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Introduction

SCOLE stands for "Spacecraft Control Laboratory

Experiment". The objective of the SCOLE Program is to

provide an example configuration and control objectives
which enables direct comparison of different techniques in
modeling, systems identification and control. The "SCOLE
Design Challenge” was formulated in 1983 by L. W. Taylor and
A. V. Balakrishnan. The details of this challenge are reprinted
at the end of this document.

Annual SCOLE Workshops have been held for specialists
to share and compare their research results. This proceedings
is a compilation of the material presented at the 4th
Workshop held at the USAF Academy on November 16, 1987.
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N89-13462
INFINITE-DIMENSIONAL APPROACH TO SYSTEM IDENTIFICATION

OF SPACE CONTROL LABORATORY EXPERIMENT (SCOLE)

S. A. Hossain and K. Y. Lee

Department of Electrical Engineering
The Pennsylvania State University
University Park, Pennsylvania 16802

ABSTRACT

The identification of a unique set of system parameters in large space struc-
tures poses a significant new problem in control technology. This paper presents
an infinite-dimensional identification scheme to determine system parameters in
large flexible structures in space. The method retains the distributed nature of
the structure throughout the development of the algorithm and a finite—element
approximation is used only to implement the algorithm. This approach elimi-
nates many problems associated with model truncation used in other methods of
identification. The identification problem is formulated in Hilbert space and an
optimal control technique is used to minimize weighted least squares of error be-
tween the actual and the model data. A variational approach is used to solve the
problem. A costate equation, gradients of parameter variations and conditions for
optimal estimates are obtained. Computer simulation studies are conducted us-
ing a shuttle-attached antenna configuration, more popularly known as the Space
Control Laboratory Experiment (SCOLE) as an example. Numerical results show
a close match between the estimated and true values of the parameters.

PRECEDING PAGE BLANK NOT FILMED
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DISTRIBUTED PARAMETER IDENTIFICATION

TWO APPROACHES

FINITE-DIMESTONAL METHQOD
INFINITE-DIMENSIONAL METHOD

/18



Table 1

Literature Surveyed on the Parameter Estimation of Large Space Structures.

Reference

Approach

Wells and Spalding (1977) [2]
Tung (1981) (3]

Balas and Lilly (1981) [4]

Balas (1981) {5}

Lee and Bitter (1981) (6]

Banks (1982) (7]

Hendricks et al (1982) [8]
Hendricks et al (1984) [9]

Banks and Rosen (1984) [10]
Rajaram and Junkins (1985) [11.]
Lee, Walker and Hossain (1985) {12]

Lee (1986) [13]

A finite-dimensional design approach
where the structural model is trunc-
ated and the estimator is designed

based on the reduced-order model.

Spalding (1976) [14]
Burns and CIiff (1977)(15]
Sun and Juang (1982) |16}

Lee (1986) [13]

An infinite-dimensional design appr-
oach where the PDE model is retained
as long as possible and truncation is
carried out only after the estimation

algorithm is developed.

|7
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A Distributed System Model

3%u du

m(z) — (z,t) + Dg 3

502 (z,t) + Aou(z,t) = F(z,t),

.zeﬂ, tE(O,T],

F(z,t) = FB(I,t) + Fc(.‘r,t) + FD(I,t),

M
Fo(z,t) = Bof = Y_ bi() filt),

i=1
N .
Fp(z,t) = Beg = Yy _bi(z)ait),

1=1

y= Cou + EOuh

21



Basic Problem Formulation

where z is the measurement of output vector y given as
z(z,t) = y(z,t) + e(z,1)

with a measurement error e(z,t). Also, it is defined that

(y - z)TR(t)(y - Z) = /nly(x,t) - Z(I’t)ITR(I’t)[y(I’t) - z(:c,t)]dz,

22



Infinite-Dimensional Formulation

)

-

ot?

d .
(1) + Do) wu(t) + Alg)u(t) = B@f()  in(0,T],
. ou
u€ L(0,T;V), 51 € L,(0,T; H),
where f(t) is given in L2(0,T;V), and the initial conditions are

©(0) = ug, ug given in V,

and

5}

—a—iu(O) = uy, uy given in H.

The output function is

y(t) = Cuft),

The identification problem can now be formulated as an abstract problem of deter-

mining the parameter vector ¢*(z) € @ that minimizes
1 (T r
Ja) = 3z [ 1vl0) = IR0 - (0],
0

where z(t) is the observed data belonging to Y

23



Development of Infinite-Dimensional Identfication Algorithm

THEOREM : Given a state equation (18) with initial conditions given by Eq. (19) and
the cost function by Eq. (22) with y(t) satisfying Eq. (21), then the optimal parameter

vector ¢ satisfies the state equations (18)-(19) and the follwing system of equations :

d2
dt?

plt) - D" Sp(0) + 4°pl1) = = £ CTR(Cu - 2) (23)

with the final conditions

p(T) = £AT) =0, (24)

and the first variation of an augmented cost functional is

T
J du
J, = T [D— + Au— Bf] §qdt =0, 25
6 /Opaq[dt+u»f]q (25)

where p(t) is a costate variable also belonging to the Hilbert space V.

PROOF : By combining Egs. (18) and (22) an augmented cost functional can be defined

as

T
Ile) = 3z [ w0 - =0 RO - 0]

"

T u
+ /U p(t)T[%z-u(t) + D‘;—t + Au(t) - Bf(t)] dt. (26)

24



Parameter Identification of Vibrating Beams

Case I : A Simply-Supported Beam

d*u du
pAg tEI—= =b(z)f(t), ze[0,l],t>0,
a'.’
u(z,t) = s=u(r,t) =0,  ze€do,L], t>o,

T
J= 517,/0 ly - =|TR[y - 2] dt.

25



DISPLACEMENT
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L
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o - % 252 520 753
) o=
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STEP LOAD

|

ig. 2 (a) Simply-supprted beam with step load,

(b) resultant displacements.
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or
0%u 4
5z = G1gga T eé(z-5)f),
where h
EI
g1 = —,
m
1.
g2 = —,
m

and the parameter vector is defined by ¢ = [g;,¢2]7 .

d%p d'p R L
512 =—qlg+ f{u—zlﬂz— 5), IE[O,L],tE[O,T),

J
p(z,T) = 3 (I’t)’t=7‘ =0, z €[0,L].

n
-

p(z,t) = %p(z,t) =0, ze€do,L],t€[0,T).

6Ja T 32p 0%u

t,
61]1 0 3I2 3:2

and

674 T L
50 = —/n pb(z - -2—)f(t)dt.

Thus, parameters can be updated by the steepest descent algorithm

67, \* ,
q,"“=qf‘—w.~( “), i=1,2,

6¢;
27




Performance Data for Case ]

Table 2

Iteration qQ qz m ET fOT error? dt
1 301.58 0.0158 63.00 19000.00 0.‘20178E-01
2 311.68 0.0154 64.84 20207.72 0.16640E-01
3 325.65 0.0151 66.27 21582.87 0.71528E-02
4 338.48 -0.0149 66.91 22647.68 © 0.57208E-03
5 342.11 0.0149 66.98 22913.64 0.34507E-04
6 342.96 0.0149 66.99 22973.13 0.26524E-04
7 343.19 0.0149 66.99 22989.35 0.24364E-04
True

values 343.28 0.0149 67.00 23000.00

28



Case II : A Cantileverd Beam

12 B~ ka0,

z€10,L],t >0,

where £ is a damping coefficient.

y(t) = u(L,¢).

The boundary conditions for a cantilevered beam are :

2

a .
u(0,t) = aI,‘!u(zz,t) L =0, t >0,
2 33
7t = T y = 0, .
52t (%) . ppad ) . t>0

The beam is initially at rest and hence the initial conditions are

0
u(=0) = gt‘u(:c oo =0, z€[0,L].

where

a1

g2 =

gs = 25\/

and the parameter vector is defined by ¢ = [g1,¢2 g3)

29



(meter)

SCALE
11n=0.1518E+00

DISPLACEMENT

STEP LOAD

1

\\\\\}\\\\\\\x
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(a)
1
I ol IR o
TN IHEEEE i
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%) 539 \eea 1500 2000
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(b)

Fig. 3 (a) Cantilevered beam with a step load,

(b) resultant displacements.
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Table 3

Performance Data for Case II

Iteration g, g2 g3 m El 3 _ S error? dt
1 30159  0.0159 2.08  63.00  19000.00 0.060  0.7843E-01
2 318.01  0.0155 2.76  64.50  20512.02 0.077  0.1664E-01
3 326.20 0.0153 3.06 6526  21286.34 0.085  0.9432E.02
4 331.30 00152 323 6573 2177547 0.089  0.4498E.02
5 334.72  0.0151 334 66.05  22107.25 0.091  0.2284E.02
6 337.10 00151 343  66.27  22339.85 0.093  0.1238F.02
7 338.83  0.0151 349 6643 2251000 0.095  0.6649E-03
8 31007  0.0150 353 6655 2263261 0.096  0.3796E-03
9 34096  0.0150 3.55  66.65 2272178 0.096  0.2199E.03
10 34156 0.0150 3.56  66.71  22783.93 0.096  0.1519E-03
11 34206 00150 3.59  66.76 2283596 0.097  0.8667E-04
12 342.44 001497 3.62  66.80  22874.10 0.098  0.4961E.04
13 34273 001496 3.64  66.83  22903.95 0.008  0.1165E-04
True

values 34328 0.0149 3.70  67.00  23000.00 0.1

3l



Case III : A Simply-Supported Beam with Spatially Variable Parameter

d*%u a? d%u
Tr s L(aZs) —s@r. zepiso

where ¢ = EI(z).

?2_” = __ai( (x)?.if> - Elu—z], zelo,L],t€[0,T),

32



SECTION 1

SECTION 2

\\\\ STEP LOAD ,///
I ]
JAN JAN
2 —f 10—
SECTION 1 SECTION 2
m = 67 kg/m m = 67 kg/m2
El = 23000 N/m? El = 40000 N/m
(a)
— o 1
P-4 ]
T~ © | j | NN N
o B K HNEREE HIETREE
SERME SRV VUL BN NN
Zak AN/ VAN RN
Eg_f AN VARVERVARVAR
2 259 sog 752 1022
TIME (as)
(b)
S
W ! , T : . — .
5 8 e
<. = T AT AT AT T~ T o
= oA A T AL A T AL A
ég we BN ANV N /N /N /TN /0N
s &= \VAAVERVEARVAREVARVAE
“- g 252 502 750 1222 '
TIME (ms)
(¢)

Fig. 4 (a) Simply-supported beam with spatially variable flexible rigidity,

(b) resultant displacements at L/4,
(c) resultant displcements at 3L/4.
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Table 4

Performance Data for Case III

Iteration g(sec. 1) g(sec. 2) fOT error? dt
1 21000.00 ~39000.00 0.76863E-02
2 21686.15 39286.47 0.40601E-02
3 22261.30 39521.45 0.14636E-02
4 22630.66 39688.41 0.41442E-03
5 22814.49 39759.51 0.13629E-03
6 22911.04 39793.95 0.51151E-04
7 - 22968.10 39815.07 0.11209E-04
True

values 23000.00 40000.00
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ANTENNA

| Z
REFLECTOR ~ ’
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X

. ‘ PROOF -MASS
ACTUATOR

. FLEXIBLE
MAST

" PROOF-MASS
ACTUATOR

v,

—=Y

i
X

X ——

SHUTTLE BODY —/

Fig. 1 The shuttle / antenna configuration of the spacecraft

control laboratory experiment ( SCOLE ).
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YAW

ROLL
 PITCH
x .

Fig. 2 Drawing showing the direction of “roll” bending,

“pitch” bending and “yaw” twisting.
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The SCOLE Mathematical Model

A. Dynamic Equations

Roll Beam Bending Eguation in y-z Plane

d%uy ,——— dtu

Bt2
a3
_ z (n,,,.(r)a(s—sn>+g¢,n(t)5;6<s—sn)),

t>0, —oco<s<oo, 0<s, <L

Pitch Beam Bending Equation in x-z Plane

42288 g foapr, Lus gy, Tus
3tz oV PARl g T Bl 5

_Z(f,n 2605 = o) + 30035805 -0

=1
t>20, —c0o<s<o, 0<Ls,<L.

Yaw Beam Torsion Equation for z-Axis

8%y
Plo—5m P26y 1yV/G a 2at
= Z 9y,n(t)8(s — sn),

tZO, —0o<3g<ow, 0<Ls,<L.
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B. Forcing Functions

The forcing functions on the right side of each equation are dependent on boundary

conditions and proof-mass actuators.

Forces at s = s; = 0 ( shuttle body forces )

The forces at s; = 0 involves the shears at that point which are equal to the shuttle

mass m; times the corresponding component of acceleration.

32
fon(t) = —my— 312 “¢(0 t),

2
»fG,l(t) =-my= 9

32 U,Q(O t)

Forces at s = s4 = L ( reflector body forces )

82 9?
foalt) = —m— EY ug(L,t) — Myrs ot
82 a?
f9,4(t) = —m45t—2ug(L,t) + m4ry-a—t7u¢(L,t) + F,

(Lat) - er

where my is the reflector mass, (rzyry) is center of reflector mass from the beam tip at

s =L, and F; and F, are the applied forces at the center of the reflector mass.

Forces at 8 = s, (_proof-mass actuator forces )

a2 2

fe.2(t) =—myogu (Sz,t)+m26t26¢ 2,
2 2

fo2(t) = Myt ug(s2,t) + my— 312 Aga,y

where A and m denote displacement and mass of the proof-mass actuator.

Forces at s = s3 { proof-mass actuator force )

a3 03
foalt) = —mazzus(ss,t) + mazza4a,

a? g3
faa(t) = —msgfue(s's,t) tmaza Qg 3.
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C. Moments

Moments at s = 0 { shuttle body moments )

94,1
991 | = —[Ny +wy @ yw] + My (t) + Mp(t),

gy,

where I, is the moment of inertia of the shuttle body, M;(t) and Mp(t) are control and
disturbance moments, respectively, applied to the shuttle body, and ® denotes the vector

product.

Moments at s = L { reflector body moments

dé,4 . . 32&
93'4 = -(I4tb4+W4®I4w‘“M4(t)+f®F¢(t)) —m4r® 72—,
v .4

where M, and F, are the control moment and force applied at the reflector center of the

mass and £, is the coordinates of the beam tip.

Also, I, is the moment of inertia of the reflector, and I, is that with respect to the beam

tip given by

. rs —rery 0
Li=Ii+mg| —r.ry r 5 0 X
0 0 rztTy
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Mof(t) + Aor(t) + BQF(t) + Ko(f(t)z) =0,

where My is the 17 X 17 matrix specified by

Iy 22 2y
( pA 0 O

0 p4 O

0 0 pA

Ty 2
my 0
0 m,

©cococo0ooj
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Fig. 3 Roll, pitch and yaw displacements with no damping.
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Table 2

Performance Data for Case I : Nonlinear SCOLE Model

=T T ITTR T

Iteration Q1 q2 m EI foT error? dt
1 4.2353E+08 11.765 0.0850 3.6000E+07 0.1341E-04
2 4.2531E+08 11.067 0.0904 3.8427E+07 0.1896E-05
3 4.2612E+08 10.809 0.0925 3.9422E+07 0.3038E-06
4 4.2743E+08 10.705 0.0934 3.95—29E+07 0.9131E-07
5 4.2704E+08 10.665 0.0938 4.0041E+07 0.8031E-07
6 4.2617E-§:08 10.637 0.0940 4.0064E+07 0.6646E-07
7 4.25083—*—08 10.611 0.0942 4.0059E+07 0.4938E-07
8 4.2390E+08 10.589 0.0944 4.0029E+07 0.3237E-07
9 4.2277TE+08 10..574 0.0945 3.9982E:§-07 6.2032E-07
10 4.2174E+08 10.561 0.0947 3.9934E+07 0.1465E-07
11 4.2072E+08 10.546 0.0948 3.9894E+4+07 0.1332E-07
12 4.1959E+08 10.525 0.0950 3.986TE+07 0.1365E-07
13 4.1819E+08 10.495 0.0953 3.9845E+07 0.1676E-07
14 4.1783E+08 10.471 0.0955 3.9903E+07 0.7113E-08
True

values 4.1858E+08 10.465 0.0956 4.0000E+07.00
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Table 3

Performance Data for Case I : Linearized SCOLE Model

Iteration ¢ 2 m El [ OT error? dt
1 4.2353E+08 11.765 0.0850 3.6000E+07 0.1341E-04
2 4.2531E+08 11.068 0.0904 3.8427TE+07 0.1894E-05
3 4.2613E+08 10.809 0.0925 3.9422E+07 0.3051E-06
4 4.2744E+08_—10.704 0.093.4 3.9929E+07 0.9142E-07
5 4.2705E+08 10.665 0.0938 4.0041E+07 0.8040E-07
6 4.2618E+:08 10.637 0.0940 4.0064E+07 0.6660E-07
7 4.2509E+08 10.611 0.0942 4.0060E+07 0.4955E-07
8 4.2392E+08 10.590 0.0944 4.0030E+07 Q.3255E—07
9 4.2277E+08 10.574 0.0945 3.9982E;i-07 0.2032E-07
10 4.2175E+08 10.561 0.0947 3.9933E+07 0.1478E-07
11 4.2066E+08 10.546 0.0948 3.9888E+07 0.1378E-07
12 4.1957E+08 10.524 0.0950 3.6367TE+07 0.1361E-07
13 4.1816E+08 10.495 0.0953 3.9846E+07 0.16671‘:—-67
14 4.1773E+08 10.471 0.0955 3.9893E+07 0.8371E-08
True

values 4.1858E+08 10.465 0.0956 4.0000E+07.00
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Fig. 5 Convergence of parameters for the SCOLE problem in

Case [ using nonlinear model.
(a) For pA / unit length.
(b) For flexural rigidity, ET.
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Fig. 4 Roll, pitch and yaw displacements when a damping
tactor of 0.003 is added to the system.
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Table 4

Performance Data for Case Il

Iteration EI pA pl .ﬁv €

1 32000000.00  0.0750 1.1000 0.00250
2 37582208.00  0.0881 0.9690 0.00250
3 39607652.00 00028 0.9428 0.00250
4 40157244.00  0.0941 0.9362 0.00250
5 40372424.00  0.0946 0.9247 0.00280
6 40338068.00  0.0645 0.9183 0.00288
7 40309128.00  0.0945 0.9127 0.00293
8 10282206.00  0.0943 0.9088 0.00289
9 40260868.00  0.0943 0.9047 0.00287
10 40243016.00  0.0942 0.9008 0.00285
11 1022624400  0.0942 0.8983 0.00281
12 40202376.00  0.0942 0.8979 0.00286
13 40181576.00  0.0942 0.8977 0.00292
14 40162324.00  0.0941 0.8974 0.00299
15 4014952000  0.0941 0.8973 0.00298
16 40140040.00  0.0941 0.8973 0.00295
True

values 40000000.00 0.0956 0.9089 0.003
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Fig. 7 Convergence of error criterion for Case II.
(a) For pA / unit length.
(b) For pIy /unit length.
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CONCLUSION

Infinite-dimensional identification method presented in this paper shows a significarit
promise in the parameter estimation of flexible structures with great potentials for appli-
cations to LSS’s. The basic approach is the abstract formultion of the system dynamics
in function spaces and then applying optimal control theory to adjust system parame-
ters so that the error between actual and model data is minimized. The use of partial
differential equation for the purpose of estimation elimainates many prbblems associated
with model trunction in the finite dimensional approach. Based on partial differential
equation models and a quadratic performance index an algorithm to estimate the opti-
mal parameters has been developed. The numerical results show the effectiveness of the
algorithm in estimating parameters of the flexible beam in the SCOLE problem. The
results show fairly good match between the model and the estimated parameters. How-
ever, as the number of parameters to be identified increases it becomes increasingly time
consuming and difficult to solve. Also, due to model mismatch, slightly less accuracies

are expected if experimental measuremc .t data from physical beam were used.
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SOME NONLINEAR DAMPING MODELS IN FLEXIBLE STRUCTURES

A.V. Balakrishnan T
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Abstract

We introduce a class of nonlinear damping models with application to flexible flight
structures characterized by low damping. We are able to obtain approximate solutions of
engineering interest for our model using the classical “averaging” technique of Krylov and

Bogoliubov. The results should be considered preliminary pending further investigation.

t Paper presented at NASA SCOLE Workshop, November 1987, Colorado Springs, Colorado.
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1. Introduction

The problem of characterizing the damping mechanism in flexible structures has
received renewed attention in recent years in connection with the need to stabilize flexible
flight structures such as antennas deployed in space. The damping models even when
simplified to be linear appear to lead to rather complex mathematics if the structure is
described by partial differential equations and much progress has been made (the analyticity
of the generated semigroup has been shown to be essential). But experimental evidence as
in SCOLE [1] seems to support the need for nonlinear models — the decrement is much
smaller than predicted by linear models. Some of the difficulty inherent in handling
nonlinear models is offset by the fact that damping, whatever its nature, is still small. This
opens up in particular the feasibility of obtaining approximate solutions using the classical
averaging method of Krylov-Bogoliubov [2].

In this paper we study a class of nonlinear models and approximate the response by
the Krylov-Bogoliubov technique. We use a modal expansion and neglect off-diagonal
terms. The emphasis is on useful engineering solutions rather than abstract mathematics.

We begin in Section 2 with the primary nonlinear damping model for the simplest
system — the one-dimenisonal or single-mode case. We emphasize in particular one
feature that emerges, viz., the potential lack of identifiability from response data. In Section
3 we generalize to the multi- (non-finite-) dimensional case. In Section 4 we show the
relevance of the Krylov-Bogoliubov technique for approximating solutions to nonlinear
boundary feedback. We may mention that there is much work — even classical in nature
— on nonlinear oscillations such as the nonlinear pendulum where the spring constant is no
longer linear; however, relatively little attention appears to have been paid to the small

nonlinear damping term case.
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2. Single-mode Example

To illustrate ideas, let us begin with a one-dimensional (single-mode) example:

i) + eD(x, %) + ’x(t) = 0 Q2.1

where the dots indicate time-derivatives, as usual. We assume that:

D(x, )x 2 0 (2.2)
so that for E(r), the energy
E(®) = » &(0)? + 0*x(1)?) (2.3)
we have
%E(t) = —eD(x,x)x £ 0 (2.4)

satisfying the energy nonincrease requirement. The particular choice for D(x, x) we

shall make is:
D(x, %) = 200k + y2mx® x2a+ P (2.5)
where m, n are nonnegative integers,
0<a,B and O0<oa+P<l; 0<l<1l, 0<cy<l.

For small enough € we may apply the averaging method of Krylov-Bogoliubov [2, 5].

Thus, we write for the approximate solution:
x(f) = a(t) sin (0t + ¢(¢)) (2.6)

where the amplitude function a(f) and the phase function ¢(r) are slowly varying over

the period 7 = 2n/w. According to the K-B approximation [2]:

4 - Lrw @7)
where
1 2n
Ko@) = 3~ | D(asin ¢, aw cos ¢) cos & do (2.8)
0
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and d
2o L (2.9)
1 2n
Po@) = 3- | D(asin ¢, aw cos ¢)sin ¢ do . (2.10)
0

Now we can readily calculate that for our choice, because of (2.2),

Po(a) =0

27N
Ko@) = 20la 511;_]' ® cos?¢ dcp]
0

2n
+ m“ayazmz“lmw [ZI_TC f sin2m ¢ cos27+2¢ [sin ¢|” |cos ¢zB do
0

- nga + a2m+2n+l+a+ﬁym2n+1+ﬂ

where

2n
o= zl—nbf sin2m¢ cos2" cos?¢ Jsin ¢ |cos ¢|B’ do (2.11)

and is a constant less than 1/2. Hence letting p = 2m + 21, we have

da

v p+1+a+Bw2n+BYu) (2.12)

= -g(wla + a

We may set € = 1 without loss of generality since we may absorb it into { and 7.

Then
a(t)
da
fTT n+ 2.13
J wla + a? 1 P? Py (2.13)
a(0)
yielding
1
Tpra+P
a)) = a©)e 1+ apt e BB Y g reteearh)]
(2.14)
We can readily verify that for { = 0, we have
1
a) = aO)1 + a©" **Pw2nByu(p + a+ By 77a7F (2.15)
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The case y = 0 is even more obvious. One salient fact that emerges immediately from
(2.14) and (2.15) is that it would be difficult to resolve p + o + B into its components
from response data, unless we can change .

Note also from (2.15) that the rate of decay is not exponential in ¢ and further the
decrement over any integral multiple of the period depends on the initial amplitude as well

as the frequency of oscillation. Finally for inegral & and

we have, taking logarithms and setting c =p + . + f3

(2nk
a w
log—m = —21rk§
2n—1+
. %log 1+ “(o)c‘g P () _ gm2mkley (2.16)
For small { this is well approximated by
-2kl — Llog (1 + 2mkAa(0))
where
)\' - 0)2’!+B—1 ’Y],L,
The slope (as a function of &)
- onl - 2nha(0)¢ (2.17)

c(1 + 2nkra(0))

and hence the linear damping term is yielded by the asymptotic slope as & - oo, while
for small & there is a marked curvature which depends also -on the initial amplitude

a(0). The inital (at k = 0) slope
- —2ng - ZEAOX (2.18)

is larger (in absolute value). The second derivative being positive, the curve is convex
— CUP. This is in excellent qualitative agreement with SCOLE damping data: see

Figure 1 where amplitude is plotted on logarithmic scale (period = 5 seconds).
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To get another version of (2.16) we may replace (2.7) by the more exact formula

a(t+T) —a(n) _ _ €
T o Ko(a(2)) (2.19)
and hence using
a, = a(kT) . (2.20)
we would have
eT
a,, = a - -a)-Ko(ak) (2.21)

so that

a; +1 eT Ko(ak)
log ak = 1 - .-(l—)— ak

which under our “small damping” assumption, may be replaced by

a,+1 T Ko(a,)
log ’;k - ‘% —T: , (2.22)
= —e2n(§ + dypa® Py, (2.23)

3. Multidimensional Generalization
Analogous entirely to the one-dimensional case, we may write the general nonlinear

dynamic equation for flexible structures [2] as
Mi(t) + D), (D)) + Ax() = 0 3.1

where the state x(f) ranges in a separable (real) Hilbert space H; M is a self-
adjoint positive definite (with bounded inverse) operator on X onto H; A is a self-
adjoint nonnegative definite closed linear operator with domain dense in H and with
compact resolvent; we shall (for simplicity) assume that zero is in the resolvent set of

A. In the linear case
Dx(®), x(1)) = Dx(s) (3.2)

where D is also a self-adjoint nonnegative definite closed linear operator whose

domain includes that of VA. In the most important case we further specify that
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D¢, = 2L, 0,M, (3.3)

where {¢,} are the M-orthonormalized eigenfunctions of A with eigenvalues ®; such

that
Ad, = of Mo, . (3.4)

Here {, is the damping ratio. If {, = { and we have strict proportional damping —
see [3] for more — D is then essentially the positive square root of A (except for M).
More generally we require that lkim §, 2 { > 0. In the nonlinear analogue of (2.5) we
set

D, ¢,) =0 j# k 3.5)

and more generally for x, y such that

where
a, = [x, ¢k]; bk = [y, ¢k] 3.7
we define:
2m a ,2n+1 B
[T(x, y), o) = a, |akl bk ibk| + ZCkmkbk (3.8)

where, as before, m and »n are nonnegative integers and that

0 < a, B<1; a+P < 1; 0 <v. (3.9)
Note that
[, )’)3 y1 20
for every x and y. Hence if
E@) = 7 {[Ax(t), x()] + [Mx(), ()]}
we have that 4
EE(f) = —=[D(x(1), (1)), x())] < 0. (3.10)

Or, the energy is nonincreasing. Using the modal expansion
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x() = X al )¢, (3.11)

we see that for each &
a0 + 0l a® + a0 la 0 a0 la P + 200,40 = 0. (3.12)
We can therefore invoke the K-B averaging procedure obtaining the approximate solution

a, () = Ag(e) sin (Wt + &) (3.13)

1
A = A 0) e“‘k“’k[l + A0) @2"tP-! ﬁ%(l - e"Ck”k‘)J © 314

And for §, =0,
1
c 2n+P Tc
A = A, 01 + A0) o Y Het
where, as before,

2n
b= 5 [ sin2m cos?¢ Isin 61" [cos o cosd do . (3.15)
0

For o + B =0, we can give a kernel representation. Thus

2n+1

z = Dxy) = T, 000, " [0, y]

where

Y < e; 420;
and for the concrete realization M = L,(0, L), the corresponding “kernel” would be
W(S, 01 y cees ozmy sl 3 vres s2n+1) = z Yi ¢i(s) ¢l(cl) o ¢1(62m) q)i(sl) T ¢[(52n+ ]) (316)
and
L L
25) = [ o [ W5, 60, s Oy St s S2001) X(6)) X(63) - X(05,,)
0 0 (3.17)
X y(51) = ¥(S3p41) dOy dOy - dOy, dsy v dsy,

A plausible model in this case would be to rewrite (3.1) as

Mi(5) + Dx(), Dx(¢)) + 2LDx(r) + Ax(s) = 0. (3.18)
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which will satisfy (3.10), since the 7y; in (3.16) are nonnegative. In the notation of

(3), the “roll” equations for example will have the form:

BAu, (1, 5)
Aty (t,s) + Elgug”(t,s) - 2{VNpAEI, 7%23—
L L
- f "'f W(S, 0], vesy sz, Sl, veey 52n+1) X u¢(t, 0'1) u¢(t, GZM)
0 0
Au, (¢, 51) Au, (¢, s )
9L Ol » S2n4l
ot o%s atq’afs = do, - dG,,, dsy = dsy,,
= 0.

It is clear that we may generalize (3.17) without recourse to modes. The *“nonlocal”
nature of the operator should hardly be surprising, since this is already so in the

linear case if we want strict proportionality ({, = {) for example.

4. Application to Nonlinear Boundary Feedback

In this section we shall apply the K-B averaging technique to obtain approximate
solution to the response of a flexible structure to nonlinear boundary feedback control. The
control effort is small so that the K-B approximation is reasonable. We follow [4] for the
model where the “boundary” is finite-dimensional. Thus we have in the same setting as

Section 3, but omitting the natural damping term:
Mi(t) + Bf(B*i(t)) + Ax(f) = 0 (4.1)
where B means R™ onto ¥ and f() maps R” into R™ and is such that
[f(w),u]l > 0 for u# 0. (4.2)
Using the modal expansion as in Section 3:
x(1) = X a(0) ¢

we obtain
g + ofa ) + [AZa0b), ] = 0 (4.3)
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where
B*¢k = bk .

Taking the approximation

[A(Z ai)b)), by] = [f@()by), byl

we see that setting
a, () = Ay (D) sin (@2 + 9, (D)

that

d

Zt—¢"(t) =0

d Ko(A ()

ah® = -
where

1 2x
Ko@) = 37 [ [f(aw, cos §b,), byl cos ¢ do .

0

To simplify matters further let us take
m = 1

Then
[flaw, b, cos 9), b ] = b, flab o, cos ¢) .

We shall take:
fw) = Atan~! u

which is consistent with (4.2). Then (4.3) becomes

d.(n + Oha(t) + Mrtamla, () = 0 (4.4)

2n
Ko(a) = -il_ﬁf Ab, tan~! (ab,®, cos ¢) cos ¢ do
0

- V1 + dbio] - 1]

20,
Hence

A dA
K (1) dA (1) _ ——)‘Tdt.

N1 + ablef - 1 W

To solve this, let
() = 1 + A(n)blw} (4.5)
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so that 4
z(¢) 2
= —b} \dr. 4.6
2(Vz(®) - 1) kA (46)
Let _
Fi) = €° (Nz -1, z21. 4.7
Then
F'(z >0 for z> 1

and hence we may define the inverse function

Fiz) = y; : = Fly).
Thus (4.6) has the solution:
() = F'I[F(z(O))e_biM], (4.8)
b0, A1) = A A28 02)e P kM)~ (4.9)

where
200) = 1 + A 0Pblw} > 1

unless A,(0) = 0. Note that
F-l(y) - 1 as y-0

and hence z(r) decreases monotonically to 1 and hence the amplitude A, (f) decays to
zero asymptotically.

Note that the decay rate depends on the control effort Ab? as well as the initial
amplitude. Of course we have in (4.4) yet anothér nonlinear damping model. Following

(2.22) we have:

a; V1 + &bhlol - 1
log J +1 - 27!;»[ F Tk k
4, 20, 4,
where
S 2n
a, = AT); T = o,



L
2]
B3]

(4]

(51
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¢ - -g’. -

| Equations of Motion I

Shuttle (and Reflector) Body

w; = '1-1‘(5111“’1' M- M, peom)
V= (F+ F peam)/m,
T = -, T,

Rol1 (and Pitch) Beam Bending

2 3 4
d u du
d“u, _ 1. 9Y 4 E] ¢.—.§:u §(s-5.)
"’dxz 0241 Cast A 01 n

dd
+ 8o n—I(s-s_)
Yaw Beam Torsion 0 ds n

2 3 2
d“u d’u d“u
pl. S Yy 4+ Cl, =—V¥ - Gl g Uy - By n0(s-sg )
P2 Vg2qr Yas? Z v.n

Beam Elongation

2 2 2 4
d“u d“vu, d“u
pAS 224+ CLAT—=2-EA=Z = -Z- f, n6(s-s;)
dt? dsdt ds? n-——lz' o
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Error in Static Deflection - %

100
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0.1
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1

1

Static Deflection Error
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67 Modes
1 %2 Error

11 11l L1 11

10 100

Number of Modcs
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lLarge Amplitude Deflle

ction Effects i

aniby 15000, L4 LI IR N MRS

(IR L Prr e S e

M)

Nonlinear

{

Deflection, y/L Error, e/y

.05

10
.20
.30
40

50

A7 %
.67 %
2.7 %
6.0 %
10.6 %

16.4 %
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l Lumped-Mass Model I

Exact Static Deflection

Approximates Low-Frequency Modes
Nonlinear Kinematics

Linearized State Space, Modal Model
Classical Damping(Working Proportional)

Extended to n-Body Net_work
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[:itiffne"’ss MatricesJ

[ 4E1_2wWL .
L 15
_4__1?_1___2WL*
My = 0 L
L 0 O
i 6El, W¥ 1
0 2 +15 0
6El , W¥* | 0
Mu= L2 +10
0 0 0

* Gravity Effect
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L?tiffness Matrices I

| 12E1 _6W*
.3 >SL
Fu- 0
0
" 6EI
| 2
6EI 0
Fg=1 12
0 0

X Gravity Effect

0 0
_12E1_ewX*
L3 DOL

_EA
0 L

0

0

0
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Asymptoiic Approximation §

Motion Approaches Clamp-Clamped System
as Mode Number Increases

Accuracy Increases with Increasing
Mode Number

Explicit Expressions for Modal Frequencies
and Mode Shapes

First Variation Approximation for Motion of
End Bodies

Singular Perturbaticn Technique can be used
to Improve Approximate Solutions
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Comoarison of Modal Frequencies

EXACT FINITE ELEMENT

MODE N0 REF.S&6 REF. 9 REF. 10 REF, 11
1 278025624 278 277 2740
2 313776751 317 314 3229
3 812326353 726 BUY 7494
4 1.18366347 1.226 1.175 1.244
5 2.05047101 2.069 2,028 2052
6 475561758 477 4617
7 5.51248431 5.52 5.388
8 12.2598619 124 11.782
9 12.8877037 13.0 12513
10 235359367 242 14.670
11 242568205 247 22968
12 26.4794890 26.2 23.490
13 389199260 454 37568
14  39.4643489 459 38.146
15 45.1313668 56.3 44653
16 5790 45.161
17 5792
o 16 % ERROR
19 8072
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OF POOR QUALITY

Comparison of Modal Frequencies

EXACT
MODE NO. REF.5&6

! 278025624
2 313776751
3 812326353
4 1.18366347
5 205047101
6 475561758
7 5.51248431
8 12.2598619
9 12.8877037
10 235359367
1 24.2568205
12 26.4794890
13 38.9199260
i4 35.4643435
i5 451313668
16 57.90°
17 57.92°
18 80.72°
19 80.72"

- - L{ncoupled (Reference 3).

T

Lumped Mass

258
370

926

1.79

2.57

79

—Asymptotic

L1 7, ErrOR

30 % ERROR

4.23885

4.23885

11.88805
11.88805
23.313674

23.313674

38.534998

20 C24NN0
[V LT BV W RV

57.455629

57.455629

80.24802

80.24802




LComparison of Modal Frequencies I

o
- —

ELONGATION

L~
«w

TorsSION

BENDING

AsympTOoTIC

S

Modal Frequency - Hz

/0

Mode Number
8o
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Comparison of Deflections

P L AT T R
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o)
- REFLECTOR
'§ i o
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— /
®
S
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(]
2%
107
ExacT _ 1
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A 3-Dimensional Beam Equation

C S otk W LA o 1 0 2 QIR ARt NP SIS WIS NS 7 AT A

» Includes Nonlinear Kinematics

e Makes No Small Angle Approximation

- Rondinal? Nicartinne) Toarcinn 2 Flanocatinn
- _M_--‘u\ - A ) - - - . .- -”u N -

T(s+ds)

duy/ds

R(s+ds)-R(s)+T(s)] duy/ds [ds
l+du,/ds

0 -dQy/ds dO/ds
T(s+ds)-T(s)|1+{dU/ds 0 -db/ds|ds
-d6/ds dds/ds ¢

Y
Inertial Axes

X 82 o
ORGINAL TaaE
DF POOR OQUALITY



It follows _that the deflection vector of the beam 1is:

S duy/ds’
R(s) = | T(s) duy/ds’ |ds’
0 1+du,/ds

and the direction cosine of the cross section axes is
given by:

0  -dy/ds dO/ds
dT(S):T(s) dy/ds 0 -dQ/ds
ds _d6/ds db/ds 0

The forces and moments applied to the beam are
related to the beam deformations by:

dFx [-k'GA [ dux/ds]
dFy -k'GA duy/ds
dFz _ -EA duy/ds | o
dMy -Elyy dB/ds
dMz | —Elzz|{ dY/ds

dF = F, ;du + Fode
dM=Mydu + Mede

Where
duy/ds d/ds
du= duy/ds ds de=|dO/ds|ds
du,/ds dy/ds
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The incremental force can be related to deformation of
the beam.

0 duy/ds
dR R(s+ds) R(S)_T[Ojl_}_'r[du:/ds}

ds ds i du,/ds
rduy/dsl L. [0]
|du /dsl— ‘ﬁ——[O‘
| du,/ds | 1]

0
dF _F(s+ds) - F(s) _ TdR de
ds ds = KT ds -k [0}'“?8 ds

Similarly, for the incremental moment..
dM TdR 0
E——MTd_-- I +Meds+ds

The equations of motion for the beam element are:

2
€ = O [9F] 4 7

d[2 ds Lds
and

2 ~
, d<e de, de d[dM]
4ce__depde Q1214 M
042 41 °dt | ds Lds +
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The equations of motion for the beam element become:

md_j_'izz Tgs[F [TTdR M]H —}+T F

2 »0
d%¢ _ _de, d dR _
oS = - 28,884+ & [MU(TT )+M a—‘-’J

dt 0dt
+F [TTdR E+M
Where
o _ o
e = the arc direction cosine|T] = |@
U
de dd/dt
dt = doe/dt
d{/dt
d de
—_— =T—=
dt dt
dT _ de
—_— =T=
ds ds
i = the mass per unit iength
Io = the moment of inertia per unit length

—

Ixx -Ixy -lxz

“Ixy lyy -lyg
Flxz -lyz lzz

e
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For the case in which deflections are small and the
end of the beam is aligned with the inertial axes:

. | -dU d®
T=I1+e=|dy 1 -do
-d0 dd 1

rdn /A~ nl An /dc N al

vxl LY S - A >,

dR _ 7|duy/ds + 0| = dugrds + |-0]

ds du,/ds 1| dugy/ds | 1]

ST a7

R = Ro + u +J —¢ ds
0 I

The linearized equations become:

2 -2

d°R_d o (dR_|_4)4 F 4€ e

ma—(_z_dS[Fu(—— ?Il]+ Sil+F+€F
|

2 9
d% _d [y (SR _ _g.
IoE{Z_dS[Mu( : ?



For bending only, in a single plane the equations of
motion become those for the Timoshenko beam.

d’R, _ d dR
TRy — d g aRx _
- dt2 ds[ GA[ ds 9]} + Fx

2
d“0 _d [g.. dRx| _ dRy
lXX dtz - ds[ XX ds kGA('a-é —9] -+ MX

If rotary inertia effects are neglected the result is the
Bernoulli-Euler beam.

d?R, _ d2 d2R
T A w[‘”xxw"] +
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LKelvin—Voight Damping I

Bernoulli-Euler Beam Equation with Kelvin-Voight

Damping
Elu'" + Co'""" + mu =

Allows Separation of Variables

Theoretical Basis for Damping

LLocus of Modal Characteristics

jw

EXCESSIVE DAMPING AT
HIGH MODE NUMBERS !}
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Proportional Damping I

Bernoulli-Euler Beam Equation with Proportional
Damping

Elu"" + CU" + mu = 0

Allows Separation of Variables for Pinned and

Infinite End Conditions

Lacks Theoretical Basﬂis for Damping

Locus of Modal Characteristics _

S
%

REASONABLE DAMPING AT |
HIGH MODE NUMBERS J
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fPiano—Wire Damping E

Viscous Damping Ratio

Smaller Mass & = 0015
Larger Mass § = 0013
General Mass £ = 00157»;‘%'—

Nonlinear Damping

mx = —clx - czl)'d)'( - kX

Ap,y = Ap— Ap(00138)2m — (.0012)A%

Determined to be §
Air Damping |
|

g0
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| SCOLE Experiment
Modal Characteristics

Large Small lmagin.ary
Amplitude Amplitude Part, jw
/ 30
O O O
5th Mode
20
OO0 a
4th Mode
3rd Mode
Proportional Damping O
(Constant Damping Ratio) 10
2nd Mode
o
I1st Mode
N g
-.03 -.02 -.01 0

Real Part, O



i

" SCOLE DAMPING J

- —————

dhan AA:“

Viscous Damping Ratio

Mode Configuration * | Configuration #2
1 .0016 0013
2 0011 .0009
3 00058
4 0011
5 00084

' Nonlinear Damping 1s Evident for
' Large Amplitude Motion. Analysis
1S Underway. R
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LNonlinear Damping I

Mass, Spring, Nonlinear Damper

mx - —clxlalilbk - kX

Considering Only Light Damping ...

w-=jk/m

For Free Decay

x(t)= A(t) sin(wt)

A _C a,* b _C D.at
A = mle x| - - WA
Solving
a1 - mdA
c PP
(.- oo— O
0 c(a+h—l)[ubAa+b_l
m |
A(t) =[ 0 ]a+b—l
C(a+b—l)lll (Lt + ty)
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! Nonlinear Damping*fl

1
A(n) - [ m - ]a+b—l
_C(a+b—1)w n
Where [+[0 = ngl_']TT W= lk/mll/z
(h+1)/2 e
A(ﬂ) = I 2 7 a+b-1

o) My
Le(a+b- 1)k ¥4 2qrq |

For Example

L dA cIY
=D= —_— = 2—IT§ -
o a=b-0 ! =
Ly a=0 dA B 4cA W ~ 4CAkl/2
|x| x aAa _ _
b-1 A 3m 3m3/2
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ORIGMNAL PAGE 15
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AN

32 Deflections
Total = 34/Mode
\_ ,

GG

~

00

400f

Interdependent Modal Characteristics
Distributed Parameter Mode!

/Total = 6/1

PPl ey g Mg S W y T Nugup N pp——

1 5 101520253035404550

200

Number of Modes

96



Concluding Remarks

DR e g g e

The Accuracy of the Modal Characteristics of the
SCOLE Configuration were Examined Using Exact
and Approximate Solutions.

Sixty-Seven Modes are Required for a Static
Deflection Error of less than 1 2. SCOLE Model
Requires Hundreds of Modes.

Exact Solutions Encounter Numerical Difficulties.
Asymptotic Solutions in Combination with Limited
Exact Solutions Enable Generation of a Proof
Model with the Required Accuracy.

Damping Must be Incorporated into the Model

from the Start. Proportional Damping is Not
Adequate.
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"It will never be possiblie to have the absolute
conviction before flight that a valid mathematical

model has been devised for a space vehicle.

....we surely must make every effort to ensure that
failures do not come from inadequate analysis of
the best models available.”

Peter Likins
1971
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Control Design Approaches
for
LaRC Experiments

Steve Yurkovich
Umit Ozgiiner

The Ohio State University
Columbus, OH

The [th Annual SCOLE Worlehon
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VIIRKOVICH TZES
OSSMAN l CHEUNG
FU
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Experimentation ngggfr ngtsricg)fr Experimentation
— y R
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VS STAC MEOP Vs MEOP MRAC MEOP | MRAC Ly o
STAC
Dynamics due to
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ADAPTIVE TECHNIQUES

Lattice
Fitters

|05

INDIRECT DIRECT
(STAC) (MRAC)
TN T
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Direct Fixed-Order Compensator Design

TN

{ HiGH-ORDER \_

l . MODEL ‘ l

MODEL =
REDUCTION OPTIMAL R
PROJECTION
EQUATIONS § _

CONTROLLER

LaG REDUCTION
OPTIMAL
LOW-ORDER

SUBOPTIMAL

SUBOPTIMAL |

FEEDBACK
CONTROLLER
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Given ...

x = Az + Bu+ w,

y=C’w+w2 9

... design an n'"* order robust, zero set-point compensator
c bj

. = Ax+ Fy
u = —Kz,
to minimize
J = lim % L (@7 () Riz(t) + uT(t)Rou(t))dt

/107



LQG Solution

K = R;'BTP |
F = QC'v;'
A. = A-BK - FC
P and @ positive definite solutions to
PA+A"P+R, - PBR;'BTP =

QAT+ 4Q + V- QCTV;'CQ

|08



o
PA,+ ATP+ Y ATPA; - PTR;!P,+ R,
i=1
“ ~
+3 (4 - Q.Vy,'CHTP(A; — Q,V,;'C)) + 1T PBR;'BT Pty

=1

u
A,Q + QAT + 3 4,047 - QV,,'QT + W,
=1
M

+ 3 (Ai — BiR;} P.)Q(A;: — BiR;} P)T + 1.QCTV; Q]

1=1

PAgs+ ALsP + PTR;!P, — 7T PBR; BT Pr,

ApsQ + QAFs + QV QT — 1. QCTY ' CQT]
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Application to SCOLE

o Reilector FPanel

¢ Objective: Vibration Damping

e 3 inputs (reaction wheels at hub)

e 5 outputs (gyros at hub, accelerometers at reflector

center)

e 10 modes
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MEOPYP procedure

¢ Robustification with respect to modal frequencies

e Robustness measure: €

e Results:

Order | |¢] & (%) Cost
20 0.0138 | -20 to +4 | 0.229
12 0.0141 | -30 to +20 | 0.231
10 0.0153 | -45 to +30 | 0.231
8 0.0140 | -9 to +30 | 0.235

Optimal Projection Design

Order | |¢ & (%) Cost
20 0.0148 | -25 to +40 | 0.407
12 0.0156 | -50 to +50 | 0.311
10 0.0154 | -50 to +50 | 0.319
8 0.0154 | -40 to +40 | 0.322

MEOP Designs

1]




Y1

Y1

-10.

10.

0.0

[
n

0.0 50. 100. 150. 200. 0.0 50. 100. 150. 200,
TIME IN SEC TIME IN SEC

Open loop outputs.

1. 0.01
y! - 0o
l
1. 1. o -.01
b
-2 1 -.02}
-3. -.03
0. 10. 20. 30. 40. 50. 0. 10. 20. 30. 40. 50.
TIME IN SEC TIME IN SEC

Closed loop outputs.
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Model Reference Adaptive Control (MRAC)

Procedure:

Find largest possible family of adaptation laws assuring
stability, select specific adaptation law for particular ap-
plication.

Methods:

Hyperstability and Positivity Concepts
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—

u -
l inoo el
N
AN
PLaNT
?
f | Yy
2n
: .
!
v T /
o ! YFL;\/
i
i

PI Adaptive Medel Followin‘g Feedback

16



Control Objectives

e Control designed for first five modes

e 2-10% damping required

mode | Frequency | Desired
number Hertz Damping
1 964 10%
2 964 10%
3 T.17 2%
4 7.51 2%
5 9.6 2%

e Effects of actuator dynamics not included

118
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ORIGIAL PROE 0

OF POOR QUALTY
Application to MiniMast
. Mini Mast Modal Frequencies
. miode | Frequency | Mode
| number Hertz Type
| 1 .964 X-y
) .964 y-z
| 3 T.17 plate
4 7.51 torsion
5 9.6 y -z
] 6 9.8 X -2z
T 10.2 y-z
8 12.1 mix
9 16.08 mix
10 16.8 mix
Mini Mast Model Actuators
number | FEM | Actuator | Cordinate Frame Force
Point Type XY Z Limitations
1 | 334 | Linear Actuator | 1 |0 | 0 30 newtons
2 | 336 | Linear Actuator | 1 | 0 0 30 newtons
3 335 | Linear Actuator | 0 | 1 0 30 newtons
4 337 | Linear Actuator | 0 | 1 0 30 newtons
5 338 | Reaction Wheel | 0 | 0 1 Rot 50 Ft. - 1b.
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Outlook

e Effects of Actuator Dynamics

e Refinement of STAC
e System Identification

e Experimentation
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Abstract

large space structural systems, due to their inherent flexibility
and low mass to area ratio, are represented by large dimensional mathe-—
matical models. For implementation of the cantrol laws for such systems
a finite amount of time is required to evaluate the control signals; and
this time delay may cause instability in the closed loop control system
that was previously designed without taking the input delay into con-
sideration. The stability analysis of a simple harmonic oscillator
representing the equation of a single mode as a function of delay time
is analyzed analytically and wverified numerically. The effect of in-
herent damping on the delay is also analyzed. The control problem with
delayed input is also formulated in the discrete time domain.

I. Introduction

Large flexible space structures have been proposed for possible use
in cammmnications,_ electronic orbital based mail systems, and solar
energy collection.l’¢ The size and the low mass to area ratio of such
systems warrant the consideration of the flexibility as the main contri-
bution to the dynamics and control problem as campared to the inherently
rigid nature of earlier spacecraft systems. For such large flexible sys-
tems, both orientation and surface shape control may often be required.

The equations of motion describing the shape of any large space
structure are either represented by a few partial differential equations
or a large number of ordinary differential equations. As the partial
differential equations are difficult to solve for control system design
purposes, the structural dynamics are commonly described using Finite
Element Methods (FEM). Two typical large space structures namely the
Hoop/Colum antenna3 and the Space Station initial operaticnal configura-
tion (Ioc)4 are both described using 672 degrees of freedom. Thus the
dynamics of a large space structure can be written as>:

M7+ K2 =Ug (1)
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M = NXN mass/inertia symmetric matrix

K = NXN stiffness symmetric matrix

Z = NX1 generalize coordinates representing the degrees
of freedam
U= influence of the external forces in each degree of

freedam = B'U,
With the modal transformation
Z2=¢q
and the properties of the modal transformation such as

I

5 M

¢TK¢ diag [w% mg ceens wi]

and neglecting the higher modes, equation (1) can be written in standard

state space form as

X = AX + BU 2)
where
X =2nxl state vector representing modal coordinates
and their velocities [q,q]T
U =mxl control wvector
[ !
I'T
A= 5 } nxn system matrix
—wl 1 O
24
- :
L o
[ 0o
B = — control influence matrix
[ ]
¢ nxm

IT. Control with Delayed Input

The proposed control systems for large space structures are based
an state variable feedback of the form:

U = -FX : (3)
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and the control gain matrix, F, is de31§ned using techniques such as the
linear quadratic regulator (LQR) theory®, pole placement’, and/or linear
quadratic Gaussian/loop transfer recovery (LQG/LTR).

For the case when the complete state is not available for feedback,
an estimate of the state, X, is obtained using an appropriate estimator
from the measurements of the form

Y = (X (4)

where

Y £x1 measurement vector

C 2¥n sensor influence matrix

~

In general, it is assumed that the estimated state, X, is instanta-
neously available. As the state estimator is implemented using a
digital computer and the number of the status (2n) is of the order of
hundreds for a large space structure, the computational time becomes
appreciable. Thus, in the present paper, the stability of the closed
loop control system, with the control as given in equation (2),
analyzed as a function of the delay time (h) using the modified control
law of the form:

U(t) = -FX(t-h) (3)

The characteristic equation of the closed loop system

= AX(t) -BFX(t-h) (6)
is given by
-sh
G(s,h) = det (sI-A+BFe ) =0 (7)
which, in turn, can be written as
G(s,h) = B p_(s)e B o o, (8)
L 1
i=0

The roots of the characteristic equation, (8), as a function of the delay,
h, are obtained from the corresponding auxiliary equation

Zn 2i 4n-21
G'(s,h) = I P .(s)(1-Ts)"" (1+4Ts) n =0 (9)
i=0
where
-sh 1-sT
= 10
€ [ 1+sT ] (10)
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The value of T for which the roots of the equation (9) cross the
imaginary axis in the s-plane is obtained and the corresponding h is
evaluated using the relation, (10).

ITI. Example of a Harmonic Oscillator

The equation of motion representing the ith structural mode is
the familiar harmonic oscillator and is given by

i 2 _
X5 + wy X, = fi (11)

Considering the delayed velocity feedback of the form
with

w: = 6, Ci = 0.5,

the characteristic equation is given by

G(s,h) = s2+36+6se 5P = ¢ (13)

1
= -shi -
iEO Pi(s)e 0
where
P (s) =s® + 36
(@]
Pl(s) = 6S

The corresponding auxilary equation is given by

1

P (s) 1-ts)?l (1) - . (14)
i=0
i.e. (s24+36) (14Ts)2 +6s(1-Ts)? = 0
or 2s? + 2T + 6T%) 53+ (1+36T°-12T) 82
+ (T2T+6)s+36 = O (15)

Using the Routh-Hurwitz criterion, it can be found that the roots of
equation (15) cross the imaginary axis at w = 9.7 for T = 0.0426.

The corresponding delay (h) can be calculated from the relation (10)
with s = ju and is 0.16. This result can also be verified directly

for this simple system with the substitution s=jw into equation (13)10,
resulting in the value of w and delay h for which the roots of the

characteristic equation cross the imaginary axis.
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Thus, equation (13) can be written as (keeping 4 and.wi):

2 2 . -jwh _
(wi -w°) + J(ZCiwim)e =0 (16)
or
2 2 , . _
(mi -w +2§iwiw sinwh) + JZQimiw coswh = 0 . (17)
For equation (17) to be satisfied
cos wh =0 or wh= TT/2 (18)
and 2 2
W W +2Ciwim =0 (19)
or w=C,w, +w,v l+§.2
iti — "1 i
Taking the positive value for w, the delay h, is given by
m/
h = 2 : (20)

wi[ci+ v l+ci2 ]

The value of h for Ci = 0.5 and w, = 6 is 0.16 and thus the earlier
result is verified. "It is observed that an increase in damping reduces
the tolerable delay (h) in the input.

The equation of motion of a single mode with inherent (matural)
damping and velocity feedback can be written as:

X+2££wii+mizx = f = -2ciwii(t—h) (21)

where ;i is the inherent damping ratio.
The corresponding characteristic equation is given by
2 ] 2 _Sh - ’
s +2Ciwis+wi +2ciwise = 0. (22)
After substituting s = jw, equation (22) can be written as:
2 2 !
s . . -
(wi w ZCiwiw sinwh) + J(ZCimiw+2Ciwiwcoswh) 0 (23)
For equation (23) to be satisfied for all w and h, we have

]
ZCimi+ZCimi coswh = 0 (24)

or ,
cos wh = _Ci/C (25)
B
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Thus, for coswh = < 1, the inherent damping must be less than damping due
to control for instability. For ci<c;, the system will always be stable.

With the value of wh from equation (25) the frequency w can be
calculated as:

w=u VETT + /TR ] (26)
i i i i

1

and selecting the positive value of w, h is given by:

cos_l(—Ci/Ci)'

h =
w V%2 ITRE? (27)
ii ii
For ¢. = ¢' it can be seen that the delay, h, is half the undamped

natural period of vibration. As the damping due to control increases,
the tolerable delay (h) decreases and is in accordance with the observa-
tion made in the case without the inherent damping. The effect of inher-
ent damping in the system is to increase the amount of delay that the
system can tolerate without become unstable as compared to the case
without damping

IV. Discrete Time Domain

As the controller is implemented on a digital computer, it may be
more natural to consider the delayed input problem in the discrete time
domain.

The equations of motion as given by equation (2) can be written in
the discrete time domain as

X(i+l) = AdX(i)+BdU(i) (28)
where A
_ AA _ A(t-4)
Ad =e , Bd g e B dt
A = discretization time.

The delayed input.problem can be considered in discrete time in one of
the two following ways:

i) Designing the controller of the form U = -FX(i) without taking
into consideration the delay and then examining the effect
of delay on the stability of the closed-loop control system.

The control gain matrix F is designed such that the matrix (Ag-BgF)
has the eigenvalues within the unit circle. Then the delay is introduced
into the control law as:
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U(i) = - FX(i-2) (29)

and

X(i+1) = A X(i)-ByFX(i-2) | (30)

The stability of equation (30) can be studied using the augmented system
given by

- - - 1 -
X(i+1) Ay 00 0  -B,F X(1) #
X(1) = |1 0 0O 0 0 X(i-1)
X(1-2+1) 0 0 0 I 0 X(i—L)J
L R . .
n Ny
% (1+1) X, 2(1) (31)
or
AV} A v
2 (i+1) = A4Z(1) (25)
(i1) Designing the control by taking into account the delay in
the input.6’
Equation (28) can be modified as
X(i+l) = Adx(i) + BdU(i—z) (32)
The control law of the form U(i) = —F%(i) can be designed from the

augmented system:

X(i+1) (A, 0 0o o B, | x@ 0
U(i) =10 0 O 0 0 U(i-1) | + I | U(i)
U(i-1) 0 I 0 0 0 0
U(i-e+)) L0 0 0 I 0 | U(i-2) | 0 (33)
L . O

Z(1)

or "
. v "
2(i+l) = AdZ(i) + BdU(i)
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Thus the input U(i-%) is a function of the previous inputs, U(i-2-1),
U(i-2-2),..., and the previous states X(i-%). Though this design can
take delay into consideration, the sequence of the control signals:
U(i-2), U(i-%+1),... must be generated at an interval of one step and,
thus, the original delay problem is not completely solved.

Conclusions

The effect of delay in the input on the stability of the continuous
time controller that is designed without taking this delay into consider-
ation is presented. The closed-loop control system of a second order
plant becomes unstable for a delay of 0.16 seconds, which is only 16 per-
cent of its natural period of motion. It is also observed that even a
small amount of inherent (natural) damping in the system can increase the
amount of delay that can be tolerated without the system becoming unsta-
ble. The delay problem is formulated in the discrete time domain and an
analysis procedure is suggested.
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Abstract

The minimum time attitude slewing motion of a
rigid spacecraft with its controls provided by
torgues and forces, which have their upper and low-
er limits prescribed, is considered. The two-point
boundary-value problem is derived by applying the
Pontryagin's Maximum Principle to the system and
solved by using a quasilinearization algorithm.
The nominal solutions to the problem as well as
the starting values of the total slewing time and
the unknown initial costates for this algorithm
are generated by using Euler's eigenaxis rotation
theorem., It is pointed out that one of the four
initial costates associated with the quaternions
can be arbitrarily selected without affecting the
optimal controls and, thus, simplifying the compu-
tation. The minimum slewing time is determined by
shortening the total slewing time until at Teast
one of the controls becomes a bang-bang type.
Several numerical tests for the rigidized SCOLE
model are presented to show the applications of
the methods.

1. Introduction

The problems of large-angle attitude maneuvers
of a spacecraft have gained much consideration in
recent years.!-8 In these papers, the con-
figurations of the spacecraft considered are:

(1) completely rigid, (2) a combination of rigid
and flexible parts, or (3) gyrostat-type systems.
The performance indices usually include minimum
torque integration, power criterion, and frequency-
shaped cost functionals, etc. Also some of these
papers used feedback control techniques. 1In this
paper, we try to concentrate on the minimum time
slewing problem of a rigid spacecraft.

In Ref. 2, the author studied the rapid
torque-limited slewing of SCOLE about a single
axis (x-axis) about which the spacecraft has a
small moment of inertia. The control torque about
this axis is of a bang-bang type or a bang-pause-
bang type. The author computed the slewing motion
on the simplified model of the rigidized sCoLe!,
then worked on the practical rigidized model {with
nonzero products of inertia); hence, this leads
to a large error of the attitude after the slewing.
Also it seems that no details were given for the
controls about the other two axes (y, z).

In the present paper, we apply optimal control
theory (Maximum Principle) to the slewing motion
of a general rigid spacecraft (include the rigid-
ized SCOLE, without simplification). The slewing
motion need not be restricted to a single-axis
slewing. The attitude error at the end of the
slewing can be made as small as required.

*Research supported by NASA Grant NSG-1414

tGraduate Research Assistant, Dept. of Mechanical
Engineering, Student Member AIAA

**professor of Aerospace Engineering; Associate
Fellow AIAA

A1l the controls {torques and forces) are computed
and the minimum slewing time is found by using the
quasilinearization algorithm for the resulting two-
point-boundary-value problem,

2. Attitude Description and State Equations

2.1 Attitude Description and Fuler Rotation

tet a = [a; a, 33]T represent a set of unit,
orthogonal vectors_of an inertial reference system,

and b = [Eg 5 3] a set of unit, orthogonal vec-
tors of a bodj-fi«ed coordinate system of a space-
craft. Then, the attitude of the spacecraft rela-

tive to a can be described by a direction cosine
matrix C with C satisfying the relation

b=ca (1)

and

2,02.02.2
9*97-92-93  2(a19,+a0a3)  2(q;0,3-q40,)

c= | 209)9p-9993)  af+ad-af-o? 2(q2q3+q0q})
2(gy93+a40,) 2(9,95-949;) q0+q§-q§-q2
{2)

where q = [q0 9 9, q3]T is the attitude quaternion
vector and subjéct to™a constraint equaticn
alg =1 (3)

It can be seen that g can be used not only to
represent an attitude orientation of a spacecraft,
but also to describe a rotation of a rigid body
(spacecraft). For example, when a rigid spacecraft
rotates about_an axis defined by a unit vector
e =fe; €, e,]' fixed in both 3 and B, the quaternion
describifg $his rotation is
sin (8/2)

qp = cos (8/2), q; = ¢ i=1,2,3(4)

i
where 6 is the rotation angle.

The Euler rotation theorem tells us that an
arbitrary orientation of a rigid body can be accom-
plished by rotating it about a certain eigenaxis,

e = [e) €, €317, through o angle from its initial
positisn. By means of this theorem we can find
the desired rotation quaternion, q, between the
initial position q(0) and the final orientation
q(tg) by the relation

[ % 9% %o %0 90 [ %
h| %0 %0 %0 %0 Y¢
9 %20 %30 %0 %o 9%
93 “9%30 %0 %o Y0 93¢

“(5)
where the second subscript "0" and “f" represent
the initial time and final time, respectively.’
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The associated ¢ and & can be obtained by the
following relations

6 = 2 arc cos 9y » € = qill l-qoz, 1 =1,2,3
(6)

2.2 Xinematical and Dynamical Equations

The attitude quaternion and the angular velo-
city of a rigid spacecraft satisfy the following
kinematical and Euler dynamical equations.

(1/2) w q (7
le=wlw+Bu (8)

1€ ¢

q

where
w _ angular velocity vector in the body system,
w = [oyeye;]

u _ control torque and force vector,
u = [u1u2u3 e ..U

n
and
- -
0 swy twy -y 0 )
O I DL W P b L
- wy ~uy 0 w|? wy ~wy 0
(93 wp o 0

[y -z i3]
L= =Ly Iy -l
"l T 133

and B is a 3xn alignment (control influence)
matrix. Eq. (8) can be rewritten, by pre-
multiplying by the inverse of I, as

o1 Velw+1VBuy (9)

The associated initial and terminal boundary
conditions of the states, g, w, are prescribed:
q(t=0), «(t=0); q(t¢), wlty) (10)

3. Optimal Control - Two Point

Boundary Value Problem

In this paper, we try to minimize the slewing
time tf’

te = U a4t ()
0
under the constraints that the elements of the
control vector u have their upper and lower limits,
respectively
J=1,2,3, ..., n

<u (12)

Yimin < Y5 = Yjmax®
Generally speaking, minimization of tg under
the constraints (12) will result in a so-called
two-point boundary-value problem in which several
controls (at least one) will reach their bounds
during the slewing time, tg. To explain this
peint, let us first consider a well-known special
case where there are only 3 control torques, Uy,
uy, u3, about the 3 principal axes of the space-
craft, respectively (i.e. diagonal matrix I},

For this case the minimum time rotation of the
spacecraft about one of its principal axes will
yield the following results: the control torque
about this axis is of a bang-bang type, while the
other two torques remain zero. Otherwise, §f the
slewing motion is not about a principal axis, none
of the 3 controls remain zero, but we can reason
that at least one of the 3 control inputs reaches
its bounds, except some jumps at the switching
points during the period, t¢. As for a general
case where the control torques are about a body
axes system which does not coincide with the prin-
cipal axes (non-diagonal 1) and some additional
control forces, ug, ug, ..., u,, are available,
the control laws become more complicated.

To handle the problem in which some controls
reach their bounds and others do not, we introduce
an additional cost function

0= L TRy gt (13)
279

where u 1s the control vector, R is a proper

weighting matrix. From Refs. 3 and 8 , we

can see that, for the case of rest-to-rest (i.e.

w{0) = 0, w(tg) = 0) stewing with only 3 control

inputs involved, if we use only (13) as a criterion

and t¢ s long enough, the control torques are
approI1mater 1inear functions of time, and the con-

trols will not reach their saturation levels. But

if we shorten tg in order to find a minimum time,
some of the confro1s must reach their bounds and,

thus, contribute more effort to the slewing. By
continuing the_ shortening of tg, we can get a parti-

cular value, tf, during which at least one of the
controls remaixs as bang-bang with one switching

point, while others are generally not of the bang-
bang type. This value, t;, is called the minimum
time which is required.

The motivatioms for using (13) as our cost
function are:

1) Ease of using the quasilinearization
algorithm

2) No need to determine the switching points,

3) Easy to guess the unknown initial values
of the costates.

3.1 Necessary Conditions

The Hamiltonian, H, for the system (7}, (9)
and (13) is

H = (1/2)UTRU + pTi +rld

(172Yu"Ru + (1/2)pTag + rT(17V0Tu0+ 1718 u)
- (14)

where p and r are costate vectors associated with
q and w,
p = [PO p] P2 p3]T- r = [r] rz r3]T.

By means of the maximum principle, the nec-
essary conditions for minimizing J, are

(1/2) w p (15)
glw,r) + (1/2){qlp
(16)
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where g{w,r) is a 3x] vector function of w and r,
and the detailed form of g{w,r) can be found in

Appendix I; [a) is a 3x4 matrix
'Q3 qZ
[Q] = qZ q3 'qO 'Q\

The initial values of p, r are unknown, p{t=0),
r{t=0).

If u is a 3x) control torque vector and B is
a 3x3 nonsingular matrix, R can be a positive-
definite matrix defined by

R =878 (17)
From
3 _p, = py+sTIlr=o0
au
or u=s-r18T1-1p
= -gl1lr (18)
we have9
Yimin® 1f uy < Ujpinb
= -1 1 .
uj = -(B-V 1 r)J. if Yimin < U5 2 Uymax }
ujmax' if uj > ujmax.
j =1,2,3. (19)

If u is an nx} (n>3) vector, B is a 3xn matrix,
the R formed by {17) is a semi-positive-definite

matrix. To circumvent the singularity of R, we
introduce a 3x1 vector, v,
v=8u (20)
Then
(aH/av) = 0, ==> v = -I-1r (21)
By means of pseudo-inverse of matrix B, B*, we can
R TR
= - 8T(s8T)-1(1-1r) (22)
The control laws are
ujmin’ if uj < uj min;
uj = -(8* 1V r)j, if Uimin £ Y5 < Yimax?
Ujmax® T ug > Usnax.
=12, ....n. (23)

Note that Eq. (23) is reduced to Eq. (19) if B!

exists.

In summary, we seek the function q(t), w(t),
u(t), p(t), and r(t) which satisfy the equations
(7Y, (9), (15-16), (23) subject to the boundary
conditions (10).

3.7 _j;eifvftfos of the Tnitial valuer of P

The key to settle this problem is to find the

unknown fnitial values of the costates
p(0) = { Poo P10 P20 930]T and
= T
r{0) [r‘o a0 r30]

Notice that the coefficient matrix of the right side
of Eq. (15) is anti-symmetric, so,

pTp =0 i.e. pr = constant
The extra constant is usually treated as an unknogwn
and is determined by iteration. This results in
more compytational effort. However, as we shall
prove, this unknown constant can be arbitrarily
selected without changes in the optimal controls,

Compare Eqs. (7) and (15), they have the same
coefficient matrix on the right sides, Therefore,
they have the same state transition matrix. Let
Q represent this 4x4 matrix, then the q and p at
any instant can be obtained by

q = Q q(0), p = Qp(0)

We know that Q satisfies the following matrix dif-
ferential equation

Q= (1/2) w0

(24)

(25)

Ref. 10 shows that Q, the solution of (25), has
the form
1 Y2 Y3 Yy
Q] q q -Q
Q- 2 n 14 13 (26)
Q3 Yy Wy W2
9 Q3 N2 Iy

On substituting Eq. (26) into Eq. (25) we can
verify that only 4 of the 16 q; are independent.
We rewrite and rearrange the filst equation of (24)
as

9| {%0 %0 "% 930 M
Qi 1%o %0 %0 Y20 92 - Q.
=0
% [%0 %0 %0 %o %3 ~
9] %0 %0 %o Yo 914 (27)
where q L (0), Q9 * q](O). etc. It is clear
that thg matr?x. Q- ?n Eq. (27) is orthogonal, so
q-= Qg q (28)
AN

From Eq. {28) we get

2 .2 .2 a2
ATy * 9y *ay3 *ajy 71

|36



This means that Q is also orthogonal. On the other

hand, we have a similar equation for p,
= 29
P Pog ( )

where Py has the same form as Qg in Eq. (27).

After substituting Eq (28) into Eq. (29) and eli-
minating g, one arrives at
L
Po dg -4y -9y 4y 9
d d -d d q

1]l | 0 3 2 1 (30)

P2 d; d3 4y -4 %

P3 dy -4 4y dp | |9

where the constants do. d1. dz- d3. are given by

-

dp %o %o %0 %0 | | Poo
d{ "0 o %0 %0 || o
d, -0 90 90 "%o || P20 (s1)
1d3 -930 %0 %o %0 | | P30

£q. (30) represents the relationship between the

quaternion and the associated costates. Eq. (30)
can be rewritten as
Po 4 H "% % | |%
hl % % % % | (4 (32)
P2 % 9 S % | |%
P3 B % Y % |%

Substituting of Eq. (32) into Eq. (16) results in

r= glu,r) -(1/2) Cd (33)

where d = [d) d, 4317, C is just the attitude matrix
given by Eq. (2?. It can be seen that r is inde-
pendent of dg, from Eq. (33), and u depends only

on r, from £q. (23). Therefore, u is also inde -
pendent of d,. This means the arbitrary selection
of the value of d, yields the same extremum con-
trol, u. Now we Qan explain the results in Ref.

11. In view of Eq. (31), we
2,2 2 2

2 i 2 2
a4y = Pog*PyotP20*P30

have

d<

0 (38)

1f we set d, = 0 the norm of the initial costates
in Eq. (34) reaches its minimum, the solution of
which is considered in Ref. [3]. from Eq. (31) we
can also know that d0 = 0 means

p(0)Tq(0) = 0
which is the orthogonality condition obtained in
Ref. 11

4, Initial Values of Costates
and the 3Tewing Time

By means of Euler's eigenaxis rotation theorem,
from the known attitudes at the initial and final
time, q(0) and q(t;), we can find a unit vector
(eigenaxis), e, whfch is fixed in both the body
axes andﬁinertial coordinate system, and a rotation
angle, 8 . Then the attitude changes from q(0) to
q(ts) can be realized by rotating the spacecraft
about the axis, e, through the angle, 8 .

Theoretically, there are many ways through
which we can change the attitude from its inftial
value, q(0), to its final value, gq{tf). For exam-
ple, this change of attitude can be achieved by
successively rotating the spacecraft about the x,y,
z axes (1.e, 1-2-3 rotations) through certain dis-
placements in the angles, 6,, 8,, 6,, respectively.
To do this way, we need to lpe 5 up”(and slow down)
the spacecraft 3 times, and the total rotation
angle is, o,+ 85+ 6. On the other hand, for the
Euler rotation, we 8n1y need to rotate the space-
craft about e once through the angle 8* which is
less than the total angle required by any other way.
Since the Euler rotation is simple and requires a
smaller angle, it may take less time and consume
less energy (torques and forces). Therefore, in
view of our cost functions, {11) and (13), it is
reasonable to think that the optimal slewing is
near the Euler rotation. We shall call this rota-
tion the "expected rotation,” which is determined
only from the initial and final attitude of the
spacecraft and will be used in obtaining a set of
approximate unknown initial values of the costates
and the starting solution of the quasilinearization
algorithm,

4.1 Inftial Values of Costates

Before starting the gquasilinearization algo-
rithm, we need to guess the unknown initial values
of the costates, p and r. Considering the analyt-
ical solution about a single principal axis maneuver

in Ref. 3 we define a rotation angle 8(t), about
an arbitrary axis €.
. . 1% ave? o 1oy e3
o(t) = 8(0)+8(0)t + > 8(0)t" + 3 8(0)t (35)

where 8(0), 6(0), 8(0),and 8(0) are constants to be
determined.

For simplicity, here we only consider the solu-
tion of 6 with the following boundary conditions

8(0) = 0, (0} #0, a(te) =8 s(ty) =0 (36)

These conditions correspond to the boundary condi-
tions of the states

Q(O): w(o) * 0: Q(tf). w(tf) =0
Substituting Eq. {36) into Eg. (35) yields

8(0) = (66%/t5) - (86(0)/t¢)

"

8(0) = -(126%/t3) + (68(0)/t?)
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For the Euler's rotation, the angular veloc-
ity and 1its derivatives are expressed as follows

w=eb, w=ed, o=cq (38)
To approximately determine the initial values
of p and r, we need to yse the dynamical Eqs, (9)
and (33). Upon using Eqs. (20) and (21), substi-
tuting v (u) into Eq. (9) and solving for r, we
get
relule-12, (39)

and the derivatives

e gf (lolw)-12 (40)

At the_same %ime. from £q. (33), and noting
that ¢ = ¢-T,

d=2¢ [glu r) -] (a1)

At the time t=0, by putting Eqs. (37-38) into

Eqs. (39-41), we can get the approximate values of
r(0) and d. As for p?o). we can set p,(0) = 0
(since dp can be arbitrarily chosen) agd solve for
dpy and pi(O), 1=1,2,3, by using £q. (32).

Now we determine §(0) from known initial value
w(0). Generally, w(0) is not equal to €8(0) since
e is independent of w(0). Llet e be the difference
between them

e = ¢4(0) -uw(0)

To find a minimum valye of eTe, we differentiate

e'e with respect to 6(0) and note that o1, - 1,
we get
8(0) = eTu(0) (42)

By using the initial values p(0) and r(0)
obtained above, and integrating the differential
equations (7), (9), (15-16), with Bu in Eq. (9)
replaced by v in gqs, {20) and (21), we can get a
set of values, q(t), w(t), p(t), and r(t), O< t <ty
which will be used as the starting values of the
quasilinearization method.

4.2 Initial Valye of te

The starting valye tf(o)*needs to be made as
close to the minimum time, te, as possible. This
can be done by using the tecﬁniques similar to
those described above, Suppose the slewing motion
*hoan Euler rotation about a vector, ¢, through

w angle, 8(t). Then, by putting the first two

wations of Fq. (38) and Eq. (20) into Eq. (8),

2 get
Teo=62creaey (43)

For simplicity, we only consider the case
Yimin = - Vimax. Then, let ¢y = Vimax and vi=c ity
the above vector equation can be expressed as the
following 3 similar equations for g(t):

iToi=1,2,3 (44)

where i, by, and Ci are constants, 1{ is the
normalized control about the jth body axis and

il <1 1=1,2,3 (45)
Each equation of q, (44) with the boundary condf-
tion Eq. (36) can be treated as a minimum time con-
trol problem with the constraint (45). It is easy
to see that the control for this problem is of a
bang-bang type and the the problem can be solved
analytically to get the minimum time t*sy (i=1,
2,3) as functions of 6* and 8(0). The results are
shown in Appendix I1.

Since the only minimum time, t *, that every
equation of Eq., (44) can accept at {he same time
is the longest one, we use the largest one as our
inftial guess for ts.

We choose a quasilinearization algorithm to
solve the two point boundary value problem because
this method needs only to solve linear differential
equations and it converges quadratically,

In the quasilinearization algorithm, the 1{n-
earized state and costate equations are Solved us-
ing the method of particular solytions,!
computational values of y, which satisfy Eq. (23),
are determined by a technique similar to that used
in Ref, 9. The minimum slewing time is obtained by
the following procedure. For an assumed given
slewing time, tf, as a result of the fterations,
the routine arrives at the {converged) values for
the initial costates, Then, a check is made as
to whether one of the control inputs is of a bang-
bang type. 1If yes, this slewing time is designated
the minimum time. 1f not, the assumed tg should
be shortened and the iteration cycle restarted in
order to determine new values for the initial co-
states and new time histories for the control effort,

5. MNumerical Results

Finally, we apply these methods described in
the previous sections to the SCoLf slewing motion)
Fig. 1a shows the SCOLE configuration, It is com-
posed of a Space Shuttle and a large reflecting
antenna, The antenna is attached to the Shuttie
by a flexible beam., Since we only consider the
motion of the rigid SCOLE in this paper, the flexi-
bility of the beam is ignored. The X, Y, 7 axes
are the spacecraft axes corresponding to roll,
pitch and yaw axes, respectively. The controls
considered in this paper include three moments
about the X, Y, 7 axes of the system and two forces
applied at the center of the reflector in the X, ¥
directions only. The inertia parameters of the
SCOLE and the saturation levels of the controls
are:

(%]

I]] = 1,132,508,122= 7,007,447, I33= 7,113,962 -
L=

112 = -7,555, 123= 115,202, I34= 52,293 -
[nd

~

Torques: |u, ,max = 10,000 ft-1b, i = j,2,3.

Reflector actuators: ]fj ] = 800 1b., j= 1.2,

max
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We have done some numerical simulations for
the following cases: (a) A diagonal inertia
matrix I is used. The control is assumed to be
provided only by torquers on the Shuttle. No con-
trol forces on the reflector are assumed. The ex-
pected rotation is a rotation about one of the
three principal axes, through 20 deg., from rest
to rest. The result {s exactly the same as that
of the theoretical analysis discussed earlfer in
this paper, i.e., the control torque about the
slewing axis is of a bang-bang type while the
others remain zero.

(b) Extend the inertia matrix in case (a) to
a non-diagonal form. The expected rotation is a
rotation about one of the three spacecraft axes
and the rotation angle is 20 deg.

Figs. 2-3 give the control torques and atti-
tude angles (1-2-3 Eyler angles) for the expected
rotations "X-axis slewing" and "Z-axis slewing,*
respectively. Fig. 2a shows that u_ is nearly ofa
bang-bang type, while u,, u, are nof. The non-zero
contributions of the u "and u, are due to the off-
set of the inertia dis¥ributidn of the SCOLE con-
figuration (non-diagonal matrix ). Similar situa-
tions are shown in Fig. 3a, where u, Is nearly of a
bang-bang type and the others are not.

{X- and Z- axes) are tiY)= 12.5749 sec. and

t£0)= 31.5166 sec., respectively, by using the
method in section 4.2, *The minimum time, tg, we
actually obtained are tgy = 12.57 sec. and t} =
31.33 sec., respectively. These results 1n51cate
that the estimated values for t} are very accurate.

The starting valug f t%o) for these siewings

In Fig. 2b, 8y changes from zero to 20 deg.,
but By and 8, change very little during the slew-
ing and finafly approach zero,
in 6y and 8; are also due to the offset of the
structural distribution of the SCOLE.

In Fig. 3b, unlike the case in Fig, 2b, the

8y changes greatly. This change is due to the
differences in the moments of Jnertia about the

X-axis and Y-axis.

Fig. 4 shows the control torques for the
“X-axis slewing" with a slewing time te= 15.37 sec.
which is 2.8 sec. more than the minimum time t* =
12.57 sec. {Fig. 2). The controls are almost fin-
ear functions of time (rest-to-rest slewing). Uy
is 1.5 than the saturation level, and u,, uy are
ne-- xero. From Fig. 4 and Fig. 2a, we Zee that
m. - more control effort (approximate 50%) is

-ed 1f we increase the slewing time a little,
ther feature of using a longer slewing time in
~ computation is that it needs less number (4
mes) of iterations for convergence than by using
minimum slewing time t§ (12 times). These pro-
«rties suggest that, in practical applications of
iis problem, it is not necessary to seek the mini-
Jm time, tf, and the associated extremum controls.
It is enough to know approximate values of the t}
and the controls. The results of Fig. 5 for the
"Z-axis slewing" are similar to those of Fig. 4.

(c) Following the case (b), we now add two
control force actuators on the reflector, fy and

fy-

PAGE IS

The non-zero changes

The associated alignment matrix,B,in Eq. (8) is

1 0 0 0 130
B = 0 1 0 -3 0
0 0 1 325 18,75

Figs. 6 show the control torques, forces and atti-
tude angles for the "X-axis slewing" motion. The
slewing time tf s greatly shortened, t} = 3.988
sec. (about one third of the siewing time without
the forces,fy and fy ).

Figs. 7 and 8 show the controls and attitude
angle changes for the “Z-axis slewing." For the
sake of comparison, we use 2 different te in the
computatfon, te= 27.5 sec., and t¥= 20.0 sec.
(minfmum time; recall that tf =31.33 sec. without
fy and fy). By comparing Figs. 7 with Figs, 8
we can see that the control torques approach the
bang-bang type when the slewing time is shortened,
and the maximum amplitude of the control forces
increases gradually. From Fig., 7c and Fig. 8c, we
can also see the obvious increases in 6y and 8.
This is due to the increases in Uxs Uyy fy,and fy.

(d) Now we consider a general case. Suppose
the SCOLE s in an Earth orbit and we need the line
of sight to be directed toward the center of the
Earth. The orbital coordinate system (x,y,z) is
shown in Fig. 1b. Suppose, before the slewing, the
Y axis of the spacecraft coincides with the orbital
y axis, and the angular difference between X and x
(or Z and z) axes is a= 7.897224212 deq. Thus, the
initial attitude quaternion of the spacecraft is
q(0)= [cos{a/2) O sin(as2) 0]T. According to Ref.
1, the unit vector along the line of sight in the
rigid SCOLE coordinatesystem is RLOS

= [0.1112447155 -0.2410302170 0.9641208678]T

The direction cosines of the orbital z axis in the
body system at the initial time are 2/g= [sina 0

cosa]T. The angle between Rios.and Z/p at the
initial time is 8;4g(0)= Rigs* 2/g= 20 deg. The
eigen axis of the expected rotation in the body
system is determined by

€ = (RLOSX z/B)/]RLOSx z/B]
Thus,the quaternion for this rotation is

qp = cos{20°/2), q; = ¢; sin(20°/2), i = 1,2,3

From 5) we can get the final attitude quatern-
ion, q{tf). Fig. 9 showsthe control torques,
reflector forces, and attitude angles for this
slewing motion. The e g5 in Fig. 9c is the angle
between the line of sight and the line of the
target direction (from the spacecraft to the center
of the Earth).

6. Concluding Remarks

(1) There is a good agreement between the guessed
value of tg and the value of t¢ to which the
algorithm converges in the case (b).

(2) The guessed initial values of the costates

here: p(0), r(0) are adequate for the algo-
rithm to converge. If the slewing time, te,
is sufficiently larger than the minimum time,
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10.

1.

ty, then, the converged values of p(0) and
rtO) are very close to the guessed values and
less number (4 times) of iterations {s needed
(Fig. 4). The same situation was observed

in Ref. 8

The control profiles gbtained in this paper
give us a good reference for future use,
For example, an extension to the minimum
time slewing motion of the SCOLE model con-
taining both rigid and flexible components
is planned.
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Appendix I The Term g(w, r) in £q. {16)

The term I-Vulw in dynamical equation (9) can
be replaced by

11010 [a15:0i5002 W2 o
= [ AB] w

where the ajj and bjj (the elements of 3x3 matrices

A and B) are constanisassociated with the inertia

parapeters of the spacecraft. Then the term

r11-151u of the Hamiltonian, H, in Eq. (14) has
the form

h=rTI'] t::hu= [R]

gy Wyw m]wz]T

T=
R, Ry Ry Re R.1' G

where R; are
(RyR,R,1T = ATr, [RyRsRe1T = BTr

The term g{w, r) in Eq. (16) is obtained by

r2R1 RG R5 7 wy
g{w,r)= -(3h/3w)= - | Ry 2R, R, w)
RS R4 2R3 wg
Appendix 11 Solution of Eq. (44)
Eq; (44) can be rewritten as
. _ .2
2, 8 = b8 + cyry (a4)

for simplicity, we only consider the solutions for
the following boundary conditions

8(0) = 0, 6(0) = 0; o(tg) = 8", 8(tg) = 0

ar)
Suppose a; # 0, b.f0 and let b=bj/a;, c=ci/ai
(suppose 3>0), we can rewrite Eq. (14) as
8= b6% + cq (11-2)

Since the control for this problem is of a bang-
bang type with only one switching point, then,
by integrating Eq. {11-2) and using {II-1), we get

¢ = Jc(e<¥5-1)/b, for =1; (11-3)
¢ = /c(1-e2b(8-0%))/b, for 1= -1 {11-3)

By equating Egs. (11-3) and (I1-4), we get 6=6g
and 6=6; at the switching point, t=ts,

6= (1/2b)10g[2/(1+e-228")]  dg=/k(e2b05-1)/b

Finally, by integrating (1I-3,4) and using {1I-1),
we get

{ cosh=1(e-bes) 7 /obc, b<0;
t. =

5

[(n/Z)-sin'1(e'bes)]//EEj b>0
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and

for
can

{ ts+[(n/2)-sin‘](eb(0395))/f-bc. b<0 ;
t, =
f

ts+cosh“(eb(et°s))//5?. >0

the case 8(0) # 0, more complicated solutions

be obtained, but are not given here, F:EEEE;;;Egzzj’—‘~=::::::\“‘-‘>

Fig. 1a  Spacecraft Control Laboratory Experiment Configuration (SCOLE)

z
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THE CENTER
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SHUTTLE
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Fig. 1b. Attitude of the SCOLE Showing Antenna Line of Sight
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. Equations of Motion

"Derived using a Newton-Euler approach

. Assumptions
- Reflector and Shuttle rigid

- Mast has constant cross-section

- It is assumed to undergo small elastic deformations only

- Its modal shapes in orbit are assumed to be the same as
those of an identical’ non-rotating beam.

Stability Analysis (Rigidized SCOLE)
A stability analysis of the rigidzed SCOLE was conducted for
the following configurations:

a)

b)

c)

Rigid - no offset. Pitch motion decouples from roll
and yaw in the linear ranges. System not stable

Rigid - with offset parallel to roll axis., Pitch motion
still decouples from roll and yaw in the linear range.
System unstable,

Rigid - With both offsets (parallel to roll and pitch
axes). The motions in all 3 degrees of freedom are
coupled. System found to be unstable,

.Control Laws -

Assumption: All the states of the system are available,

It was suggested by J.G. Lin that an intuitively appeal ing
practical approach to achieve the LGS pointing objective
Is a two-stage procedure. (a) Slew as if rioid then,

(b) damp-out flexible dynamics.

.The linear requlator theorv used here to control

-the linear model of the rigidized SCOLE,

-The linear model of the actual SCOLE configuration including
the first fo..r flexible modes of the mast.

Next

Preliminary slew maneuvers ¥ rigidized SCOLE,
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MINIMUM TIME ATTITUDE SLEWING
MANEUUVERS OF A RIGID SPACECRAFT

OBJECTIVE

DEVELOP COMPUTATIONAL TECHNIQUES TO SLEM
A GENERAL RIGID SPACECRAFT ( INCLUDING
RIGIDIZED SCOLE ) FROM AN ARBITRARY INITIAL
ATTITUDE TO A FINAL REQUIRED ATTITUDE
PRECISELY, AND SATISFYING THE FOLLOWING
CONDITIONS:

. IN MINIMUM TIME

. THE CONTROLS HAVE SATURATION LEVELS
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METHODOLOGY

THE MAXIMUM PRINCIPLE FROM OPTIMAL CONTROL THEORY IS
APPLIED TO THE EULER’S DYNAMICAL EQUATIONS AND THE
QUATERNION KINEMATICAL EQUATIONS OF THE SYSTEM TO
DERIVE THE NECESSARY CONDITIONS FOR THE CONTROLS.

THIS LEADS TO THE THWO-POINT BOUNDARY-UVALUE PROBLEM.

AN INTEGRAL OF A QUADRATIC FUNCTION OF THE CONTROLS
IS USED AS A COST FUNCTION, BUT THE INTEGRATION
PERIOD OF THIS INTEGRAL, CALLED THE SLEWING TIME,

IS TO BE CHANGED UNTIL IT REACHES ITS MINIMUM UVALLUE.

THE RESULTING TPBUP IS SOLUED BY A QUASILINEARIZATION

ALGORITHM ¢ METHOD OF PARTICULAR SOLUTIONS ).

EULER’ S EIGENAXIS ROTATION THEOREM IS USED TO
APPROXIMATELY DETERMINE THE INITIAL UVALUES OF THE
COSTATES AND THE SLEKWING TIME AS WELL AS THE
NOMINAL SOLUTIONS WHICH ARE HESD TO START THE

QUASILINEARIZATION ALGORITHM.

THE MINIMUM SLEWING TIME IS DETERMINED BY SHORTENING
THE TOTAL SLEWING TIME UNTIL AT L¥' ST ONE OF THE

CONTROLS BECOMES A BANG-BANG TYPE.
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X-AXIS SLEWING ( TIME = 3.888 SEC. )
TORQUESx10,000 FT-LB

1.0 {: ————————— r %
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EXAMPLE-SLEWING ( TIME = 8.77 SEC. )

TORQUES x10,000 ET-LB . ... _
Uz
1.0 - — = - - — = =
Uy \ “ Uy
I |
0.0 k i
; A
U i
-1.0 y' Y J V. ?f ______ '
L L R
0.0 3.0 6.0 9
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[ T e e e

ol 1 1
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-~ |

0.0 | = .42
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-15.0 - = |
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CONCLUDING REMARKS

THE SLEWING MOTION NEED NOT BE RESTRICTED TO A

SINGLE AXIS MANEULVER.

THE GUESSED STARTING UALUE OF THE SLEMING TIME IS
VERY CLOSE TO THE CONUVERGED UALUE FOR THE SCOLE

EXAMPLES AND SUBROUTINE USED HERE.

THE GUESSED INITIAL UVALUES OF THE COSTATES ARE

‘ADEQUATE FOR THE ALGORITHM TO CONUERGE.

THE METHODS USED HERE MAY BE IMPLEMENTED FOR
PRACTICAL CONTROL SOURCES MWHICH MAY HAUVE MORE

CONSTRAINTS.

AN EXTENSION TO THE MINIMUM TIME SLEWING MOTION
OF THE SCOLE MODEL CONTAINING BOTH RIGID AND

FLEXIBLE COMPONENTS IS PLANNED.
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Appendix - Chapter II
Stability Analysis of Second Order System
with Delayed State Feedback
As a second order differential equation describes the dynamics of

a single mode of any large Space structure, the stability analysis of such
a systemlwith delayed state feedback is analyzed and the amount of delay
that can be tolerated by the system without becoming unstable is arrived
at analytically.

The differential equation of second order with state feedback can be

written as:
X; * 2ejuik; +wglx; = -kpx (th) - K, (e-h) ¢
where
: x; = ith poday coordinate
w; = ith natural frequency
&' = ith node inherent damping ratio

k. = rate feedback gain
kp = position_fbedback gain
h = time delay‘
The féedback gains k., kp are des}gned for the required stability and
transient response specifications without taking the delay into cénsideration.
The inherent damping ratio, t;' and the feedback gains, kp and kp; will
give rise to five possible .combinations as shown in Table 1 and are thus

analyzed separately for mathematical convenience and easy understanding.
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Case I: ¢! =0, ky =0 and k. >0

The differential equation of the System can be written as:

X; +ul x; = - k k; (t-h) (3)
:

Case z; k. K,
1 =0 >0 =
11 >0 >0 =0
III =0 >0 >0
v > 0 =0 £0
\'s >0 >0 #0

Note: The remaining three combinations are
neither feasible nor of interest.

Table 1: Feasible Combinations of &ds ko k
for Stability Analysis P

and the corresponding characterstic equation is given by:

2. 2 -sh
sT + wg + Zcimise

0 (4a)
where kr = Zciwi.

The value of h for which the roots of equation (3) cross the imaginary
axis can be evaluated by substituting s = jw.

Thus 2 2
w; w” o+ jZCiwinim;h + Zl;iwiwCOSmh =0 (4b)

For equation (4b) to be satisfied
sinwh = 0

and m% 'wz + 21;iwitu coswh = 0 (5)

1753



Thus wh = ﬂ/z
7T/2
and h = — (6)
w; [g; +/ T+2,2 ]

Case II: c]!.> 0, kr”Ciwi andkp=0

The characteristic equation of the system described by equation (D

is given by
(mi-wzafzcimimsimh) * J (200,028 0 0c0seh) = 0 7
Thus coswh = -g!/¢.
v 183 /T
and h = cos” - i/t - (8)

712 72 ]
mi['/Ci it/ 1ed- 7]
For the case where i<ty thesystem will always be' stable since no value

of h exists for which the roots of (7) cross the imaginary axis. A plot
of w;h versus tj for various values of c; is shown in Figure 2.1.

'
Case III: :i=0,k.p-kr>0

The characteristic equation is given by

24,2 -sh -sh _
s +mi+krse .+kpe 0 9)
or (mg-wimklsimh*pcos«uhj + 3 ( werOSmh-kpSﬁlmh) =0 (10)
’I}nls tan mh = Wkr
1%
nd 2. %[(2«@«%) . V[kﬁ+4u,§k12.+4kg]] (11)

Plots of hw; versus kp/wj for various values of kp/m% are shown in
Figure 2.2, It can be seen here that these are many combinations of k.p and
ky for which the roots of Eq. (10) can cross the imaginary axis - i.e.

value of h'"i which leads to instability.
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Case IV: ;i >0, k. = 0, kp #0

The characteristic equation is given by

(wiz-w2+kpcos<uh) * 3285 wjuek sinuh) = 0 (12)
, 2. w.w
Thus siwh = 1 7d (13)
and 2 2 12 2 '?2 2 2 2
w = wi CI'ZCi ) + wi '/[(1'2:]'. ) + (kp/mi ) ] (14)
The plots of hw; versus kp/w% for various valyes of ci are shown in
Figure 2 3
Case V: & >0, kp > °»>kp #0
The characteristic equation is given by
(wiz-m2+mkr sinmh+kpcoswh)
+ j(Zc{ miw+mkrc05mh-kpsinmh) =0 (15)
By equating the imaginary part to 2€r0, wh can be evaluated as
*
. I | 2z w.w . wk
-“hsmf,;lz)-mlc’) (16)
kp®4y kp”. EE
s

wiz-mzﬁukrsin (Sin-l}"tan-l( & ))

. =1 -1, wkr
k -t D=0 (17)
* Kp cos (sin”“y-tan™i( -EB'



Using equations (17) and (16), the limiting value for given values of ci',
kr’ kp and w; can be determined. As the equation (17) is nonlinear,
numerical procedures may have to be used and thus the generalized plots

similar to the other cases may be obtained,

|76

2-14



e

. : : foor : W SRS A
L1980 ke : ............. Preeseeseeeanns !...‘ ........... AREEEREL T . !

' = inherent damping ’
' = 9.2 0.4 0.6 0.8

1.80@ fFocvovvinn sl RERAEAREEETE IYPRET IPPPPPPT- PRI PETRt SN oo (R TP PP s &

1,680 Frroeernns .............. ............ ......... \- ............. \ ............. \ : e
1,508 foriens ............... ............ ............. \, .............. \ ......... ...... »
1.350 f : . s i : :
1.200 F
1.060

.908 L
760

‘2.000 .159 .3e9 (450 .600 .750 .900
active damping ratio ¢

1.968 1.200
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Abstract

Modal state estimation tests are performed on the SCOLE mast for
the fixed Shuttle platform case. Kalman filter state estimation results
from a five mode computer model of the SCOLE mast, developed from a
finite element analysis, are compared with those state estimates
obtained from laboratory tests. Two comparison runs are presented, one
an excitation of the first two bending modes, another, an excitation of
the first torsional mode of the mast. Results from both runs show poor
agreement in modal estimation between the computer model simulations and
the laboratory test data. At present, the reason(s) for this poor
performance is unknown. Both the laboratory hardware and software and
the computer model are being checked for possible sources of errors.
Further computer simulations as well as laboratory testing will be
performed.
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MODEL OF SCOLE MAST

© MODAL DATA FORM FINITE ELEMENT ANALYSIS OF MAST
© FIVE DECOUPLED MODES (FREQUENCIES .443-4.345HZ)
© ACTUATORS: FOUR JETS AND THREE REACTION WHEELS

©® SENSORS: SIX LINEAR ACCELEROMETERS AND 3 AXIS
RATE GYRO

© MODAL STATE AND OUTPUT EQUATIONS:
AX(k) + BU(Kk)

X (k+1)

Y(k) = CX(k) + DU(k)

© STATES ESTIMATED BY KALMAN FILTER
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KAIMAN FILTER

© EQUATIONS IN BASIC FORM:
- n
X(k+1) = aX(k) + BU(k)

A P A
X(k+1l) = X(k+1) + G(Y(k) -¥Y(k))

~
X - PREDICTED STATE
A

X - ESTIMATED STATE

G - KALMAN FILTER GAIN MATRIX

© KALMAN FILTER GAINS ASSUMED CONSTANT

— SENSOR NOISE INTENSITIES ESTIMATED FROM
MANUFACTURERS’ DATA

© ABOVE FORM USED IN SOFTWARE FOR LABORATORY TESTS
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SIMULATION AND TEST PARAMTERES

RUNS USED FORCING FUNCTION TO EXCIT SCOLE MAST

F = Asin(wT)

RUN EXCITATION TIME FREQUENCY AMPLITUDE
1 10 sec .443 HZ 5.0
2 10 sec 1.504 HZ 2.0

© COMPUTER SIMULATIONS USED SAME VALUES

185

DURATION

30 sec

30 sec



EAL 1sT BENDING MODE (MODE
VIBRATIONRL MOGE. FREQ (HZ) . 4426  X10 +00

SPEC SCOLE VIBRATIONAL MODE SHRPE 1
1.1
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X - WHEEL INPUT
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— LABORATORY DATA

SIMULATION DATA
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COMMENTS

© LABORATORY AND COMPUTER SIMULATIONS OF MODE ESTIMATES
ARE VERY DIFFERENT !

© ONLY GENERAL AGREEMENT BETWEEN LABORATORY AND COMPUTER
SIMULATION IS IN WHICH MODES ARE "DOMINANT" FOR THE
RESPECTIVE FORCING FUNCTIONS

© CONFIDENCE IN LINEAR COMPUTER SIMULATION MODEL
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SUMMARY

© MORE LABORATORY TESTS ARE REQUIRED

© RE-CHECK LABORATORY APPARATUS (SOFTWARE AND HARDWARE)

© PARAMETER IDENTIFICATION AND RE~DEFINING MODEL OF SCOLE
SIMPLE LINEAR DECOUPLED MODAL MODEL MAY NOT BE
SUFFICIENT FOR PROPER LABORATORY EXPERIMENTS
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[. InTrRODUCTION

1T, StructurarL VisraTions 1n SCOLE Excritep By

Time-Minimizep RAPID SLEWING

-— Bapg-Pause-Bana (RPRY CamnTror (200 (n)

-- Bang-Bane (BB) Contror (0, 80, 25 LBS)

How BAD? ALWAYS THAT BAD?

No Force MEAaNS LeasT ExciTaTion?

[I11, Active Damping oF BPB-Exciter VIERATIONS

usinG HieH-PeErRFORAMANCE MopaL DasHPoOTS

DirecT VevrociTy OQuTPuT FEEDBACK REALLY CANNOT

CONTROL EXCESSIVE VIBRATIONS EFFECTIVELY., QUICKLY?
IV, CoMMENTS
V. CoNCLUSIONS

VI. RECOMMENDATIONS
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® SCOLE PrRIMARY CONTROL TASK IS:
RAPIDLY SLEW OR CHANGE THE LiNe-oF-SieHT (LOS), anD

SETTLE or DAMP STRUCTURAL VIBRATIONS TO A REQUIRED DEGREE

0 Tue OBJUECTIVE IS: )

MINIMIZE THE TIME REQUIRED TO SLEW AND SETTLE,

UNTIL LOS REMAINS WITHIN A SPECIFIED ANGLE,

@ 2-STAGE APPROACH:
FIRST: OSLEW THE WHOLE STRUCTURE LIKE A RIGID BODY,
== IN A MINIMUM TIME,
—= UNDER THE LIMITED CONTROL MOMENTS AND FORCES

THEN: DAMP THE EXCITED STRUCTURAL VIBRATIONS

@ SoME PREVIOUS RESULTS ON STAGE-1 DESIGN

—
Case | STRATEGY | MOMENT | Force | LOS ERROR] SLew TimMe

LB=F T )~ (LB )~ (DEG—> (SEC —f

F10| BB 10,000 0 . 150 12,604
~3p F11| BPB 10.000 800 .086 4,897 g
FlZ2| BB 10,000 8Ul 097 3,750

A

0 Oruective oF CurrenNT StuDpy

STAaGE=2 DESIGN: AcTive CoNTROL OF EXCITED VIBRATIONS
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STRUCTURAL VIBRATIONMS EXCITED RBY

BanGg-Banc-Tyre RapiD SLEW MANEUVERS

Force | MoMENT StraTecy | SLew Time]LOS Error|Derrect. | ATT. Dev,
(L) | (LB-FT) (sec) (secC) (peg) | (FT) (DEG)
&ud 10,000 007 (B) 4,892 89.8 +114 +88,35

3,158 (P) or -113 -86.96
867 (-B)} (Note 1)] 133.3
0 SAME 6.307 (B)} 12.614 6,25 +5,06 +3, 0%
6.307(-B) -5.18 -4,02
80 SAME 4,416 (B) 8,832 24,7 +20,59 +]15,98
4,416(-B) -16,83 -8.31
25 SAME 5.479 (B)y 10.959 0.51 +0,25 +0.16
5.479(-B) -0.30 -0.30
NoTe 1. TiMeE OF APPLICATION Is 1,734 sec, onLy 35,377 OF THE SLEW TIME,
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Fig. 3-1 Vibratory responses to Rapid Time-minimized Bang-Pause-Bang Slew;
a. Line-of-sight error and Mast tip deflection.
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0 Using No ForRCES on RerFLecTor DOES NOT MEAN LEAST EXCITATION!

@ IF LOS ERROR IS THE ONLY CONCERN, SToP USING SO0LB FORCE:
Use 25LB (VERNIER THRUSTER LEVEL) INSTEAD,

-- BUT TIME IS EQUALLY IMPORTANT!!!

O ADDITIONAL TIME OF VARIOUS LENGTH 1S STILL REQUIRED

FOR DAMPING OUT THE EXCITED VIBRATIONS,

® VIBRATION CONTROL CHALLENGE:
CAN EXCESSIVE VIBRATIONS,

SUCH AS EXCITED BY THE 8S00LB RAPID SLEWING,
BE EFFECTIVELY SUPPRESSED TO A REASONABLE LEVEL

QUICKLY., SAY, IN 5 scc?
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MODAL-DASHPOT DESIGN MD1

Part 1: LiNEAR VELOCITY FEEDBACK

My 1 v 1
171 1715
MERCPY MY
LVE
LUSI 1115
d L
'y, | ro R ) T
t /} | APPLIED FORCE ON REFLECTOR IN X-DIRECTION|
=F, = | |
{Ug} 4 | APPLIED FORCE ON REFLECTOR IN Y-DIRECTION|
el T ) - .
i 15} | RATE OF XZ-DEFLECTION AT REFLECTOR END|
= | |
=Y1~{ | RATE oF YZ-DEFLECTION AT REFLECTOR ENDJ
L |

" 52420630E401 45332044400 |
- |
|

GLVR . . o I
] 42038249E+00 .b9/80555t+01j

0.6737, Mope 2
0.0, Mope 1

ADDITIONAL DAMPING RATIO DESIGNED

27 SETTLING TIME OF 3 SEC IS DESIGNED FOR MODE 2
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MODAL-DASHPOT DESIGN MD1

PART 2: AneuLAR VELoCITY FEEDBACK

[ 1 [y 1
Uy Y10
Us 11
= -0
AVR
Ug Y12
L L
FU ]

4 {APPLIED MOMENT ON REFLECTOR ABOUT X'AXIS]
b I l
} UB lAPPLIED MOMENT ON REFLECTOR ABOUT Y‘AXIS}
Ly 1= My = .
| U6 LAPPLIED MOMENT ON REFLECTOR ABOUT Z AXISJ
L
v 1

YlU [ 1

: RATE OF ReEFLECTOR ROLL ATTITUDE DEVIATION

Yll RATE OF REFLECTOR PITCH ATTITUDE DEVIATION

I
I
|
|
Y12 | RATE OF REFLECTOR YAW ATTITUDE DEVIATION |

| 24172/70/7E+04 . 16653096E+03 45158162E+03
. 15754105E+03 21781213E+04  -,72768195E+03
AVR  15435660E+04 -, 22055215E+04  42951681E+04

— 1

ADDITIONAL DAMPING RATIO DESIGNED = 0,035, Mopcs 3.4.,5

INHERENT DAMPING RATIO ASSUMED = 0,003 ALL MODES
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Fig. 6-1 Simulation results of vibration control design MD1;
a. Histories of applied moments and forces at the Reflector.
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Fig. 6-1 Simulation results of vibration control design 1iDL;
b. Histories of line-of-sight error and Mast tip deflection.
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Fig. 6-1 Simulation results of vibration control design MDI;
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Summary -- MD1

LOS error < 18,469 T = 2,5 SecC
< 17.48° T > 2.5 secC
= 11,799 T = 3,1 sec

DeFLECTION £ + 5 FT T = 2 SeC

< +0.5F7 1 =4H72sEC

2% SETTLING TIME £ 2.9 sec

LAsT PEAK REFLECTOR ATTITUDE DEVIATION:

RoLL = 0,460°
Pirch & 0,546°
Yaw % 1,360°
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Summary -- MDIA

ACDITIONAL DAMPING RATIO RE-DESIGNED = 0.6, Mope 2

CORRESPONDING 2% SETTLING TIME FOR MODE 2 1s 5,38 SEC

" 58420557E+01  .457842626+00

I
= |
l

OLys |
¢ ] . 42061494E+00 .62209375E+01J

LOS error < 16,660 () T2 1.8 sec
r 9,570 (¢) T =3,1 sec

7,35 FT () 1.3 sEc

0.75 rT (4) T

—
il

DerFLECTION
5,/ SEC

I+ 1+

<
<

2% SETTLING TIME = 3 SEC

LaST PrAK REFLECTOR ATTITUDE DEVIATION:
RotL = 0.7149 (&)

0,529

1.399°

PiTcH

Yaw

2)3



COMMENTS

0 THe MopAL DASHPOT DESIGN MET THE VIBRATION CONTROL CHALLENGE

FAIRLY WELL: EFFECTIVE, FAST SuPPrRESSION OF Excessive VIBRATIONS

O FOR COMPLETE SUPPRESSION AND PRECISION POINTING
AFTER THCL QUICK SUPPRESSION.
ErTHeER: INCREASE THE MopAL DASHPOT FEEDBACK GAINS

Or: SWITCH TO INTEGRATED DESIGN ofF LQG/LTR anp MopaL DasHpoTS

® Direct VerociTy OutpuT FeEEDBACK CONTROLLERS
NEED NOT BE OF “Low AUTHORITY”., LOW PERFORMANCE.
-~ ADDITIONAL DAMPING RATIO CAN BE DESIGNED TO BE AS HIGH
AS TO THE OPTIMAL VALUE 0.707, IF NEACESSARY:

INSTEAD OF RESTRICTING TO ONLY ABouT 0.1
® No MORE HIGH-GAIN PROBLEMS OF ORIGINAL CANAVIN DEDIGN
O SPILLOVER IS MINIMAL: PERFORMANCE DEGRADATION UN-NOTICEABLE
SPILLOVER IS BENEFICIAL: CONCOMITANT ACTIVE DAMPING OF UNMODELED

MODES

® SvYSTEMATIC DECSIGN METHOD FOR MODAL DASHPOTS WORKS!
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CONCLUSIONS

2-STAGE APPROACH IS FEASIBLE AND PROMISING FOR

RAPID SLEWING AND PRECISIOMN POINTING oF SCOLE

NOT ALL BANG-BANG TYPE OF TIME-MINIMIZED SLEW MANEUVERS

WILL EXCITE LARGE STRUCTURAL VIBRATIONS IN SCOLE

MODAL DASHPOTS CAN BE A CONCENTRATED HIGH-POWER VIBRATION CONTROL,

AS WELL AS THE USUAL

DIFFUSE (“BROAD-BAND”), LOW-POWER ("”LOW-AUTHORITY"”) CONTROL

RECOMMENDATIONS

LIMIT THE MAGNITUDE OF APPLIED FORCES ON REFLECTOR TO

EITHER 25 LB
-- LEVEL OF VERNIER THRUSTERS ON THE REAL SPACE SHUTTLE

OR 150 LB

-- LEVEL EQUIVALENT TO THE COLD-GAS JETS OF LABORATORY SCOLE

To COMPLETE STAGE 2, ADD AN INTEGRATED DESIGN OF

LQG/LTR (Linear-QuaDrATIC-GAUSSTAN/LOOP-TRANSFER-RECOVERY)

AND MopaAL DasHpoTs

VALIDATE THE 2-STAGE APPROACH USING THE SCOLE LABORATORY FACILITY
WITH A COMPREHENSIVE SEQUENCE OF INTEGRATED DESIGNS AND EXPERIMENTS

COUPLING NONLINEAR RIGID-BODY MOTIONS WITH FLEXIBLE-BODY DYNAMICS
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N89-13470
PLACING DYNAMIC SENSORS AND ACTUATORS
ON FLEXIBLE SPACE STRUCTURES

Gregory A. Norris and Robert E. Skelton
emmmsa——y

Purdue University

ABSTRACT

Input/Output Cost Analysis involves decompositions of the quadratic cost function
into contributions from each stochastic input and each weighted output. In the past, these
suboptimal cost decomposition methods of sensor and actuator selection (SAS) have
been used to locate perfect (infinite bandwidth) sensors and actuators on large scale
systems. This paper extends these ideas to the more practical case of imperfcct actuators
and sensors with dynamics of their own. NASA’s SCOLE examples demonstrate that
sensor and actuator dynamics affect the optimal selection and placement of sensors and

actuators.
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1.0 INTRODUCTION

The objective of this paper is to develop and evaluate a method for the selection of
sensors and actuators in the control of finite-dimensional linear systems using imperfect
sensors and actuators -- devices which do not provide instantaneous responses, but have
nontrivial dynamics of their own. In addition, the plant noise and the measurement noise
is assumed correlated. This important case allows the use of accelerometers as sensors
(this always yields correlated plant and measurement noise). Application of the
generalized method to practical control problems demonstrates that correlatedness of the
noise and the dynamics of the actuator and sensor devices can significantly affect the

optimal selection of both the number and location of sensors and actuators.

Consider as a starting point the following familiar dynamic system model:

>'<p = Apxp(t) + B[f() + w(t)] (1.1a)
yp(t) = Cpxp(t) , z{t) = Mpxp(t) + v(t) (1.1b)

E{w(®w(1)} = 8(t—0)W , E (v(tvT(1)} = S(t-1)V , E (w)vTI(1)} = §(t-1)U(1.1¢)

where Xp € R™ feR™ we R™, zv,e R™ and (Ap,Cp) observable, (Ap,Bp)
controllable and (Ap,Mp) detectable. The vectors w(t) and v(t) are respectively zero

mean white noise characterizations of the actuator and sensor noise.

In control of large space structures, the locations of sensors and actuators becomes a
critically significant "degree of freedom” in control design [14, 20]. Among over 60
more recent contributions to the SAS problem, only [4], {7], [10], [11], and [12] consider
noisy actuators (W, V nonzero). In all cases, the disturbances are modelled as Gaussian,
white, and uncorrelated (W, V diagonal, U = Q). Most of the SAS literature takes no
account of actuator or sensor dynamics. Two exceptions are McClamrock [19], and

Howell and Baxter, [6]. In [1] the authors extend the cost decomposition approach [2] to

R L R



accommodate noise correlation between sensor and actuator noise sources (W, V not
diagonal, U # 0). A key conclusion in [1] is that the proper sensor/actuator selection and
placement can be drastically affected by noise correlation. For example, the deletion of a
noise source (by making an actuator or sensor noise free) may degrade performance

contrary to the usual expectations when noise sources are uncorrelated.

Very fast actuator dynamics may be neglected in stability considerations, [9]. A
more thorough discussion of the effect of actuator dynamics is given by Goh and
Caughey [8]. The analysis of [8] and [9] demonstrates that plant frequencies occurring
above the actuator bandwidth can lead to closed loop instability, even for co-located
sensors and actuators. Goh and Caughey do not address the problem of selection of

dynamic actuators. That is the goal of this paper.

This paper is organized as follows. First the system model is augmented to include
sensor and actuator dynamics. The closed-loop input and output costs are then developed
for the fully augmented system, and they are used to define expressions which reflect the
effectiveness of each dynamic actuator or sensor in minimizing the cost function.
Finally, the method is illustrated by application both to small scale numerical examples
and to NASA’s SCOLE flexible space structure model. It is found that in the selection of

noisy actuators and sensors, finite Jdynamics can significantly affect selection results.

2.0 MODELING DYNAMIC ACTUATORS AND SENSORS

In [2] the results of Closed-Loop Input/Output Cost Analysis (CIOCA) were
developed and applied to the Sensor and Actuator Selection problem (SAS) for systems
of the form (1.1) under closed-loop control. In [1] the control f(t) is the vector of optimal

state estimate feedback controls:
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f® =Gx (), G=-R'BJK. (2.1a)
X = Apxc(t) + Bpf(D) + Flz(t) - Mpx ()], F=[PM] + B UIV!, (2.1b)
- T -InT T,
0=KA,+AK-KB,RR'BJK+CJQC, (2.2a)
-1 -1 T Ty-1

0=[A, - B,UVT'M,IP+P[A, - B,UV'M,]T - PMTV-IM_P (2.2b)

T 1y T T

+B,WB, -B,UV 'U'B]

which minimizes the cost function
V =E_.(lly0lFQ+u®l’R) , E.Alim E[) 2.3)
t—roo

where x. € R™ is the vector of state estimates. The conclusion from [1] for this problem

(1.1), (2.1) (2.2) is that when U =0, the sensor/actuator selection results can be

drastically different.

2.1 Adding Actuator Dynamics

First the system (1.1) is augmented to include stable, observable, controllable

actuator dynamics of arbitrary order.

Xa = AXx, + B,(u+w,), (A,,B,) controllable (2.4a)

f=C,x, (A,Cpobservable, x,e R™, fe R™ (2.4b)
a

Figure 2.1 presents schematic representations for actuator models of varying degrees of
complexity; Figure 2.1a represents the non-dynamic actuator, while Figure 2.1b
represents the general model for a dynamic actuator with white noise. Note that for the
non-dynamic actuator the noise w(t) is purely additive with the input u(t). In the case of

dynamic actuators the analyst may consider the actuator’s output (into the system) to
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Figure 2.1: Actuator Models
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include additive actuator output noise wg(t), or actuator command noise w,(t) which is
filtered by the dynamics of the actuator, or both. Both types of noise are assumed

possible in our development.

Augmenting the system states X, of the original system (2.1) with a vector of

actuator states x,, we obtain:

)'(:Ax+Bu-+-Dw,y=Cx,z=Mx+v=zp (2.5a)
B Xp Yp Wi A, B,C, B, 0
=k YT ) YT w) AT 0 A |0 PTlo B,

W =

W, Up, ¢ 0 0 TTM;'J
unw,|CTloc| BB M=o

u

where f = C.x, , (A,, C,) is observable, and Re[i\i(A“)] <0, i=12, - n,.(A,B)
is controllable.

First note that since Xp is observable from Yps (ie., (AP,CP) is observable) and x, is
observable from f (i.e., (A,,C,) is observable) then from the definitions (2.5) x must be

observable from vy, that is:

(A,C) is observable (2.6a)

Also note that the actuator dynamics are assumed stable, so that the system (2.1) has
not peen augmented with any unstable states. Therefore, detectability of (Ap.M)

together with stable A, yields

(A,M) detectable. (2.6b)
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Finally, Theorem 1 states the conditions for controllability of the system (2.1)
augmented with actuator dynamics (2.5). Proof of the theorem is contained in the

Appendix.
Theorem 1

Consider the controllable system

x,= A, +By(f+wp, (A,,B,) controllable (2.72)

x,€ R™™ (2.7b)
augmented with controllable and observable actuator dynamics of arbitrary order

x, = Ax, + B, (u+w,), (A,B,) controllable (2.7¢)

f=C,x, (A,C, observable, x,e R™, fe R™ (2.7d)
to form the composite system

x=Ax+Dw + Bu (2.7¢)

A, B.C, B, 0 0 Xp Wi
A=, A, | D=1, B,| ° B= B,| * X~ |x,] ° W=l (2.76)

The system s.ates x,, are controllable from u(t) if the number of poles minus the

P

number of zeros is the same for each individual actuator’s transfer function.

Remark 1: Note that full controllability of the augmented-system state vector x is

not guaranteed under the conditions of the theorem.

Remark 2: The conditions of the theorem are always met for first order dynamic
actuators, (assuming no direct input/output “feedthrough” for the

actuators), since each actuator will have one pole and no zeros.
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Remark 3: As long as the original system states x, are controllable through some
minimum set of actuators meeting the criteria of the theorem above, then
controllability of x, will be maintained with the addition of actuators of

any order and any number of transfer zeros.

Remark 4: Finally, note that the usefulness of the theorem stems from the fact that
by meeting certain mildly restrictive conditions, the actuator dynamics
can be guaranteed not to destroy controllability of the original system

states, regardless of the pole/zero locations of the plant.

2.2 Adding Sensor Dynamics

Next the system (2.5) is augmented to include stable, observable, controllable

sensor dynamics of arbitrary order.

Xs = AgXs + B{Mpx,+vi),  (A4,By) controllable (2.8a)
z=CX,+ Voy, (ACy) isobservable, x ;e R™ (2.8b)
Re[A(AP1 <0, i=(1,2, -~ ng} (2.8¢)

Figure 2.2 presents schematic representations for actuator models of varying degrees of
complexity; Figure 2.2a represents the non-dynamic sensor, while Figure 2.2b represents
the general model for a dynamic sensor with white noise. Note from both eqn (2.8) and
Figure 2.2b that (similarly to the case of actuator dynamics), adding sensor dynamics
leads to the possibility of both sensor input noise and sensor output noise. The iy
sensor’s input noise (v;,); is filtered by the dynamics of the i, sensor, while the output
noise (vq,,y); 1S purely additive with the sensor output. Both types of noise are assumed

possible in our development. .
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The fully augmented system equations have the following form:

X =Ax + Bu + Dw (2.93)
y =Cx (2.9b)
z=Mx +v (2.9¢)
xT = [xg, xaT, xST] , yT= [yg, fT] , wT=[wa, w;r, I, v=vy,
B, 00 A, B,C, 0 C, 00
D=0 B, 0| ,A=| 0 A, O ’C:OCaO or C =[C0]
0 0 B BM, 0 A
o W U
B=|B, .V=V,,,W-= Ut v, , M =[00C]
0]
The response y(s) of the plant to the input f(s) is given by
yp(8) = Hy($)f(s) (2.10a)
where
Hy(s) = C,(sI-A)'B,,. (2.10b)

is the plant transfer function. The response Mx(s) of the actuator/plant system (2.9) to

the input u(s) is given by
Mx(s) = H(s)u(s) ,
where

H(s) = M(sI-A)"!B.

(2.11a)

(2.11b)

Finally, the response z(s) of the sensors to an input Mx(s) is given by

226



z(s) = Hy(s)Mx(s) , (2.12a)

where
H,(s) = Cy(sI-A)) B, (2.12b)

is the transfer function for the sensor dynamics. Minimal systems are controllable and
observable. Thus, given minimality of the plant/actuator system [(A,B) controllable and
(A,M) observable], then measurability of the full augmented system is guaranteed

[(A M) observable] if there are no pole/zero cancellations between H(s) and H(s).

2.3 Defining the Cost Function

With the properties of the augmented system established, optimal control design for
the augmented system is now considered. Recall that the standard LQG cost function
(2.3) for the unaugmented system (2.1) includes a penalty on the output regulation error
y(1), as well as a penalty on the control energy u(t). However, in the augmented system
(2.5), while the actuator command is given by u(t), the actuator response f(t) (contained
in the augmented output vector y) is distinct from u(t) due to actuator dynamics. A true
measure of control energy is more appropriately stated in terms of a weighted sum of the
variaaces of f(t) rather than of u(t). It can readily be shown, however, that even in the
presence of a weighting on the actuator outputs, f(t), some nonzero weighting on the
actuator inputs u(t) is necessary to avoid an infinite gain solution to the optimization
problem. For this reason, and in view of the relation of f(t) to the design goals as

discussed above, minimization of cost functions of the form
V =E. [lly®ld +lu@lid] (2.13)

and
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Q = diag[Q,.Q,], Q>0

provides a stable optimal closed-loop solution.

(2.14)

3.0 SELECTION OF DYNAMIC SENSORS AND ACTUATORS

3.1 Closed-Loop Input/Output Cost Analysis

In order to write the expressions for the closed-loop input and output costs, it is first

necessary to put the fully augmented system, under closed loop steady-state optimal

state-estimate feedback control, in the following state space form:

x(t) = Ax(t) + Dw(t)
y(© = Cx(0)

V=E_ V1), V,0=y®Qy®,

where
XT=[XT,XCT], yT=[y]T WT=[WT, VT]
A BG D0 c o 00
A=1er a+G-FM|"'P={0 F°C=0 6| Q=0 r|"

G=-R'BTK, 0=KA +ATK -KBR™'BTK +C"QC

F =[PMT+DUV™!, 0=[A-DUV'MIP + P[A-DUVM]|T

-PMTvIMP + DWDT - pUV-lyTDT

For the system (3.1) the output costs V7, defined by
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(3.10)

(3.1d)

W U]
(3.1e)

Uu*v
(3.1

(3.1g)



VI =(/2)(E .0V /3y)y;)
are calculated as follows [2]
v =[CXCTQ)
where X is the steady state covariance satisfying
0=AX+XAT + DWDT

and where the output costs satisfy the cost decomposition property

n,
Y VI=V.

i=1
The input costs are defined by
V¥ = (1/2){E .0V Jow)w,}
and are found from [2]
V¥ = [DTSDW|.;
where S satisfies

0=ATS+SA + CTQC

and where the input costs also satisfy the cost decomposition property

Ny
ZViW=V.

(3.2a)

(3.2b)

(3.2¢)

(3.2d)

(3.3a)

(3.3b)

(3.3¢)

(3.3d)

The input and output costs represent the in situ contributions that the noise inputs

and the system outputs make in the cost function. We may also wish to know the amount

by which the cost function will be reduced if a noise input is eliminated. This amount,

AV, is defined as
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AViw = V - VRi

(3.4)

where Vy, is the value of the cost function after the iy, noise input is eliminated, (but the

controller is not redesigned) and AV;” is the cost reduction due to eliminating w;. A

positive value for AV;” indicates that elimination of the i, input will reduce the cost,

while negative AV;” indicates that a cost increase will follow noise elimination. It was

shown in [1] that the AV;Y may be positive or negative in the presence of noise

correlation. Partitioning the matrices W and D facilitates direct solution for the cost

reduction [2], yielding

AViw = 2Viw - di*SdiWii .
The closed-loop covaniance X may be written

P+N N

X=I'N N

where P satisfies eqn (3.1g) and where .V satisfies:
0=N(A+BG)T + (A+BG)N + FVFT

Also, S has the following form

S =

K+L -L
-L L

where K satisfies eqn (3.1f) and where L satisfies

0=L(A-FM) +(A-FM)'L + GTRG

(3.5)

(3.5)

(3.7)

(3.8)

(3.9)

For notational convenience the steady state covariance X is partitioned as follows:

230



Xp X12 xl3
X=[P+N]=|X5 X, Xn
X3 X5 Xs

(3.10)

Using the notation of (3.10) and the special structure of the closed-loop system matrices

in eqn (3.13) we write the following expressions for the output costs
V= [GX,CpQply i=1, - ny,
vi=(cx,clQ): i=1,-- m
VY=[GNG™R]; i=1,nu
and for the input costs
V¥ = [DT(K+L)DW ] i=1, - nw
V¥ = [DTKALIDW Jpgsiqwei 1=1, -+ nz

Vy = [FTLFV]; i=1, - nz

and the input cost reductions

AVY = [DT(K+L)DW -~ DTLFUT); i=1, -
AVY" = [DTK+L)DW = DTLFU T pipuri 1= 1, -+

AVY™=[FTLFV ~FTLFV -FTLBU1;. i=1, ---
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3.2 Dynamic Actuator Effectiveness Values

Now that the closed-loop input and output costs have been detenmined for systems
with dynamic sensors and actuators, it remains to use the CIOCA results to define
expressions which reflect the effectiveness of each sensor and actuator in the cost
function. This section defines the effectiveness values for dynamic actuators. The
approach taken in [1] and [2] for non-dynamic actuators was to subtract the contribution
the iy, actuator’s noise in the cost function from the contribution of its control signal, and

to label this difference the "effectiveness” of the iy, actuator, V2", That is,
Viact _ V|u _ AVIW (314)

This subtracts the "bad" from the "good" contributions of the actuator to measure its
effectiveness. The results of applying (3.14) to sensor and actuator selection for a range
of small and large scale examples in [2], [3], [4], [17] and [18] have demonstrated the

utility of this approach.

Extending the definition (3.14) for applicability to systems with dynamic actuators,
we proceed as follows. In (3.1) there are two noise sources associated with each
actuator: command noise, w,, which is filtered by the actuator dynamics; and output
noise, wy, which is additive with the actuator output. Thus, the noise contribution

associated with the iy, actuator is given by the sum of AV;** and AV;*".

The beneficial control cost for each actuator is not immediately evident. First,
recall that it is the actuator output £(t), not its input u(t), which drives the system. Next,
note that the contribution of the iy, actuator’s ourput in the cost function, V, includes the
effects of noise w,;. That is, even in the open loop (u=0), Vi«0 for (Wl > 0 with
dynamics. Hence, to define the beneficial (control) portion of Vif it is necessary to

subtract the portion of Vif which is due to noise. This can not be accomplished exactly,

232



since the actuator command u(t) and the command noise w (1) are correlated for t > t.
An approximation is obtained, however, by solving for Vif when u =0 (that is, in the
open loop). We define the contribution of wy; to V. and the contribution of u; to Vif as

follows, using the open loop covariance of the actuator states X,:

[V = [CX,CdQui (3.15a)
and
VIP = Vi - (V¥ = [C(X,-X)CT Qi (3.15b)
where X, solves
0=AX,+XAT+B,W,BT. (3.15¢)

Finally, the input costs and the decomposition of the output cost Vif are combined in

an effectiveness formula for dynamic actuators which is motivated by the results of [1]

and [2]:
V= [Vt - AV - AV (3.16)

Note that in the absence of command input noise, [Vif]‘” and V;** are both zero. Also, in
the absence of actuator dynamics, fi(t) is equivalent to u;(t). Thus the expression (3.16)
reduces to the original effectiveness formula of [1] in the absence of actuator dynamics.
Note also that (3.16) is applicable whether or not the actuator noise signals are correlated
with other noise sources, and it is applicable to systems with actuator dynamics of

arbitrary order.

3.3 Dynamic Sensor Effectiveness Values

Unlike the actuator noise, (which has a direct path to the output, independently of

the conrollers influence) the noise associated with sensors reaches the system only
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through the controller. Since the gains in the Kalman filter of the LQG controller
represent an optimal trade-off of each sensor’s (beneficial) measurement information
versus the (performance degrading) impact of its noise, then a AV, of large magnitude is
indicative of a highly effective sensor. That is, the fact that a sensor’s noise is being
allowed to heavily affect the cost means that its measurement information is even more
critical to performance. For this reason, the following effectiveness formula for non-
dynamic sensors, generalized to accommodate the possibility of noise correlation, was

presented in [1]:

vnd jAvyy (3.17)

For dynamic sensors there are two possible noise inputs associated with each sensor.
As in the non-dynamic case, both noise inputs reach the system dynamics through the

Kalman filter. Thus a straightforward extension of (3.17) to dynamic sensors is

VI = [AV™™] + 1AV™] . (3.18)
Note that this formuia is applicable in the presence of sensor dynamics of arbitrary order,
and applies whether or not any of the noise sources are correlated with one another.

This section concludes with the suggestion that (3.16) and (3.18) provide effective
measures of th.z contribution of each actuator and sensor in a closed loop optimal LQG

control (with sensor and actuator dynamics properly included).

4.0 SELECTION OF DYNAMIC ACTUATORS FOR SCOLE

In this section the actuator selection problem is solved for a model of NASA’s
SCOLE (Spacecraft Control Laboratory Experiment) system. The SCOLE configuration

consists of a flexible antenna suspended from the Space Shuttle cargo bay by a 130 ft.
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flexible beam (see Figure 4.6). The effectiveness values for proof mass actuators
(PMA’s) located along the beam are calculated and plotted versus position for both
dynamic and non-dynamic actuators in order to evaluate the dynamic actuator selection

method and to determine the effect of actuator dynamics on our results.

4.1 PROBLEM DEFINITION

A certain 2-dimensional SCOLE model includes four flexible modes and no rigid
body modes [15-18]. Approximate open-loop mode shapes for the four flexible modes
are presented in Figure 4.7, and the results of an open loop modal cost analysis are
presented in Table 4.2. A detailed discussion of the model development is given in [16]
and {18]. The two sensors retained in the model (using the CIOCA method of selection
for non-dynamic sensors) are angular position and rate measurements located at the
center of mass of the reflector [18]. Since there are no accelerometers presents, then the
sensor and actuator noise is uncorrelated. Noise intensity data for the sensors is given in

Table 4.3.

The set of admissible actuators includes both a control moment gyro (CMG) located
at the reflector center of mass and a set of PMAs distributed along the flexible beam. The
actuator selection problem is to determine the optimal location for two PMA devices
along the beam. To this end, the admissible set of PMAs was defined as 20 actuators
spaced at distances of 6.25 feet apart on the 130-foot beam from a point 10.75 feet above

the shuttle end of the beam to a point 129.5 feet from the shuttle. The PMA locations are
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Figure 14: SCOLE Configwation
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Table 4.2: 2-Dimensional SCOLE Elastic Modal Cost Analysis

Mode#

Frequency (Hz)

Modal Cost | Percent Total

-~ A a N e

s ;e

1a
1
12
13

289E+00
J64E+0!
497E+01
A24E402
237E+02
IR9E+N2
SSOE-02
NIOE+02
VOINE 03
JARUESD3
ATSE+O3
2ISELM

2A39E+03

S4TE+01
626E+01
1N5E-O1
ROE-04
201E-06
OY2E-08
AT0E-(9
ek 10
TARE-1!
A2E-
J322E-12
§IvE-13
IERI R

AG6E+02
SI3E+02

895E-01

1583E.03
AT71E-0S
SYOE-07
AMIE-08

13E.09
HISE 10
12IE-10
274E-11
J22E-12

QOTE-12

Table 4.3; Noise Specifications for SCOLE Actuators and Sensors

Actuators
Dyramic Noise Noise
Tyvpe Range fntensity Type [enty
PMA 10 1b 0001 11b)? Accelerometers v, = 0025 (degfsect)?

CMG  10°fi-lb

10,000, (ft-1b)?

Angular Pos tion

107 (deg)?
004 1 deg/sec)?
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thus selected by evaluating the relative effectiveness of each of the 20 PMA locations.

4.2 RESULTS FOR NON-DYNAMIC ACTUATORS

The PMA selection problem for non-dynamic actuators was solved first, for later
comparison with the dynamic actuator selection results. In all cases (dynamic and non-
dynamic) the actuator effectiveness values are calculated following controller design
which achieves a specified output variance and minimizes the amount by which the
actuators exceed their specified variances. This type of controller is designed by an
iterative selection of the control and output weights using the Output Variance
Assignment (OVA) algorithm (DeLorenzo and Skelton, [3]). The variance specification

for each actuator was equal to 10 times the intensity of its noise (see Table 4.3).

The actuator effectiveness values based upon standard Closed Loop Input/Output
Cost Analysis (CIOCA) [2] for non-dynamic actuators are presented in Figure 4.8. The
figure portrays PMA effectiveness results for four different controllers, each achieving a
different steady-state line-of-sight (LOS) error variance. The results provide a vivid
illustration of how the controller objectives can profoundly influence the actuator
selection results. For lower gain controllers (lower LOS error) the theory determines that
the upper tip is the most desirable PMA location. However, as the gain increases
(controller designed for smaller LOS error) the center of the beam becomes the optimal

location.

The results of Figure 4.8 are readily explained via modal analysis. The mode shape
figures for the four flexible modes retained in the 2-dimensional SCOLE model were
presented in Figure 4.7. Recall that mode #1, which accounts for 46.6 percent of the
open loop modal cost, has a maximum amplitude at the reflector-end tip of the beam (i.e.,

at 130 ft.). Mode number #2, which accounts for 53.3 percent of the open loop modal
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cost, has a maximum amplitude near the 90 ft. point. And mode #3, which accounts for
only approximately 0.1 percent of the open loop modal cost, has a peak amplitude near

the center of the beam.

Next note from Figure 4.8 that as the gain is increased in order to achieve a smaller
steady state LOS error variance, the most effective location for PMAs shifts from the tip
of the beam to the midpoint. This corresponds to a shift from the peak of mode #1 to the
peak of mode #3. The shift occurs even though with higher gain the noise in the PMAs
near the beam midpoint becomes the most detrimental to performance (Figure 4.9). In
fact, Figure 4.9 indicates the reason for the shift in optimal PMA location: with higher
gain the third mode becomes the least damped by the control of the CMG, and becomes
therefore a significant mode to be controlled by the PMAs. Figure 4.10 and Table 4.4
indicate the motion of the closed-loop eigenvalues from their open loop locations under

varying levels of gain (output performance).

Since the control cost of cach PMA (V! =E “riuf) is equal to its effectiveness value
V! minus the cost contributicn of its noise, V¥, then it is clear from Figures 4.8 and 4.9
that the PMAs are being used primarily to control mode #3 (i.e., near the middle of the
beam). However mode #3 is the most lightly damped mode in the closed loop. This is
true in spite of the fact that in all cases the input variances of both the CMG and PMAs,
when normalized by their variance specifications, are of like order of magnitude (see

Figure 4.11).

The results demonstrate the interesting result that while the PMAs are being used at
a level similar to the CMGs (in relation to their specified variance levels), they
nontheless make a small contribution to the closed-loop modal damping. This claim is
verified by deleting all PMAs from the system and again using OVA to achieve a

specified LOS error of 0.1 (arc sec)?, and comparing the resulting closed-loop modal and
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Table 4 4:  Modal Characteristics of [A+BG] as a Function of Output Performance

Open 1015 10 095 09 AIO(dcg):
Loop (dcg)2 (cltg)2 (dcg,)2 (no PMAs)

W, (r/s) 1.8 314 314 3.14 314 3.135
L, 005 028 027 0255 025 .01
T, (sec) RN 1.4 11.8 125 12.74 319
uky(1/s) 10.3 56. 62. 93 160. 63
Z; 03 675 68 6926 702 o3
T.(5eC) 19 4 026 024 015 o9 023
ws(r/s) 3L 9. 289 288 288 289
3 005 0217 0185 ol 9 0i6
Ty(sec) 6.45 16 1.87 316 395 216
wylr’s) 73 774 77. 77. 77. 773
- 005 0065 007 0072 0052 0068
T,(sec) 2.56 2.0 1.86 18 25 249

Steady-State
Normalized
CMG -- 46.04 0.6 1816 591.1 657

Vanuance
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performance data with that obtained from a full set of PMAs and an output variance of

0.1 (arc sec)? (see Table 4.4).

4.3 RESULTS FOR DYNAMIC ACTUATORS

In this section we add actuator dynamics to the SCOLE model and then re-solve the
actuator selection problem solved above. The actuator dynamics are given in NASA’s
original SCOLE document [15] to be first-order with a time constant of 0.1 seconds.
That is, for each actuator (both PMA and CMG) the response of the actuator f,(t) to its

input signal u;(t) is governed by
fi(s)/ui(s) = [1/(.1s+1)] (4.7a)
or

f. = —10f, + 10 . (4.7b)

There are several possibilities for the characteristics of the white noise associated
with the actuators; white noise may be an input to (and thus be filtered by) the actuator,
or it may be additive with the actuator output (thus unfiltered), or both. In this example
four different actuator noise models are considered. Recalling that the non-dynamic
actuators had additive white noise¢ with intensity W, the following noise cases were

studied for dynamic actuators:
1. white actuator input noise of intensity W, = W,
2. white actuator output noise of intensity We =W,

3. both input and output noise, each white and of intensity W,
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4. both input and output noise, each white and of intensity W/2.

The sensors are assumed non-dynamic (without phase lag).

First we examine the effect of actuator dynamics on the maximal theoretically
achievable accuracy. From [3], the lower bound yi‘ on the steady-state variance of the iy,
output is given by

y; =[CPCTl;,  i=1,..,ny. (4.8)

The values of the lower bound on the LOS error for the fourth-order 2-D SCOLE model
under study were calculated for the four different actuator noise cases listed above, as

well as for the non-dynamic actuator model examined earlier. The results are shown

below.

Table 4.5: Maximal Accuracy for Different Actuator Noise Cases

Noise Case | NoDynamics | W =W | W=W | W=W =W | We=W =W/2

Max. Acc. .086921 .0691 086921 10072 07926

(arc sec)2

From Table 4.5 it is clear that the addition of actuator dynamics along with
retention of the white noise input to the system states (actuator output noise only, W=W)
does not change the theoretical maximal accuracy; that is, y. is equal for the non-
dynamic and the W¢=W case. Also from the table, filtering of the actuator noise by
passing it through finite actuator dynamics clearly improves the maximal accuracy.
Finally it is noted that for case (3), Wy =W, =W, the minimal LOS error is greater than
that obtained by all but one of the controllers in the non-dynamic case. Thus for

purposes of comparison only cases (1), (2) and (4) are studied in further detail.
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For each of the three actuator noise cases a controller was designed (using OVA)
which assigned the steady state LOS error variance to 0.1 (arc sec)2 and minimized the
sum of the normalized actuator variances among those actuators whose variances exceed
their specifications (normalized variances greater than unity). For each final controller,
the dynamic actuator effectiveness values for the PMAs are plotted in Figure 4.12 versus

the actuators’ position along the 130 ft. flexible beam.

For each of the noise cases the most effective actuator location is toward the
reflector-end of the beam, with the highest effectiveness values corresponding to
actuators located at the beam tip. Recalling the mode shape figures for the open loop
flexible modes, the results in Figure 4.12 indicate that the PMAs are used by the optimal
controller primarily for control of mode #1, which accounted for 46.6 percent of the open
loop modal cost. It is interesting to compare Figure 4.12 with the plot of effectiveness
values for non-dynamic actuators (Figure 4.8); note that the most effective non-dynamic
actuators for the controller which achieved LOS error = (.1 (arc sec)2 were located near
the center of the beam (70 ft from the shuttle). Hence, the optimal beam locations for
PMAs in controllers which are achieving the same output performance are affected by

the actuator dynamics.

CONCLUSIONS

The Closed-Loop Input/Output Cost Analysis (CIOCA) method of sensor and
actuator selection (SAS) has been extended for application to systems with dynamic
sensors and actuators -- that is, systems in which the response of the sensors and
actuators to their inputs is not instantaneous but governed by deterministic dynamics.
The extended SAS method is applicable to systems in which the deterministic sensor and

actuator dynamics are of arbitrary order. Application to simple numerical examples
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demonstrates the utility of the SAS method. The examples also demonstrated that even
uniform sensor dynamics can affect the optimal selection of sensors. Application of the
actuator selection method in detail to NASA’s SCOLE space structure demonstrated that

even uniform actuator dynamics can affect the optimal selection of actuators.
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Proof of Theorem 1
Let a=(nxy+nx,). The composite system (2.7¢) has a controllability matrix

W, e R¥*™) of the following form

W.=

o}

W, 0 B,C,B, (A,B,C,B+B,C,A,B,
WCZ Ba AaBa AazBa

(Ay72B,C,B#+AS B, C,A B+ - - +B,C,AZ°B,)

ASB, (A.1)

Now noting that C,A B, = M, is the ith Markov parameter for the system of actuator
dynamics (2.7¢,d), W, may be rewritten

W, = (0 B)M, (A, BM+B M) (AZB M +A B M +BM,) - - -
- (ASIB M FASPB M+ - - - +B M, )] (A2)

The columns of W_ span the controllable subspace of the composite system. Linear
independence of all the rows in W, implies full controllability of the composite system.
However, controllability of the original s stem states, x,,, requires only that the columns
of W, span the state space for x,. This in turn will hold if and only if the matrix W, has

rank NXp.

The proof of the Theorem begins with the proof that (A.3) implies (A.4):
{detM, 20, M; =0, i=0,1, .., k-1} (A.3)
rank[W ] = ny, (or range space of W, has dimension ny) ALY
Note that the last block of W has the form
Wer = (ASZBM#+ATBM, + -+ + BMy_)) (A.5)

Now let k £ a2 be the index of the first nonzero Markov parameter, M,. (In this case
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the first k+1 blocks of W, are zero.) Next, use is made of two results from linear

algebra ("R [K]" denotes "range space of K"),

{det K#0} = (R[JK] =R []]) (A.6a)

R[J+K] cR[J]1+ R[K] (A.7b)

(where "C" means "is contained in") to demonstrate the following results which hold

when M, is nonsingular

R[B,]=R[BM,] (A.8)
R[B, AB,] =R (B,] + R [AB,]
=R[B,M]+R [ApBOMk]
=R[BM,]+R [ApBoMk + BoM i 1-BoMiq]
C R[BMi] + R[ABM, + B,M; ] + R[B,M,,,]
=R[BM;]+R [ApB.My + B\M; ]
" R[B, A,B,] R [B,M; A_B,M; + BM,,,] (A.9)
Eqns (A.8) and (A.9) lead by induction to the main result
R[B,AB, *++ AJ* Bl c R(B;M; A BM, +BM,,; -
AZ*IB M+ -+ - B;My_,l
that is,

R[B, A,B, -+ AF 2B JcR[W,]. (A.10)
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Condition (A.3) leads to (A.10). Thus, given (A.3) together with (AP,BO)
controllable, the columns of W, are guaranteed to span the nx -dimensional state space

for x; as long as
o-k-22nx,-1.
that is, as long as
k<nx,-1. (A.11)
In fact, the index k of the first nonzero Markov parameter for the system (2.7) will

always satisfy (A.11). To show this, simply note that by observability of (A,,B,), the
observability matrix W, for (2.7) has full column rank:
rank(W_,) = nx, (A.12)
From (A.12),
(W,,B,=0} = (B, =0} = {Contradiction of (A,,B,) controllable}  (A.13)
Thus,
Wo,By = IMI M, . M 1T 20 (A.19)

and so the validity of (A.11) is guaranteed for (2.7) completing the proof that

{[(A},B,) controllable] &M #0,M;=0,i=0,1, ..., k-1]} (A.15)

= (x, controllable u}

The usefulness of (A.15) stems from the fact that by meeting certain rmildly
restriclive  conditions the actuator dynamics can be guaranteed not to destroy
controllability of the original system states X, regardless of the pole/zero location for the

plant.
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It remains to prove the equivalence of the condition (A.3) and the requirements on
the individual actuators’ numbers of poles and zeros. First, note that since each actuator
is a single input, single output (SISO) system, then the Markov parameters M; for the

lumped actuator dynamics (2.7) are diagonal matrices of the following form:
Mi = dJag [m“, m2i, m3i, veey nlnm] (A16)

where m;; is the (scalar) iy, Markov parameter for the j, actuator. Thus the condition
(A.3) is met if and only if the index i of the first nonzero markov parameter is equal

among all the actuators.
The input/output transfer function for any ny, order SISO system has the form:
T(5) = (Cnoy 8™ 48" 24 -+ o+ e HS™Hd, s - - - 4d) (A.17)
The scalar Markov parameters m; for the SISO system with transfer function (A.20) may

be shown to be given by:

My, =Cphy

my=¢C, 53— dn—lno

Ny =Cp3—dyp ng—d,_n;
: : (A.18)
N, =C,—d; —dny - -+ d 0y,

From (A.18), n; is the first nonzero Markov parameter for a system when the
number of zeros in its transfer function is
z=n-i-1 (A.19)

Letting n; and z; equal the number of poles and zeros for the jy, actuator, respectively,

(A.19) yields the conclusion that
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(det Mg # 0, M;=0,i=0, 1, ..., k1) <= ((nj-z) = (0=2) V ij,€ (1,2,....n0)}(A.20)

Thus it is concluded that

{(nj-z) = (n-z) V i,j,€(1,2,...,nu)} = {xp is controllable u}. (A.21)
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SCOLE 87/2

ABSTRACT

The purpose of this presentation is to show that it is possible to use
nonsmooth optimization algorithms to design both closed-loop finite
dimensional compensators and open-loop optimal controls for flexible

structures modeled by partial differential equations.

An important feature of our approach is that it does not require modal
decomposition and hence is immune to instabilities caused by spillover
effects. Furthermore, it can be used to design control systems for struc-
tures that are modeled by mixed systems of coupled ordinary and partial

differential equations.
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DESIGN OF STABILIZING FEEDBACK-SYSTEM COMPENSATORS

The optimization-based design of finite dimensional compensators for
systems modeled by coupled systems of ordinary and partial differential
equations is made possible by a generalization of the following necessary
and sufficient stability test for linear systems described by ordinary

differential equations.

THE DYNAMICAL SYSTEM

Consider a parametrized, linear, time-invariant, interconnected, finite

dimensional dynamical system, Z(p), described by a set of state equations:

x(t) = A(p)xi(t) + B(pju(t),

(1)
y(t) = C(p)x(t) + D(p)u(t),

We shall denote the characteristic polynomial of X(p) by x(s,p) and

assume that the coefficients of x(s,p) are continuously differentiable in p.
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S-STABILITY

When, it is desired to ensure not only exponential stability of a closed
loop system, but also to exercise some control over the location of its
poles, it is convenient to make use of the following definition of S-
stability.

Definition (S-stability):  Consider a linear, time-invariant, finite dimen-
sional dynamical system X of the form (1). Let S be an open unbounded
subset of C which is symmetrical with respect to the real axis, and such
that SO C,, where S¢ is the complement of S and €, is the closed right

half of the complex plane.

We say that the system X is S—stable if all the zeros of its charac-

teristic polynomial are in S. W
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A MODIFIED NYQUIST STABILITY CRITERION

Theorem : Let SC C be as specified in the Definition and let BC € be
any simply connected set satisfying (0,0) € B. Suppose that
D(s,q) € C[s] is a parametrized polynomial of degree N, whose
coefficients depend on the parameter vector q € R"™ in such a way that

for every y(s) € Py satisfying Z[x(s)]CS, there exists a q, € R"™ such

that
(i) Z[D(s,qy)]<S, (2a)
(i) x(s)/D(s.q,) € B, V s € oS. (2b)

Then, given a polynomial x(s) € Py, Z[x(s)ICS if and only if there exists

a q, € R™ such that (2a,b) hold. ~ ®
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PROOF OF MODIFIED NYQUIST STABILITY CRITERION

(= = =>) Suppose that Z[x(s)]<S. Then, by assumption, there exists a
q, € R™ such that (2a), (2b) hold.

(<= = =) Next, suppose that (2a), (2b) hold. Then, because B is a sim-
ply connected set which does not contain the origin, the locus traced out
in the complex plane by x(s)/D(s.q,), for s € dS, does not encircle the
origin. It now follows from (2a) and the Argument Principle that

Zlx(s)]cS. w

Comment : It is clear from the Theorem that an acceptable parametri-
zation of the polynomial D(s,q) depends on the shape of the set S and the
choice of the set B. A further requirement is imposed by semi-infinite
optimization: the parametrization must be such that it is easy to ensure

that the zeros of D(s,q) arein S. W
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OPTIMIZATION-BASED CONTROL SYSTEM DESIGN
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DESIGN CRITERIA

. The feedback system must be exponentially stable.

. The system should have a good step input response.

. There should be little interaction between channels.

. Plant should not be saturated by command input effects.

. System should have high output disturbance rejection.
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MODIFIED NYQUIST STABILITY CONSTRAINT
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CHANNEL INTERACTION CONSTRAINT
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OUTPUT DISTURBANCE SUPPRESSION CONSTRAINT

Must accept some disturbance amplification outside " operating
bandwidth:

6[H,y(jo,x) < 1.05, Vo € [1, 1000]

COST: OUTPUT DISTURBANCE SUPPRESSION

Suppress disturbance effects inside operating bandwidth:

fx) 4 m S[H, (o,
= Toon,1 HyaGe,%)

3 30
Freguency (Rad/Sec)

Singular Values of Hy4(j®,X)
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INTEGRATED STRUCTURE-CONTROL-SYSTEM DESIGN

BEAM SHAPE AT TIME T

SHAPE

Vibrating Beam
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DYNAMICS

e GENERAL MODEL: Euler-Bernoulli Model, Kelvin-Voigt or

Proportional Damping, Coupled Axial and Flexural Linear PDE’s.
e Control Forces Fi(t), Actuator Positions ai, Sensor Positions s'.
e SIMPLIFIED MODEL: Decoupled Motion Formulation:

n; .
mu,(t , x) + Clug,,,, + Elu, . (t , x) = ¥ b,(x — a)F'(t) .

i=1

. ] . . 1 .

Yt = [ e(§ —shut , ©dL or y'(t) = [ dy(€ - sHuct , §H)dL.
0 0

BOUNDARY CONDITIONS

u(t,0) =0, ugt,0) =0, Juylt,1)+ Clu,(t,1)+Elut,1)=0,

Muy(t , 1) — Clu,,(t , 1) — Elu_(t, 1) = 0.

271



2

3

4

5

6

7

SCOLE 87/14
DESIGN CRITERIA

. The feedback system must be exponentially stable.

. Control system compensator should be finite dimensional.

. Actuators should not be saturated by command input effects.

. System should have high mechanical disturbance rejection.

. Average power use should be low.

. Structure weight should be low.

. Structure should remain in elastic range.
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DESIGN VARIABLES

e CONTROL SYSTEM COMPENSATOR

(i) Coefficients of compensator differential equation.

e STRUCTURE

(i) Positions of actuators and sensors.
(ii) Parameters of damping devices.
(iii) Parameters of composite materials.

(iv) Parameters determining shape of structure.
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PRELIMINARY RESULTS

The control system can be stabilized using a finite dimensional
proportional-plus-integral controller which ensures good distur-
bance rejection. The use of our modified Nyquist stability cri-
terion in the design of a stabilizing controller requires only
evaluations of the system frequency response. Since the frequency
response at a given frequency can be computed in some cases by
formula and in the more general cases by solving two-point linear
boundary value problems, there is no need for modal decomposition
and hence there are no spillover effects. As in the finite dimensional
case, time and frequency domain constraints can be treated simul-
taneously and, in an integrated design approach structural parameters
and constraints can also be introduced into the optimization problem.

If a sequential design approach is used, an infinite dimensional com-
pensator can be designed using an H™ frequency domain constraint
formulation which results in a convex optimization problem and
automatically ensures exponential stability with stability margin.

An infinite dimensional controller designed as above can be
approximated by a finite dimensional controller without spillover
effects.

A special semi-infinite optimization algorithm has been developed
which is highly effective for design with H™ frequency domain
design constraints.
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A FLEXIBLE ARM OPTIMAL SLEWING PROBLEM

— : —

S/
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THE DYNAMICAL SYSTEM

Hollow aluminum tube: one meter long, 2.0 cm diameter, 1.6 mm
thick. Attached mass weighs 1 kg. We assume that motor torque u(t) can

be directly controlled.

Standard Euler-Bernoulli tube equations with Kelvin-Voigt visco-

elastic damping:

mw,(t,X) + CIwg, o (t,X) + EIw, (t,X) — mQ*(t)w(t,x)
(la)
= —mu(t)x, xe€ [0,1]

with boundary conditions:

w(t,0) =0, wy(t,0) =0, Clwy,(t,1)+ ElIw,(t,1) =0. (1b)
M(Qz(t)w(t, 1) — w(t, 1) —u(t)) + Clw (1, 1) + EIw,,, (t,1) = Qlc)
where w(t,x) is displacement of tube from shadow tube (which remains
undeformed during the motion), u(t) is motor torque, and €2(t) rad/sed is
angular velocity. Above: m =.2815 kg/m, C = 6.89x10’ pascals/sec.,
E = 6.89x10° pascals, I = 1.005 x 10‘8m4, The tube is very lightly

damped (0.1 per cent ).
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THREE OPTIMAL SLEWING PROBLEMS

Minimize the time required to rotate the tube 45 degrees, from rest to

rest, subject to the torque not exceeding 5 newton-meters.

Minimize the total energy required to rotate the tube 45 degrees, from
rest to rest, subject to the torque not exceeding 5 newton-meters and

the maneuver time not exceeding a given bound.

Minimize the time required to rotate the tube 45 degrees, from rest to
rest, subject to the torque not exceeding 5 newton-meters and an
upper bound on the potential energy due to deformation of the tube

throughout the entire maneuver.
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THE DYNAMICAL SYSTEM
MATHEMATICAL FORMULATION OF THE THREE PROBLEMS
e To avoid technical problems associated with variable intervals and
problems due to discretization, augment dynamics by one state variable
and introduce scale factor T > O so that problem becomes defined on nor-

malized time interval [0, 1], with T also equal to final time.

o Tube is at rest when the total energy = energy due to rigid body

motion + energy due to vibration and deformation = 0.
(i) To ensure a slewing motion of 45°, we define
g, T) & (©-114)? 2)

(1) Rigid body energy at final time is proportional to the square of the

angular velocity.

g’u,T) 4 Q). 3)

278



SCOLE 87/21

(iii) Kinetic energy due to tube vibration at normalized time 1 is

git,u) 4 -%‘- w(1,x)%dx. (4)

o‘—.'—‘

(iv) Potential energy due to tube deformation at normalized time 1 is

El

g’(1,u) 4 = w,,(1,%)%dx. (5)

o‘—.’—‘

e Potential energy due to deformation of the tube at normalized time t:
El |
P(t,u) 4 =1 W, (t,X)%dX. 6)
0

(v) To limit tube deformation for all t € [0, 1] we define

-

g, T) 4 [ [max{ Pt,u) - 1), 0 }I* (7
0

(vi) To ensure slewing time does not exceed Ty seconds, we define

g6(u,T) é T-T;. (8
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FINAL PROBLEM FORM

P,: min Ou, T) | 'u,T)—eso,'e{1,2,3,4}},
1 Te]R“MEG{g( ) I g)( J

where gO(u , T) é

T.R, 4 {(ye RIy>0} and

e

G € {uelL [0, 1]lu®I<S5, te [0,1] ).

P,: min %u,T)Iglu,T)-e<0, je 1,2,3,4,6} },
2 Te R,,ue G{g 8 ! {

where g%u, T) A lu(t))? dt.

O‘—.i—d

P.: min %u,T) Iglu, Ty—e<0,je 1,2,3,4,5} ),
3 TEIRHUE(;{g )1 gl(u,T) J € { })

where go(u,T) A T.

o All g’ are continuously differentiable in L_[0,1].
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THE DYNAMICAL SYSTEM

COMPUTATIONAL RESULTS

IMPLEMENTATION. Because we cannot solve the system PDEs
exactly, we cannot evaluate gj(u,T) or ng(u,T) exactly. Furthermore,
since u is an infinite dimensional design vector, it can only be entered
into a computer in discretized form. We use an implementable algorithm
which adjusts integration precision and control discretization adaptively.
To discretize the PDE in space, we use the finite element method. Since
the PDE is fourth order in space, it is necessary to use elements of at least
second order. We have chosen Hermite splines as basis elements. The
input u € G is discretized in time and Newmark’s method is applied to

evaluate the resulting system of ordinary differential equations.

LINEARIZATION. The results presented are for the case in which
the Qz(t) terms are neglected in equation (1). Similar results have been

obtained by performing experiments when the Q*(t) terms are included.
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OPTIMAL CONTROL FOR MINIMUM-TIME PROBLEM

WITH TORQUE CONSTRAINTS ONLY
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TIP DISPLACEMENT FOR MINIMUM-TIME PROBLEM

WITH TORQUE CONSTRAINTS ONLY
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DEVIATION FROM SHADOW BEAM FOR MINIMUM-TIME

PROBLEM WITH TORQUE CONSTRAINTS ONLY

w(t,x) (meters)
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1
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SCOLE 87/27
CONSTRAINT VIOLATION FOR MINIMUM-TIME PROBLEM

WITH TORQUE CONSTRAINTS ONLY:

DISCRETIZATION EFFECTS
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6.00 _ 10.00}

500 4
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SCOLE 87/28
OPTIMAL TORQUE
FOR MINIMUM-CONTROL-ENERGY PROBLEM

WITH TORQUE CONSTRAINTS AND FINAL TIME < 0.8 SEC.

Control
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SCOLE 87/29

OPTIMAL TORQUE

FOR MINIMUM-CONTROL-ENERGY PROBLEM

WITH TORQUE CONSTRAINTS AND FINAL TIME < 1.0 SEC.

-200 X

<300 X

-4.00 3

500 & 1
Control
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SCOLE 87/30

POTENTIAL ENERGY FOR MINIMUM TIME PROBLEM

WITH TORQUE CONSTRAINTS ONLY

Curve A is potential energy

Parabola B is deformation constraint.

Potential Energy

1000 L
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SCOLE 87/31
POTENTIAL ENERGY FOR MINIMUM-TIME PROBLEM

WITH TORQUE AND POTENTIAL ENERGY CONSTRAINTS

Curve A is potential energy

Parabola B is deformation constraint.

Potential Energy
_ 1 0.001

10.00 A

0.00

Normalized Time
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SCOLE 87/32
OPTIMAL CONTROL FOR MINIMUM-TIME PROBLEM

WITH TORQUE AND POTENTIAL ENERGY CONSTRAINTS

Note: The optimal final time is 0.8177 seconds, an increase of only 3.7

percent over the solution of P,.
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DISCOS SIMULATION:
BODIES CONNECTED BY HINGES
FINITE ELEMENT MODEL OF BEAM PROVIDED BY NASTRAN

REFLECTOR (RIGID), BODY 3

HINGE 3 ACTUATOR
<— ON BEAM

———
Y —— ;K BEAM (FLEXIBLE),
4 N <— BODY 2
SHUTTLE ACTUATOR
COORDINATE _ — ON BEAM
AXES

X HINGE 2

N

X -—

SHUTTLE (RIGID), BODY 1 l

HINGE 1 r4

HINGE 1 CONNECTS SHUTTLE
BODY TO INERTIA SPACE

Fig. 1—Scole Configuration
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COMBINED PROBLEM OF SLEW MANEUVER CONTROL
AND VIBRATION SUPPRESSION

Y. P. Kakad

Dept. of Electrical Engineering
University of North Carolina at Charlotte
Charlotte, NC 28223
ABSTRACT
In this paper, the combined problem of slew maneuver control
and vibration suppression of NASA Spacecraft Control Laboratory
Experiment (SCOLE) is considered. The coupling between the rigid
body modes and the flexible modes together with the effect of the
control forces on the flexible antenna is discussed. The nonlinearities

in the equations are studied in terms of slew maneuver angular velo-
cities.

INTRODUCTION

In this paper, the analytics for the combined problem of slew maneuver and
vibration suppression are developed. It is assumed that the slew maneuver is per-
formed by applying moments on the rigid shuttle and the vibration suppression is
achieved by means of forces on the flexible antenna and the reflector. T he slew
maneuver is considered to be an arbitrary maneuver about any given axis [16]. The
effect of slew maneuver angular velocity on flexible modes is studied by examining
the spectral norm of the matrix term associated with the coupling between the
rigid-body modes and the flexible modes. Also, the kinematic nonlinearities are
further aqalyzed in terms of the matrix spectral norm variation of the correspond-

ing term with respect to slew maneuver angular velocity.
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The slew maneuver is defined as

A - Axis about which the slew maneuver is performed.

& - The slew Angle

ANALYTICS

o - The angular velocity of the orbiter in the inertial frame.

The four Euler parameters can be defined as

€ = )\lsin-g-

€= )\zsin-g

€= Msln-ﬁ-
€@Q= cos-g—

(1)

The four Euler parameters can be related to the angular velocity components

of the rigid assembly as

€
&
€

€

€

€
€3

€4

€4

€3
-6
—¢

—€3 €y
€4 —€
€y €4

—€; —TE€3

0
w;
(2)

105

w3

The slewing maneuver can be given in terms of the following equations [16]

I,o+ A =G )+N,(w) (3)
AJod0+ A + Bg + Kg =Q() (4)

where,

G (¢ ) is the net moment applied about the mass center of the orbiter and is
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given by the following equation (figs. 1 & 2)

G@)=G, )+ (r +alxF, (5)

Also, Q (¢ ) represents the generalized force vector which is given by the following

equation

m

Z( Ql'xx(t) + Qj)’n(t )+ Qxl + Qh + Q\l‘x

J

™3

( Ql'xz(t )+ Q!')’z(t )+ sz + Q)’z + QW:

Jj=1

Q)= - (6)

Z ( ij,(t) + ij‘ (t )) + Qxi + Qyi + Q¢vi

J7=1

where, the generalized force components are given as

L
Qe, = [ Fie (2 £)8(z —2, )b, (z )z 7
0
L
ij‘ = fij (z 4 )8(z —Z; )(byi (z)dz (8)
0
and
Qiy)=0 9)

Here, F;, (z,2) is the x component of the concentrated force applied at location j

on the flexible antenna and F jy is the y component of that force.

Also,

Qxi(t)=sz(t)¢xi(L)
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0 (1) = Fy (£ )0, (L) (10)

Qi () = Myt )by (L)

Here, F , is the force applied at the reflector C. G.

Thus,
Mw(t)=F2xry+F2yrx "*‘1\42#J (11)

The location of reflector C. G. is given by coordinates (r, ,ry) and M,y
represents the external moment applied at the reflector C. G. Also, the nonlineari-
ties N, can be expressed in terms of pure rigid body kinematic nonlinearity and

the nonlinear coupling term between the rigid-body modes and the flexible modes.

N2=A4(QQ_) +A5(g)_,9_)_q_ (12)

(a) Slew Maneuver

If only a slew maneuver is to be considered, then Q(z) =0 and F ,» =0, and
only moments are applied at the orbiter C. G. However, the angular velocity vector
®, is nonzero during the maneuver and the flexible modes will be excited. This
effect of coupling between the rigid-body modes and flexible modes can be obtained
by evaluating A 5 which depends on the angular velocity vector. In figure 3, using
the matrix spectral norm as a measure, the coupling effect is studied as a function
of slew angular velocity. The first ten flexible modes are considered for this
analysis. The kinematic nonlinearity is also obtained in terms of matrix spectral
norm as a function of . This analysis can be utilized in the linearization of the
slew maneuver dynamical equations. An example of this is shown in figure 4
which is a single plane slew maneuver. In this case, it is almost a linear relation-

ship in terms of a single angular velocity component.
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(b) Slew Maneuver Control and Vibration Suppression

If it is desired to design control systems for the simultaneous task of slew
maneuver control and vibration suppression, then equations (3)-(11) should be
used. It can be seen that vibration control forces also affect the slew maneuver

P . - . a1 1 i A 0 1. ‘
Y LLQAALIAD Ladd Uusll CULLLL UL 11100 L WY L‘.P.Lllls LCLd1D,.

Thus, these equations would suggest that in order to achieve control efficiency
and to minimize the line of sight error in minimum time, it may be necessary to
synthesize control systems for the combined problem of slew maneuver and vibra-

tion suppression.
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Figure 1- Position Vectors in Inertial Frame
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Robust Model-Based Controller Synthesis for the SCOLE Configuration

E.S. Armstrong

S.M. Joshi

*
E.J. Stewart

NASA Langley Research Center
Hampton, VA 23665

ABSTRACT

The design of a robust compensator is considered
for the SCOLE configuration using a frequency-
response shaping technique based on the LQG/LTR
algorithm. Results indicate that a tenth-order
compensator can be used to meet stability-
performance-robustness conditions for a 26th-order
SCOLE model without destabilizing spillover
effects. Since the SCOLE configuration is
representative of many proposed spaceflight
experiments, the results and design techniques
employed potentially should be applicable tn a wide
range of large space structure control problems.

Introduction

Large space structures (LSS) have many properties
that make them difficult to analyze and control
[1}. They are mathematically modeled by computa-
tionally difficult partial differential equations
or high-order, lumped, ordinary differential
equations obtained through finite element methods.
LSS have many low and closely spaced resonant
frequencies, a number of which typically fall
within the controller bandwidth. In LSS, vibra-
tional issues must be treated as a first-order
effect; it is this characteristic of the LSS
control problem that most distinguishes it from
spacecraft control problems of the past. Addition-
ally, inherent damping is low and/or improperly
modeled. Coupled with stringent operational
requirements for orientation, shape control, and
vibration suppression, these properties present an
unconventional and unresolved control design
problem to the system analyst.

A fundamental issue to be dealt with in any LSS
control problem comes from the large amount of
modeling error occurring in finite element models
of such structures. In general, inaccuracy of
modal data, such as elastic frequencies and mode
shapes used to form coefficient matrices of the
dynamic models, increases with increasing modal
frequency. Hence, a frequency-dependent constraint

* George Washington University, Hampton, VA

is inherently imposed on the design process i+ that
stabilization and performance requirements must he
met without allowing the input control energy to
"spill-over” and excite and destabilize the lightly
damped, poorly modeled high-frequency dynamics.

At NASA's Langley Research Center, a LSS config-
uration known as the Spacecraft Control Laboratory
Experiment (SCOLE) was conceived for the purpose of
evaluating and comparing large space structure
control and identification concepts [(2]. The SCOLE
configuration (shown schematically in Figure 1)
consists of a 130-foot flexible beam anchored at
one end to the cargo bay of the space shuttle with
an antenna reflector connected to the opposite end.
The center of mass of the reflector is offset from
the attachment point. The SCOLE configuration is
representative of many proposed space flight exper-
iments and space-based antenna systems. Control
inputs are available from torque actuators located
on the orbiter and force actuators at the reflector
center. Attitude sensors are located at the
reflector center. A typical SCOLE control task
i{s to slew or change the line-of-sight of the
antenna rapidly and damp any induced structural
vibrations to the degree required for the precise
pointing of the antenna.

In this paper we consider a SCOLE large-angle
slewing maneuver to have been completed and attack
the problem of designing a model-based compensator
to attenuate residual structural vibrational motion
and antenna line-of-sight error. The SCOLE mathe-
matical model is first discussed followed by des-
criptions of the design objectives and the compen-
sator design approach. Finally, results from the
application of the design methodology to the SCOLE
problem are presented.

Mathematical Model

The basic distributed-parameter mathematical model
of the SCOLE configuration is described in [2],
while nonlinear and linear ordinary differential
equation models are found in [3] and [4], respec-
tively. A linear finite-element model consisting
of three rigid rotational modes and the first ten
structural elastic modes is used in this study. A
state-space realization of the modal model has the
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form
Xp = AFxF + BF“ (@8]
Yr = CFr 2
where
AF - diag( AR' AE ) 3)
01
3
Ag = [ 0o 0 ] (%)
6x6
1 2 10
AE = diag( AE' AE' ey AE ) (5)
&nd
4] 1
T (6)
Wy ey
2x2

for (i=1,...,10). Equation (4) describes the rigid
body contribution and equations (5) and (6) des-
cribe the elastic contribution for ten vibrational
modes of frequencies W (1 -1,..., 10). A uni-

form damping ratio of (1 - =0,003 (i=-1,...,

10), is assumed. The eigenvalues of AE are given
mathematically by
Ai - 'f“’i ¥ j wi/1'§ (7)

and are shown in Table 1.

Five control inputs are generated using three
torque actuators (one per X,Y,Z axis) on the orbi-
ter and two force actuators (X and Y directions in
Figure 1) at the reflector center. Three attitude
sensors (one per axis) are located at the reflector
center. Sensor and actuator dynamics were not
included in this study. Rigid-body inertias,

mode shape and slope data from the finite element
analysis combine to define the control effec-
tiveness matrix BF and output response matrix CF'

Analysis of (1) and (2) verifies that the system is
completely controllable and observable. Attempts
to reduce the number of control variables to the
number of outputs retained controllability and
observability but, in each three-control input
combination, introduced lightly-damped, low-
frequency transmission zeros [5] into the model.
Since the presence of such transmission zeros has
been demonstrated to reduce system performance in
large space structure controller designs [6], the
compensator was designed with the original five
inputs and three outputs. However, Iin order to
avoid numerical ill-conditioning brought about by
the different physical characteristics of forces
and torques, the inputs were scaled so that the

frequency response of the largest (o(jw)) and
smallest (q(jw)) singular values of the transfer

matrix of (1) and (2), denoted by GF(jw), were

nearly equal at low frequencies (as shown in Figure
2).

Design Objectives

The design objectives of this study are to produce
a multivariable, model-based, feedback compensator
operating on attitude sensor data which will gener-
ate force and torque inputs to stabilize the rigid
body modes; enhance the stability of lightly
danmped, low-frequency modes without destroying the
stability of higher-frequency modes; meet pre-
scribed closed-loop performance (bandwidth) speci-
fications; and possess some degree of stability
robustness to unmodeled dynamics. Since a low-
order controller is sought, it was decided to
employ full-state controller design with a reduced-
order plant model. The full-order model is
reserved for evaluation purposes. Order reduction
for the design plant was performed using modal
truncation. Past studies ([6], [7]) have indicated
that a 0.1 rad/sec closed-loop performance band-
width is sufficient to maintain antenna pointing
control, and a design model composed of the rigid
body plus the first three elastic modes in Table I
1s adequate to achieve this bandwidth. Higher
bandwidths will typically require the addition of
extra elastic modes to the design model. Denoting
the 12th-order design model transfer matrix by
Gp(s), for a unity-gain feedback compensator with

transfer matrix Gc(s), multivariable bandwidth will

be defined as the frequency below which the
smallest singular value of the closed-loop response
matrix

Gor(®) = 6,()6, ()1 1+ G ()G (=) 171 (8)

remains above unity for s = jw.
seek a compensator such that

In our case, we

q[GCL(jw)] 210 for 0 sw=<0.1 (9)

From the block diagonal structure of AF in (1), the

transfer matrix, GF(S)' of the 26th-order system

may now be written as
GF(S) - Gp(s) + AG(s) (10)

where AG(s) represents the transfer matrix of the
remaining l4th-order (residual) modal system. In
this form, the dynamics represented by AG(s) can be
interpreted as an "additive perturbation" to the
G_(s) system and used as an approximate represen-

tation of unmodeled dynamics for use in stability

robustness tests. Specifically, it is established
in [8] that the unmodeled dynamics AG(s) will not

destroy the closed-loop stability so long as

al G (s)[ 1+ Gp(s)CC(s) ]'1 ) o[AG(s)]) <1 (11)

for all s = jw, w real. Condition (11) can be
enforced in the compensator design stage to ensure
that closed-loop stability will be preserved for at
least that class of unmodeled dynamics whose

spectral norm lies below o[AG(jw)].
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The spillover effect on AG(s) due to the closed-
loop compensation may be tested directly by
applying a state-variable realization of Gc(s) to

the full 26th-order model given by (1) and (2) and
examining the eigenvalues of the composite system.

A block diagram for the closed-loop configuration
is shown in Figure 3. An approach for comstructing
Gc(s) to stabilize Gp(s) while satisfying (9) and

(11) is presented in the next section.

Compensator Design Approach

The compensator design approach employed to meet
the foregoing design objectives can be viewed as a
variation of the well-known Linear-Quadratic-
Gaussian/Loop-Transfer-Recovery (LQG/LIR) algorithm
({9}, [10]). In the standard LQG/LTR approach,
with the loop in Figure 3 broken at the output, a
Kalman filter (GKF) is designed to meet the

complete set of stability-performance-robustness
objectives. Thereafter, an optimal linear regu-
lator is constructed such that the composite 1LQG
compensator (Gc) loop gain behavior asymptotically

approaches (recovers) that of GKF in the sense that
Gp(ju)Gc(jw) — GKF(jw)

pointwise in w. Direct application of this IQG/LTR
procedure to large space structures problems
results in extremely conservative designs which
cannot meet reasonable performance specifications
[6]. However, the LQG/LTR structure still provides
a viable approach for model-based controller
synthesis when the standard procedure is modified
in the following manner.

Step 1
Denote a state-variable realization of Gp(s) by
X = Ax + Bu (12)
y = Cx (13)

Select the design parameters L and u in the Kalman
filter algorithm

AQ + QAT + LLT - —%— Qcteq - 0 (14)
H - —%— Qct (15)
such that
1
GKF(S) - C( sI-A ) 'H (16)

achieves a desired (target) loop gain for
Gp(s)Cc(s) over some low-frequency band containing

the design bandwidth.
Step 2

By successively increasing q > 0 in equation (19)
(to follow), design an optimal linear regulator

which, when used in an LQG fashion with the Kalman
filter from Step I, asymptotically recovers the
frequency response of the target loop gain over the
low-frequency band. The resulting compensator is
given by

G (s) = F( st-A ) (17)
where T
F-BP (18)
ATP + PA - PBBP + qC'C = 0 (19)
A
A = A-BF-HC (20)
Step 3

Attempt to adjust q in Step 2 until the desired
bandwidth condition (condition (9)) is met. Also
check stability robustness by (11). If an exces-
sively high q (indicated by violation of (11)) is
required to achieve the required bandwidth, turn
down the Kalman filter gain (by increasing s in
(14)) to "loosen" the target loop. In effect, this
procedure reduces the target bandwidth until satis-
faction of (1l1) is possible. The final design is
accomplished by iteratively adjusting the linear
regulator and Kalman filter design parameters until
an appropriate compromise is made between bandwidth
and stability robustness.

In large space structures applications, the
inability (at Step 1) to meet loop gain magnitude
over the desired bandwidth or (in Step 3) the
production of too small a compromise bandwidth can
often be overcome by the inclusion of additional
flexible modes into the design model [6].

I1f, as in the SCOLE application to follow, an
order-reduction study is performed on the resulting
compensator, the complete set of stability-
performance-robustness conditions needs to be
re-evaluated with the reduced-order compensator.

SCOLE Application

Figure 4 shows the frequency response of the 12th-
order (LQG) compensator, Gc' resulting from an

application of the foregoing procedure to the 12th-
order SCOLE design model, Gp' The figure indicates

a wvell-behaved lead-lag structure with a 20
db/decade roll-off. Eigxnvalues of the corres-
ponding A-HC, A-BF, and A matrices are given in
Table 1I. The frequency response of CCL in equa-

tion (8) with the 26th-order evaluation model used
in place of Gp is shown in Figure 5. Figure 5

demonstrates the satisfaction of the 0.1 rad/sec
bandwidth requirement and a 60 db/decade roll-off.
Eigenvalues of the composite system resulting from
the LQG compensator applied to the evaluation model
are given in the first column of Table III. The
data indicate that the compensator was designed to
concentrate on stabilizing the rigid body modes
(first three entries of the A-HC block) without
disturbing the stability of the three elastic modes
(last three entries of the A-HC block) of the
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design model. Table III also shows that there is
insignificant spillover into AG. The stability
robustness test (11) shown in Figure 6 shows more
than 10 db robustness margin.

The possibility of a reduced-order compensator
(ROC) satisfying the design conditions was also
investigated. The methods of balanced realization
{11], Hankel-norm reduction [12] and a method based
on stable factorization [13] were employed. The
ratio of largest to smallest Hankel singular values
was 0.016 so little reduction based on nearly
uncontrollable or unobservable compensator modes
was expected. All of the methods gave similar
results. In each order reduction method, only a
10th-order ROC would stabilize the design model.
The stable factorization results were judged to be
(slightly) better and will be discussed herein.

able II shows the eigenvalues oi the corresponding
A matrix in the ROC, denoted by AROC' Figure 7

shows a frequency response of the ROC. A compar-
ison of Figures 4 and 7 shows that the only
difference between the LQG and ROC frequency
response plots is the removal of the dip in o at

the frequency of the third elastic mode. The
importance of this characteristic can be seen from
Figure 8 where the robustness condition (11) is
‘evaluated using the ROC in place of Gc' Figure 8

indicates that an effect of the-order reduction is
.a reduction of stability margin at the frequency of
the third elastic mode. A more positive effect
from the reduced order compensation is seen in the
second column of Table III where the eigenvalues of
the ROC applied to the evaluation model are presen-
ted. The stability of the rigid-body modes from
the LQG compensator is preserved with the auxiliary
effect of adding stability to the first elastic
mode. The net effect of the ROC is to enhance the
stabilizing effect of the LQG compensator at the
expense of a reduction of stability robustness
margin.

Concluding Remarks

A loop-shaping procedure similar to that used in
the LQG/LTR approach was used to design a model-
based compensator for the SCOLE configuration, a
generic large space structure configuration
conceived for the purpose of evaluating and
comparing control and identification approaches.
Initially, the inputs of a full 26th-order SCOLE
model were scaled to avoid numerical difficulties.
A 12th-order controller design model was afterwards
constructed from the full-order model using modal
truncation. Applying a modification of the LQG/LTR
technique to the design model produced a 12th-order
model-based compensator satisfying stability-
performance-robustness design conditions. Finally,
an order-reduction technique based on stable
factorization was used to produce a 10th-order
compensator for controlling the full-order model
without destabilizing spillover effects. It was
noted that order reduction can have beneficial
effects on closed-loop stability but may reduce

stability robustness margins. Since the SCOLE
configuration is representative of many proposed
spaceflight experiments, the results and design
techniques employed should potentially be
applicable to a wide range of large space structure
control problems.
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(-0.232, 77.165) (-0.231, 77.165)
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ANALYTIC REDUNDANCY MANCGEMENT FOR SCOLE

by

Raymond C. Montgomery
Spacecraft Control Branch
NASA Langley Research Center
Hampton, VA 23465

The objective of this work is to develop a practical sensor analytic
redundancy management scheme for flexible spacecraft and to demonstrate
it using the SCOLE experimental apparatus. The particular scheme to be
used is taken from previous work on the Grid apparatus by Williams and
Mon tgomery .

Reference:

Williams, J. P. and R. C. Montgomery: Failure Detection and Aoccommoda—
tion in Structwral Dynamics Systems using Analytic Redundancy. 24th IEEE
COC, December 11-13, 198S.

OBJECTIVE OF WORK

DEVELOP & TEST A PRACTICAL SENSOR ARM
SCHEME USING SCOLE

APPROACH

USE SCHEME PREVIOUSLY DEVELOPED FOR THE
GRID BY WILLIAMS AND MONTGOMERY
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OUTLINE

The presentation is organized as follows: First, the scheme used by
Williams and Montgomery is swmarized. The scheme is based on a LOG
design which is next described. Experimental results taken fram the
SCOLE apparatus on the performance of the Kalman filter of the LOG are
presented and finally plans for completion of the work are given.,

OUTLINE

SUMMARIZE THE GRID SCHEME OF WILLIAMS AND
MONTGOMERY

DESCRIPTION OF THE LQG DESIGN FOR THE
SCHEME

RESULTS FROM THE SCOLE LAB EXPERIMENT
PLANS FOR COMPLETION OF THE WORK
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GRID ARM SCHEME — SUMMARY

The approach of Williams and Montgomery was to use a single active
steady state Kalman filter which is designed for the estimated failure
state in effect. Under the no—failure case the sensor residuals of this
filter should be white with zero mean. The zerowmean character of the
estimated residuals is monitored using Wald's sequential probability
ratio test (SPFRT). SFRT is a binary test to determime if a statistical
variable is zero-mean or has a mean, m. As data samples are gathered
a decision variable is monitored. [t is initialized at zero and is
sequentially modified by the data samples. If it crosses either of two
decision thresholds a decision is made. One threshold corresponds to
the zeromean decision while the other is for the mmeen decision. A
SPRT is run on each residual. If a decision of zero—wmean is made the
SPRT is reinitialized and nn again. If a mmeen decision is made a
failure is declared. In event of a declared failure the failure
signature of the sensors in the residuals are examined to determine the
failure state. A new LOG design for that failure state then replaces
the current active design.

GRID ARM SCHEME - SUMMARY

USE SINGLE, ON-LINE, KALMAN FILTER

USE SPRT TO CHECK THE ZERO MEAN CHARACTER
OF THE ESTIMATED MEASUREMENT ERROR

IF FAILURE IS DETECTED, ISOLATE USING

FAILURE SIGNATURE IN THE ESTIMATED
MEASUREMENT ERRORS
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SCOLE ARM LOG DESIGN

The basis of the ARM to be used is the LOG. Therefore the first
order of business is to develop a suitable LOG design wherein the
modelling errors do not defeat the zero—mean character of the residuals.
Most of the rest of the presentation concerns this design and its
performance. For the design model we have used a Smode, modal model of
SCOLE with the SCOLE platform fixed. Thus, there are no rigid body
modes. Also the S modes selected are the five lowest freguency modes.
Reaction jets are included in the filter but not in the regulator. The

torque wheels on the other hand are used in both the filter and the
regulator.

SCOLE ARM LQG DESIGN

DESIGN MODEL -- MODAL MODEL
FIXED SCOLE PLATFORM MODEL
NO RIDID BODY MODES

5 LOWEST FREQUENCY VIBRATION MODES
JETS INCLUDED IN FILTER, NOT IN REGULATOR

TORQUE WHEELS USED FOR THE REGULATOR
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SCOLE CONFIGURATION

For the experiments repoorted herein and for the LOG design, the
SCOLE platform rested on the ground and was considered fixed. We used
the mid-mast and reflector accelerometers and the rate gyros on the mast

tip. The actuators used were the reaction jets on the reflector and the
torque wheeles at the mast tip.

SCOLE CONFIGURATION

SCOLE PLATFORM FIXED

SENSORS —-

MID-MAST AND REFLECTOR ACCELEROMETERS
RATE GYROS ON MAST TIP

ACTUATORS —--
JETS ON REFLECTOR
TORQUE WHEELS AT MAST TIP

334



SCOLE MODEL. AND TEST RESLLTS

The next 10 slides are working charts organized in 5 pairs.
They concern the S modes of the design model. The first chart of each pair
contains the mode shape and frequency. This chart is followed by an
experimental data record taken by manually exciting the structure
at the natural frequency of the mode and taking free—decay data. The
estimated mode amplitudes are indicated on the traces.
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FUTLRE FLANS

Tasks that remain to be accomplished are the complete validation of
the Kalman filter and regulator for both free—decay and forced response.
The SPRT must be tested on this nominal filter design and thresholds
need to be set to avoid false alarms in light of the modelling errors
inherent in the design. Fossible sources of the modelling errors are
excitation of modes not modelled and higher order and nonlinearities in
the description of the sensors and actuators. The next step is to
select several failure cases for the ARM and generate appropriate LOG
designs for each of these. Then the ARM performance can be evaluated.
Current plans call for this to be completed by mid June 1988. This
schedule is ambitious and may slip because of NASA revactoring of
resources.

FUTURE PLANS

VALIDATE NOMINAL KALMAN FILTER
TEST SPRT ON NOMINAL

DESIGN FOR NULL FAILURES OF SENSORS
VALIDATE FAILURE CASE DESIGNS

TEST OVERALL ARM FDI PERFORMANCE

TO BE COMPLETED BY BY MID JUNE ’ss8
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SUMMARY

The problem of controlling large, flexible space systems has been the
subject of considerable research. Many approaches to control system
synthesis have been evaluated using computer simulation. In several cases,
ground experiments have also been used to validate system performance under
more realistic conditioms. There remains a need, however, to test
additional control laws for flexible spacecraft and to directly compare
competing design techniques. 1In this paper an NASA program 1is discussed
which has been initiated to make ‘direct comparisons of control laws for,
first, a mathematical problem, then an experimental test article is being
assembled under the cognizance of the Spacecraft Control Branch at the NASA
Langley Research Center with the advice and counsel of the IEEE Subcom-
mittee on Large Space Structures. The physical apparatus will consist of a
softly supported dynamic model of an antenna attached to the Shuttle by a
flexible beam. The control objective will include the task of directing

the line-of-sight of the Shuttle/antenna configuration toward a fixed
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target, under conditions of nolsy data, 1limited control authority and
random disturbances. The open competition started in the early part
of 1984. Interested researchers are provided information intended to
facilitate the analysis and control synthesis tasks. A workshop is planned
for early December at the NASA Langley Research Center to discuss and

compare results.
INTRODUCTION

Many future spacecraft will be large and consequently quite flexible.
As the size of antennae is increased, the frequencies of the first flex-
ible modes will decrease and overlap the pointing system bandwidth. It
will no longer be possible to use low gain systems with simple notch
filters to provide the required control performance. Multiple sensors and
actuators, and sophisticated control laws will be necessary to ensure
stability, reliability and the pointing accuracy required for large,
flexible spacecraft.

Control of such spacecraft has been studied with regard given to
modeling, order reduction, fault management, stability and dynamic system
performance. Numerous example applications have been used to demonstrate
specific approaches to pertinent control problems. Both computer simula-
tions and laboratory experiment results have been offered as evidence of
the validity of the approaches to control large, flexible spacecraft.
Concerns remain, however, because of the chronic difficulties in control-
ling these lightly damped large-scale systems. Because of these concerns
and because of the desire to offer a means of comparing technical

approaches directly, an NASA/IEEE Design Challenge is being offered. An
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experimental test article ig being assembled under the cognizance of the
Spacecraft Control Branch at the NASA Langley Research Center with the
advice and counsel of the IEEE (COLSS) Subcommittee on Large Space
Structures, This Spacecraft Control Laboratory Experiment (SCOLE) will
serve as the focus of a design challenge for the purpose of comparing
directly different approaches to control synthesis, modeling, order
reduction, state estimation and system identification.

The configuration of the SCOLE will represent a large antenna attached
to the Space Shuttle orbiter by a flexible beam. This configuration was
chosen because of its similarity to pProposed space flight experiments and
proposed space-based antenna Systems. This paper will discuss the "Design
Challenge” in terms of both a mathematical problem and a physical experi-

mental apparatus. The SCOLE program is not part of any flight program.

SYMBOLS
a acceleration vector ft/sec?
A beam cross section area
c observation matrix
d noise contaminating direction cosine matrix measurements
e line-of~sight error
E modulus of elasticity
f concentrated force expressions
Fy force vector
g concentrated moment expressions
GI torsional rigidity
I moment of inertia matrix for entire Shuttle/antenna configuration
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mg,

vl
V4
vé
ug
uy

X,Y,Z

moment of inertia matrix, Shuttle body

moment of Iinertia matrix, reflector body

beam cross section moment of inertia, roll bending
beam cross section moment of inertia, pitch bending
beam polar moment of inertia, yaw torsion

length of the reflector mast, beam

control wmoment applied to the Shuttle body

control moment applied to the reflector body
disturbance moment applied to the Shuttle body
mass of entire Shuttle/antenna configuration

mass of Shuttle body

mass of reflector body

mass density of beam

beam position variable

earth T1()Shutt1e body

earth = TZ()

direction cosine matrix, Shuttle body ()

direction cosine matrix, reflector body () reflector

body
inertial velocity, Shuttle body
inertial velocity, reflector body
lateral deflection of beam bending in y-z plane
lateral deflection of beam bending in x-z plane
angular deflection of beam twisting about z axis
position variables
displacement of proof-mass actuator

line-of-sight pointing requirement

noise contaminating angular velocity measurements
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6,4¢,¥ pitch, rolil, heading

g damping ratio

T noise contaminating acceleration measurements
w) angular velocity of Shuttle body

wy, angular velocity of reflector body

DISCUSSION

The objective of the NASA-IEEE Design Challenge concerning the control
of flexible spacecraft 1is to promote direct comparison of different
approaches to control, state estimation and systems 1identification. The
design challenge has principal parts, the first using a mathematical model,
and the second using laboratory experimental apparatus. The specific parts
of the Spacecraft Control Laboratory Experiment (SCOLE) program will be

discussed in detail.

Control Objectives

The primary control task is to rapidly slew or change the 1line-of-
sight of an antenna attached to the space Shuttle orbiter, and to settle or
damp the structural vibrations to the degree required for precise pointing
of the antenna. The objective will be to minimize the time required to
slew and settle, until the antenna line-of-sight remaing within the
angle &, A secondary control task ig to change direction during the
"on-target” phase to prepare for the next slew maneuver. The objective ig
to change attitude and stabilize ag quickly as possible, while keeping the

line-of-sight error less than &,
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Math Model Dynamics

The initial phase of the design challenge will use a mathematical
model of the Shuttle orbiter/antenna configuration. It is necessary to
obtain a balance, of course, between complex formulations which might be
more accurate and simplified formulations which ease the burden of
analysis.

The dynamics are described by a distributed parameter beam equation
with rigid bodies, each having mass and inertia at either end. One body
represents Space Shuttle orbiter; the other body is the antenna reflector.
The equations for the structural dynamics and Shuttle motion are formed by
adding to the rigid-body equations of motion, beam-bending and torsion
equations. The boundary conditions at the ends of the beam contain the
forces and moments of the rigid Shuttle and reflector bodies. The
nonlinear kinetmatics couples the otherwise uncoupled beam equations.
Additional terms represent the action of two, 2-axis proof-mass actuators
at locations on the beaé chosen by the designer.

The rigid-body equations of motion for the Shuttle body are given by:

. _1 ~
wp = s L e M+ My M)
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Similarly, for the reflector body,

. _1~
w, = - I, (w414w4 + Mo+ “3,4)

F, + F
v = 4 B,4
4 m4

The direction cosine matrices defining the attitudes of the Shuttle and

reflector bodies are given by:

T~ T
y=-97
T o~ T
6= " 9T,

The direction cosine matrices defining the attitudes of the Shuttle and the

reflector bodies are related to the beam end conditions.

1 0 0 cosA@ 0 sinA®@ cosAY -sinAY 0
T4 = 0 cosdd¢ -sind¢ 0 1 0 sinAY cosAY 0 Tl
0 sind¢ cosl¢ -sinA@ 0 cosA® 0 0 1
where:
syl -y
s=L s=0
oo |
ds 3s
s=L s=0
3 3
Y
9s ds
s=L s=0



The equations of motion for the flexible beam-like truss connecting the
reflector and Shuttle bodies consist of standard beam bending and torsion
partial differential equations with energy dissapative terms which enable
damped modes with constant characteristics for fixed, though dynamic, end
conditions. The system of equations can be viewed as driven by changing
end conditions and forces applied at the 1locations of the proof-mass

actuators.

ROLL BEAM BENDING:

2 3 4

3 u¢ 9 u¢ 3 u¢ % [ ¢ ) ( )]
PA - 2¢, YPA EI + EI = f s-s ) + g +— (s-s

8t2 ¢ ¢ as2at ¢ 834 n=1 ¢,n n ¢,n 3s

PITCH BEAM BENDING:

2 3 4
3 ue a ue a ue 4 85

PA —5— ~ 20y /PA EIj —5— + EI; —— = y [fe’nﬁ(s—sn) * 8y o 78 (s—sn)]
ot ds“at ds n=]

YAW BEAM TORSION:

a2 . 2 u, 22, %
PI, —— + 27,1, YGP - GI = gy .8(s - s )
¥ ool vy 3s2at ¥ g2 pep Do n
where:
82u¢
f = m {SHUTTLE BODY FORCE}
$,1 L ,,2
s=0
82u¢ 32A¢ 2
f =m + m, —=2= {PROOF-MASS ACTUATOR FORCE}
4,2 2 2 2 2
ot at
S=52



¢,3

$,4

0,2

0,3

0,4

32A¢ )
*my
at
§=8,
2
3
-1 4 ——;! /32.5 + F
22,4 4, y
s=130
s=sl
32Ae 2
+ m, ——~—é—
ot
s=s2
2
] AO,Z
+m3 2
at
578,
' azuw
- I /18-75 - F
z2z,4 3t2 b4
s=130
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The angular velocity of the reflector body is related to the Shuttle body

by:

s=0

s=0

p ok

]

(0 130 ¢
-3 o ©
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The line-of-sight error described in figure 2 1is affected by both the
pointing error of the Shuttle body and the misalignment of the reflector
due to the deflection of the beam supporting the reflector. The line-of-
sight is defined by a ray from the feed which is reflected at the center of

the reflector. 1Its direction in the Shuttle body coordinates is given by:

L ] (AR SEEN
[[% - % - Z[RX Rg - RF] "Ry

LOS

RF is the feed location (3.75, 0, 0)

RR is the location of the center of the reflector (18.75, =-32.5,
~-130)

Ra is a unit vector in the direction of the reflector axis in

Shuttle body coordinates

The vector Ry can be related to the direction cosine attitude matrices

for the Shuttle body, T;, and the reflector body, T4, by

- [ (0)

The relative alignment of the reflector to the Shuttle body 1{s given by

T'er4 which is a function of the structural deformations of the beam.
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The line-of-sight error, e, 1s the angular difference between the
target direction, given by the unit vector, D, and the line-of-sight

direction in Earth axes, T)Rjpg-
Ay
e = ARCSIN |DT X TIRLOSI or ARCSIN |DTT1RLOS|

Computer programs are available which generate time histories of the
rigid body and the mode shapes and frequencies for the body-beam-body
configuration for “pitch” bending, "roll” bending and “"yaw" twisting.
Since the modes are based on solving explicitly the distributed parameter
equations (without damping and without kinematic coupling) there 1is no
limit to the number of modal characteristic sets that can be generated by

the program. It will be the analyst's decision as to how many modes need

to be considered.

Laboratory Experiment Description

The second part of the design challenge is to validate 1in the
laboratory, the system performance of the more promising control system
designs of the first part. The experimental apparatus will consist of a
dynamic model of the Space Shuttle orbiter with a large antenna reflector
attached by means of a flexible beam. The dynamic model will be exten-
sively 1instrumented and will have attached force and moment generating
devices for control and for disturbance generation. A single, flexible
tether will be used to suspend the dynamic model, allowing complete angular
freedom in yaw, and limited freedom in pitch and roll. An inverted
position will be used to let the reflector mast to hang so that gravity
effects on mast bending will be minimized. The dynamics of the laboratory

model will of necessity be different from the mathematical model discussed
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Design Challenge, Part Ome

For part one of the design challenge, the following mathematical
problem 1is addressed. Given the dynamic equations of the Shuttle/antenna
configuration, what control policy minimizes the time to slew to a target
and to stabilize so that the line-of-sight (LOS) error is held, for a time,
within a specified amount, s, During the time that the LOS error is
within ¢, the attitude must change 90° to prepare for the next slew
maneuver. This was previously referred to as the sescondary control task.
The maximum moment and force generating capability will be limited. Advan-
tage may be taken of selecting the most suitable initial alignment of the
Shuttle/antenna about its assigned initial RF axils, line-of-sight.
Random, broad band-pass disturbances will be applied to the configuration.
Two proof-mass, force actuators may be positioned anywhere along the beam.
The design guidelines are summarized below:

l. The initial line-of-sight error is 20 degrees.
e(0) = 20 degrees

2. The initial target direction is straight down.

()

3. The initial alignment about the line-of-sight is free to be chosen
by the designer. Advantage may be taken of the low value of
moment of inertia in roll. The Shuttle/antenna 1is at rest
initially.

4. The objective is to point the line-of-sight of the antenna and
stabilize to within 0.02 degree of the target as quickly as
possible.

§ = 0.02 degree
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Control moments can be applied at 100 Hz sampling rate to both the
Shuttle and reflector bodies of 10,000 ft-1b for each axis. The
commanded moment for each axis is limited to 10,000 ft-1lb. The
actual control moment's response to the commanded value is
first~order with a time constant of 0.1 second.

For the rolling moment applied to the Shuttle body:

4 4
10 S-“X,l,command £ 10

0

-0.1 -0.1
A oo

Equations for other axes and for the reflector body are similar.
Control forces can be applied at the center of the reflector in
the X and Y directions only. The commanded force in a
particular direction 1is limited to 800 1bs. The actual control
force's response to the commanded value is first-order with a
response time of 0.1 second.

For the side for applied to the reflector body:

_800-5 FY,command-S 800

00 _001

IFY(n)+(l—e ) F (n)

FY(rl *D=e Y, command

Equations for X-axis are similar.

Control forces using two proof-mass actuators (each having both
X and Y axes) can be applied at two points on the beam. The
strokes are limited to * 1 ft, and the masses weight 10 lbs each.
The actual stroke follows a first-order response to limited

commanded values.
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For the X-axis of the proof-mass actuator at 89

-1 S-AX,Z,command <

(n + 1) = e_Ool 0-1
’

by 4 Ax,z(“) + (1 -e ") A (n)

X,2,command

Equations for other axes and locations are similar.

8. The inertial attitude direciton cosine matrix for the Shuttle body
lags in time the actual values by 0.01 second and are made at a
rate of 100 samples per second. Each element of the direction
cosine measurement matarix is contaminated by additive,
uncorrelated Gaussian noise having an rms value of 0.001. The
noise has zero mean.

d (@) d,(m)  d ()
+ = +
Ts,measured(rl D Ts,true(n) d21(n) d22(n) d23(n)
dy () dy,(n)  dy(n)
where:

E{dij(n)} =0
E{dij(n)dkL(n)} =0 for 1 # k or j # L
E{dij(n)dij(n + K} =0 for k # 0
2
= [.001] for k = 0
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The angular velocity measurements for both the Shuttle and
reflector bodies pass through a first-order filter with 0.05 sec
time constant and lag in time the actual values by 0.01 second and
are made at a rate of 100 samples per second. Each rate
measurement is contaminated by additive, Gaussian, uncorrelated
noise having an rms value of 0.02 degree per second. The noise
has zero mean.

For example:

(n+1) = (n) + ¢ (n)

wl,x,measured wl,x,filtered 1,X

= #
E{el’x(n) el’x(n +k)} =0 for k # 0

= (.02)2 for k=0

where

10.

“I,X,filtered = ~ 20

20

“I,x,filtered T %9 “I X, true

Three-axis accelerometers are located on the Shuttle body at the
base of the mast and on the reflector body at its center. Two-
axes (X and Y) accelerometers are located at intervals of
10 feet along the mast. The acceleration measurements pass
through a first-order filter with a 0.05 second time constant and
lag in time the actual values by 0.0l second, and are made at a
rate of 100 samples per second. Fach measurement is contaminated
by Gaussian additive, uncorrelated noise having an rms value of

0.05 ft/sec?.
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For example:

(n+1) = (n) + 1. _(n)

al,X,measured al,x,filtered 1,X

+ = #
E{Tl’x(n) Tl,x(n K}=0 for k # 0

= (.05)2 for k=0

where:

* = _ +
A, x,filtered 208 ¢ si1cered T 20 “1,x,true

11. Gaussian, uncorrelated step-like disturbances are applied
100 times per second to the Shuttle body in the form of 3-axes
moments, having rms values of 100 ft-1bs. These disturbances
have zero mean.

For example:

= #
E{MD’X(n) MD,x(n + Kk} =0 for k * 0
2
= (100) for k=0

In summary, the designer's task for part one is to: (1) derive a
control law for slewing and stabilization, coded in FORTRAN; (2) select an
initial attitude in preparation for slewing 20 degrees; and (3) select two
positions for the 2-axes proof-mass actuators. An official system
performance assessment computer program will be used to establish the time

required to slew and stabilize the Shuttle/antenna configuration.
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Design Challenge, Part Two

As in part ome, the task is to minimize the time to slew and stabilize
a Shuttle/antenna configuration. The difference is that in part two of the
design challenge, a physical laboratory model will be used instead of the
dynamic equations of part one. The constraints on total moment and force
generation capability will apply to part two, as for part one. Again, the
analyst may select the initial alignment about the assigned initial RF
line~of-sight. Disturbances will be injected into the Shuttle/antenna

model. The designer's task will be similar to that for part one.
CONCLUDING REMARKS

A Design Challenge, in two parts, has been offered for the purpose of
comparing directly different approach to controlling a flexible
Shuttle/antenna configuration. The first part of the design challenge uses
only mathematical equations of the vehicle dynamics; the second part uses a
physical laboratory model of the same configuration. The Spacecraft
Control Laboratory Experiment (SCOLE) program is being conducted under the
cognizance of the Spacecraft Control Branch at the NASA Langley Research
Center. The NASA/IEEE Design Challenge has the advice and counsel of the
1EEE-COLSS Subcommittee on Large Space Structures. Workshops will be held

to enable investigators to compare results of their research.

365



£€62°CS 20Z°S11 666 L~ 296°CT1T L | Ly%“L00°L | 80S‘CZET‘T 008502 6/€°- €90°- 9€0° TV10L
INIOd
0 0 0LS° L~ L0%° L2 T 00081 INAWHOVILV
‘YOLDATATA
00% *0€l- 6°ZE- S/°81
W)
0 0 0 8€6°6 696°‘Y 696°Y ‘4010474
0 0 0 0 SeYv L1 TLANA 00Y% *¢9- 0 0 90 ‘1SVW
0 £6E°SHI 0 109°980°L | 001°68L°9 | £€%%°S06 000502 0 0 0 ITLLOHS
1d-9718 1i1-91S Li-91S 1I-91S 13-971S 1d-918 . Z A X
z 24, rA 2x z XX, rA 22, rA &, z XX, 41 ‘ILHOI3M 14 ‘NOILVHOT 9

SOLLSTHALOVIVHD SSVKH

366



The moment of inertia becomes:

Ly 1,132,508 7,555 - 115,202
1= |4, L, I, - 7,555 7,007,447 - 52,293
I, "L, I, - 115,202 - 52,293 7,113,962
905,443 0 -145,393
I - 0 6,789,100 0
145,393 0 7,086,601
4,969 0 0
1, = 0 4,969 0
4
0 0 9,938

m = 6391.30 slugs

m,= 6366 .46 slugs

m2= 0.3108 slugs

m.= 0.3108 slugs

3
m, = 12.42 slugs
PA. = 0.09556 slugs/ftt PA = 0.09556 slugs/ft
7 2
= . 1b-ft
B, = 4.0 x 107 1b-ft’ Elg 4.0 x 10
C¢ = ,003 Ce = .003

PI = (0.9089 slug-ft

GI. = 4.0 x 107 1b-tt?

g, = -003 367



Figure 1. Drawing of the Shuttle/Antenna Configuration.

SPACECRAFT Cmmzo:. [.AB EXPEmMENT

(SCOLE)

M o——
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Figure 2.- Schematic of the eftect of bending on the
line-of-sight pointing error.
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Roll bending mode # 1. Frequency= .32 Hz

INFOPLY

Roll bending mode # 2. Frequency= 129 Hz
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INFOPLY

Roll bending mode # 3. Frequency= 480 Hz

INFOPLT

Roll bending mode # 4  Frequency= 1229 Hz
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Roll bending mode # 5. Frequency= 23.68 Hz
Roll bending mode # 6. Frequency= 3889 Hz
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Roll bending mode # 7. Frequency= 57.90 Hz
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Figure 4a.- Plots of normalized roll bending mode shapes

for SCOLE configuration.
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Figure 4b.~ Plots of normalized pitch bending mode shapes
for SCOLE configuration.
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Figure 4c.- Plots of normalized torsional mode shapes for
SCOLE configuration,

373



374



Summary of Selected Papers

by

Lawrence W. Taylor
NASA Langley Research Center

375

PRECEDING PAGE BLANK NOT FILMMH



CONTROL DESIGN CHALLENGES of LARGE SPACE SYSTEMS and
SPACECRAFT CONTROL LABORATORY EXPERIMENT (SCOLE)

Gene Lin of Control Research Corporation

Examines the Resulting Excitation due to Bang-Bang Slewing

Effect of Excitation on Line-of-Sight Error

Concept of Modal Dashpots

Examines the Resulting Excitation Employing Modal Dashpot Design
Examines Linear Velocity Feedback Force Control (Also Angular)

Computer Simulation

Needs tc be Applied to SCOLE Experimental Apparatus
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INITIAL TEST RESULTS on STATE ESTIMATION on the SCOLE MAST

Dean Sparks of NASA Langley Research Center

Modal State Estimation Tested on SCOLE (Fixed Shuttle Body)
Kalman Filter used for State Estimation
Six Linear Accelerometers and 3-Axis Rate Gyro

Large Discrepencies Between Linear Finite Element Model and
Experiment

Sinusoidal Input Forcing Function

Gravity Effects Very Pronounced
A Large Number of Modes Required for Accurate Static Deflection

Nonlinear Kinematics Can Be Significant

377



The DYNAMICS and CONTROL of the IN-ORBIT SCOLE CONFIGURATION

MINIMUM TIME ATTITUDE SLEWING MANEUVERS of a RIGID
SPACECRAFT

STABILITY ANALYSIS of LARGE SPACE STRUCTURE CONTROL SYSTEMS
with DELAYED INPUT

Peter Bainum, A.S.S.R. Reddy, Cheick M. Diarra and Feiyue Li of Howard
University

Examines the Changes in Modal Characteristic due to Orbital Motion
Linear Elasticity Assumed

Retain Nonrotating Mode Shapes

Examines Stability for Rigid Case with Increasing Complexity

Derives Control Law using Linear, Flexible (4 Modes) SCOLE

Computer Simulations

Need to Introduce Disturbances, Noise

Need to Apply to Experimental Apparatus
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CONTROL DESIGN APPROCHES for LaRC EXPERIMENTS

Steve Yurkovich and Umit Ozguner of Ohio State University

LQG, MEOP

Computer Simulations

Model Reference Adaptive Control

Employ Hyperstability and Positivity Concepts

Combine with Parameter Identification

Computer Simulations

Noise and Parameter Uncertainity Models Not Necessarily Realistic

Need to Apply to Experimental Apparatus
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SOME NONLINEAR DAMPING MODELS in FLEXIBLE STRUCTURES

A. V. Balakrishnan of UCLA

Nonlinear Damping Term ie  Ixlaldx/dtlbdx/dt

Uses Krylov and Bogoliubov Approximation

"Solves" Equations for SCOLE Bending and Torsion
Examines Multivariable Case

Draws Analogy with Nonlinear, Boundary Feedback Control
Useful Results for Modeling Nonlinear Damping

Useful for Systems Identification

Experimental Evidence Supports Findings

Need Approximations for Modal Model
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SOME NONLINEAR DAMPING MODELS in FLEXIBLE STRUCTURES

A. V. Balakrishnan of UCLA

Nonlinear Damping Term ie  Ixlaldx/dtlbdx/dt

Uses Krylov and Bogoliubov Approximation

"Solves” Equations for SCOLE Bending and Torsion
Examines Multivariable Case

Draws Analogy with Nonlinear, Boundary Feedback Control
Useful Results for Modeling Nonlinear Damping

Useful for Systems Identification

Experimental Evidence Supports Findings

Need Approximations for Modal Model
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INFINITE-DIMENSIONAL APPROACH to SYSTEMS IDENTIFICATION
of SPACE CONTROL LABORATORY EXPERIMENT (SCOLE)

S. A. Hossain and K. Y. Lee of Penn State University

Retains Physical Parameters ie Coefficients in P.D.E.s
Truncation problem avoided

Weighted Least Squares

Computer Simulations for a Few Different Examples

Convergent after Several Iterations

Additive Noise Used is Not Particularly Realistic

Good to tie-in to Physical Parameters
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OPTIMIZATION-BASED DESIGN of CONTROL SYSTEMS for FLEXIBLE
STRUCTURES

E. Polak, T. Baker, T-L. Wuu and Y-P. Harn of University of California at
Berkeley

Approach is to Use "Nonsmooth Optimization Algorithms"

Design Closed-Loop Finite Dimensional Compensators for Flexible
Structures

Does Not Require Modal Decomposition, Avoiding Spillover Problem
Applicable to Mixed Ordinary and P.D.E. Systems

Classical Design Objectives

Applied to Flexible Beam with Tip Mass

Computer Simulation

Need to Test with Disturbances, Noise
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PLACING DYNAMIC SENSORS and ACTUATORS on FLEXIBLE SPACE
STRUCTURES

Gregory Norris and Robert Skelton of Purdue University

Input/Output Cost Analysis Decomposes the Quadratic Cost into
Contributions from Each Stochastic Input and Weighted Output.

Closed Loop is Considered
Past Treatment Required Perfect Sensors and Actuators
Now Consider Dynamics of Sensors and Actuators

Applied to SCOLE

Important to Consider Closed Loop and Dynamics of Elements

Order Reduction is an Important Problem
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COMBINED PROBLEM of SLEW MANEUVER CONTROL and VIBRATION
SUPPRESSION

Y. P. Kakad of University of North Carolina at Charlotte
Derives the Nonlinear Equations of Motion Suitable for Slewing and
Vibration Control

Analyzes the Kinematic Nonlinearities in terms of the Matrix Spectral
Norm

Analyzes Arbitrary Slew Maneuver

It May be Necessary to Synthesize Control Systems for the Combined
Problem

Interesting Approach

Determining "Optimal” Control Might be Difficult
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EFFECT of ACTUATOR DYNAMICS on CONTROL of BEAM FLEXURE DURING
NONLINEAR SLEW of SCOLE MODEL

Shalom (Mike) Fisher of Naval Research Laboratory

Simulation Includes Limited Proof-Mass Deflection and Time Delay
Examines Line-of-Sight Errors due to Slewing and Settling
NASTRAN Finite Element Model (12 Vibrational Modes)

Nonlinear DISCOS Simulation of 20" Slew

LQR Design

Force Limit

Computer Simulation

Ready for Experimental Apparatus
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COMPUTATIONAL EXPERIMENTS in the OPTIMAL SLEWING of FLEXIBLE
STRUCTURES

T. E. Baker and E. Polak

Considers the "Swinging Flexible Arm Problem"

45 Degree Rotation

Torque Limit

Minimizes Total Energy Required for Time Limit
Same with Upper Bound on Potential (Elastic) Energy
Computer Simulation

Need to Consider Disturbances, Noise
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PARAMETER IDENTIFICATION USING MODAL DATA

L. Meirovitch and M. A. Norris of V.P.L.

Uses Indirect Method ie Modal "Data" not Sensor Data
Rayleigh-Ritz method

Iterative, Sensitivity Analysis

SCOLE Laboratory Experiment Application

4 Degree-of-Freedom Model

Estimated EI, I(Antenna)

Work at early stage.

Important coupling not yet included.
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NONLINEARITIES in SPACECRAFT STRUCTURAL DYNAMICS

Lawrence W. Taylor and Kelly Latimer of NASA Langley Research
Center

Many Modes are Needed for Accurate Static and Dynamic Characteristics
Large Amplitude Deflection Effects are Examined

Lumped Mass and Assymptotic Approximations are Evaluated

A 3-Dimensional Beam Equation is Derived for Large Deflections

Linear and Nonlinear Damping Models are Examined

Distributed Parameter Models are Seen To Reduce the Number of
Parameters

The Dynamic Model of the SCOLE Experimental Apparatus Needs to be
Improved

Effort is Needed in Solving the 3-Dimensional Beam Equation

The Nonlinear Damping Seen in the SCOLE is Probably Due to
Aerodynamics
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ANALYTICAL REDUNDANCY MANAGEMENT for SCOLE

Ray Montgomery of NASA Langley Research Center

Examines Problem of Control Performance when Elements are Failed
Uses Expected Quadratic Performance Index

Combinatorial Problem forces Cut and Try

Important Consideration for Some Applications with Long Life/MTBF
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