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Abstract Some engineering applications of heuristic multilevel optimization

methods are presented and the discussion focuses on the dependency matrix

that indicates the relationship between problem functions and variables.

Decompositions are identified with dependency matrices that are full, block

diagonal and block triangular with coupling variables . Coordination of the

subproblem optimizations is shown to be typically achieved through the use of

exact or approximate sensitivity analysis. Areas for further development are
identified.

Introduction

Ever since optimization methods have been applied in engineering,

practitioners have attempted to use them in multilevel schemes. These are

procedures where a large problem is broken down in a number of smaller

subproblems; this phase is referred to as decomposition. These subproblems
are optimized separately and an iterative process is then devised which

accounts for the coupling so that when it is converged, the resulting optimum

is that of the original non-decomposed problem; this phase is referred to as
coordination.

Multilevel methods can be classified as formal or heuristic according to

whether the decomposition and the coordination phases are exclusively based

on the mathematical form of the problem or on understanding of the underlying

physics. In general, formal methods are more amenable to convergence studies
than heuristic methods. The distinction between the two classes of methods

is somewhat arbitrary, however, and, depending on how it is presented, a

method may be shown to belong to either class.

This paper covers applications of heuristic multilevel optimization

methods in engineering design. Problems are assumed to be formulated as

static nonlinear parametric programming problems. While most applications

are for structural design problems, reference will be made also to selected

papers in mechanical, power and electrical engineering.

The paper begins with a review of the objectives of multilevel

optimization and a description of typical applications. The two following

sections address the decomposition problem and the coordination problem. The

paper concludes with an assessment of the state-of-the-art and

recommendations for further work. While the paper discusses primarily two-

level formulations, most methods may be adapted to decompositions with more

than two levels. For the sake of generality, the presentation remains in

terms of a generic design problem. Only a limited number of representative

papers will be cited.

Objectives and Examples of Application

Some design problems naturally have a multilevel structure as the
calculation of their constraints or objective functions are themselves the

results of minimization or maximization problems. Haftka [I] showed that the

design of damage tolerant space trusses and wing boxes can be formulated with

a constraint on maximum collapse load.

By far, the most commonly cited reason for resorting to multilevel
optimization is the improvement of the numerical performance of optimization

algorithms. In structural optimization, early attempts were direct

extensions of the fully stressed design methodology. Using methods devised



by Giles [2] and Sobieszczanski and Loendorf [3], Fulton et al [4] designed a

complete aircraft model that involved on the order of 700 design variables

and 2500 constraints. Schmit and Mehrinfar [5] followed with optimization of

truss and wing box models that included local and global constraints while

Hughes [6] developed similar ideas for naval structures. Using a method

first proposed by Sobieszczanski [7], Wrenn and Dovi [8] optimized a fairly

complex transport wing model with 1200 variables and 2500 nonlinear

constraints. Substructuring has also been used to decompose optimization

problem. Nguyen [9] used it to reduce the cost of the sensitivity analysis

phase. Schmit and Chang [I0] and Svensson [Ii] have looked at optimizing

substructures independently. In other engineering applications, multilevel

approach were used to design underground energy storage systems (Sharma,

[12]), speed reducers (Datseris, [13]), microwave systems (Bandler and Zhang,

[14]) and to solve the optimum power flow problem (Contaxis etal, [15]).

Formulating a multilevel problem can also be used to improve its

mathematical conditioning since variables that have different orders of

magnitudes and rates of change can be kept separate in the optimization

process. Probably the most common example of such application is the

simultaneous sizing and optimization of the geometry of structures in which

the sizing problem is solved for fixed geometry in an inner loop while, in

the outer loop, the geometry is modified to optimize the design. This

approach has been used primarily for space trusses and frameworks, examples

are given by Felix [16]. Kirsch [17] used a similar formulation to conduct

the simultaneous analysis and optimization of reinforced concrete beams.

The design of complex engineering systems is by nature multilevel.

Designers carry out the effort by breaking the total problem into subproblems

and assigning each to different units of the engineering team. Each unit has

developed its own design methodologies and successful designs result from

skiiful integration of objectives, requirements and constraints from each

unit. This becomes a coordination problem. Sobieszczanski [7] was the first

to propose to use multilevel coordination methods to solve multidisciplinary

design problems. Rogan and Kolb [18] showed how a transport aircraft

preliminary design problem can be treated as a multilevel optimization

problem.

Decomposition

The general form of the original, non-decomposed optimization problem is

as follows (vectors are boldfaced and scalars use normal script):

min f(X), st g(X) S 0, h(X) = 0 (I)

X

The relationship between variables and functions (objective and

constraints) can be described symbolically by the dependency matrix (Fig. i) .

There is one column in the matrix for each variable (or vector of similar

variables) and one row for each function (or vector of similar functions);

the objective function is listed first. Entry i,j indicates qualitatively

the relation between function j and variable i. In our figures an entry (X)

indicates function i depends on variable j, no entry indicates function i

does not depend on variable j. Figure 1 corresponds to Prob. I, a general

nonlinear programming problem where all functions are assumed to depend on

all variables.

As discussed by Carmichael [19], "...decomposition implies breaking the

system into subsystems with interactions and breaking the problem

[variables,] constraints and [objective] into [variables], constraints and

[objectives] associated with the subproblems. Decoupling..o may be carried

out by the introduction [or identification] of interaction variables such

that there results independent optimization problems at the lower level."

Typical approaches to decomposition are discussed below.

Decomposition of the Variable Vector

Without any special structure (that is with a fully populated dependency

matrix), Prob. 1 may always be decomposed by partitioning the variable

vector:



X = X1..... Xn (2)
It may then be replaced by n problems, the ith of which is:

rain f(Xl ..... Xi-i'Xi'Xi÷l ..... Xn )' st g(Xl ..... Xi-l'Xi'Xi+l ..... Xn ) _ 0,

X
1

and h(X 1 ..... Xi_l,Xi,Xi+l ..... Xn ) = 0 (3)

where an overbar on a variable indicates that the variable is held fixed.

This approach has been used for simultaneous configuration optimization and

sizing (Lev, [20]) and optimal load flow control (Contaxis et al [15]).

Typically, no real decoupling results from such a decomposition (the

dependency matrix remains fully populated), unless one of the subproblems can

be further decomposed as in Kirsch [17] or Vanderplaats et al [21].

Block-Diaqonal Dependency Matrix

From the standpoint of decomposition, a problem having an additively

separable objective function and a dependency matrix as in Fig. 2a (assuming

suitable re-ordering of the variables and constraints) is ideal, since it

yields totally uncoupled subproblems which can be solved independently of

each other. The original problem formulation reads:

n

min f(X) = _fi(Xi) st gi(Xi) S 0 i=l,n; hi(X i) = 0 i=l,n (4)
X=X I, . . . ,X n

resulting in n independent subproblems:

min fi(Xi) st gi(Xi) _ 0, hi(X i) z 0 (5)

X i

While design problems seldom have such form, it is often assumed that

they have a similar form in which some functions depend strongly on some

variables and only weakly on others. This situation is described in Fig. 2b

where dots denote weak dependency. Assuming additively separable objective

function, this yields the following n subproblems:

min fi(Xl ..... Xi-l'Xi'Xi+l ..... Xn ), st gi(Xl ..... Xi_l,Xi,Xi+l ..... Mn ) < 0,

X.
1

and hi(X 1 ..... Xi_l,Xi,Xi+l ..... Xn ) = 0 (6)

One of the major shortcomings of this method is that it cannot explicitely

handle constraints which strongly depend on variables belonging to different

subsystems. Sobieszczanski and Loendorf [3] and Hughes [6] devised an ad hoc

procedure to correct the overall design for violations of these constraints.

Generally, the decomposition of the problem is arrived at in a very

natural way; it is imposed by the structure or the layout of the engineering

system considered. Therefore, very few systematic approaches to

decomposition exist. An exception is that used by Datseris [13] for the

design of mechanisms. Here the key idea is to divide the set of design

variables in mutually exclusive subsets so that some measure of the coupling

between the variable subsets is minimized. Coupling is measured by an

interdependence function based on the design problem objective function. If

a decomposition in two subsets is desired, the first step is to randomly

identify two subsets of variables. Then a systematic approach is used to

exchange variables among the subsets in an effort to lower the value of the

interdependence function.

Another approach to systematic decomposition is proposed by Bandler and

Zhang [14] in their optimization of large microwave systems. Their starting

point is a matrix similar to the dependency matrix introduced above. They

use a matrix whose i,j entry is the normalized sensitivity derivative of

function i with respect to variable j (or a sum of sensitivity derivatives

calculated at various points in the design space). They manipulate the rows

and columns of the matrix to finally identify the subproblem to optimize



starting with the reference function group (with the worst contribution to

the objective) and the candidate variable groups (those that affect that

reference function group). Optimization proceeds with repeated redefinition
of the variable and function groups making up the subproblem which as the

optimum design is reached includes all variables and functions.

Block-Angular Dependency Matrix with Couplinq Variables

Reasonably complex engineering design problems cannot typically be

formulated with a block-diagonal (Fig. 2a) or even a quasi-block diagonal

(Fig. 2b) structure. Indeed, as alluded to before, some constraints depend
strongly on variables belonging to several subproblems. A more typical

structure is the block-angular structure with coupling variables of Fig. 3a.

This may result from the existence of a hierarchical structure in the model

in which two levels of variables and functions exist. At the higher level,

the higher level (or system or global) variables affect directly the higher

level constraints. At the lower level, for fixed higher level variables, the

lower level (or subsystem or local) variables affect directly the lower level
constraints. Further decoupling may exist that results in a number of

independent lower level subproblems. The coupling higher level variables are

the interaction variables. Assuming additively separable objective function,

the starting problem would be given by:
n

min f0(Y) + Z fi(Y,Xi) st g0(Y) _ 0, gi(Y, Xi) S 0 i-l,n (7)

Y, XI, . . .,X n 1

and ho(¥) - O, hi(Y,X i) = 0 i=l,n

The resulting higher level subproblem would then be:

min f0(Y) st g0(Y) _ 0, h0(Y) = O (Sa)
Y

while there would be n independent lower level subproblems:

rain fi(Y'Xi) st gi(Y'Xi) S 0, h i(Y,X i) = 0 (8b)
X.
!

Haftka [22] gave a penalty formulation for the same initial problem.

To derive a problem structure as in Eq. 7 from a general nonlinear

programming problem as described in Eq. i, equality constraints sometime need
to be introduced. They typically express the consistency between the higher

level and the lower level models of the system. These can impede convergence

of the process. Thareja [23] proposed to linearize them at each optimization
step and to use them to eliminate some variables of the problem and thus

reduce its size. Schmit and Merhinfar [5] transformed these equality

constraints in penalty-type objective functions for the lower level

subproblems allowing for incomplete satisfaction of the equalities at the

beginning of the optimization process and, in effect only achieving a quasi-

block-angular structure as in Fig. 3b.

The issue of automatically generating a problem structure as in Eq. 7 for

complex engineering systems has been first addressed by Rogan and Kolb [18]

who suggested to handle it as scheduling problem.

Coordination

Coordination amounts to devising a scheme iterating among the subproblem

optimizations such that the final solution is that of the original problem

(or one of its solutions). Central to the coordination process is the

identification of coordination variables (Carmichael [19]). These variables

are held fixed at the lower level, giving independent subproblems which are

solved separately and then information is returned to the higher level to

update the value of the coordination variables. This c_.ycle is repeated until

convergence is achieved. Some modification of the higher level subproblem is

necessary to ensure coordination.

Applications that rely on variable vector or block-diagonal (or quasi-
block-diagonal) decompositions generally do not possess any coordination

mechanism. In the former case, coordination is really not necessary since



each subproblem deals with all the functions of the problem. In the latter

case, this lack of ccordination has been long known to prevent finding even a

local minimum of the problem and probably accounts for some of the

disappointing results reported by Svensson [ii]. In the context of

structural applications, Sobieszczanski [24] indicated: "...Minimization of

the individual component masses does not guarantee minimization of the total

mass. This situation is caused by the inability to control the load path on

the assembled structure level...". Schmit and Chang [i0] offer a unique

approach to coordinating problems using a substructuring formulation. They

write the problem variable vector:

n

X = _ _.X. (9)

1 i l

Each vector Xi is manipulated at the local level to satisfy local constraints

while minimizing stiffness (hence boundary force) changes; vector _ is

manipulated at the global level to minimize the global objective, satisfy the

global constraints and some local constraints that cannot be satisfied at the

local level.

Block-angular decompositions with coupling variables provide an explicit

coordination mechanism. A feasible coordination technique is always used in

which the higher level variables are taken as the coordination variables.

Generally, to provide a means of coordination at the higher level, the effect

of changes in lower level designs due to changes in higher level variables

must be known.

For example, at the end of each lower level optimization, Schmit and

Merhinfar [5] update limits on higher level behavioral (dependent) variables

to reflect new lower level designs. To coordinate the lower level designs

Felix [16] suggests to take a search direction at the higher level that will

minimize the system objective function while continuing to satisfy the

constraints active at the conclusion of the lower level optimizations. A one

dimensional search is performed at the higher level that accounts for

possible higher level constraints.

Since lower level optima are obtained for fixed value of the coordination

variables, they really are implicit functions of these variables. For the

subproblem of Eq. (8b), denoting optimum quantities with an (*), we have:

fi(M,Mi) = fi(Y,Xi(Y)) = fi(Y) (i0)

Optimization at the higher level must therefore continue in a direction that

maintains these lower level optima. To achieve coordination, the problem of

Eq. (Sa) must then be restated:

n
#

rain f0 (Y) + Z fi(Y) st g0(Y) _< 0, h 0(¥) = 0
Y 1

(ii)

One approach to constructing approximations to the implicit relations of

Eq. (I0) is to repeat the lower level solutions for several co_Joinations of

higher level variables. The resulting information can be used in non-

gradient optimization schemes or in gradient schemes with finite-difference-

based derivative estimates. Kunar and Chan [25] used the conjugate direction

and the conjugate gradient method. In addition to being computationally

expensive, this approach is prone to round-off and truncation errors.

Alternately, as proposed by Sharma et al [12] the information can be used in

surface-fitting procedures to construct approximate response surfaces giving

the lower level optima explicitely as functions of the higher level

variables. While this approach appears effective for small problems, the

size of the sample necessary for large problems with large number of higher

level variables will become prohibitive.

Another approach proposed by Sobieszczanski [7], and Sobieszczanski et al

[26] is to resort to sensitivity analysis of optimum solutions. This

technique provides exact derivatives of the solution of lower level

subproblems with respect to higher level variables and permits the generation

of first-order approximations:



. n _fi (9)

fi(¥) = fi(Y) + _ (Yj-Yj)
1 _yj

Haftka [22] used a similar approach for penalty function formulations.

(12)

Complete sensitivity analysis of optimum solutions (variables, objective
and constraints) is numerically costly since it requires second-order

derivatives of these functions. However, as shown by Barthelemy and
Sobieszczanski [27], if only the lower level objectives must be known for the

coordination mechanism, the additional calculations are limited to the

problem first-order derivatives.

Sensitivity derivatives are also discontinuous functions of higher level

variables (Barthelemy and Sobieszczanski, [28]). Presumably, lower level

subproblem unconstrained formulations based on penalty function formulations

(Haftka [22]) or envelope functions (Sobieszczanski [7]) should eliminate

that difficulty. However, as shown by Barthelemy and Riley [29] in the case

where envelope functions are used, driving the solution of the approximate
unconstrained subproblems to that of the original constrained ones often

results in rapidly varying (albeit still continuous) gradients, a phenomenon

that all but brings back the derivative discontinuity issue. It is likely
that the same problem occurs with penalty functions formulation. Haftka [22]

proposed to limit the effect of discontinuity by restricting optimization to

one step at each level in each cycle. Vanderplaats and Cai [30] proposed an
interesting approach to approximate sensitivity analysis that should

anticipate constraint switching. No definitive solution exist for this

difficulty but no example was ever shown where the derivative discontinuity

precluded convergence of the procedure.

Concluding Remarks

This brief review shows that heuristic multilevel optimization methods

have a demonstrated potential in engineering design. The most promising
decomposable problem statement considered is block-diagonal with coupling

variables. These variables are used at the higher level of the decomposition

to provide for decoupling of the lower level subproblems and coordination of

their optimization. The lower level subproblems communicate with the higher

level subproblem with sensitivity information that may be based on formal
sensitivity analysis. Various schemes have been proposed and some

demonstrated on very large problems.

Very little work focuses on the decomposition process itself that is on
the approach to be taken to obtain such a block angular structure. If

multilevel optimization is to be applied to truly large engineering systems,
then the ideas of Rogan and Kolb [18] on scheduling must be further

developed. One direction is to account not only on the existence of coupling
as they have done but also on the strength of coupling between variables and

functions as was done by Bandler and Zhan [14].

As stated above, efficiency of the algorithm is one of the most cited

reason to resort to multilevel optimization. Yet few of the results in the

literature are concerned with more than convergence of the algorithm. Haftka

[22] showed that significant savings could result from limiting iteration of

the subproblems to as little as one iteration per cycle, while Thareja and

Haftka [23] showed how further gains could be made by exploiting the

structure of the problem when calculating and storing derivatives.

Barthelemy and Riley [29] and Vanderplaats et al [21] showed good results

combining decomposition and approximations. The works of Bandler and Zhan

[14], as well as Barthelemy and Riley [29] indicates that it is worthwhile in

each cycle to optimize only those subproblems that have the strongest
influence on the problem objective.

Multilevel procedures are ideally suited for execution in parallel.

Surprisingly, no engineering application of multilevel methods on parallel
processors has ever been implemented. Young [31] demonstrated the

feasibility of using Sobieszczanski's [7] approach on a network of

engineering workstations.



Finally, as all methods developed for design, multilevel methods must be
madeto conform better to the design process itself. Most complex
engineering systems require more than two levels for modelization. Initial
work by Sobieszczanski et al [32] and Kirsch [17] should be pursued.
Likewise, particularly in the multidisciplinary context, problems are likely
to have several objective. Multilevel/multiobjective formulations are

necessary to determine what design is obtained when each discipline-

subproblem deals with its own variables, objective and constraints.
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16 Abstract

Some engineering applications of heuristic multilevel optimization methods
are presented and the discussion focuses on the dependency matrix that
indicates the re]ationship between problem functions and variables.
Decompositions are identified with dependency matrices that are full, block
diagonal and block triangular with coupling variables. Coordination of the
subproblem optimizations is shown to be typically achieved through the use
of exact or approximate sensitivity analysis. Areas for further development
are identified.
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