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Abstract

A three-channel photometer for simultaneous multicolour

observations has been deslgned with the aim of highly

efficient photometry of fast variable objects like catacly-

smic variables. Experiences with this instrument over a

period of three years are presented. Aspects of the special

techniques applled are discussed concerning their applica-

bility for high precision photometry. In particular the use

of fiber optics is critlcally analysed. Finally the devel-

opment of a new photometer concept and the ideas behind are

outlined.

Thls research program is partly supported by the Deutsche
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Introduction

The photometric investigation of fast variable phenomena of

objects like cataclysmic variables, pulsars and bursters

raises a variety of problems that have to be taken into

account while selecting adequate observing techniques and

strategies.

The relative faintness and fast variability of such objects

require their continous monitoring with sufficiently high

time resolution in various wavelength regions. In order to

obtain the intrinsic stellar variability, the influences of

sky background radiation and atmospheric extinction have to

be compensated.

These tasks can only be performed by simultaneous multicol-

our observations of the program star together with at least

one nearby comparison star and the sky background. A photo-

meter providing these facilities has been developed at the

Universitats-Sternwarte Muncher,. A detailed description has

recently been published (Barwig, eta]., 1987). The main

characteristics of this instrument, designated by MCCP

(Multi .......ChannelMulti Colour Photometer), are explained by

Fig. i.: Light of three sources in the focal plane of a

telescope (e.g. object, comparison, sky) is guided via

optical fibers to three prlsm spectrographs. Each of them

projects a small spectrum covering 3400-9000 A onto a fiber

array that selects 5 wavelength regions matching approxi-

mately the UBVRI filter bands. The fiber end faces of this

array are connected to the detector unit consisting of 15

photomultipliers (PM). Thus each object channel is split

simultaneously into 5 colour channels. The instrument pro-

vides data acquisition with a time resolution up to 10 ms,

reduction facilities and monitoring of on line lightcurves.
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Some features of the MCCPmay be of Interest for high
precision photometry. Therefore some instrumental proper-
ties, their accuracy and the reduction techniques applied
in this photometer shall be discussed in thls conte, xt. Due
to the hitherto lacking possibility t c_ perform systematic,

time consuming test runs using an own telescope we are

confined to experiences gathered with the MCCP in the

course of regular observing runs at ESO and Ca lar Alto
Observatories.

•__DeAect _ r_sAabi±_

Classical PM were found to be the most effective detectors

for the spectral resolution chosen in the MCCP. They are
encapsuled in a single housing which is cool_d down to

-18°C by regulated Pe]tier elements that guarantee a tem-

perature stability of t0.1°C, while the photon counting

electronics operate at room temperature. The PMs are fed by

optical fibers that are arranged between spectrograph and

detector unlt in a fixed configuration io keep the light
transmission constant.
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In order to check the detectors (Hamamatsu R647 for

U, B, R1463 for V, R, I) a stab]]ized LED source located in

front of the fiber output array within each spectrograph

can be switched on. Thus 5 PMs a{e fed.by a single LED.
Their individual count rates (3x10_-3x104 cts/s) differ due

to different fiber core diameters. The test allows to

recognize differential gain variations caused by different

fatigue effects. The dark current was measured in the

beginning and at the end of each check sequence. A mean

value of 4_-i cts/s was obtained. The results for the chan-

nels with the highest count rates show that a stability of

0.2% (Fig. 2) in timesca]es of hours is achieved, in c:on-

trast to results presented by Rosen and Chromey (1984). The

tests were performed dt a cathode temperature of 14°C.

Identical measurements at a temperature of -]7uC which is

normally estdblished during observations revealed a slight

decrease in effective sensitivity very likely due to ice

formation on the PM windows.

Each photometer channel has to meet the following specifi-

cat tons :

Unvlgnetted pick up of the signal of individual, some-

times quite close light sources through diaphragms in

the telescope focal t:,lane

Unvignetted and high efficient light transfer to the

colour separatlon and det_?cto:" unit

The total am:,unt of light measured and its distribution

on different spectral regions must not depend on the

star_s motion wJth±n the diaphragm. In particular, if

simultaneous colour separation is achl_ved using a spec-

trograph, the cross section of the diaphragm }]as to be

transferred to a uniformly il[uminated entrance slit or

a smaller circular aperture.

All these requirements sugg,:,st the a[,plication of optical

fibers mainly due to their easy handling and their ability

of light scfrdmb] ing .

An input channel of the MCCI? consists of a relatively large

diaphragm (< 1 ram) that is coupled through a transfer optic

to a quartz fiber of 400 _ core diameter. Its end face

forms the entrance pupil of a small prism spectrograph and

therefore defines the spectra] resolution.
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Of crucial importance is the uniform sensitivity (i.e. flat

field} over the whole diaphragm area. ]nhomogenities may be

due to varying light loss within the transfer optics, at

the fiber entrance surface and in the fiber itself. Further

flat field distortions can arise within the spectrograph

malnly due to vignetting effects caused by the transfer

characterlstic of the entrance optic. In the present photo-

meter version the diaphragm is projected onto the quartz

fiber by means of two bali lenses (Fig. 3). They are ar-

ranged to match a confocal system that makes the light bean,

enter the fiber nearly symmetrically with respect to the

fiber axis. This in turn yields a constant light cone at

the fiber exit end independently of the star's position in

the diaphragm. The optical setup requires a very careful

alignment of all optical components.

acryl _ diaphragm quartz mono fiber

....................•.- _ ___ ==,=-:'=: ::::'_:::.-" ._
m _ m

Fig. 3) Optical setup of the confocal lens system at the
flber entrance.

An alternative method of coupling the star signal to a

fiber is currently under test and seems to be superior. A

single Fabry lens of short focal length projects the teles-

cope pupil onto the fiber face, thus transforming spatial

motion to angular variations. Ray tracings have been calcu-

lated for both optical designs without involving the rather

compllcated light propagation through the fiber. H()wever

both optical configurations have been t_sted connected to a

straight fiber of 40 cm lenqth. For this purpose the f,'8

light cone of a star in the focal fJeld of a ] m telescope

has been simulated by a special optical setup. The artifi-

cial stellar disk of uniform brightness and or 0.2 mm (5")

diameter can be radially moved across the diaphragm wh£]e

the fiber output is imdged onto a PH cathode. Results are

shown in Fig. 4.

The flat field obtained with the two lens system exhibits

unsymmetric distortions due to small errors in the adjust-

ment of the optical components and due to a defect on one

side of the tested fiber. A better alignment with respect
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to the optical axis yields a flat field with symmetrical

shoulders on each side not altering the main characteris-

tics. The central part of the diaphragm (@ : 0.3 mm) shows

sensitivity variations on the, order of the measuring accu-

racy I=0.1%) while changes up to 0.5>0 occur over a field c)f
0.6 ms. If flat field distortions up to ]% are admitted

th_,n the useful area is extended to 0.8 ms. Theoretically

the transmission of the two lens conf]guration decreases

due to Fresne] reflection by 0.5% at the outer rim of the

selected diaphragm.

The single lens configurati()n provides a much better flat

field ('_- 0.2_. over 0.7 ram) due to the uniform brightness

distribution on the fiber entrance surface. The_ strongly

variable f-number at fiber input, (f/3O - f/2.7) is mostly

smeared out by fiber degradation effects yielding varia-

tions of the spectrograph entrdnce cone between f/4.4 and

f/2.5.

Bending varial ions of the fibers influence the values only

marginally without affecting high spatial frequencies of

the f latfreld. A single bend of r=]0mm applied |o the fiber

used with the single lens versJon sta_)ilizes the f/number

variations (f/3 - f/2.5) and scrambles the distributions of

directions of the exit rays.

Of course both configurations suffer from high sensitivity

to dust particles that may be re]_ased on the lens surface

close behind the diaphragm. Th_s problem may be solved by

sealing the fiber input optic through an anti ref]e, ctJon

coated quartz window that could be attached to the small

sky baffles at _i larger distance from the focal plane.

3_M_eg_s aA" i.jLg_mp}=h5? d_9_nd__E edu'4 L_AP n__D <9 c-e d_u__res

3-1 Measuring method

The primary aim is the determlnat t(_n c)f intensities of the
object relat ire to a comparison star ( i .e. reduced to
atrmass X=(] ) in the instrumental f i Iter system. The re-

quired data are obtained by posit ion]ng the fibers on

ob_ecL, comparison star and sky respectively tn the focal

l,]ane of the telescope. During each integ_;ation the lndi-
vidlla[ contribut±o[is of object, comparison, sky and dark

current (O , C x, S x, D x ) to the signal, in channel CHx for
a given co'our are:

Object channel: CH I = O] + S] _ D]

Comparison channel : Ctt]i C_ + S 2 + D 2

Sky channel: C|t_ : S_ + D 3

DRIGINAL PAGE IS

.OF, POOR QUALITY
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3-2 Standard reduction

where T
x-

cients between CH
x

To obtain relative intensities (O /C I) in a first approxi-
mation the signals of object an_ comparison channel are

divided after subtraction of the respective contributlons

from sky and dark current and after some transformations of

all quantities to allow for different channel sensitivities

and dlaphragm sizes. This so called standard reduction (SR)

is given by
• I

01 CH1 - q_ 1 S_-D

SR: .......................................

C 1 T2-1 (CH2-T3_ 2 S3-D 2)

indicates the channel transformation coeffl-

and CH
y"

3-3 Channel transformation

The channel transformatlon coefficients ( CTC ) are derived

from the photon counts of individual channels calibrated

with sky and star sources respectively.

This can be achieved by measuring i) a point light source

(e.g. the comparison star itself or an artificial light

that: is attached to the fibers ) in both star channels and

2) an extended source (e.g. sky background or an artificial

light source) in all three channels. Both calibration me-

thods have been applied. The accuracy of the derived CTC

reflects different dependence on instrumental and atmosphe-

ric properties.

The scatter of calibrations performed with artificial light

sources are influenced by time dependent varlations of

individual detectors and pulse counting electronics and by

brightness changes of the test lights. Flat field distor-

tion from fiber optic inhomogenities (! 0.2 %) do not

appear since the artificial point, light source illuminates

a fixed small area on the diaphragm.

From actual measurements performed at beginning and end of

several observing nights the scatter of the CTC has been

found not to exceed 0.5%.

Calibrations using comparison star and sky on the other

hand yield considerably larger residuals (_i-2%), that must

be explained in terms of the following effects:

a) atmospherlc transparency fluctuations during the non

simultaneous measurements of the comparison star in both

channels
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b} colour dependent extinction due to n,_n ident[cdl
characteristics of the three channels

fzlter

c) influence of errors _in the sky tr,_nsformatzon

cients on the star channel calibration

coef f ]-

d) influence of seeing and guiding in combination w:lth flat
field distortions

Special problems arise if the sky background radiation
itself is used for calibration. Dark skies require long

integration times for photon noise reduction wh,_reas brlght,

sky measurements during moonlight or dawn result in jnc,or-

rect coefficients due to spat tal brightness gradients. Such

effects yleld systematic differences (up to 20:_,) in the

derived sky transformat lotL coefficients.

3-4 Accuracy of standard reduction

Application of the MCCP for high precision pholom_try re-

quires a thorough consideration of the accuracy that can be

achieved with the SR and of possible imF, rov'ements as well,

Instrumental influences mainly refer to telescope aperture,

diaphragm size, d_-,tector stability, flat field dtstort_ion

and the derived transformation c:oefficients. The influence

of telescope and diaphragm aperture with respect to dif-

fraction and scintlllation has a] ready comF, rehensi ve]y

discussed by Young (1974). Flat field distortions (: 0.29

in the center of the diaphragm, neglecting dust contamina-

tion) independently affect the signdls from object and

comparison star. They cannot be compensated by calibration.

Differential gain instabl_lities of PMs have been found not

to exceed 0.3%. Careful treatment of environmental condi-

tions (e.g. humidity, temperature) of PM tubes and of

photon counting electronics may lower the error limits.

Frequent calibration measurements that allow linear inter-

polation might be a better solution, however. Finally thr:

theoretically resulting scatter of transformati_n coe_ffi -

cients should be compared to that of real measurements in

order to detect possible brightness variations of the (ar-

tificial) calibrat ion sources.

Further instrumental effects on the SR accuracy like dif-

ferent filter characteristics of indivldud] channels sha]]

be considered in the context of atmospheric extinction.

Neutral absorption is eliminated by SR supposed thai: the

influences on object and comparison are completely corre-

lated. However selective extlnction usually expressed bv
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first and second order _,xtinction coefficients affects both

stars in a different way, depending on their individual

flu× dlstribution ai_d on the filter bandwidth. The first

order term is compensated by SR only in case of identical

filter properties of both star channels. The systematzc

error of SR neg]ec'ting second order extinction effects

raises up to a few percent depending on aJrmass and dif-

ferences in spectral type. Compensation of this error re-

quires the determination of second order extinction coeffi-

cients, that may be obtained by classical standard star

observations.

A peculiarity of mull Jchannel photometers concerns dif-

ferences in the spectral sensitivity of individual chan-

nels. As a consequencee the CTC obtained from comparison

star calibrat _on becomes sensitive to variations of its

flux distribution e.g. caused by atmospheric extinction. It

can be shown that systematic errors due to differential

filter shifts are nearly independent of the spectral type

of the comparison star but do depend linearly on the dif-

fertence between airmass during calibration and actual ob-

starvation (for example: for X = ], systematic error in B

I-2_}.

3-5 Increasing the accuracy of SR

The effects of extinction and non ideal filter characteris-

tic can be taken into account using a numerical simulation

of the overall photometer throughput combined with wave-

length dependent standard extinction coefficients. The

effective instrumental spectra] sensitivity could be ob-

tained by folding the spectral transmission curves of fibt, r

channel and spectrograph with the quantum efficiency of the

respective PM.

At present we try to measure the relative overall transmls-

sion applying a scanning monochromator that produces light

in the wavelength region 3400-9000A at a constant photon

flux rate. For this purpose a photodiode with approximately

unity quantum efficiency (Zalewski and Duds, ].983) regu-

lates the scanner output brightness. The light signal can

be connected to the individual photometer channels via a

single quartz fiber. However variations of bending radii of

this test fiber during channel interchange influences the

signal transfer efficiency. Thus at present only relative

filter curves can be derived.

By an alternative method that is going to be investigated

at present, the test light is fed to the photometer dia-

phragms through the telescope optic itself: the monochroma-
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tor signal, emerging from a spot in the focal plane passes

through the telescope and is partly reflected back to the

photometer by a plane mirror located near the secondary

support wing. In this way the spectral reflectivity of the

telescope mirrors could be included in the numer±ca] sl-

mulation of the photometer equipment. It is expected thai_

the ca] ibration of rill three channels u,_ing a scanner

monochromatc_r will provide the required information on i )

the CTC by integrating over the respective wavelength re-

gions ..... ) the higher order extinction effects and i]i)

the colour t rdnsformation coefficients.

_4. _F.u_ t ta r e_ft eve ) pip_m_%0_l_.:.s-

The successful application of the MCCP for high effi.cie, nt

high speed multicolouc photometry, that c_in be performed

even under poor atmospheric condi_tlons stimulated the de-

sign of an improved instrument with increased channel num-

ber, higher spectral and time resolution and improved a<'-

curacy. The basic properties of the projected photometer a_
well as the. ideas behind shall be out lined In the follow-

ing .

4-i lnput (:hannel s

The new photome<er will be equiped with at least four

fiber {-hannels that allow to pick up light of a second

comparison star or of the sky background at an additional

test point. Measuring two comparison stars offer the posst-

biilty to check their differential brightness constancy and

to improve the compensaI ion of c:o]our dependent extinct:ion

effecl s by selecting object s of different spectra] distrl-

bution, l.'rom observations of the sky radiation at separate

posit ions the intensity gradients c.-an be calculated and

compensated.

The input channels will not be fixed by a mask but dvnams-
cd]]y positioned under computer control. During observation

this allows a quick check or correction of decentering

errors, e,g. due to differential refraction. The, hithorto

used mono fJbers w±lt be replaced by f,ber bundles.

4-2 Colour separation and det. ectc)r

The four photometer {_hannels feed a single spectrograpll

that produces four spectra (one upon each other) wit. h a
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resolution of about 20. ]in order to reach high efficiency

the total wavelength region (3400 - 9000 A) is split by

means of a dichroltic filter into two lightpasses that are

dispersed by separate prisms. The resulting individual

spectra then are projected onto the photocathode of a two-

dimensional photoncounting resist ive anode detector (MEPSl-

CRON) that. will be operated at integration times down to

i ms. The increased spectral resolution offers the possi-

bi] ity of computer synthesis of different photometric sys-

tems and to improve the compensation of higher order ex-

t.±net ion effects.

4--3 Software developments

The primary aim is to optimize the obs(_rving strategy for a

given observlng program. Parameters like integration time,

calibration cycle, spectral type of availab[e comparison

stars, frequency of standard star observations have to be

adjusted according to the r__,quired ac_-uracy and to the

actual instrumental and atmospheric conditions. Another

investigation aims at the development of more sophisticated

reduction algorithms and adequate methodes of data ana]y-

S]_S •
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