https://ntrs.nasa.gov/search.jsp?R=19890004278 2020-03-20T04:21:49+00:00Z

N89 - 13649

57-27 181375 18P.

MICROSTRUCTURAL ASPECTS OF ZIRCONIA THERMAL BARRIER COATINGS

T.E. Mitchell, D.S. Suhr, R.J. Keller, V. Lanteri, and A.H. Heuer Department of Metallurgy & Materials Science Case Western Reserve University Cleveland, Ohio 44106

Various combinations of plasma-sprayed bond coatings and zirconia ceramic coatings on a nickel-based superalloy substrate were tested by static thermal exposure at 1200° C and cyclic thermal exposure to 1000°C. The bond coats were based on Ni-Cr-Al alloys with additions of rare earth elements and Si. The ceramic coats were various $ZrO_2-Y_2O_3$ compositions, of which the optimum was found to be $ZrO_2-8.9$ wt. χ_{203}^{203} . Microstructural analysis showed that resistance to cracking during thermal exposure is strongly related to deleterious phase changes. Zones depleted of Al formed at the bond coat/ceramic coat interface due to oxidation and at the bond coat/substrate interface due to interdiffusion, leading eventually to breakdown of the bond coat. The 8.9% Y_2O_3 coating performed best because the as-sprayed metastable (high- Y_2O_3) tetragonal phase converted slowly into the low- Y_2O_3 tetragonal plus high- Y_2O_3 cubic-phase mixture, so that the deletérious monoclinic phase was inhibited from forming. Failure appeared to start with the formation of circumferential cracks in the zirconia, probably due to compressive stresses during cooling, followed by the formation of radial cracks due to tensile stresses during heating. Cracks appeared to initiate at the Al₂O₂ scale/bond coat interface and propagate through the zirconia coating. Comparisons have been made with the behavior of bulk $ZrO_2-Y_2O_3$ and the relationship between the microstructure of the tetragonal phase and the phase diagram. A separate investigation has also been made of the Zr0,-A1,0, interface.

System 5 0 0.25 0.5mm

Fig. 1. Optical microstructures of an 8.9% Y_2O_3 system, as-sprayed and after static thermal exposure for 1, 10, and 100 h at 1200°C.

Fig. 2. General optical microstructure of an 8.9% Y_2O_3 system after 100 h static thermal exposure at 1200°C.

Table I. Effect of Y_2O_3 Content in the Ceramic Coat on the Number of 1000°C Cycles to Failure for Individual Specimens with a Given Bond Coat (Ni–Cr–Al with Y and Si Additions)

Y₂O₃ (wt%)	No. of cycles to failure
4.3	7 15
6.1	233 233
8.9	>500 >500 >500
19.6	321 >500

System		Time (h)			
$({}^{\circ}_{0}Y_{2}O_{3})$	Phase	As-sprayed	1	10	100
4.3	Monoclinic	22	37	41	44
	Tetragonal	4 74	5 58	4 55	53
6.1	Monoclinic Cubic Tetragonal	16 6 78	17 9 74	18 10 72	20 11 69
8.9	Monoclinic Cubic Tetragonal	8 13 79	9 15 76	9 22 69	12 31 57
19.6	Monoclinic Cubic Tetragonal	3 70 27	3 76 21	2 84 14	2 88 10

Table II. Phase Analyses (mol%) after Thermal Exposure at 1200°C

Time	Al	Si	Cr	Co	Ni	Ti	Phase	Remark
As-sprayed	4.5 12.7	2.8 2.0	26.9 15.8	2.2 1.7	63.6 67.8		γ/γ' eta	
1 h	2.5	1.1	19.7	2.8	73.9		γ/γ΄	Depleted zone near ceramic coat
	6.1	1.0	11.6	1.9	79.4		β	Below depleted zone
	3.0	1.0	18.5	2.6	74.8		γ/γ'	Below depieted zone
	7.2	0.9	9.1	1.9	80.9		β	Near substrate
	9.9	1.6	17.6	2.7	67.8	0.4	γ/γ'	Near substrate
	2.1	1.4	19.2	3.5	73.3	0.5	γ	Depleted zone near substrate
10 h	2.4	1.2	17.6	4.6	74.2		γ /γ'	Depleted zone near ceramic coat
	3.6	1.8	17.4	4.2	73.0		γ/γ'	Middle of bond coat
	8.5	1.4	9.8	3.8	75.6	0.9	β	Middle of bond coat
	3.4	2.2	17.4	4.8	71.5	0.7	γ /γ'	Depleted zone near substrate
100 h	6.4	2.8	11.4	7.7	70.3	1.5	γ/γ΄	Depleted zone near ceramic coat
	7.5	2.4	5.0	4.9	78.4	1.8	β	Middle of bond coat
	5.1	3.6	11.4	8.4	70.8	0.7	γ/γ'	Depleted zone near substrate

Table III. Chemical Compositions (wt%) in the Bond Coat after Static Thermal Exposure at 1200°C

Table IV. Chemical Composition (wt%) of the Oxide Film Formed at the Ceramic Coat/Bond Coat Interface

Time at 1200°C (h)	Al ₂ O ₃	Cr ₂ O ₃	CoO	NiO
1	72.6	10.7	0.9	15.8
10	21.8	27.6	2.8	47.8
100	93.1	6.9		

(a)

(Ъ)

(d)

0.1 μ m

Fig. 4. (a)-(d) TEM micrographs of the as-sprayed $4.3\% Y_2O_3$ ceramic coating showing the separated regions of monoclinic and tetragonal (T') grains and their SAD ring pattern, (a)-(b) monoclinic; (c)-(d) tetragonal (T')

0.1 µm

Fig. 5. TEM micrograph of the as-sprayed 6.1% Y₂O₃ ceramic coating showing the non-equilibrium tetragonal (T')² columnar grains.

0.5 µm

Fig. 6. TEM bright-field image showing the ZrO_2 - Y_2O_3 splat morphology with columnar tetragonal grains which have grown perpendicular to the splat boundary (6.1% Y_2O_3) ceramic coat after 100 h at 1200°C.

(a) 0<u>.1 µ</u>m

(b)

Fig. 7. (a)-(b) TEM micrograph of the columnar cubic grains within as-sprayed 19.6% Y_2O_3 ceramic coating showing intergranular microcracking (a) and the SAD ring pattern (b).

ORIGINAL PAGE IS OF POOR QUALITY

(a) APB's

0<u>.1 µ</u>m

(b) Mottled structure

0.1_µm

(c) Colony structure

0.1_µm

Fig. 8. (a)-(c) Three kinds of tetragonal phase TEM microstructure

(a)

l µm

(Ь)

0.1 µm

(c)

Fig. 9. (a)-(c) 4.3% Y₂O₃ ceramic coating after 100 hours exposure at 1200 °C showing separate regions of monoclinic and tetragonal grains.

(a)

0.1 µm

(b)

Fig. 10. 4.3% Y_00_3 ceramic coating after 100 hours at 1200° C : (a) TEM micrograph of the tetragonal colony structure within large (~1.0 μ m) grain and (b) corresponding [011] diffraction pattern.

0.2 µm

Fig. 11. $6.1\% Y_2 O_3$ ceramic coating after 100 hours exposure at 1200° C showing splats formed by low $Y_2 O_3$ concentration particle consisting of many twined monoclinic grain and splats formed by high $Y_2 O_3$ concentration particle consisting of tetragonal grains.

> ORIGINAL PAGE IS OF POOR QUALITY

Fig.12. (a)-(b) $19.6\% Y_2 O_3$ ceramic coating after 100 hours exposure at 1200° C (a) monoclinic and cubic grains (b)higher magnification micrograph showing tetragonal grains(A) formed at the interface between monoclinic and cubic grains due to yttrium diffusion.

0.25 µm

Position	A1203	Si0 ₂	Cr ₂ 0 ₃	Co0	NiO	
1	2.2	43.1	9.3	4.3	41.1	
2	5.7	55.2	6.9	2.8	29.3	
3	25.0	3.3	65.2	0.6	5.8	

Fig. 13. TEM micrograph of oxide scale after 1 hour thermal exposure at 1200° C and the result of point EDAX analyses (system 5). The oxide scale is adherent to the bond coating, however pores are present at the oxide scale/ceramic coating interface.

0.5 µm

Fig.14. TEM micrograph of oxide film after 10 hours thermal exposure at 1200° C showing the columnar grains of $Al_{2}o_{3}$ and the void formation at the oxide film/bond coating interface.

73

(a)

20 µm

(Ь)

Fig.15. (a)-(b); (a) SEM micrograph of the bottom-side of ceramic coating (system 10) that had failed after 100 hours exposure and (b) microprobe X-ray map for Al.

Fig.18. Free energy vs composition curves: (a) above the critical temperature T_0 and (b) below the critical temperature T_0 .

76