f)
According to Stokes' hypothesis, A is taken as (- % u).
The equation of state is given by

p = (Y-1) pe . (2.2)

The constitutive equation for viscosity is given by Sutherland's

viscosity law

(1+T) 372
(T+T)

where

= . _110°K

Tref

The Reynolds number and the Mach number are based on the conditions at
the inlet boundary and are given as

Re = (pop Upoo L)/ m (2.5 a)

ref T"avg f

and

M = U / (YR T 1/2
® avg re

) (2.5 b)

f



TITO AN

where Uavg is the mass-averaged inflow velocity at the inlet given by

Lovas
U -al PV s (2.6)

avg h
o!pds

with h as the cascade blade spacing or the channel height, V the
velocity normal to the inlet boundary and s the distance measured along
the inlet boundary.

The reference length L is the chord length of the airfoils for
cascade flows and the channel height for channel flows.

Equation (2.1) has been cbtained by the following nondimension-

alization:
* * t* *
X . -
x=—" , Y= » t=w7uo_H 7T '
avg avg
* * * *
v = v o - o 0 R e
= ’ = ’ = 2 y = 2
Uavg Pref Pref Uavg Uavg
and
T*
T = - . (2.7)
ref

All the dimensional quantities are denoted with a superscript asterisk.

Equation (2.1) can be written in a vector form as

9Q _ 9E , OF _ 3 = 3 =
%t 3x oy - ax Byt ay BV (2.8)

= T
Q'(p. pu, pv, Pet] ’



E = [ pu, pu+p, puv, (pet+p)u 1T ,

F = pv, puv, pvi+p, (pe +p)v 1

T
Ev =[ 0, Tex! Ty (urxx+vrxy qx) 1,

and

T
Ty Tyy? (urxy+vryy qy) I . (2.9 a-e)

2.2 Coordinate Transformation

The success of a numerical solution procedure for the governing
equat ions of motion depends heavily on the proper choice of coordinates.
One of the first requirements placed on a coordinate system is that the
coordinates be aligned with the problem boundaries. The use of
boundary-fitted coordinates reduces the complexities otherwise
encountered in the treatment of boundaries of arbitrary shape. Hence,
the Navier-Stokes equations in the physical (x,y) coordinates are
transformed to a system of computational (g£,n) coordinates through the
following general transformation:

£ = g(x,y) ,

n = n(x,y)
and 1=t ., (2.10)

According to Viviand [22], the transformed governing equations in
the (£,n,1) coordinates can be written in the strong-conservation-law

(SCL) form as follows:

10



= g g n n
3 (9 3 (Xg ., X% 3 (XF. X7
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2 (Xg Y% 3 (X% ., Y%
JE ( J Ev * J Fv )+ on ( J Ev * J Fv ) (2.11)

where J 1s the Jacobian of the transformation and is defined as

a(e,n)| _ 1

J = det a(x,y)l X

- =fE n ~-&E n . (2.12)
£ Yn yE *n x Y y

The metrics § , § , n_ and n_ are determined after the mapping,
X y X y

given by Eq. (2.10), has been defined. The metrics are related to the

derivatives xg. yE. etec., by the following relations.
= J ’ = -J X
£y Yo &y N
= -] . = J X . 2.13)
nX yE ny £ ( 3

It is convenient to write Eq. (2.11) in the following form.

oF ) 3 .
3 SE (EV) + 5; (Fv) . (2.14;
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+
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"
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ol
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- Yy % -
F, =57 E, + = F . (2.15 a-e)
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An alternative compact representation of the invisclid flux vectors
E and F is also possible and is obtained by using Egs. (2.9 b,c) in Egs.

(2.15 b,c) to yield

e — —— ey

pU pV
1 1
E.—J— puU+Exp andF-T puV+nxp
pvU + £ D pvV + n_p (2.16 a,b)
y y
L (pet+ p)U B B (pet+ p)Vv ]

where U and V are the contravariant velocities along the £ and n
coordinates, respectively, and are related to the Cartesian components u
and v by

U = Ex u + gy v
and

V = nou*mn v o. (2.17)

Equations (2.14) are the complete Navier-Stokes equations in SCL
form in the general boundary-oriented (g,n) coordinates. As discussed
in Chapter 1, certain approximations will be introduced in these
equations so as to optimize the efficiency of their numerical sclution
and their ability to represent important physical flow phenomena

accurately.

2.3 Derivation of the Semi-Elliptic Form of the Governing Equations

The time-derivative term is dropped from Eq. (2.14) because only
steady flows are considered in the present study. The parabolized

Navier-Stokes equations are obtained by neglecting all the streamwise

12



diffusion terms. This involves dropping the second-order derivatives

( 3% /36% ) and the cross derivatives ( 32 /3¢ 3n ) in the viscous
terms. This approximation is supported by the fact that the streamwise
diffusion is negligible compared to the normal diffusion in most of the
regions of the flows under consideration. This approximation is
appropriate only if the (g,n) coordinate system is a body-oriented,
near-orthogonal coordinate system, that is, the £ coordinate is nearly
aligned with the streamwise direction and the n coordinate is nearly

orthogonal to it. The reduced set of equations can be written as

follows.
9 F _ 3
3 i T (FV) (2.18)

where E, F and Fv are as given in Eq. (2.15),

It should be emphasized that the above set of equations is
'parabolized' and not parabolic. The mathematical character of the
system of equations (2.18) depends on the manner in which the streamwise

pressure gradient term pE is treated. If pE is prescribed, as in the

case of classical boundary-layer theory, the system is parabolic. 1In
this case, a marching method can be employed to obtain the solution for
this system. This method of solution is very efficient, but it does not
have any mechanism for including upstream influence and is, therefore,
not suitable for flows with separation and sudden streamwise changes in

boundary conditions. When the pg term is treated as unknown and forward

13



differenced, the system of equations is no longer parabolic but has an
elliptic character.

When the parabolized Navier-Stokes equations are solved as an
inital-value problem, as in the case of single-sweep marching solutions,
the ill-posedness of the equations leads to *departure solutions'
similar to the eigensolutions of the viscous sublayer equations proposed
by Lighthill [23]. Vigneron, Rakich and Tannehill [24] have described a
method for suppressing the departure solutions in their study of
supersonic flow over delta-wings. They introduced a parameter, w, to

split the pressure gradient term px into 'w px ', which was backward
differenced and treated implicitly, and (1-m)px. The latter term, even

when represented using a backward difference, led to instabilities and,
hence, was dropped entirely. This is appropriate if the flow is
predominantly supersonic, as in the case these authors considered, but
not in general. These authors performed a characteristics analysis for
the inviscid as well as the viscous limits of the equations. From the
viscous analysis, they found that the equations are well posed for space

marching when

Y M;
oS T T £(M) 1f £(M) 51 (2.19 a)
and w = 1 if f(Mx) > ’ (2.19 b)
where M = —— (2.19 ¢)
« Y . .

In the present study, the pressure-gradient term is split in the

manner described above, but is discretized so as to include upstream

14



influence in flows with strong interaction by forward differencing the

'*(1-w) 9p/3& ' term, i.e., by using the representation

2p 1 4 (1-w) g—g (2.20)

3 |b |
Here, the subscripts b and f denote backward and forward differences,

respectively.

2.4 Boundary Conditions

The appropriate boundary conditions to be specified for solving the
governing equations, described in the prevoius section, for flows
through cascade and channel configurations are described in this
section. These conditions are specified along the inflow and outflow
boundaries, and lower and upper wall boundaries for channels and airfoil
portions of the cascade passages. These boundaries are shown in Fig. 1.
Also, for cascade flows, the periodicity of the flow variables along the
wake boundaries is considered. A set of wall-wall boundary conditions
is one that is imposed at the ends of a £ = constant grid-line which
starts at a body surface and ends at the facing body surface. A set of
wake-wake boundary conditions is one which is imposed at the ends of a
£ = constant line which starts at a point in the wake region and ends at
a point in the facing wake region. In the case of staggered cascades, a
set of wall-wake boundary conditions may be needed in regions where a
£ = constant line starts from a point along a wall and ends at a point

in the facing wake region.

15



2.4.1 Inflow and Outflow Boundary Conditions

For the problems considered in the present study, the flow near the
inflow and outflow boundaries behaves in an almost inviscid manner.
von Mises [25] has carried out a characteristics analysis for inviscid
systems and found that for subsonic flows, all the characteristics are
real, with two of them being positive and one negative. Using the
counting principle of Courant and Hilbert [26] that one boundary
condition is to be specified per entering characteristic, this requires
that two conditions are to be specified at the inflow boundary, and one
at the outflow boundary.

In Ref. [27], McDonald and Briley have described a specific set of
boundary conditions. They considered a typical duct flow proceeding
from a large reservoir and exhausting into a plenum. The reservoir
conditions and the plenum static pressure were known. This duct flow
model leads to prescribing the reservoir total conditions and the plenum
static pressure. The specified stagnation temperature and pressure
constitute the two required inflow boundary conditions and the specified
static pressure constitutes the one outflow boundary condition.

In the present study, at the inflow boundary, the total pressure
prescribed for cascade flows is that corresponding to a uniform velocity
profile, while the stagnation temperature is taken to be constant. For
channel flows, the conditions prescribed at the inflow boundary are the
velocity and static temperature profiles corresponding to a fully

developed flow in the channel.

16



In the problems considered, the outflow boundary is situated far
downstream of the cascade of airfoils or the channel constriction, so
that uniform static pressure is an appropriate condition.

As the static pressure at the inlet 1s not specified, the mass flow
in the configuration is not set a priori and pressure waves can escape
upstream, avoiding the problem of reflecting waves discussed by Rudy and
Strikwerda [28]. To facilitate a marching procedure, the conditions at
the inflow boundary are obtained by assuming the velocity-profile shape,
guessing a representative magnitude characterizing this profile, and
obtaining the static pressure using the prescribed total pressure. The

guessed representative velocity magnitude, Uavg’ is then updated as the

overall solution evolves. For channel flows, McDonald and Briley [27]
have suggested updating the total pressure distribution within the
boundary layer, in order to maintain the required velocity- and
temperature-profile snhapes prescribed at the inflow boundary. This
implies that for fully developed flow conditions at the inlet, as used
in the present channel-flow studies, the total pressure distribution has
to be updated over the entire channel width.

The procedure for updating the velocity profile for cascade flows

will be described in the next chapter.

2.4.2 Wall-Wall Boundary Conditions

The governing equations given by Eq. (2.18) consist of one first-
order equation, namely, the continuity equation, and three second-order

equations, namely, the x- and y-momentum and the energy equations.
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Here, the order refers to the highest-order derivative in the n
direction.. These comprise a system of seventh order with respect to n,
so that a total of seven boundary conditions need to be specified along
the two n = constant boundaries. At the wall, the no-slip boundary
condition is imposed; also, the walls are assumed to be impermeable and,
hence, there is no injection or suction at the surface. In addition,

the temperature, Tw , at the surface is specified. These constitute a

total of six Soundary conditions at the two surfaces. Therefore, one
additional condition has yet to be specified. A valid flow approxima-
tion such as (3p/3n) = 0 can be imposed as an additional boundary
condition. The resulting solution will reflect the approximations
inherent in the boundary condition. Another method to obtain the
additional condition is to write the governing equations in one-sided
difference form at the wall, as has been done by Rubin and Lin [29] anc<
Briley and McDonald [30].

In the present study, an approximate form of the normal momentum
equation, obtained by dropping the viscous terms in that equation and
written at the first cell center near the wall surface, is used as the
additional condition. The viscous terms in the normal momentum equation
can be shown to be negligible near the wall surface for most of the
flows considered in this research.

In order to ascertain that enough independent equations are
available at a particular streamwise location, a typical grid line along
the n direction, consisting of five computational points as shown in

Fig. 2a, is considered. Counting four unknowns, namely,

18



6 = (p, pu, pv, pet)T, per point, this line involves a total of 20

unknowns. The independent equations that can be written are the
continuity equation written at the 4 points denoted by ¢ in Fig. 2a, and
the momentum equations and the energy equation written at the 3 points
denoted by x, y and e, respectively. This constitutes a total of 13
independent equations. When combined with the six specified wall-
boundary conditions, these equations leave one additional condition to
be specified. This additional condition is taken to be the reduced y-
momentum equation as discussed in this section, and may be imposed near
either wall surface.

These boundary conditions can be stated mathematically as follows.

At the walls,

u=u =20 ,
W
v=v =20
W
and T =T (2.21;
W
The reduced normal momentum equation near one of the walls can be
written as
Ly lwere py e (towen pr-0 . (2.22)
9t  J y on ~ J y

2.4.3 Wake-wake Boundary Conditions

For cascade flows, specification of boundary conditions along the
wake boundary needs to be considered. For symmetric configurations, the

wake boundary, is in addition to being the wake centerline, also a line
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of symmetry. For unstaggered cascades, a 'line-periodic' grid is
employed. In this type of grid, the same n-coordinate line connects the
corresponding periodic points, such as points 1t and 5 or 0 and 4 in

Fig. 2b. 1In this case, the periodic-~boundary conditions can be enforced

implicitly. The periodicity condition is that the corresponding values
of all the flow variables, a = (p, pu, pv, pet)T. and the normal
derivatives, un, vn and Tn, of the velocities and temperature which are

governed by second-order equations, namely, the momentum and energy
equat ions, must be the same at corresponding periodic points along the

wake boundaries. It should be mentioned that, in terms of the conserved

variables, Q = {(p, ou, pv, pet)T. the repeating condition on the n-

derivatives must be satisfied for all four elements of aﬂ' This

condition can be written as

Q, = Qs or Q =Q, (2.23)
for a typical computational line consisting of points 1 through 5 as
shown in Fig. 2b. Impcsing the periodicity boundary condition described
above between points 1 and 5, leaves a total of 16 unknowns counting
four unknown variables per computational point. The system of equations
that can be written along this computational line consists of the
continuity equation at 5 points, and the momentum and energy equations
at 4 points, denoted by ¢, X, y and e, respectively, in Fig. 2b. As
periodicity has already been imposed, the continuity equation, which is

of the first order, written employing points 4 and 5, becomes identical
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to that employing points O and 1. Hence, there are only 16 independent
equations and the system is closed. Also, in the case where symmetry
exists along the wake boundary, the viscous terms in the y-momentum
equation can be dropped, and this reduced first-order equation can be

written employing points 1 and 2.

2.4.4 Wall-Wake Boundary Conditions

This type of boundary condition 18 needed for cascades with stagger
when a 'reglon-periodic' grid is employed. A 'region-periodic' grid is
one in which the corresponding periodic points in the flow are not
connected by the same n-coordinate line. This type of grid has to be
employed for cascades with large stagger in order to avoid excessive
skewness of the coordinates. The use of this type of coordinates, in
conjunction with a marching procedure, forces the périodicity condition
to be imposed in an explicit manner.

Figure 2c¢ shows a typical grid consisting of six points along an n-
coordinate line in the wall-wake region. The 18 independent equations
along this line consist of the continuity equation written at 5 points
and the momentum and energy equations written at 4 points, in addition
to the reduced momentum equation written at the wall surface. The six
boundary conditions consist of the zero slip, zero injection/suction and
the specified temperature at the wall surface and the specified velocity
and temperature conditions at the wake boundary. The conditions at the

wake boundary are obtained from the corresponding periodic point along
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the upper wake boundary in the flow. These conditions can be stated
mathematically as follows.
At the wall, the conditions are

um= uw = 0 ,
vV = vw = 0
and T = Tw . (2.24)

Along the wake, for example, at point 0 in Fig. 2¢, the conditions are

Up = u,
Vo = v,
and T, =T . (2.25)

Here, '0' and 'a' are the corresponding periodic points.

2.4.5 Wake-wake Boundary Conditions (Region—-Periodic Grid)

Along this type of boundary for staggered cascades employing a
region-periodic grid, the periodicity condition is imposed in an
explicit manner. The independent equations to be considered along a
typical computational line consisting of six grid points 0 through 5 are
the continuity equation written at 5 points and the (x,y) momentum and

energy equations written at 4 points. The boundary conditions consist
of the specified values of 5 = (p, pu, pv, pet)T at point 5, obtained
from the values at the corresponding periodic point in the flow, such as

point b in Fig. 2d. For this purpose, the most recent values of 5 are

used. This implies that only three more boundary conditions can be
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Ty ower -

supplied for the seventh-order system. Hence, the velocitles u and v
and the temperature, which are lagged in time, are specified at point 0.
These conditions can be stated as follows.

Along the wake, at point 5,

Ps = P, » Us = Uy Vs = Yy and Ty = Tb (2.26)

and at point O,

U =u, , Vo=V, and To =T, . (2.27)
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CHAPTER 3

NUMERICAL PROCEDURE

The interacting parabolized Navier-Stokes equations (2.18),
described in the preceding chapter, are a set of nonlinear coupled
partial differential equations. Analytical sclution of this system of
equations exists only for a small, special class of problems. Hence,
for the general problems of present interest, a numerical solution of
these equations is scught.

The linearizaticn and discretization of the governing equations,
the solution procedure for the discretized set of equations, the
implementation of ths boundary conditions, including the periodicity
boundary condition fzr~ cascade flows, as well as the treatment of
problems with flow szparation are detailed in the following sections of

tnis chapter.

3.1 Quasi-linearizatio>n and Discretization

The system of gcverning equations (2.18) is first re-written here

for easy reference.

oE oF 3
a—g*'a—n‘a—n([‘-.'.) (3.1)
where
g g
«aXF .+ IF
E 3 E+J F »
n n
«a2F + L7
and F 3 E + 3 F (3.2)
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-4 = o d

As mentioned above, this system of equations is nonlinear.
Therefore, these equations must be linearized or quasi-linearized in
order to obtain a system of algebraic equations amenable to numerical

solution. In the present study, employing forward marching for the

solution vector a, a quasi-linearization of the nonlinear terms at a
given streamwise station is carried out about the solution at the
preceding streamwise location. From Eq. (3.2), it is seen that the

quasi-linearization of the inviscid flux vectors E and F requires that

the flux vectors E and F be quasi—linearized. This is achieved by using

Taylor's series expansions. The results can be expressed as follows.

gi* gl gt (3.3)
Fitt LFt . B ala (3.4)
where
Aia 61” - 61 »
S » =i
At - 3% and B = §§ (3.5 a-c)
9Q oQ

Here, the superscripts { and (i+1) denote two successive streamwise
locations as shown in Fig. 3. The quantities with superscript (i+1) are
the unknown terms, which contribute to the nonlinearities in the

equations.
Recognizing the fact that the inviscid flux vectors, E (Q) and

F (6) are homogeneous functions of degree 1 in 5, and using the property

of homogeneous functions (see Ref. [31]), one can write
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2% 5 = E and 9§ 5 = E . (3.6)
aQ aQ

This property allows some conceptual simplifications of the equations
and leads to computational efficiency. Using this property of
homogeneous functions, Egs. (3.3) and (3.4) can be written as follows.

Ei+1 - Ki ai+1 i

=1i+1

and F - s

Q . (3.7 a,b)

wi

The Jacobian matrices A and B, defined in Egs. (3.5 b,c), are given

as follows.

0 Lo "o b0
— = — e _ o __ i
$? - u? 1 (3-Y)u i=(Y=1)v (vy=1)
A = (3E/3Q) = -uv : v o ou oo
Co— mm et
u(2¢2—Yet),{Yet-¢2 - (r=1)uv ' Yu
{
I =(Y=1)u?};
Jd
and
0 : 0 f 1 I 0
-uv ! v [ u i 0
-___._'-___i-__._i.__,
B = (3F/3Q) = $2 - u2 : -(Y-1)u ; 3-v)v ! (y-1) ,
}

r
P - - -2
v (2¢% Yet) (v 1)uv‘ {Yet )

!
|
! i
| ‘(Y-1)u2}'
L i .
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where ¢

Using Egs. (3.7)

as

i+

where A

Similarly,

Fi+1

where B

2 4
5"

(vy-1)

(u?+ v?) .

(3.8 a-c)

and (3.2), the flux vectors E and F can be written

- Ki ai+1
g g, s
i+1 < 1 =
- @A G E (3.9 a,»)
- ﬁi ai+1
n —j N -
- (35)1+1 At o+ (31)1+1 Bt . (3.9 c,d)

As the metric terms at (i+1) station are known quantities, the
metric terms involved in Egs. (3.9 a-d) are evaluated at station (i+1).

This type of quasi-linearization has been employed by Schiff and Steger

[32]. It is different from that employed by Steger [7], who used
el 2 gl 4 al a3 (3.10 a’
with
. i
at - £ (3.10 b
oQ

The Jacobian matrix Al contains metric quantities evaluated at station

i. The ~ on the Jacobian matrices A and B in Eq. (3.9) is used to
denote that the metrics in these matrices are evaluated at station
(i+1), and distinguishes these matrices from the Jacobian matrix in

Eq. (3.10).
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The viscous term Fv is quasi-linearized as follows. A typical term

of Fv is of the form (a %%). Starting with the Taylor's series

expansion for (a %%)1+1 and re—arranging leads to the expression
(a %%)i+1 - ol (%%)i + o' (a8/03 a0 (3.11 a)

Further, it is observed that the term B is homogeneous of degree zero,

in Q. Hence,

(38/3Q) Q = O. (3.11 b)
Therefore, Eq. (3.11 a) becomes

9B, 1i+1 i+1 ,98.,1 i+1 -1 =i+
(a I = q (53) +a (38/73Q)° Q (3.11 ¢)

Using Eq. (3.11 ¢), the viscous term Fi+1 can be written as

Fi+1 - ;i . éi 5i+1
v v v
where a typical term of Fi is of the form al+1 (%%)i , and of Bi 5l+1 is
i+l =1 =i+ ; . )
a (3873Q)" Q Again, the -~ denotes that the metrics involved

are evaluated at station (i+1).

The discretization of the derivative terms is discussed next. The

i+l
E-derivative term (%%) is considered first. This term can be
written as
1+1 i+1 i
3E oE _ dE
(38)  -o (5 + 0-e) (5) - (3.12)
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The values of 6, are chosen depending on whether an implicit, explicit
or the Crank-Nicolson scheme is to be employed. The various values of

8, commonly employed, and the corresponding schemes, are

1 for an implicit scheme ,
6, = 0 for an explicit scheme ,
1/2 for Crank-Nicolson scheme . (3.13)

Also, depending on the type of differencing and the desired

accuracy, one can write

i+ i i-1

JE A" E A E
(_a_-] = (1+62) AE - e~2 AE (3.1“)

'aal

where Ai is the forward difference operator defined by Eq. (3.5 a).
The type of differencing, and the corresponding order of accuracy, for

various values of 8, are given as

-1/2, central, 0(AE?)
B, = 0 , two-point backward, 0(AE)
172 , three-point backward, 0(AE?) (3.15)

Combining Eqs. (3.12) and (3.14) leads to,

i+1 i i i-1
o, 3F) + (1-8)) (35) = (1+ey) A—AQ—E- - 8, A—A?E : (3.16)

o
M

An explicit scheme usually has some stability condition such as the
Courant-Friedrichs-Lewy (CFL) condition associated with it. Hence, an
implicit scheme, corresponding to 6, = 1, is employed in the present

work, to enhance the numerical stability of the resulting method. To

facilitate a marching type of procedure, elther two-point backward
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differencing or three-point backward differencing has to be employed.
In the present work, the two-point backward differencing, with 6, = 0,

has been employed.

Substituting for (

Qjar
mijm

) from the governing differential equation

(3.1) into Eq. (3.16) gives

i i i-1

AP IR O JEy ATE_ . AT E
8, 37 (F-F.) + (1-9,) (35) (1+8,) R Y .
(3.17 a)
Equation (3.17 a) can be rearranged as follows:
Lo . 8y -1 _
A" E oo A E 1+e Ag a (F-F, '
- 1 AE ~ (F-F, y1 (3.17 b)

Substituting for the quantities at station (i+1) using the quasi-
linearization given by Eqs. (3.9) and (3.11), Eq. (3.17 b) can be

rewritten as

Floziel 1 8, i-1 _ 8 9 el _ 5ty =it =i
At Q R Teo; 28 57 (BT - B9 Q F)
1-8, 3 i
- — -
b€ Trgt §m (FF) . (3.18)

Equation (3.18) can be re-arranged to contain the unknowns at station
(1i+1) in the incremental or delta form, by subtracting
~i =i 8 ] =1 ~i, =i
—L & -
AT Q0+ 88 755 95 (BT - B)) Q)

from both sides of Eq. (3.18) and is given as
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-1 1 0, 3 ..zt _ sty iz
AW a0 e g 5 (B0 - BY) A0
[ SS SF-S UL ORI L IISU b TN PR
E -k @ +q3i- At B -t 57 (FF)
] 3 = 1 =i, =i =i
- i 9. - -
% 7367 m {(B B,) Q Fboo- (3.19 a)
Here,
- - g - 3 s
Ai Qi - (31)1*1 -Ei (_J_!)i*“ Fl .
Bi Qi - (:I_)E)i” E i + ('J‘!Ji‘.l 1:.i
and §i 61 = 0. (3.19 :-d)

It may be important to recall that Egs. (3.19 b,c¢) are obtained

- -

from the definitions of the Jacobian matrices A and B, given by Egs.

(3.9 b,d), and by using the homogeneous property [Egs. (3.6)] of the

flux vectors £ and F.
For an implicit scheme employing a two-point backward difference,
8, =1 and 8, = 0. Hence, Eq. (3.19 a) reduces to the following.
~i ,i= 9 =1 =i iz
A" ATQ + A an {(B Bv) A"Q}
-E -RQ -ae= (B Q -F) (3.20)

The next step in the numerical procedure is the introduction of
upstream influence. For flows with strong viscous-inviscid interaction,
as mentioned in Section 2.3, the streamwise pressure gradient term is

split according to Eq. (2.20) and upstream influence is introduced by
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forward differencing the '(1-w) 3p/3E ' term. With this 'w - split’,

the governing equation (3.1) can be written as

*
SE [ 3F _3_ --adp
5t o (FY) * 3, (3.21 a)

where

1
S il IR

0 (3.21 b)

The subscript f on the pressure gradient term denotes that this

term is forward differenced and those on the metrics Ex and gy denote

that these are obtained using coordinate values at station (i+2). This
representation of the metric terms was arrived at by applying the
procedure for a test case in which a fully developed flow was reproduced
in a straight channel using a coordinate system with metrics varying

along the streamwise direction.

*
The flux vector E is different from E given in Eq. (2.16), in that

the pressure terms in it are multiplied by the factor w. It is given as
[ pU 7

E* ! U ‘
- — + !
5 pu gx wp

pvU + Ey wp ’

(pet+p) U J (3.22)

where U is the contravariant velocity given by Eq. (2.17 a).
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For low subsonic flows considered in the present study, according
to Eq. (2.19), w = 0. This implies that the total streamwise pressure-
gradient term is forward differenced. Also, it is clear from
Eq. (3.21 a) that the streamwise pressure gradient term is no longer in

the SCL form. This necessitates that the pressure gradient term pn

should no longer be in the SCL form, as the starting governing equations
were written in the conservation form in Cartesian coordinates.

Accordingly, Eq. (3.21 a) must be written in the following form.

* M
L, D (py.-al
% *3n P30 3n v % 3, (3.23 a)
where
0
b _.1__ (1_)
= J mnx
1.—
(1-w) ny %
0 (3.23 b
L -
and F* =F-bp . (3.23 ¢)

The procedure for quasi-linearization of Eq. (3.23 a) is similar to
that used to obtain Eq. (3.20). The resulting equation has an extra
source term on the right hand side, arising out of the pressure gradient

(ap/ag)f term. The quasi-linearized form of Eq. (3.23 a) becomes

~*{ 1z 3 3% _ziy L15 i+1 3 . ,3pyi i3
A AQ+AE[an{(B B,) 4°Q} + b an{(_)AQ]

aQ

%] ~*i =1 i+1

_ s G g apyt _ 3 (fl
S - ca i ETTh e R - (D)

- a1+1 A1+1 P . (3.24)
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~ % ~ %
The asterisk on the Jacobian matrices A and B denotes that these are

* *
obtained from the corresponding flux vectors E and F » respectively.
A possible method of solution of Eq. (3.24) is to employ an

alternating-direction explicit (ADE) method. 1In the first step of this
method, Aia is computed starting at the inflow boundary and proceeding

towards the outflow boundary and in the second step, Ai+1p is computed
starting from the outflow boundary and proceeding towards the inflow
boundary. Such a method requires the inclusion of a time-derivative

term, Pes in the momentum equations containing (ap/as)f term, in order

to unlock the solution from its initial conditions. This method, like
the pressure updating procedure used previously by K. Ghia and U. Ghia
(331, is capable of transmitting the downstream disturbances upstream
efficiently. It is, however, algebraically much simpler and has been
successfully used by Barnett and Davis [34], for solving supersonic
external flow problems.

With the inclusion of the time-derivative term, the governing

equation (3.23 a) assumes the following form.

* *
8 L3, %3 o). _.% ..
13 * an * D an  9n (Fv) a BEf tasr - (3.25)

The quasilinearized form of Eq. (3.25) is obtained by utilizing Eq.

(3.24), in addition to discretizing the (3p/3t) term as

(pl*1sm*1/2 _ i+l,n,

AL (3.26)

ot
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i+1,n+t/2 i,n+1/2

and quasilinearizing p about p . The resulting

equation is

~W - ~% -~ - -
it oala e ag | -g—n (g - Bf,) alg + ! %; (&)1 4y
3Q
141 -
- EKE- {(-3-%)i a'Q }]
3Q
. 1
S At 3 == 1+1 3p° _ 8_ (&l
E AtQ B (5= (B Q) » b gt = (F))
calh R /2 pirhy it Ty (3.27)

The discretization of the above equation in the n direction is
considered next. The discretization is performed such that the
discretized form of the inviscid portion of the equations constitute a
consistent set of equations by themselves; the viscous portion of the
equation is also discretized in a self-consistent manner. The inviscid

part of Eq. (3.27) is given by

P D e . .
R8T +ae [ £ (B Latay . ot -g—n ((2R)1 A1Q
3Q
1+1 ._
-2 () Aty
3Q
i
*1 <*i =i 3 3t o=i i+1 3p
E AT Q AE {an (B Q) + b 3 }
. ai+1 {%% (pl,n+1/2 ~ p1+1,n) _ Ai+1 o} . (3.28)

All normal derivatives are represented by central differences, with
the first-order derivative representation involving points across one

normal mesh interval only. The discretized equations are second-order
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accurate in the n direction. Equation (3.28) is written at a normal
mesh midpoint, j+1/2 , as
-*i 1

i * o1

- ~*#{ {- AE ~%{ {= - -
AT a7Q) + (A7 aQ) b e 2 [(B7 AR, - (B 4 Q)
Pl @t - @ 219 1]
jr1/2 aQ 3 Q J
1 i
g i+ iz )
- 5 {( A"Q ) + (== aA7Q ).}
2 At 2j+1/2 23 J+1 3 J
1, % *j ~*i =i ~#f =i
-3 {Ej + Ej+1 (A" Q )J (A~ Q )J+T}
_AE 3% o=l LI S i+1 _
an (BT QD - (B 7 Q )y * a2 (pJ pJ ™)
1 _1+1 Ag i,n+1/2 _ _i+1,n
Y3 3542 [ & (p P )jur
i,n+1/2 _ _i+1,n _ Li+1 n _ i+ n R
+ (p p )j} A pj+1 A pj] (3.29 a)
where
11 e i+l
j*172 T2 V3 j+1
and
i+1 1 i+ i+1
bj+1/2 "2 (bj v bj+1) . (3.29 b,c)

In order to include the viscous terms at mesh pocint j, the inviscid
part of the equation should also be written at j. This is obtained by
writing a discretized equation similar to Eq. (3.29) at location (j-1/2)
and forming the arithmetic mean of this equation and Eq. (3.29). The

resulting equation is
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~%{ i 1 1 ,i= 1 i ,i=
(A7 87Q )y, *+ g (A7 AQ )yrg AT a Q4
AE i,i= P B P
taa (BT a00,, - BT a0,
Sl @ 4G @ g
AT
i+1 apl 1 = ggi 1=
thyy, (2 87 Q- (52 47 Q1]
aQ aQ
- = [all] (R a5y« (@ i3
4 At Jj+1/2 33 J+1 33 J
i+ ap1 i= ggi i-
* a5y {(= & Q)J + (== A Q)J_1}]
3Q 3Q
1 *i ~*j =f *i <kf = LIPS S S 3
7! Ej+1 -(A 7 Q )J.+1 + Ej_1 (A7 Q )._1} *3 {Ej (A~ Q )j}
_ A€ ~*i =i P 31
3 (LB Q Do ~ (BT Q )51
bi+1 ( i,n _ i,n) . bi+1 ( i,n _ i,n)}
j+1/2 “Pje1 7 Pj j=1/2 ‘P Py
1 i+l AE i,n+1/2 _ _i+1,n i,n+1/2 _ i+1,n
* 73,2 g (P p djeg * (P p )4
1 _i+1 AE i,n+1/2 _ _i+1,n i,n+1/2 _ i+1,n
*§8-1/2 e U(P p )yt e p )j-11
1 r_i+ i+1 _n i+t n 1+1 i+1 n i+1 n
T F LAy (87 Py v AT Py +ay o (4 Py + 2 Pyy)]
(3.30)
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The discretization of the viscous terms in Eq. (3.27), for example,

a(Bi Aia)/an , 18 considered next. The viscous flux vector Fv and the

Jacobian matrix Bv can be given as follows:
T -

0

L, u_ + L, v
1 n 3 n

F = -2 By U+ Ly v

L, uu o+ 2, WA + L, (uv)n

u
+ L, (et i )n (3.31 a)
0 ' 0 b0 Lo I
-_- = - = = - c e m e emtl e o e e o
- u 1 l 1 '
| L, (p)n L, (p)n L, (p)n 1 0
A \"
T K (E)n ‘ |
: u : I T
| 2, (p)n L, (E)H L, (;)n . 0
3 u b v
Bv TRe | L, (p)n : i
— e e e — e e o oL Lol
- u? - uy u '
L, (p )n (L,-%,) (p)n | £, (p)n ;
G v é vy iyl
£, (p )n | +2, (p)n | H(Ra=Ry) (p)n :lh (p)n
: uv | ‘
? 2%, (p )n : ' :
e '
- = | : |
[ L. (p)n | :
where -
e = e - (u2+v?),
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%, = (nx ny)/3 ;
and
L, = %; (nx2 + nyz) . (3.31 b-g)

It should be mentioned that when the term (Bv AQ) is formed, the AQ term

should be contained in the n-derivatives appearing in Eq. (3.31 b). A

a(B ) 3.

M For

typical term of this product can be expressed as (a
example, for the element corresponding to the (2,2) location of

(Bv AQ), a = L, , B = —%— and & = A(pv). The discretization of a

typical term %; {a %; (8 §)} is performed by evaluating the quantity

in brackets at two successive mesnh mid-points, such as (j+1/2) and
(j-1/2), and forming a difference expression at the mesh point j to
obtain a second-order accurate representation for this term. This is

outlined below.

3 d 1 3 _ 3
-B—H{aa—n(s 6)}J=A_n{(aﬁ(8 6))j+1/2 (Cl-a—ﬁ(ﬂ 6))j"1/2}
where
:
(e 57 B850y = 1 {ag, 1,285 8501 7 B 51
and
3 1
(a-a—n (8 <s))J_1/2 - {"3-1/2(53' 85 7 By sJ_1)} .

(3.32 a-c)
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Using the discretization described by Eqs. (3.30) and (3.32), Eq.
(3.27) can be written in a compact form as

i= i= 1=
AjAQu, + By AR+ C AT, =Dy (3.33)

The discretization described above applies at a general interior
point; the treatment of boundary points will be discussed in the next
section.

Equation (3.33), written at all the mesh locations j along a line

(i+1), results in a block-tridiagonal system of equations, with Aj' Bj

and C, being (4x4) matrices. This system of equations, can then be

J

solved using L-U decomposition of the coefficient matrix of the system.
The implicit solution procedure for such a system can be found in

Ref. [35], by Anderson, Tannehill and Pletcher.

3.2 Details of the Solution Procedure

The solution procedure consists of two time steps. 1In the first

step, the solution proceeds from the inflow boundary towards the outflow

boundary, employing Eq. (3.25) to update 5 . The pressure field is
updated in the second step of the procedure. This step proceeds from
the outflow boundary towards the inflow boundary. The outflow boundary
condition on pressure is directly employed during this step. These two

steps can be expressed as follows.

Step 1: Rn+1/2 = - a (%%)? + a (%%)n+1/2 (3.34 a)
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step 2:  RV1/2 .- (&), L (22

n+1
ele )

(3.34 b)

where R contains all terms in Eq. (3.25) except the pressure terms which
appear explicitly in the above equation. In Eq. (3.34), superscripts
denote time levels. Thus, for example, the superscript (n+1/2) denotes
that the time derivative is evaluated at time level (n+1/2). Backward-
difference approximations are used for the time derivatives, so that the
time derivative at (n+1/2) employs the pressure at time levels n and
(n+1/2).

A simpler equation for the second step can be obtained by

eliminating Rn+1/2 between equations (3.34 a) and (3.34 b). The

resulting equation is

- (

_ (9pyn+1 o9pyn+1
(22271 . (2B) : (3.35)

n 3apyn+1/2

Q1Q>
O
™

The discretized form of Eq. (3.35) at station (i+1) is

i+ i+1 i+1,n+1/2 i+1,
_ (pl 2,n _ p1+ Ny %% (pl n+ _ pl n,

i+2,n+1 i+1,n+1,  AE , i+1,n+] i+1,n+1/2
- P )+ =2« - P )

it (3.36)

-r-(p

i+1,n+1

From this equation, p can be solved for in an explicit manner as

i+1,n+1 i+1,n i+2,n i+2,n+1
p = [p - p +p

Ag i+1,n+1/72 _ _i+1,n Ag
+ " (2p p )] / (1+ At] (3.37)

Equation (3.37) is applied along lines of constant n and the
pressure field is updated by marching upstream. The prescribed

condition on the pressure at the outflow boundary is imposed via the

41



pi+2.n+1 term in Eq. (3.37). The two steps described above constitute

one global iteration, during which the flow solution is advanced from
the time level n to time level (n+1).

If the pressure terms are retained in the SCL form, then the
equation for the upstream marching step, corresponding to Eq. (3.35),
will be a set of two equations in the single variable p. This system
can be reduced to an equation similar to Eq. (3.35) by combining the two
equations after multiplying each of them by the appropriate metrics.
This 1s equivalent to taking a projection of the two equations along a

line of constant n.

3.3 Updating of Velocity Profile at the Inflow Boundary

The reference velocity, Uavg’ characterizing the velocity profile

at the inlet, needs to be updated before the next global iteraticn is
performed. This is necessary because at the inflow boundary the total
pressure and temperature are prescribed as boundary conditions, s that

Uavg has to be guessed to initiate the solution procedure. The updating

of Uavg is as follows. At the inflow boundary, knowing the dimensional
* *

total pressure pO and the dimensional static pressure p (which is

evaluated through the upstream marching step), the local Mach number M

can be obtained using the isentropic relation

*

p

0 Y-1 Y/Y-1
—~ - (1+_M2)

5 . (3.38 a)
p

42



*
Then, using the dimensional total temperature T0 prescribed at the

*
inflow boundary, the static temperature T can be obtained from the

following relation

- (e S (3.38 b)

*| O._l*

T

*
The dimensional density p can then be found, using the equation of

state, as
* * *
p =p /RT . (3.38 ¢)

*
Knowing M? and T , together with the definition of the local sonic

x2.1/2
v

* *
velocity, the local dimensional speed V (= {u 2, } ), can be

determined from the relation
* *
V 2 = M2 YRT . (3.38 4d)

* *
The Cartesian components of the velocity u and v can be

determined from the given flow direction, 8, at the inlet so that

G - v s(ietanze)} /2 (3.38 e)

and

* *
v = u tané . (3.38 )

The reference velocity Uavg is then obtained using Eq. (2.6) and

all the variables are then re-nondimensionalized.
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3.4 Convergence Criteria

The two steps of the solution procedure described in Section 3.2

are repeated until convergence is achieved. To test for convergence,

the maximum absolute value of the error (Lm-norm) and the root

—mean

square of the relative error (L,-norm) in the pressure field are

monitored. These are defined, respectively, as

max
e " 1=1, IMAX p;.n+1 - p;.n
J=1,JMAX
JMAX  IMAX plsm
and ¢ ) ] (- - )2 172/ (at Max JMax)
rel . i,n+1
J=1 i=1 P.
J
Convergence is said to have been achieved when Eabs <
€ s 1078 .

(3.39 a,b)

3.5 Implementation of the Boundary Conditions along n = Constant

Boundaries

In the present study, the boundary conditions at the walls and, in

the case of cascade flows, along the wake boundaries are implemented in

an implicit manner, consistent with the numerical procedure employed in

the interior of the computational domain. The implicit treatment of

these boundary conditions in an otherwise already implicit solution

procedure removes the mesh spacing constraints encountered in an

explicit scheme and also aids in enhancing the convergence process.
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3.5.1 Wall Boundary Condition

As mentioned in Section 2.4.2, the zero-slip and zero suction/
injection conditions at the wall, together with the wall temperature,

are specified. These are written as

and T =T, . (3.40 a-c¢)
Expressed in terms of the increments in the variable

Q = (p, pu, pv, pet)T, Eq. (3.40) yields

(41 { . L
-t Alp + Al(pu) = pl Aty .
o1 . .
- vl Alp . Al(pv) - pl Alv
(1 ) ..
and - e, alp + al(pe) = o ble, . (3.41 z-2)

In the above equation, 211 quantities with superseript (i+1) are

known from the conditions given by Eq. (3.40) and the right-hand sice of

Eq. (3.41) can be evaluated using the known solution vector 51 at
station i. The three equations given by Eq. (3.41), together with
either the continuity equation or the reduced y-momentum equation,

constitute the four equations at the wall boundaries.

3.5.2 Periodicity Boundary Condition for Cascades

For flows through cascades employing a 'l1ine-periodic' grid, the
periodicity boundary condition can be imposed in an implicit manner.

The periodicity condition, as described in Section 2.4.3, requires that
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the flow variables have the same values at corresponding periodic points

along the wake boundaries. When this condition is imposed, the
discretized equation (3.33) assumes the following form.
At j=1,

i= i= i=
A, ATQ + B A Q] + C1 A Q2 =D

18 Umax-1 T By (3.42)

1
and, at j=JMAX-1,

i= i=

A 8 Qmax-2 * Bomax-1 279

JMAX-1 D

i_
oMax-1 * Comax-1 &Y = Dpyav—y

(3.43)

Here, JMAX is the index corresponding to the maximum value of n.
Equations (3.42) and (3.43), together with Eq. (3.33) written at each
interior normal mesh point j=2 through JMAX-2, form a system of
equations which is basically a tridiagonal system, except for non-zero

corner elements. The corresponding coefficient matrix is shown below.

( e 1 e
B, c, o 0 A, 8, D,
A, B, G, 0 0 ad, D,
0 0 O Ammax-2 Bymax-2 Comax-2 | | 2Qmax-2 DoMax-2
Comax-1 © Aomax-1 Bomax-1 | | 29max-1 { | Pmax-1
B 4t A -
(3.44)
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Here, A, B and C are (4x4) blocks, while AQ annd D are (4x1) blocks.
The procedure for solving the above periodic block tridiagonal system in

an implicit (non-iterative) manner is detailed in Appendix A.

3.6 Separated Flow Modeling

In this section, the approximations involved in obtaining the
governing equations in separated flow regions are described. It is
known that forward marching in space with the parabolized Navier-Stokes
equations in regions of reversed flow, that is, where the tangential
contravariant velocity component U is negative, is unstable. This
instability can be overcome if all the equations are forward
differenced in the regions of reverse flow. This requires that, in

addition to the pressure, the preceding iterate of the solution vector
5 be stored in these regions .

Reyhner and Fl;gge-Lotz [36] have suggested a simple alternative to
this situation. They suggested that, in the reverse-flow region, the
convective term u 3u/dx in the momentum equation be represented by C |u]
du/3dx, where C is zero or a small positive constant. This
representation, known as the FLARE approximation, assumes that the
convective terms are small in regions of reverse flow and is valid when
the reverse flow velocities are small. This approximation is employed
in the present study also, by neglecting all the convective terms in the

momentum and energy equations in the reverse-flow region. Hence, in
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regions of reverse flow, the governing equations take the following
form.

When U = (Ex u + Ey v) <0 ,

oE oF ]
3 "3 "3 Y (3.45)
where
[ pU i pV T
1 1
E = 3 EX P ’ F = 3 nx p
Ey p ny P
o] 0]

and Fv is as described earlier in Eq. (2.15).

3.7 Discretization of Metric Terms

The numerical representation of the metric coefficients arising
due to a general coordinate transformation from the physical domain to a
computational domain, given by Eq. (2.10), is described in this section.

The metric ccefficients, such as Ex' Ey etc., are obtained from the
derivatives xn, yn, ete., using the relation given by Eq. (2.13).

The discretization of the metric derivatives should be done in a
manner consistent with the discretization of the governing equations.
Hindman [37] has shown the appropriate representation of the metrics for
solving a 1-dimensiocnal wave equation, using MacCormack's scheme and
various forms of the governing equation, such as the strong-

conservation-law (SCL) form, the weak-conservation-law (WCL) form, etc.
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In his work, he employed a simple test of reproducing uniform flow,
starting with the entire computational mesh initialized with a uniform
flow and advancing in time, employing a selected numerical integration
algorithm. In the present study a similar test is performed to
determine the appropriate representation of the metric derivatives and
is detailed in Appendix B. As shown in the Appendix B, representation

of the transformed equations in the SCL form requires the following

relation
g n
) X d X
AU T R
and
g n
3 ¥y .3 () -
BE(J)+3n(J) 0

be satisfied in the discretized form. This implies that the discretized

representation of the n derivative in yn (= 35 ) should be the same as

that employed for the n-derivative in %; (ya); also, the g-derivatives

are to be discretized in a similar manner. The results are summarized

here.

At an interior point (i,J), the coordinate derivatives take the

following form.

xo|i,3 7 a0 7 Xy, q-1)7200

Yolg = Oa,gen T Va0t 200
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1
%el1,9 " Tag [y, yuq - ety T O gy X )]

and

1
Yeli,3 = mag Oy, 0 - Ym0 O gty o]

4 m—

5 Uy - Viet,g) - (3.46 a-a)
From Eq. (3.46), it is clear that the n-derivatives are represented
by second-order accurate centkal differences and the £-derivatives are
represented as averages of first-order accurate backward differences.
At a boundary point J=JMIN or JMAX, the Cfderivatives are

represented by

I T A NIRRT

and

ey, -y . 47 a,b
yE,l-J i, Yi-1,50708 (3.47 a,0

The n-derivatives at these boundary points are represented as follows.
At j = JMIN,

- ( ‘Xi’J)/An ’

xn’i.J Xi,3+1

Tnlt,g = Oy ge -y pran
and at j = JMAX,
I TR g0

yn,i,J - (yi,J T Y¥y,5-10780 (3.47 c-f)
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CHAPTER 4

RESULTS AND DISCUSSION

The analysis developed in the present study and described in the
preceding two chapters is employed to solve the flow in constricted
channels and several cascade configurations. The channel configurations
considered here are the straight channel, which is employed primarily to
verify the analysis developed, and a channel with an exponential
constriction. The latter configuration is shown in Fig. 4a; its lower

boundary is represented by the relation

m 2
Yo, 1ower ~ C, exp [~ ( C, )" ] (4.1)

where the subscript b denotes the boundary, xm is the x location where

the maximum constriction is situated and C, and C, are constants
controlling the maximum height and the extent of the constriction,
respectively. The equation for the upper wall of the channel is written

as

Yb,upper = '~ Yy, lower . (4.2)

The cascade configurations considered in the present study are the
flat-plate cascade and cascades with exponential, parabolic and
Joukowski airfoils. These configurations are shown in Figs. 4b-e. The

exponential airfoils are obtained using Eq. (4.1) for X g $x s Xrg?

where xLE and Xrg correspond to the x locations of the leading and

trailing edges, respectively.

The parabolic arc airfoil is generated by the following equation:
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2
y=Ci*+Cp (x-x )" , Xoo SXSXp . (4.3)

The Joukowski airfoil is generated by the following transformation.

2
Z'C+gl

4

where
z = x + iy

and ¢ = C, e16 + Cs (4.3 a-c)

Here, C, and C, are real constants and C; is a complex constant.
The parameters C, and Cs control the maximum thickness and the camber of
the airfoil. As only symmetric airfoils are considered in the present
study, C, is real.

The results presented in this chapter have been obtained employing
a H-grid or a channel-type of grid. A simple H-grid is the sheared

Cartesian grid in which £ = E(x) and n = n(x,y).

4.1 Resolution of Spatial Length Scales

In viscous flows, the flow variables vary rapidly near the walls.
To resolve these high gradients, a fine computational mesh is required
near these boundaries. A non-uniform mesh is mcst suitable as it can
provide a fine mesh in regions of high gradients without unduly
increasing the total number of mesh points.

The scalings obtained from the asymptotic analysis of Stewartson
[38] indicate the order of resolution required for strong-interaction

problems. Accordingly, streamwise mesh spacings should be of the order
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3/8

of magnitude of Re” and normal mesh spacings should be of the order

of magnitude of Re-s/e. In the grids employed in the present

calculations, at least five computational points are maintained within
these length scales in regions of separation and near the trailing edges
for cascade flows. The coordinate transformations employed to meet
these mesh requirements are discussed next.

In the streamwise direction, variable mesh spacing Axi is obtained

using a geometric series for Ax, and the resulting transformation can be

i

written in a parametric form as follows:

(r =1 7

F,i=(i-1)AF, , i=1, ..., ILE . (4.5)

Here, » is the stretching ratio, Ax, the mesh spacing at the inflow
boundzary, AE the uniform computational mesh spacing and ILE is the
streamwise index corresponding to the leading edge location. Equation
(4.5) is used with different values of r in various regions such as the
airfoil surface and the wake, in order to obtain the required physical
mesh spacings.

In the n-direction, the following analytical transformation is

employed:
n=D>b+ a tan 1259) . (4.6)
The parameters a and ¢ in Eq. (4.6) provide control over the grid-

point distribution. The constants a, b and ¢ are obtained from the

following conditions.
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At y and n. = S, a prescribed value.

B yb, lower® "= Mmin y

A n=n . (4.7)

ty- yb, upper: max

The slope S controls the spacing near the boundaries. The transformation
given by Eq. (4.6) is used to provide identical clustering near both
boundaries, given by y =

and y = Hence, b = 0.5.

yb, lower yb, upper’
A typical grid is shown in Fig. 5. Here, the grid clustering in
both the streamwise and normal directions has been reduced to improve

clarity of the presentation of the coordinate lines in the figure.

4,2 Results for Flow in a Straight Channel - Validation Study

The analysis and the numerical procedure developed in the present
research are first tested via a model problem of flow in a straight
channel. For this purpose, a fully developed flow profile was
prescribed at the inlet boundary and the pressure field was initialized
so as to yield the known streamwise pressure gradient for a fully
developed incompressible channel flow. This streamwise pressure
gradient is given as

1

n

P, * (4.8)

20
®

The velocity and the temperature profiles at the inlet were
obtained not from their known analytical expressions but by numerical
solution of the governing equations for fully developed flow. This
ensures that, if the algorithm is formulated in a consistent manner, the
application of the procedure should recover the a fully developed flow

throughout the entife channel.
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This testing procedure was applied to the straight-channel
configuration with metriecs varying in the streamwise direction. From

this study, it was found that the metric terms Ex and Ey’ which are
associated with the streamwise pressure-gradient term pE £ should be

forward differenced. Also, it was found necessary that the streamwise
pressure-gradient term should no longer be in the SCL form. The proper
form of the pressure-gradient terms should be as given in Eq. (3.21) in

Chapter 3.

4.3 Results for Channels with Exponential Constriction

The geometry of this channel is represented by Eq. (4.1) and is
shown in Fig U4a. Results are obtained for three values of the ratio
t/h of the maximum constriction to the channel width, viz., 0.1, 0.16
and 0.2, for Re = 1500. The Reynolds number is based on the average
velocity and cnannel height at the inlet station. As mentioned in
Section 2.4.1, the inflow boundary conditions correspond to a fully
developed flow in a straight channel.

Figure 6a shows the distributions of the wall-pressure variable pb
and the wall shear parameter Ty for the case of t/h = 0.1. The wall-
pressure variable Py is defined as the difference between the pressure

at the wall at a streamwise location i and that at the inlet boundary

and can be written as

Pp = pw, inlet pw, i * (4.9 a)

The wall shear parameter is defined as
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U

- tgt
Tw oan wall (4.9 )
where Utgt is the velocity tangential to the body surface and n is the

direction normal to the body. From Fig. 6a(i and ii), it is clear that

pb varies linearly in the straight portion of the channel and behaves

approximately similar to the body surface shape in the region of the
constriction. From Fig. 6a{i), the pressure loss Ap across the
constriction can be obtained to be 0.00875. From figures 6a(iii and
iv), it can be seen that, far upstream and downstream of the

constriction, Ty is asymptotic to the value of 6, corresponding to a

fully developed flow. The tendency of the flow to separate downstream
of the constriction is indicated by the wall shear parameter approaching
the value of zero. Trne grid employed for this case consists of

(141 x 61) points. Tre value of AX in is 0.008 which occurs at

locations upstream anc downstream of the maximum constriction where ths

flow is anticipated tc separate. The minimum mesh step Aymin employed

in the y direction in the straight portion of the channel is 5.7 x 10—3.

Figures 6b and 6c show the wall pressure and the shear-parameter
distribution for t/h of 0.16 and 0.2. From Fig. 6b(i), the pressure
loss across the constriction can be obtalned as 0.02, approximately.

It is clear that the flow has separated downstream of the constriction,

as indicated by the negative values of T in Fig. 6b(iv). The results

corresponding to the case of t/h = 0.2 are shown in Fig. 6c. Comparison
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of Figs. 6b and 6c shows that the extent of separated region increases
as t/h is increased from 0.16 to 0.2.

The pressure loss across the constriction, some information about
the grid and the location of the inflow and outflow boundaries with
respect to the constriction are shown in Table 1 for the three cases
discussed above. One of the important factors in obtaining the above
results is the appropriate location of the inflow and outflow boundaries
with respect to the maximum-constriction location. These locations are
obtained by numerical experimentation, so as to ensure that the flow
near these boundaries is nearly fully-developed. Accordingly, as shown
in Table 1, for the case of t/h = 0.1, the inflow boundary should be
located at least 5 channel heights upstream of the maximum constriction
and the outflow boundary at least 18 channel heights downstream of the
position of the maxiimum constriction. Moreover, these boundaries mus:
be moved further away from the position of the maximum constriction as
the ratio t/h increases. It is also observed that the pressure loss
across the constriction increases with increase in t/h.

Figure 7 shows the streamwise velocity profiles across the channel
at various streamwise locations for the case with t/h = 0.2. From the
enlarged-scale profiles shown in Fig. 7b, a small region of reverse flow
can be observed.

Through this study of the flow in constricted channels, the
analysis has been tested for a variable cross-section channel and for

separated flows. The regular behaviour of the flow solution in the

57



presence of separation establishes that the IPNs formulation includes

the appropriate strong upstream interactions occurring in this flow.

4,4 Results for Flat--Plate Cascades

The configuration for this cascade geometry is shown in Fig. Uub.
The primary purpose of examining these flows was to test the implicit
implementation of the periodicity boundary condition for cascade flows
and to test the validity of the IPNS formulation in the strong-
interaction flows around sharp (cusped) leading and trailing edges.
Results are obtained for various values of Re ranging from 1500 to
16,000 and are shown in Fig. 8a-e. All of these results are obtainec
employing a grid containing (186 x 71) points. The point distribution

is such that AXLE is 0.01 and AXTE is approximately 0.005. The sterp

size in the y-direction at the wall is 1.225 x 10-3. As menticrned in

Section 2.4.1, the inflow boundary conditions for this configurztion,
consist of the specified values of total pressure and total temcerature,
while static pressure is prescribed at the outflow boundary.

Figure 8a(i) shows the distribution of the pressure Py and the
wake-centerline velocity. The corresponding behaviour of P, is inferred

easily through Eq. (4.9 a). As the leading edge is approached, the

pressure P, rises to its maximum value and drops rapidly immediately

downstream thereof. There is a gradual pressure drop in the flat-plate
region, until the trailing edge, where a sharp drop occurs. Thereafter,

the pressure rises smoothly to approach the prescribed value at the
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outflow boundary. The wake-centerline velocity shows a smooth
streamwise variation and is asymptotic to a value of unity near the
outflow boundary. The wall shear, shown in Fig. 8a(iv), attains a
maximum at the leading edge in an almost singular manner while
exhibiting a small peak near the trailing edge of the cascade. The
behaviour near the trailing edge is due to the sudden change in the
boundary condition. Along the wall, the velocity component u was

prescribed to be zero and along the wake centerline, uy is zero. Hence,
there is a discontinuity in uy, which is the primary contributor to the

wall shear parameter. Through all this nonlinear behaviour, including
that due to the sudden changes in boundary conditions at the leading and
trailing edges, the solution is quite regular, confirming again that
upstream influence is appropriately included in the IPNS model.
Qualitatively, similar behaviour is observed for Re = 3100 to 16,000, as
shown in Figs. 8b-e.

Figures 9a and b show the distribution of pb and T, for various
Reynolds numbers. With increase in Re, the peak in pb at the trailing

edge decreases, whereas that in T, increases.

4.5 Results for Cascades of Exponential Airfoils

The exponential airfoil cascade geometry is as shown in Fig. Hc.
The computational grid, the point distribution and, hence, the mesh
sizes employed are the same as for the flat-plate cascade configuration

discussed in the previous section.
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4.5.1 Effect of Thickness

Figure 10a-c¢ shows the distributions of pb and Ty for an

exponential airfoil cascade for Re = 1500 and thickness ratios (t/c) of
0.05, 0.075 and 0.1. Near the leading and trailing edges, the behaviour
of pressure is similar to that for the cascade of finite flat plates.

In the region of the airfoils, as the overall flow accelerates up to the
maximum thickness location, the pressure falls to a minimum, while the
shear parameter increases to a local maximum. The pressure and wall-
shear parameter distributions for various values of t/c are shown in
Figs. 11a and b, respectively. Superimposed on these figures are the
corresponding flat-plate cascade results, i.e., the case of t/c =0.

From Fig. 11a, it is clear that the maximum Py increases with increase
in t/c, while the peak at the trailing edge diminishes. The value of T,

at the maximum-thickness location alsc increases with increase in t/c.
The tendency for the flow to separate downstream of the maximum-
thickness increases with increase in t/c. This can also be inferred
from the pressure gradient, which becomes increasingly adverse in this
region as t/c is increased. Also, the extent and intensity of the
separated region are reduced, in comparison with the corresponding
channel flow. This is because of the upstream influence of the higher
velocity of the fluid downstream of the TE as compared to that of the
fluid downstream of the constriction in the channel with zero slip at

the walls.
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4.5.2 Effect of Reynolds Number

Results for various values of Re between 3100 and 15,000 are shown
in Fig. 12a-d. The qualitative behaviour of the flow properties
examined for this range of Re is similar to that for Re = 1500,
discussed in the previous section. Figure 13 shows the effect of Re on
the pressure and wall-shear distribution. From Fig. 13a, it can be seen

that the magnitude of pb at the maximum—-thickness location decreases

with increase in Re. The pressure peak near the trailing edge also
diminishes with increase in Re. It can also be seen that the pressure
gradient downstream of the maximum thickness becomes increasingly
adverse with increase in Re. A similar behavior in pressure can be
seen, to a smaller degree, upstream of the maximum thickness. The
possibility of flow separation in these adverse pressure-gradisnt

In

(WS
o

regions is evident from the distribution of T, shown in Fig. 1

fact, for the cass of Re = 15,000, a small separated region is present,

as indicated by the negative values of T It is also evident that the

separation region is centered around a point situated downstream of the
maximum-thickess position and upstream of the trailing edge, i.e., as Re
is increased, the separated region extends in both directions about this
point. The analyses of H.K. Cheng and F.T. Smith [39] and Smith,
Stewartson and Kaups [40] show similar results around a cusped trailing

edge.
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4.5.3 Effect of Grid Refinement

The effect of grid refinement is important in order to establish
the reliability of the solutions obtained, especially when there are no
experimental results with which to compare. Therefore, in the present
study, the streamwise grid is refined in the region downstream of the
maximum-thickness location, in order to study its effect on the
separated region. For all the cases discussed in the previous section,

the streamwise step Axt (i.e., Ax near the maximum-thickness location)

was approximately 0.045 and the streamwise step size decreased gradually
to a value of 0.005 near the trailing edge. In the grid-refinement
Study, a finer streamwise grid in this region was obtained by ensuring

that Axt = 0.025 and AxTE = 0.005, and employing a computational grid

consisting of (191 x 71) points.

A comparison of the results obtained employing the two grids, for
Re = 1500 and 15,000, are shown in Figs. 14a and 14b, respectively. The
wall-shear distribution agrees well and, in the case of Re = 15,000, the
extent of the separated region remains almost the same, as seen from
Fig. 14b(ii). Grid refinement has a slightly more significant effect on
the pressure distribution, particularly for the case of Re = 15,000. 1In
that case, the peak near the trailing edge diminished with grid

refinement,

4.6 Results for Cascades of Parabdlic-Arc Airfoils

A schematic of this cascade configuration is shown in Fig. 4d. All

the results discussed in this section are obtained employing a grid
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consisting of (186 x 71) points, with the streamwise mesh sizes near the

leading and trailing edges being 0.01 and 0.005, respectively.

4.6.1 Effect of Thickness

Results in the form of the distribution of pb and Tw are shown in

Figs. 15a-c, for t/c of 0.05, 0.075 and 0.1. Figure 15a(ii) shows the
pressure distribution and the development of the wake-centerline
velocity for the case of t/c = 0.05. An important difference between
the pressure distribution for an airfoil with a wedge-shaped trailing
edge such as the parabolic-arc airfoil and that for an airfoil with a
cusped trailing edge such as the exponential airfoil, is that at the

trailing edge the peak in the pbdistribution for the exponential airfoil

cascade is replaced by a slope discontinuity for the parabolic-arc
airfoil cascade. Also, from Fig. 15a(iv), it can be seen that the peak

in the T distribution at the trailing edge has diminished compared to
that at a cusped trailing edge. From Fig. 16a, it is seen that pb at the
maximum-thickness location increases with increase in thickness ratio

and the pressure gradient on the downstream side of maximum-thickness
location becomes increasingly adverse. The wall-shear distribution
exhibits a cross-over, with a small separated region near the trailing

edge for the case of t/c = 0.1.
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4.6.2 Effect of Reynolds Number

Figures 17a-d show the results for various Re ranging from 3100 to
15,000. From the velocity distribution in Fig. 17c(ii) and the wall-
shear distribution in Fig. 17c(iv), corresponding to Re = 11000, it can
be seen that a separated region exists, starting at a point upstream of
the trailing edge, with the flow reattaching at a point in the wake.
Further increase in Re results in the movement of both the separation
and reattachment points away from the trailing edge. Therefore, for
flows about wedge-shaped trailing edges, the separated region is
centered at the trailing edge. This is due to the continued
deceleration of the fluid up to the wedged TE whereas, for cusped
trailing edges, the deceleration decreases as the fluid approaches the
cusped TE. This result is also supported by the analysis of Cheng and
Smith [39]. Comparison of the pressure and wall-shear distributions for

the various values of Re discussed above is shown in Fig. 18.

4.6.3 Effect of Mach Number

In all of the results discussed so far, M, was approximately 0.008.

Results have also been obtained for Mach number ranging from 0.035 to
0.49 and are shown in Figs. 19a-c. All of these results are obtained
for Re = 15,000. Figure 20a shows that the effect of compressibility,

resulting from the increase in Mm, becomes apparent on the wall-pressure
distribution only for the case with M_ = 0.49. But the wall-shear

distribution as well as the extent of separation remain almost unchanged
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for all Mach number values considered. This result is due to the fact
that the strong trailing-edge singularity overwhelms the effects due to
the Mach number change, in the range considered. Figure 21 shows the

contours of the static pressure p, for M = 0.49 and Re = 15,000.

4.6.4 Effect of Grid Refinement

In order to ensure the accuracy of the behaviour of the flow near
the wedge-shaped trailing edges discussed above, it was considered
necessary to refine the grid in this region. Hence, results were
obtained employing a grid consisting of 231>points in the streamwise

direction, so that the AXTE = 0.001, Results obtained using this grid

are compared with those obtained with the grid of (186 x 71) points as
discussed above, for Re = 3100 and 11,000, and are shown in Figs. 22a

and 22b, respectively. The shear parameter T, remains unaffected by

this grid refinement for the two values of Re considered here. Althouzn
there is a slight shift in the level of the pressure as a result of
refining the grid, the behaviour near the trailing edge remains

unchanged.

4.7 Results for Cascades of Joukowski Airfoils (Modified Leading Edge)

The cascade configurations considered in the previous sections were
made up of airfoils with either cusped or wedge-shaped leading edges.
The procedure developed in the present study was applied next to cascade
passages with rounded leading edge blades such as the Joukowski airfoil,

for which a typical configuration is shown in Fig. 1. This
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configuration presented some difficulties to the numerical solution in
the leading-edge region. These difficulties were traced back to the use
of the sheared Cartesian grid for these cascades. It was observed that
this type of grid exhibits a large discontinuity in the coordinate-
transformation metrics at the leading edge. Hence, the leading-edge
region was modified by replacing it with a wedge, as shown in Fig. Ue.
Results have been obtained successfully for the modified configuration,
even with the sheared Cartesian grid, for Re = 150 and 310, and are
shown in Figs. 23a and 23b. The computational grid employed consists of
(121 x 61) points and the value of the ratio t/c for the airfoil is
0.068.

Figures 23a(i) and 23b(i) show the Py distribution and the

development of streamwise velocity along the wake, for Re =150 and 310,
respectively. It is evident that, as Re is increased, the peak in the

pb distribution near the trailing edge diminishes, as would be expected

for flows over cusped trailing edges and as observed for the
exponential-airfoil cascade. The wall-shear distribution, shown in
Figs. 23a(ii) and 23b(ii), has a slope discontinuity near the maximum-
thickness location. This is primarily a reflection of the discontinuity
of the slope of the body surface where it changes from the wedge to the
Joukowski-airfoil profile.

The difficulty in resolving the flow near the rounded trailing
edges with an H-type grid arises mainly due to the orientation of the
grid in this region. To circumvent this problem, a body-oriented grid

such as a C-grid is more appropriate for rounded leading-edge blades and
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should be employed. Therefore, a major effort was directed, in the
present study, to develop a hybrid C-H grid which judiciously employs
pboth C- and H-grids, thereby benefiting from the advantages of both of
these types of grids. The generation and implementation of the C-H grid
for a cascade of airfoils with rounded leading edges is discussed in the

next two chapters.

4.8 Convergence Study

A typical convergence history of the solution is shown in Fig. 24
in terms of the maximum absolute error and the relative r.m.s. error in
pressure, for the case of the parabolic-arc airfoil of thickness ratio
0.05 and Re = 6300. From this figure, it can be seen that convergence 1is
achieved in approximately 160 iterations. All the other cases discussed
in the previous sections also required a similar number of iterations.
The definition of the errors and the tolerances used in the present
study are described in Section 3.4, In all the results presenzed thus
far, 3 local iterations were performed at each streamwise location in
order to update the non-linear terms. It was found that quasi-
linearization about a previous streamwise location was insufficient,
especially in regions of large streamwise pressure gradients, such as
the leading- and trailing-edge regions. Finer streamwise steps alone
cannot resolve these high gradients due to their near=-singular
behaviour.

In order to study the effect of the time step At associated with

the pressure gradient term (Eq. 3.25), a simple case of the flat-plate
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cascade was considered. A constant step size of Ax = 0.05 was employed
for this case., The decay of the maximum absolute error and the relative
r.m.s. error in pressure was studied for various values of At in the
range between 0.03 and 0.1. The corresponding convergence histories are
shown in Fig. 25. For all values of At used, the convergence behaviour
is identical for approximately the first 20 iterations. Beyond this
stage, the convergence rate increases as At is increased from 0.03 to
0.06 and decreases with further increase to a value of 0.1. For the
value of At = 0.06, a total error-reduction of approximately 6 decades
is achieved in 200 iterations. Hence, it is observed that the procedure
is rather sensitive to the value of the time step At used.

The convergence behaviour for a flat-plate cascade with variable
streamwise mesh size was also studied. For this case, the mesh width
was varied according to Eq. (4.5). Also, At was varied in the
streamwise direction, according to the following relaticn:

Ati = C (xi+1 - xi) . (4,10}

Here, C is a constant and subscript i denotes the streamwise location.

Figure 26 shows the convergence history for various values of the
parameter C. It is clear that for the first 40 iterations, the
parameter C does not affect the convergence rate. Thereafter, an
Increase in C results in faster convergence rates, for the range of C
considered in the present study.

Finally, a convergence study was performed for the cascade with
exponential airfoils with t/c = 0.05 and Re = 1500. The grid employed

for this study consisted of (191 x 71) points. Figure 27 shows the
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convergence history for values of C ranging from 2 to 5. As C is
increased from 2 to 4, the convergence rate improves, but further
inerease in C results in a slower convergence rate. It can be seen that
the slope of error curve for C = 3 is steeper than that for 4 so that

C = 3 may be considered as a near-optimum value. Then, with Ati/Axi =

3, results were also obtained for Re = 25,000 for a cascade of

exponential airfoils and are shown in Fig. 28.
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CHAPTER 5

GENERATION OF HYBRID C-H GRID

5.1 Introduction

The success of a numerical method for analyzing viscous flows in
complex configurations depends on the proper cholice of a coordinate
System. It is usually desired that these coordinates be aligned with
the problem boundaries. Also, as the governing equations of motion in
the present study (see Chapter 2) involve a parabolizing approximation
in the streamwise direction, it is important that the coordinate system
employed be body—-oriented and near-orthogonal.

For the study of subsonic viscous flows around isolated airfoils,
two types of grids are often used. These are the O-grids and the C-
grids. For analysis of flow through cascade passages formed by
airfoils, the H-grid or the channel type of grid and the C-grid
configurations are commonly used. Sockol [41] and Dulikravich [42] have
generated C-type of grids for cascades. A typical C-grid is shown in
Fig. 29a. Steger et al. [8] have also employed C-grids for calculations
of viscous and inviscid flows through turbomachinery cascades. The C-
type of grids are especially suited for subsonic viscous flow
calculations, as they provide good resolution near the rounded leading-
edge regions of the blades. From the results described in the previous
chapter for flow through a cascade of Joukowski airfoils, it 1s clear
that the channel type or H-grid is inappropriate, particularly near the
rounded leading edges. A C-type of grid is satisfactory in most regions

of the cascade flows, except further upstream of the stagnation point on
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the blades. In this region, the grid density decreases rapidly with
increasing distance upstream of the stagnation point. A possible means
of minimizing this difficulty is to employ a channel or H-grid in the
upstream region. Eiseman [(43] has employed Cartesian extensions to an
O-type of grid for cascades, in the regions upstream of the leading
edges as well as downstream of the trailing edges.

Channel grids have been widely used for cascade-flow analyses.
Chima and Johnson [10] have employed the H-type of grid for solving the
Euler and NS equations through a cascade of bicircular-arc airfoils.
Channel grids are easy to generate and can be conveniently aligned with
the inflow. Also, implementation of the periodicity boundary condition
is easy for cascades with low stagger angle. In this case, a grid line
emanating from a particular point on the lower boundary ends at the
corresponding periodic point on the upper boundary. With tais grid
distribution it is also possible to impose the periodicity cendition in
an implicit manner (Ref. [44]). This H-grid distribution is termed
'line-periodic' and is shown in Fig. 29b. For cascade configurations
with large stagger or when the blades have rounded leading edges, the
line-periodic H—grid becomes highly skewed and non-orthogonal. If this
H-grid is modified to minimize the non-orthogonality, the implicit
imposition of periodicity has to be sacrificed. A typical modified H-
grid is shown in Fig. 29c and 1is called a 'region-periodic’ grid. 1In
this type of grid, the point distribution along the upper and lower
boundaries is periodic, but corresponding periodic points are not

connected by the same coordinate line.
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Therefore, a suitable grid for cascade flows is one that combines
the advantages of both the C- and H-grids while minimizing their
disadvantages. This results in a multi-rectangular computational domain
in terms of the transformed coordinates. The multi-block structure and
the generation of such a grid are described in the following sections of

this chapter.

5.2 Multi-Block 3tructured Grids

The flow region in the physical domain can be subdivided into
several sub-regions, depending on either the geometrical complexity of
the configuration or the need for different types of grids in various
regions, as mentioned in the previous section. These sub-regions are
termed 'blocks'. Lee et al. (45] have generated a 3-D body-fitted
coordinate system around a wing-body-nacelle confliguration sy dividing
the computational domain into multiple rectangular blocks, 4 singls
rectangular block in the computational domain would be insufficient to
resolve the various physical corners of this complex configuration.
Multi-block structured grids have also been employed for the complex
geometries of the tri-element augmentor wing by Sorenson [46] and the
breaking surface wave by U. Ghia et al. [47]. Also, Coleman (48] has
employed multiple segments for generating alternate grids for flow over
Single airfoils. The O-type of grid with Cartesian patches for a
cascade generated by Eiseman [43] can also be viewed as a multi-block

structured grid.
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Multi-block structured grids can be broadly classified into two
types. The first type consists of 'patched' or 'zonal' grids where the
various blocks share a common boundary called the interface. The other
type of grids consist of 'overlaid' or 'overset' grids. In this case,
the various blocks do not have a common boundary. The idea of overset
grids has been pursued by Steger [49] in his development of the Chimera
grid, which has also been extended to three dimensions by Benek et al.
[50]. A typical overset grid is shown in Fig. 30a. The solution of the
flow equations employing this type of grid requires additional transfer
of information across the boundaries of variocus grids.

Patched grids can be further classified into joint and disjoint
types of grids. The disjoint patched grid is one where the family of
the coordinate lines crossing the patch interface are discontinuous
across the interface, as shown in Fig. 30b. 1In the joint type of grid,
shown in Fig. 30¢, the coordinate lines are continuous across the
interface, although their slope may be discontinuous across the
interface. These gradient discontinuities are present when the
coordinates in each of the sub-regions are generated separately and
patched together. Some of these discontinuities can be relieved by
suitable modification of the boundary-point distribution along the
interface, followed by regeneration of the coordinates in the regions
affected by this redistribution. These slope discontinuities can be
eliminated by generating the coordinates in all the sub-regions

simultanecusly, without specifying the boundary-point distributions
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along the interface. The disadvantage associated with a such a
procedure is that the computer program can become quite complicated,
depending on the number and orientation of the blocks employed to define
the complex physical configuration. The latter direct multi-block grid
generation concept has been employed by U. Ghia et al. [21] and Coleman
[48]. The composite grid-generation procedure developed by U. Ghia et
al. [21] is employed in the present study and the details are discussed

in the next two sections.

5.3 Computational Domain for Hybrid Cascade Grids

For a general staggered cascade, the physical domain can be divided
into sub-regions as shown in Fig. 31. The region BCD'B' is the portion
of the C-grid adjacent to the upper surface of the lower blade. The
regions BIHG and E'D'EM are the channel or H-regions. The computational
regions corresponding to these sub-regions are shown in Fig. 32. Points

Eg and Bg are 'special-points' at which 5 sub-regions come together,

'Special-points' commonly occur on the domain boundary or on the
interfaces between sub~regions in a multi-block grid system. These
points either have a non-standard number of immediate neighbours when
they are the vertices of a computational cell or have a non-standard
number of faces when they are the cell-centers, as illustrated in Fig.
33.

For the ease of visualization, the multi-block structured grid in

the 2-D physical plane is best represented by a 3-D surface in the
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computational domain. This 3-D surface is obtained by bringing the sub-

regions in Fig. 32 together, along the arrows. The subregions BCG'Bg
and IBBgL are bent out of the plane of the paper at the special-point
B". Similarly, the sub-regions HKG"G, GG"EgB1 and C1B1E2E' are bent at

E". The resulting computational domain {s shown in Fig. 34. For a

cascade with zero stagger, the sub-regions B1E2G"G, G"EgB'Bg and
BgB'D'G' are not needed. The sub-region boundaries in the physical

domain for the unstaggered grid are shown in Fig. 35. The solution
procedure for generating the coordinate system is discussed in the next

section.

5.4 Solution Procedure

The numerical transformation procedure consists of determining the

poundary-oriented coordinates as the solutions of the following Poisson

equations:

Vg = P (5.1 a)
and

VZn = Q (5.1 b)

where V2 is the Laplacian operator in Cartesian coordinates,
(£,n) are the transformed surface-oriented coordinates and
P and Q are the forcing functions used to provide control on the
coordinate clustering and orthogonality.
The boundary condit}ons used for the governing equations (5.1) are

of the Dirichlet type. These consist of the prescribed values of x and
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¥y along the boundaries gE = gmin and gmax and n = n and Mmax " In

min X
order to implement these boundary conditions, the roles of the
independent (x,y) and dependent (£,n) variables have to be interchanged.

Detailed analysis of this inversion is given by U. Ghia and K. Ghia [51]

and the resulting 'inverted!' equations can be written as follows:

2
+ + + P + =
a xEg 2b xEn c xrm J7( xg Q xn) 0
and
ay + 2by +cy + J2 (Py_+Qy) =0
£g £n nn g n
where a = x2 + y2 ,
n n
b = - (XE X, * yE yn) ,
2 2
= +
c XE yi ’
d = - ] . .2)
an J Xg Y, X YE (5

In the present study, the alternating-direction implicit (ADI)
method is employed to solve the governing equations (5.2). The
computaticnal domain for the n- and the E~implicit Sweeps of this
procedure can be obtained from Fig. 34 and are shown in Figs. 36a and
36b, respectively. 1In Fig. 36, points denoted by alphabets with

superscript + or -, refer to the neighbouring points, It should be
noted that the subregions IL—BvB—, HK+G-G" and G+G"E?B; are encountered

twice in the n-implicit sweep and, hence, the solution in these regions

at the end of this sweep is already at the (n+1) level of the ADI
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procedure. Therefore, these sub-regions must be excluded from the
computational domain in the £-implicit sweep.
The treatment of various derivative terms that appear in Egs. (5.2)

needs special considerations around the points Bg and Eg. In the

present study, these special points are considered to be the center of a
non-standard, 5-sided cell. The selection of the appropriate
neighbouring points invqlved in the discretized form of the governing
equations at the vertices of the 5-sided cells is detailed in

Appendix C.

5.5 Typical Grids

Figure 37a shows the hybrid C-H grid generated for a staggered
cascade using the composite procedure just described. This grid is
region-periodic and consists of 1620 points. The coordinates are
uniformly spaced at the inflow boundary and are clustered along the
wake. Figure 37b shows a hybrid grid for an unstaggered cascade of
Joukowski airfoils. This grid is line-periodic and consists of 7103
points and 1is employed for obtaining a flow solution also using a
composite solution procedure. This procedure for calculating the flow
through a cascade employing a hybrid C-H grid is discussed in the next

chapter.
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CHAPTER 6

DETERMINATION OF FLOW THROUGH JOUKOWSKI CASCADE

USING HYBRID C-H GRID

In the preceding two chapters, the inadequacy of the H~grid or the
channel type of grid to resolve the flow around rounded leading edges,
was pointed out. Also, the difficulties of using C-grids for cascade
flows were discussed simultaneously. The disadvantages of using these
grids in certain regions of cascade flows were observed. Hence, a
viable alternative grid is the hybrid C-H grid. This hybrid grid, with
its associated multiple rectangular computational domain, was developed
in the preceding chapter, for use with cascade-flow studies. Analysis
of flow over complex geometries, using multi-block structured grids, has
been performed by many researchers. Benek, Steger and Dougherty [52]
have employed overset grids to obtain the solution of the Euler
equations about a supercritical flapped airfoil. They observed that the
solution in the transonic regime exhibited an ill-defined shock at the
grid boundaries. Eberhardt and Baganoff [53] developed characterestic
boundary conditions, which alleviated the above mentioned difficulty.
Norton, Thompkins and Haimes [18] nave employed a patched grid of the
Joint type, consisting of sheared grids and O-grids, and a cell-centered
implicit scheme to solve the complete Navier-Stokes equations for flow
in turbine cascades. Rai [(19] has used a system of patched and overlaid
grids and obtained the solution of the thin-layer Navier-Stokes
equations for a rotor-stator combination. When such a grid is employed,

the solution on one grid system at the patch boundary has to be
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interpolated and the poundary condition for the other grid system should
be obtained in a manner that conserves all fluxes crossing the interface
boundaries. In the present study, the semi-elliptic analysis developed
in Chapter 2 is employed to determine the flow through a cascade of
Joukowski airfoils, using the hybrid C-H grid described in the preceding
chapter. The solution procedure for the governing equations of motion

on the hybrid grid is described next.

6.1 Computational Procedure

The solution procedure used with the hybrid grid is, in principle,
similar to that for the H-grid and consists of two steps, as described
in Section 3.2. For a hybrid C-H grid, these two steps are represented
schematically in Fig. 38. The regions denoted by H1 and H2 correspond
to the H-grid regions of the hybrid grid and the regions €} and C2

correspond to the two C-regions. The first step of the solution

procedure, during which the flow variables 5 are updated from time level
nto (n+ 1/2), is denoted by a thin arrow; the second step, in which
the pressure field is updated from time level (n+1/2) to (n+1), is

denoted by a thick arrow. The computation proceeds from the inflow

boundary of region H1, with 5 peing updated first in this region. The
boundary conditions used at the upper and lower boundaries in this
region are the periodicity conditions, described in Section 2.4.3.
Next, the first step of the solution procedure is applied to region C1.
In order to employ a marching type of procedure, conditions should be

prescribed along a line such as AB, in Fig. 38b. The flow conditions
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along AB are obtained from the solution along the corresponding periodic

line E1F1 at the time level n. When the first step of the solution

procedure is applied to region C2, the flow conditions along A B1 could

1
be obtained from the latest available solution along the line EF. But,
in the present study, in order to retain symmetry, even in the transient

stages of the soluticn procedure, the flow conditions along A1B1 are

obtained from the solution along EF at time level n. The boundary
conditions in the C regions are the no-slip condition and the prescribed
temperature at the airfoil surfaces, while boundary conditions at the
interface are obtained from the solution in region Hl. These interface
boundary conditions are discussed in a later section of this chapter.
Next, the solution in region H2 is obtained by marching, knowing the
solution along the ou:iflow boundaries of region H1 and the two C
regions.

The second step <f the solution procedure, during which the
pressure field is upczted, proceeds from the outflow boundary. The
outflow boundary concition on pressure is applied directly during this
step. Using Eq. (3.37), the pressure field is updated from a time level
(n+1/2) to (n+1) in region H2 and then in the two C regions. This step
of the procedure is then continued into region H1, knowing the values of

pn+1 along the boundaries of the C region at the C-H1 interface and the

first computational line in the reglion H2. The flow variables at the
inflow boundary are updated as discussed in Section 3.3. The two steps

are repeated until convergence is achieved.
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6.2 Verification via a Mathematical Model Problem

The correctness of the formulation and programming of the solution
procedure on the hybrid C-H grid was checked through application to a
model problem. The verification of the scheme by recovering the known
solution for fully developed flow in a straight channel cannot be
employed here, as the C-H hybrid grid is not appropriate for this
configuration. Hence, a mathematical model problem is employed. In
order to check the first step of the solution procedure, the system of
governing equations, given by Eq. (3.23) is considered and can be

written as

* *
9E | 9F p _ 3 - -a
3E tan t b . (F. ) = - a . (6.1)

The quasi-linearized form of this equation is obtained from Eq.

(3.24) and is

VR . e s . . oL
PG e ae [ 2 (BT -BY) alay e o & (31 AN
on v an
3Q
R S S s B 3 =% =i i+1 9pyi _ 3 gl
= E A Q AE {an (B Q) +b (Bn) 3 (FV)}
- ai+1 Ai+1 p . (6.2)

Next, 6 is taken to be an analytical function as follows.

In regions H1 and H2,

Q = Q, sin (a, £) cos (27 B, n) + Q,

and, in regions C1 and C2,

Q=0Q, cos (a, n+ 8,) (6.3 a,b)
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where
a,. 52, a,, a and 8 are specified vectors.

In general, Q chosen as in Eq. (6.3) will not satisfy the governing

equations (6.1)., Therfore, the governing equation (6.1) is modified by

including in it an extra source term, R(g,n), such that 5 is a solution

of the modified equation. This modified equation is written as

* *
o, a » .
F + 3 +b 3n  3m (Fv) + a 35f R(E,n) (6._14)

The term R(g,n) could be evaluated analytically using Egs. (6.3)
and (6.1). 1In this case, the solution that would be obtained by solving

Eq. (6.4) numerically will not exactly equal the chosen analytical

function a(g,n) and, hence, the correctness of the formulation may not
be established accurately. It is, therefore, important that the source

term R(£,n) be evaluated using the discretized form given by Eq. (6.2).

F - - -
This model problem was studied for various a,, a,, B, and 8,. The
model problem of uniform flow when all the boundary and initial

conditions correspond to uniform flow is a degenerate case of the model

problem discussed above and corresponds to 6 = constant. 1In all the

cases considered, the exact solution was reproduced. It was found that

when a was allowed to vary rapidly in the ¢ direction, large errors were
observed between the prescribed and computed values of the solution.

This was due to the rather large truncation errors involved due to large
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gradients in Q in the £ direction. This implies that finer grids in the

E direction have to be employed to resolve these high gradients.

6.3 Interface Boundary Conditions

The implementation of the semi-elliptic formulation on a hybrid
grid exposes two small portions of the interfaces of the grid. Hence,
the boundary conditions on these interfaces have to be considered.

The boundary conditions in the C-regions consist of the no-slip
condition and the specified temperature at the walls, together with the
conditions specified along the interface of the C and H1 regions. These
interface conditions are obtained from the flow solution in the HI
region. As the governing equations are of order seven with respect to

the n direction, U conditions are yet to be specified. These conditions
could be obtained from the solution, 5 = (p, pu, pv, pet)T, computed in

region H1. But the physics of the flow dictates how disturbances travel
in the flow and this must be incorporated in the numerical scheme used.
A characteristics analysis for the quasi-one-dimensional Euler equations
suggests that for subsonic flows only three conditions can be specified
along the upstream boundary and that one condition is to be specified at
the downstream boundary. This idea has also been employed by Eberhardt
et al. [53] and Bush [20]. The former reference deals with the solution
of the Euler equations while, in the latter, the complete Navier-Stokes
equations are solved. In regions of flow where viscous effects

dominate, the characteristic conditions obtained from the Euler
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equations are not appropriate. However, these conditions should provide
a reasonable approximation. In the present study, the three conditions
used at the interface consist of specified values of the density p, the
x—-component of the velocity u, and the static pressure p. The
additional condition needed to close the system is the reduced normal

momentum equation (2.22) written at the half-mesh point off the wall.

6.4 Application to Joukowski Airfoil Cascade

The procedure described in the previous sections is applied to
determine flow at Re = 150 through a cascade passage formed by Joukowski
airfoils. The hybrid grid that was employed is shown in Fig. 37b. The
extent of the C-region, measured in terms of the physical length of BC
in Fig. 35, is approximately 10% of the airfoil chord. This value was
arrived at from the results obtained previously employing an H-grid and
corresponds to the nearest streamwise location upstream of the leading

edge of the cascade where pgg and UEE are approximately zero. The

streamwise distributions of the surface pressure pb, the wake-centerline
velocity and the wall-shear parameter T, are shown in Figs. 39a and 39b.

The surface-pressure distribution is similar to that obtained for an
exponential airfoil cascade, except that the behaviour near the leading

edge is confined to approximately 1/4 of the chord. The T, distribution

near the trailing edge exhibits a rise, as should be expected for low Re
flows around cusped trailing edges. The velocity distribution along the

stagnation line exhibits an overshoot in the C-region. This is probably
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due to the fact that that the stagnation line represents a singularity

in terms of 6 and needs special treatment, paticularly for the y-
momentum equation. Figure 39d shows the pressure contours superimposed
on the hybrid grid. It 1is clear from this figure that there is an
oscillation present along the first line of H2 region and this anomalous
behaviour starts at the 5-sided cell. This oscillatory nature is due to
the discontinuity in the y—-component of velocity v, between C and Hi1

regions. This discontinuity leads to a sudden jump in vnn which appears

in the viscous terms. This is supported by the fact that with increase
in Re, the oscillatory behavior in p vanished. The results for Re = 600
are shown in Fig. 40. The pressure contours shown in Fig. 40c do not
exhibit any oscillation, but the anomaly near the special cell persists.
Figure U0e shows the development of velocity profile for Re = 600. The
velocity profiles are well behaved, in spite of the anomaly in pressure,
because these anomalies are of the order 0.01. Figure 41 shows the

convergence history for this Reynolds number. The €abs and €rel?

defined in section 3.3, are reduced by approximately 4 orders of
magnitude in 100 iterations. The anomalous behaviour in pressure is due
to the discontinuity in the metric derivatives along the coordinate line
containing the downstream face of the five-sided cell. Along this line,
the chain rule conservation law (CRCL) form, instead of the SCL form, is
employed. The results are shown in Fig. U42. The pressure contours

shown in Fig. 42c¢ no longer exhibit the unrealistic behaviour near the
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five-sided cell. Effort is being made to resolve this problem near the

stagnation line in order to obtain solutions at higher Re.
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CHAPTER 7
CONCLUSION

A semi-elliptic formulation has been developed for the analysis of
subsonic viscous flows. The governing equations were obtained from the
NS equations by neglecting streamwise viscous diffusion terms, but
retaining upstream interaction via appropriate treatment of the
streamwise pressure-gradient term.

A numerical procedure has been developed to solve the semi-elliptic
equationa. The discretization of the governing equations was performed
such that the terms representing the inviscid contributions form a
consistent set of equations by themselves. Appropriate discretized
forms of the metric terms associated with the SCL form of the equations
were obtained by requiring that a uniform flow solution be recovered in
the interior when all boundary and initial conditions correspond to
uniform flow. The discretized representation of the streamwise
pressure-gradient tera, as well as the metrics associated with it, was
obtained by application of the procedure to the fully developed flow in
a straight channel. Through this study, it was found necessary that the
streamwise pressure-gradient term not be in SCL form and that the
metrics associated with this term be discretized using forward
differences.

The procedure developed was applied to several flow configurations
such as channels with exponential constrictions and cascades of airfoils
of various shapes. The technique was demonstrated to be adequate for

strong-interaction flows, where boundary-layer separation and/or sudden
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changes in boundary conditions due to the presence of sharp
leading/trailing edges are present. A parametric study was carried out
by varying Re for flows through cascades of exponential and parabolic-
arc airfoils. This revealed a considerable difference between the flow
behaviour near cusped and wedge~shaped trailing edges. The effect of
Mach number was studied for a cascade of parabolic-arc airfoils in the

range of M°° between 0,008 and 0.49, and was found to be minimal on the

shear parameter, but to be evident in the pressure distribution for the

highest Mm considered. The effect of grid refinement was alsc studied

in order to establish the accuracy of the results obtained. 1In all of
the calculations, the grids employed were reasonably fine and the step
sizes near the TE and near the point of separation were chosen to be
within the scalings of the triple-deck theory. The grids employed were
considered to be adequate because the minimum step sizes were well
within the triple-deck scalings. The grid independence of the results
was also supported by the fact that the results remained unchanged with
further refinement of the grid. As regards the convergence rate, for
most of the flow solutions considered here, the maximum error was
reduced by four to five orders of magnitude, within 150 iterations.
However, the procedure remained sensitive to the magnitude and the
spatial variation of the time step At.

The application of the procedure to cascades with rounded leading
edge regions revealed some difficulties. These difficulties are
attributed to the use of an H-grid for such configurations. To resolve

these difficulties, a hybrid C-H grid, which is more appropriate for
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such cascades, was generated using a composite solution procedure, The
basic solution procedure was then extended for use with the multi-block
structured computational domain corresponding to the C-H hybrid grid.
Results were obtained for a cascade of Joukowski airfoils and are

quite satisfactory, except near the stagnation line and the special,
five-sided cell of the C-H hybrid grid. The unrealistic behaviour of
the pressure near the five-sided cell was tracked down to the use of the
SCL form of the equations. Use of the CRCL form along a single
coordinate line containing a downstream face of the five-sided cell
alleviated this difficulty.

In concluding, two important observations are made regarding the
analysis and solution procedure developed in the present study. The
implementation of the boundary conditions in an implicit manner, that is
compatible with the finite difference equations employed in the interior
of the computational domain, made it possible for the present procedure
to provide satisfactory solutions, without requiring any externally
added artificial viscosity. Also, the procedure is capable of producing
satisfactory solutions for compressible flows, with no modifications
being needed for analyzing nearly incompressible flow as well. This is
generally not true for most other available density-based formulations.

As mentioned earlier, the solution procedure was sensitive to the
time step At. In future work, an alternating-direction implicit (ADI)
method, rather than the present ADE type of procedure, could be employed
to solve the semi-elliptic equations. Also, the use of a strongly-

implicit (SI) procedure, which is known to be less sensitive to the
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problem parameters, should be explored, in conjunction with the IPNS
model. The present analysis can also be extended to consider unsteady
flow problems; important practical applications, such as rotor—stator
interactions, could then be considered. Also, turbulent flows can be
analyzed by the inclusion of a turbulence model such as the Baldwin-
Lomax model [S4]. Turbulent flow solutions could then be compared with
experimental results.

The usage cf the hybrid C-H grid with the semi-elliptic model has
exposed a few other areas for further research. Firstly, for low
subsonic flows, use of the CRCL form is quite satisfactory. It does not
place any requirements on the representation of the metric terms,
especially near special points and cells, where the metrics could be
discontinuous along a particular coordinate direction. Secondly,
decomposition of the conservation form of the governing equations of
motion along the transformed-coordinate directions, using the
contravariant components of velocity instead of the Cartesian
components, may be more appropriate. This form of the equations is more
natural for analyzing flows in general geometries, as they are the
fundamental conservation equations written directly in the body-fitted
coordinate system, rather than being transformed from the Cartesian
coordinates to this system. This interface in the hybrid grid became
exposed as a boundary only because of the semi-elliptic formulation
employed. It would remain as an interior computational line if the
complete NS equations were employed. Hence, an NS analysis on hybrid

grids is highly desired. The use of complete NS equations would also
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resolve some of the difficulties arising due to the change in the
orientation of the coordinate directions and the use of a coordinate-

related approximation in the vicinity of the five-sided cells.
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APPENDIX A

INVERSION OF COEFFICIENT MATRIX OF BLOCK-TRIDIAGONAL

SYSTEM WITH PERIODIC BOUNDARY CONDITIONS

The system of equations resulting from the discretization of the
governing equations along a periodic boundary, where the peridicity

condition is imposed in an implicit manner, is of the following form.

[P] aQ =D (A.1 a)

In expanded form, Eq. (A.1 a) is written as follows.

i B C 5 0 0 A, | 23 1 "D
1 1 Voo 1 Q, 1
A, B, %, 0 0 0 AQ, D,
[
0 0 - Av-1 Byo Cp-1 AQy D=1
Cy 0 9 0 Ay By AQ, Dy
(A.1 b)

Here, the subscript N corresponds to the index (JMAX-1) in Eq. (3.44).
Also, the individual zntries Aj' Bj’ Cj are (4x4) blocks, while Aaj and
Dj are (4x1) blocks.

The inversion of the coefficient matrix [P] is performed using a L-
U decomposition, i.e., by factoring P into upper and lower triangular

matrices U and L, rescectively, such that
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P=LU (A.2 a)

where
(.L1,1 0 . . 0 |
L2,1 L2’2 o] . .
L = L3'1 L3’2 L3,3 0 .
LN,1 . . . LN,N
and ] )
FI U1,2 U1,N )
0 I U2,3 UZ,N
u = . . I U3’u U3,N
0 . . . I
— J

(A.2 b,c)

Here, I is the (4XU4) identity matrix, and L,

3,k and Uj are (4xl)

LK
blocks.

By forming the product LU and equating it, element by element, to
the coefficient matrix P, the expression for the elemental blocks of L

and U can be obtained and are given as follows.
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2,1 2
Ly g Ly q =" Lyt 1 " 0
Ly,1 =Cy
-1
U1,2'B1 C, i
Up3 =Y = Ui -0
-1
T
L =B. - A 87! ¢
2,2 2 2 1 1 ’
L Y ,
3,2 3
Ly =bs,2” = Lyy,2 = °
L _-c. 8 lec
N,2 N 1 1 ’
y. .= (8, -A,B  C e
2,3 2 2 ! 2 ’
Uy y = Va5 7 00 T Up o1 =0
U - - (B, - A LT N 87! A
2N 2 > P1 M Bt T
ete. (A.3)

Hence, the inversion of P is carried out in two steps. The first
step is a forward elimination step in which the equation

Lq=0D (A.4)
is solved for 4.

This is done in the following manner.
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L1,1 =B
LN,I = Cy
U, . =871,
1,8 "B A
-1
9 =B, D, .

For m equal 2 through Ne1,

L =B -8 (U ’
m,m m m 1-1,m

qQ =L (D -: p )

m m,m ""m  T; “m-1 !

-1

m,m+1 m,m C: :
u = -] i

m,N mm = “m-1,N
Dy =Dy - bN,m-t dpeq
LN,m T LN,m—1 “m-1,m

The last unknown vectcr qN is obtained as follows.

LyoN-1 = Ayt by,y-1

PN = Dy = Ly n-13y-y o

NN T BN T Ly gy (G v U )

80 that, finally,

-1
9 = Ly,n Dy

The second step is the backward elimination step, during which the

equation
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U s =a (A.5)

is solved to yield the solution vector Aa. From the structure of upper
triangular matrix U, which has jdentity block matrices along the
diagonal, and non-zero block matrices along the superdiagonal and the

last column, it is seen that the following recursive relation should be

employed to obtain AQ.

AQm + Um,m+1 AQm+1 + Um,N AQN = q for, m = N-1, N-2, oeoe s 1

(A.6)
with AQN = Qy

peing used to initiate the determination of the solution vector Aa.
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APPENDIX B
_—A 5

REPRESENTATION OF THE METRIC COEFFICIENTS

The metric coefficients, arising due to the transformation of the
governing equations from the physica] (x,y) coordinates to the
computational (g,n) coordinates, should be evaluated in a manner
consistent with the discretization of the governing equations.

The metric coefficients fopr a generajl mapping are given in Eq.

(2.13) and are

n =-4 yg and n = g x . (B.1 a=q)

differences at a geéneral interiop computational point (i+1,3) Hence,
ﬂ'l+1,J l+]'J+1 xj_.,.] j 1)/2An
= . )
and yn i+1,5 (yi+1,j+1 yi+1,j_1)/2An . (B.2 a,b)

At a boundary point, these terms are evaluated using a first-order

accurate representation. Accordingly,

At § = JMIn,
“nlie1,g - P gen T K pren
Inlien,g = Oyay gy - Yieg,g)7an

and, at j = JMAX,

“nlier,5 ® IR R Z R

(y

lieny T Waa g v e (8.3 a-0)

102



in order to determine the appropriate representation of xg and yE,

a simple test of uniform~flow computation is employed. This test
involves assuming a uniform flow at a streamwise location i and applying
the numerical integration algorithm, along with uniform-flow boundary
conditions, to obtain the solution at station (i+1). If the algorithm
is formulated consistently, a uniform flow should result at station
(i+1). To this end, it is sufficient to consider the inviscid part of

the governing equations, i.e.,

e 4+ = =90 (B.“)

since E-derivatives appear only in the streamwise convectlve and
pressure—gradient terms. The quasi-linearized form of the above

equation can be obtained from Eqn. (3.27) and is

it oalg + ag %; B atQ) = s

where
x xs ..

s-gt-&tQ-ae g G toh . (B.5 a,b)

Here,
£ Y € _

e (HPER L (@

¥ - 2 %3 g -

A*l i_ (35)1+1 E*l N (jl)1+1 F*l

i s n. . _¥: n. . Y
and B - Q = (-53‘-]1+1 E - o+ [31)l+1 F oo (B.6)
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Following the discretization procedure, as discussed in Chapter 3,
for the inviscid terms, the discretized form of the right-hand side of

Eqn. (B.5 b) at location (i+1,j) can be Wwritten as

- - G [ GO
PRG-I gL - e, -
S FITE Gy GO ]
CR G - (e B
R -G e (5.7)

In order to recover a uniform-flow solution, it Will be sufficient
to show that the source term S is Zero, starting from uniform-flow
conditions at station i, and using uniform-flow boundary conditions. To
show this, it is recognized that, for the case with constant density,

velocity and temperature,

p =0, s
u = u, R
v =20

and T = T, ,

where o, U, and T, are constants. Hence, the flux vectors are constant

With respect to the n direction, i.e.,

-3 S LE! for j = JMIN+1 IMAX-1
,j-’ j J+1 ’ J ? e

—*i

and Fj =0 , for j JMIN, ..., JMAX . (B.9)
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With these conditions, the source term S can be written in the

following mannner.

13 E_ .
1 Xy1 Xyi+1
S = {5[(3_)3 —(J—)j ]
£ g £ E. .
1 Xyi Xyi+1 Xyi _ Xyi+1
n . n - .
A Xyi+1 Xy i+ —%j
T 5 an [(3‘JJ_ - [3-Jj_,]} E; (B.10)

Substituting for [gx/J) and (nx/J) from Eq. (B.1) and employing the

discretization given oy Eq. (B.2), Eq. (B.10) can be written as

1 ‘. - -
Sl RESTI R B S D RO SR Yi,5-1)]
__1__ N . —_
* 5 L i1, ge2 T Ve g 7 Vi g4z Yi, 5
Sy T ey Oyt )]
5= [y, - (v,) I E? (B.11)
2an “Veeier, e gli+1,5-11 By ' '

For S to be equa_ to zero, it is clear, from the above equation,

that yg is to be evaiiated, as an average of its neighbours, as follows.

1

Yelisr, 501 = 753 Vi, 5]

[yi+1,J+2 T Va2 T Ve, T Yy

gy

1
i

2 AC [yi+1,j+1 - yi,j+1] (B.12)

+

Similarly, by assuming v = constant and u = 0, we can arrive at the

following répresentation for the term XE'
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Eli+1,3+1 T T AE [xi+1,j+2 T Xy a2 T Rier,y xi,J]

s5E i1, 301 7 xi,j+1] : (B.13)

The representation of xE and yg at n = constant poundaries, for

example, at j = JMAX can be obtained by forming the discretized form of
Eq. (B.5 b) at j = JMAX-1.

At the location [i+1,§ (= JMAX-1)]1, the source term is written as

follows.
s =1 ﬁlgﬁ [ = Giay, 301 " Yiet,3m0) 7 Vi34 7 Vi,3-1)]
¥ 81An [ - Oyay, 502~ Yier,3) © Wi,ge2 7 Yi,5)
= W,y T Ve YT Vi, 5-2)]
* Eé%ﬁ [[yg)i+1,j+1 B ElZE (Yia,5-1 7 yi,j—1)

1
m5E Wier,s = Vi, " Yieng-2 Yi,5-2

)] (B.1L)

In order to produce a zero source term S, from EQq. (B.14), yg term

should be represented in the following manner:

fer g = ouax = Yien3 T vy, /08 (B.15)

Ve
Similarly, the discretization for the term xE is performed as follows.

- X

fe1,g = oax T Fieng i) 78 (B.16)

e
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APPENDIX C

DISCRETIZATION OF DERIVATIVES AT CORNERS OF FIVE-SIDED CELLS

In a hybrid grid, 'gpecial-points’' commonly occur at the congruence
of more than two different types of sub-regions. As stated in Chapter

5, these 'special-points?', Bg and Eg in Fig. 31, are presently

considered to be the centers of non-standard 5-sided cells. In the
discretization of the various derivative terms in Eq. (5.1), special
consideration is required in arriving at the appropriate neighbours for
the vertices of these 5-sided cells, i.e., in defining the computational

molecule at the vertices of these cells. The vertices of these non-

standard cells are Bq ’ 55 y ees 3 Bg and Eq ’ 5 s eee 3 Eg , as shown

in Fig. 31. The eight immediate neighbours for each of these points are

shown as the encircled points in the sketches®below.

At vertex B? ’ At vertex BS ,

[ [ [ 1[4
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At vertex B" , At vertex BH ,

3

"

At vertex Bg ,

@ 1immediate neighbours

The computational moleclues shown were arrived at by examining the
multi-block structured computational region and seeking the natural
neighbours of a given computat ional point. The neighbours at the

corners of the cell around Eg are assigned in a similar manner. At a

given vertex, the computational molecule employed during one step of the
two-step solution procedure, for the grid-generation equations as well
as the flow equations, is the same as that for the second step of the
procedure. This is essential for consistency of the discretized

equations used during the two steps.
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u,v,T

W 5 NO. OF UNKNOWNS NO. OF EQUATIONS

c ¥
s C,X,y,e 4

4  CONTINUITY

e C,X,y,e 3 20 3 x-MOMENTUM
e C,X,y,e 2 (3+?)y-MMﬁme4
Y x 3 ENERGY
Vil 6 BOUNDARY
T
arve CONDITIONS
TOTAL 20

WALL-WALL BOUNDARY CONDITIONS

iy - 5 NO. OF UNKNOWNS NO. OF EQUATIONS
CrX,YrCe 4
4  CONTINUITY
CrXsYrCs 3 16 4  x~MOMENTUM
C,%,¥sC0 2 4 y-MOMENTUM
C, X,y e 1 _4  ENERGY
0 TOTAL 16

b. WAKE-WAKE BOUNDARY CONDITIONS

FIG. 2. TYPES OF BOUNDARY CONDITIONS FOR CASCADE FLOWS.
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u,v,T
sl 5 NO. OF UNKNOWNS NO. OF EQUATIONS
Y x 4
© CiXiYs€ 5  CONTINUITY
3
o CiX,s¥s8 24 4  x-MOMENTUM
» C,X,Y,© 2 (4+1) y-MOMENTUM
C,X,y.,€ 1 4  ENERGY
0707707000707 cx 6  BOUNDARY
. 0 CONDITIONS
u,v,T (lagged) TOTAL 24
c. WALL-WAKE BOUNDARY CONDITIONS
p,u,v,T
iy - 5  NO. OF UNKNOWNS NO. OF EQUATIONS
e C,X e 4
XY 5  CONTINUITY
o C/X,Y,€ 3 24 ] Xx~-MOMENTUM
e C,X,y,e 2 4  y-MOMENTUM
L Cr/X,¥Yre 4 ENERGY
77 7  BOUNDARY
. 0 CONDITIONS
u,v,T TOTAL 204

d. WAKE-WAKE BOUNDARY CONDITIONS (REGION-PERIODIC GRID)

FIG. 2 (CONCLUDED). TYPES OF BOUNDARY CONDITIONS FOR CASCADE FLOWS.
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| S Outflow
Boundary

0l

i i+l i+2

FIG. 3. TWO STEPS OF THE SOLUTION PROCEDURE.

] e
Fully Constant
Developed h= Static
Flow Pressure
Profile ] t/2
N
t
a. EXPONENTIAL CHANNEL
— s - _
Uniform Cons?ant
Velocity Static
Profile Pressure
1 —]
— o—

b. FLAT=PLATE CASCADE

FIG. 4. CONSTRICTED CHANNEL AND VARIOUS CASCADE CONFIGURATIONS,
AND INFLOW-OUTFLOW BOUNDARY CONDITIONS.
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c. CASCADE OF EXPONENTIAL AIRFOILS
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Constant
Static
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Constant
Static
Pressure

Constant
Static
Pressure

e. CASCADE OF JOUKOWSKI AIRFOILS WITH MODIFIED LEADING EDGES

FIG. 4 (CONCLUDED). CONSTRICTED CHANNEL AND VARIOUS CASCADE
CONFIGURATIONS, AND INFLOW-OUTFLOW BOUNDARY CONDITIONS.
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FIG. 6. WALL-PRESSURE AND WALL-SHEAR PARAMETER DISTRIBUTIONS
FOR EXPONENTIAL CHANNEL CONFIGURATION, Re = 1500.
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FIG. 6 (CONT'D). WALL-PRESSURE AND WALL-SHEAR PARAMETER DISTRIBUTIONS
FOR EXPONENTIAL CHANNEL CONFIGURATION, Re = 1500.
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FIG. 6 (CONCLUDED). WALL-PRESSURE AND WALL-SHEAR PARAMETER DISTRIBUTIONS
FOR EXPONENTIAL CHANNEL CONFIGURATION, Re = 1500.
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FIG. 8 (CONCLUDED)- WALL-PRESSURE, WAKE-CENTERLINE VELOCITY AND
WALL-SHEAR PARAMETER DISTRIBUTIONS FOR A CASCADE
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FIG. 10, WALL~-PRESSURE, WAKE-~CENTERLINE VELOCITY AND
WALL-SHEAR PARAMETER DISTRIBUTIONS FOR a CASCADE
OF EXPONENTIAL AIRFOILS, Re = 1500.
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FIG. 10 (CONCLUDED). WALL~PRESSURE, WAKE-CENTERLINE VELOCITY AND

WALL-SHEAR PARAMETER DISTRIBUTIONS FOR A CASCADE
OF EXPONENTIAL AIRFOILS, Re = 1500.
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FIG. 15. WALL-PRESSURE, WAKE-CENTERLINE VELOCITY AND
WALL-SHEAR PARAMETER DISTRIBUTIONS FOR A CASCADE
OF PARABOLIC-ARC AIRFOILS, Re = 1500.
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FIG. 15 (CONT'D). WALL#PRESSURE, WAKE-CENTERLINE VELOCITY AND
WALL-SHEAR PARAMETER DISTRIBUTIONS FOR A CASCADE
OF PARABOLIC-ARC AIRFOILS, Re = 1500.
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FIG. 15 (CONCLUDED). WALL-PRESSURE, WAKE-CENTERLINE VELOCITY AND
WALL-SHEAR PARAMETER DISTRIBUTIONS FOR A CASCADE
OF PARABOLIC-ARC AIRFOILS, Re = 1500.

140



*ST1044IV TVILNINOJXJ 40 9aqvoSv0
v 4od ©/3 SNOIHVA 404 SNOILNTHLISIA YA LAWY HVd
YVAHS-TTVM ANV AUNSSAY-TTVM 30 NOSIHVAWOD °91l *DId

s g 1l X g'ol 2°0l A il X 0! (3]

— Sé
- M
1
— @S
1°0 0O .
* v
GL0"0 Sl
G0°0 © q
0/3

141



8.25

2080

8 18 x " 12

ENLARGED HORIZONTAL SCALE

150

180

(111) - (iv)

a8 4 5. 7S 9 19
ENLARGED HORIZONTAL SCALE

a. Re = 3100
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FIG. 19. WALL~PRESSURE, WAKE®RCENTERLINE VELOCITY AND

WALL<SHEAR PARAMETER DISTRIBUTIONS FOR A CASCADE
OF PARABOLIC*ARC AIRFOILS, t/c = 0.05, Re = 15000.
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FIG. 19 (CONT'D). WALL~PRESSURE, WAKEMCENTERLINE VELOCITY AND
WALL~SHEAR PARAMETER DISTRIBUTIONS FOR A CASCADE
OF PARABOLIC~ARC AIRFOILS, t/c = 0.05, Re = 15000.

148



1.0@
o Pb -
R °
- @.78
8.1 1y
o
2.0 7]
(1) — e.25
_8.1 l 1 l 3 O,QG
9 s 50 75 9 .m < ! 12
ENLARGED HORIZONTAL SCALE
208
158 — (iii) . (iV)
180 +— _
S P -

e N—
_se 1 l 1 l 1 1 l [l l 1
] 25 x 5Q 75 9 1@ x it

ENLARGED HORIZONTAL SCALE
Ce M = 0.“9
.

FIG. 19 (CONCLUDED). WALL~PRESSURE, WAKE-CENTERLINE VELOCITY AND
WALL#SHEAR PARAMETER DISTRIBUTIONS FOR A CASCADE
OF PARABOLIC~ARC AIRFOILS, t/c = 0.05, Re = 15000.
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FIG. 23. WALL-PRESSURE, WAKE:=CENTERLINE VELOCITY AND
WALL-SHEAR PARAMETER DISTRIBUTIONS FOR A CASCADE
OF JOUKOWSKI AIRFOILS (MODIFIED LEADING EDGE).
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FIG. 23 (CONCLUDED). WALL-PRESSURE, WAKE-CENTERLINE VELOCITY AND

WALL-SHEAR PARAMETER DISTRIBUTIONS FOR A CASCADE
OF JOUKOWSKI AIRFOILS (MODIFIED LEADING EDGE).
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FIG. 27. EFFECT OF At ON CONVERGENCE FOR A CASCADE
OF EXPONENTIAL AIRFOILS.
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FIG. 33. TYPES OF SPECIAL CELLS AND POINTS.
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a. STAGGERED CASCADE (

GOSTELOW'S CASCADE)
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|
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b. UNSTAGGERED CASCADE OF JOUKOWSKI AIRFOILS

FIG. 37. TYPICAL C-H HYBRID GRIDS.
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FIG. 39. RESULTS FOR A CASCADE OF JOUKOWSKI AIRFOILS
USING C-H HYBRID GRID, Re = 150.
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C. STATIC PRESSURE CONTOURS

FIG. 39 (CONT'D). RESULTS FOR A CASCADE OF JOUKOWSKI AIRFOILS
USING C~H HYBRID GRID, Re = 150.
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FIG. 40. RESULTS FOR A CASCADE OF JOUKOWSKI AIRFOILS
USING C~H HYBRID GRID, Re = 600.
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¢. STATIC PRESSURE CONTOURS

FIG. 40 (CONT'D). RESULTS FOR A CASCADE OF JOUKOWSKI AIRFOILS
USING C-H HYBRID GRID, Re = 600.
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c. STATIC PRESSURE CONTOURS

FIG. 42 (CONT'D). RESULTS FOR A CASCADE OF JOUKOWSKI AIRFO1LS
USING C~H HYBRID GRID AND COMBINED SCL~CRCL
FORM OF EQUATIONS, Re = 300.
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d. STATIC PRESSURE CONTOURS SUPERIMPOSED ON THE HYBRID GRID.

FIG. 42 (CONCLUDED). RESULTS FOR A CASCADE OF JOUKOWSKI AIRFOILS
USING C~H HYBRID GRID AND COMBINED SCL=CRCL
FORM OF EQUATIONS, Re = 300.
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