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ABSTRACT

The study of the dynamics of the Spacecraft Control Laboratory Experi-
ment (SCOLE)!is extended to emphasize the synthesis of control laws for both
the linearized system as well as the large amplitude slewing maneuvers required
to rapidly reorient the antenna line of sight. For control of the system
through small amplitude displacements from the nominal equilibrium position
LR techniques are used to develop the control laws. Pontryagin's maximun
principle is appiied to minimize the time required for the slewing of a
general rigid spacecraft system.  The minimum slewing time is calculated
bused on a quasi-linearization algorithm for the resulting two point boundary
valuc probiem.? The effect of delay in the control input on the stability of
a conilnuously acting controller (designed without considering the delay)

15 studied analytically for a second order plant. System instability can
result even tor delays which are only a small fraction of the natural period
of motion.’
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. Equations of Motion

"Derived using a Newton-Euler approach

. Assumptions

- Reflector and Shuttle rigid

- Mast has constant cross-section

- It is assumed to undergo small elastic deformations only

- Its modal shapes in orbit are assumed to be the same as
those of an identical®non-rotating beam,

Stability Analysis (Rigidized SCOLE)
A stability analysis of the rigidzed SCOLE was conducted for
the following configurations:

a)

b)

c)

Rigid - no offset. Pitch motion decouples from roll
and yaw_in the linear ranges. System not stable

Rigid - with offset parallel to roll axis. Pitch motion
still decouples from roll and vaw in the linear range.,
System unstable.

Rigid - With both offsets (parallel to roll and pitch
axes). The motions in all 3 degrees of freedom are
coupled. System found to be unstable.

.Control Laws -

Assumption: All the states of the system are available,

[t was suggested by J.G. Lin that an Intuitively appealing
practical approach to achieve the LGS pointing objective
Is a two-stage procedure. (a) Slew as 1f rioid then,

(b) damp-out flexible dynamics.

. The linear requlator theorv used here to control

-the linear model of the rigidized SCOLE,

-The linear model of the actual SCOLE configuration includina
the first fo.r flexible modes of the mast.

Next

(AL SAR N

Preliminary slew maneuvers 5f rigidized SCOLE,
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MINIMUM TIME ATTITUDE SLEWING
MANEUVERS OF A RIGID SPACECRAFT

OBJECTIVE

DEVELOP COMPUTATIONAL TECHNIQUES TO SLEM
A GENERAL RIGID SPACECRAFT ( INCLUDING
RIGIDIZED SCOLE ) FROM AN ARBITRARY INITIAL
ATTITUDE TO A FINAL REQUIRED ATTITUDE
PRECISELY, AND SATISFYING THE FOLLOWING
CONDITIONS:

. IN MINIMUM TIME

. THE CONTROLS HAVE SATURATION LEVELS

/66



METHODOLOGY

THE MAXIMUM PRINCIPLE FROM OPTIMAL CONTROL THEORY IS
APPLIED TO THE EULER’S DY¥NAMICAL EQUATIONS AND THE
QUATERNION KINEMATICAL EQUATIONS OF THE SYSTEM TO
DERIVE THE NECESSARY CONDITIONS FOR THE CONTROLS.

THIS LEADS TO THE TWO—POINT BOUNDARY-VALUE PROBLEM.

AN INTEGRAL OF A QUADRATIC FUNCTION OF THE CONTROLS
IS USED AS A COST FLUNCTION, BUT THE INTEGRATION
PERIOD OF THIS INTEGRAL, CALLED THE SLEWING TIME,

IS TO BE CHANGED UNTIL IT REACHES ITS MINIMUM UVALUE.

THE RESULTING TPBUP IS SOLUED BY A QUASILINEARIZATION

ALGORITHM ( METHOD OF PARTICULAR SOLUTIONS ).

EULER’S EIGENAXIS ROTATION THEOREM IS USED TO
APPROXIMATELY DETERMINE THE INITIAL UALUES OF THE
COSTATES AND THE SLEWING TIME AS WELL AS THE
NOMINAL SOLUTIONS WHICH ARE HESD TO START THE

QUASILINEARIZATION ALGORITHM.

THE MINIMUM SLEWING TIME IS DETERMINED BY SHORTENING
THE TOTAL SLEWING TIME UNTIL AT LFST ONE OF THE

CONTROLS BECOMES A BANG—BANG TYPﬁi
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X-AXIS SLEWING ( TIME = 3.888 SEC. )
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CONCLUDING REMARKS

THE SLEWING MOTION NEED NOT BE RESTRICTED TO A

SINGLE AXIS MANEUVER.

THE GUESSED STARTING UVALUE OF THE SLEMING TIME IS
VERY CLOSE TO THE CONUERGED UALUE FOR THE SCOLE

EXAMPLES AND SUBROUTINE USED HERE.

THE GUESSED INITIAL UALUES OF THE COSTATES ARE

'ADEQUATE FOR THE ALGORITHM TO CONVERGE.

THE METHODS USED HERE MAY BE IMPLEMENTED FOR
PRACTICAL CONTROL SOURCES WHICH MAY HAUVE MORE

CONSTRAINTS.

AN EXTENSION TO THE MINIMUM TIME SLEWING MOTION
OF THE SCOLE MODEL CONTAINING BOTH RIGID AND

FLEXIBLE COMPONENTS IS PLANNED.
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Appendix - Chapter II

Stability Analysis of Second Order System
with Delayed State Feedback

As a second order differential equation describes the dynamics of

a single mode of any large space Structure, the stability analysis of such

a system with delayed state feedback is analyzed and the amount of delay

that can be tolerated by the system without becoming unstable is arrived

at analytically.

The differential equation of second order with state feedback can be

written as:
where
. x; =
Wy =
;' =

ke
K,
h

:!l.wiii + mizxi = -eri(t'h) - kp).(i(t-h) (1)

ith modal coordinate

ith natural frequency

ith mode inherent damping ratio
rate feedback gain
positicn_féedback gain

time delay_

The feedback gains k., kp are des}gned for the required stability and

transient response specifications without taking the delay into consideration.

The inherent damping ratio, ci' and the feedback gains, k. and kp; will

give rise to five possible .combinations as shown in Table 1 and are thus

analyzed separately for mathematical convenience and easy understanding.
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Case I: ;i =0, kp =0 and-kr >0

The differential equation of the system can be written as:

X, *ulx; = - k_X; (t-h) (3
'
Case ] kr kp
1 =0 >0 2 0
II >0 >0 =0
III =0 >0 >0
Iv >0 =0 #0
Vv >0 >0 #0

Note: The remaining three combinations are
neither feasible nor of interest.

Table 1: Feasible Combinations of 5ir ko k
for Stability Analysis P
and the corresponding characterstic equation is given by:

2- 2 -sh
s7+ wi + 2t u;se e o (4a)

where kr = Zciwi.
The value of h for which the roots of equation (3) cross the imaginary
axis can be evaluated by substituting s = jw.

Thus 2 2
wy w® o+ jZCiwitusinmh + ZCiwiwCOSwh =0 (4b)

For equation (4b) to be satisfied

Sinwh = 0
and wz -wz + 2C.w.w COswh = 0 (5)
i £i%j
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Thus wh = ﬂ/z
TT/Z
and h = —— (6)
wi [Ci + v ]+Ci2 ]

Case II: ci >0, kp-= Z;iwi and kp =0

The characteristic equation of the system described by equation (1)

is given by
(wf-wz»az;imimsm.,h) * 3 (28w u*28 0 0c05uh) = 0 (7)
Thus Coswh = -;i/ci '
and h o= cos-1(%i/%i ()

S AT O
For the case where ci<ci thesystem will always be stable since no value

of h exists for which the roots of (7) cross the imaginary axis. A plot
of w;h versus zj for various values of ;; is shown in Figure 2.1.

]
Case III: g = 0, kp =kr >0

The characteristic equation is given by

24,2 -shy o-sh :
s +mi+krse .+kpe 0 9)
or (w%-m%*mklsimh*pcowh) * j ( wkpcosuh-k;sinuh) = 0 (10)
ThUS tarl mh = Nkr
and 2 %-[(%%H(i) + 7[k?+4m§ki+4ké]] (11)

Plots of huw; versus ky/wj for various values of kp/w% are showﬁ in
Figure Z.Z.IE can be seen here that these are many combinations of kp and
ky for which the roots of Eq. (10) can cross the imaginary axis - i.e.
value of hmi which leads to instability.
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Case 1IV: ;i' >O,kr=0,kp7‘0

The characteristic equation is given by

(wiz-w2+kpcoswh) + J;(Zci'wiw-kpsinwh,) =0 _ | (12)
: 2. w.w
Thus sinwh = 1 1 : (13)
and 5

71}

2 12 2
"oy 02 o Mag 2
The plots of hwj versus kp/w% for various val
Figure 2 3

2
+ (kp/wi?)] (14)

L} -
ues of ¢ are shown in

Case V: & >0, kp > o,.kpfp

The characteristic equation is given by

(032 -wlsuk, sinwh+k,cosuh)

+ j(Zc]!_ mimmkrcomh-kpsimh) =0

(15)
By equating the imaginary part to zero, wh can be evaluated as
4
R | 2. w.w ) wk
‘whsmflelz)-tanl(rJ (16)
kp®+y k. 1;
e e, N
y

o; "o wkesin (sinly-tan-1( vkr 5,

+ kp cos (sin‘ly-tan-l( %]% D=0 17



Using equations (17) and (16), the limiting value for given values of z;i',
k., kp and w; can be determined. As the equation (17) is nonlinear,
numerical procedures may have to be used and thus the generalized plots

similar to the other cases may be obtained,
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' = inherent damping
§' =9.2 0.4 0.6 0.8 1.0
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active damping ratio ¢

Figure 2.1: Plots of hy. VS §; correspondence to Case II with :i
as a parameter,
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£ as a parameter
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