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The near-term objective of this investigation is to develop an under- 
standing of the states of stresses and strains in a Zirconia-yttria 
thermal barrier coating (TBC) experiencing a given temperature drop. 
Results so obtained are expected to facilitate experimental work. 
In order to gain realistic insights into the distribution of stresses 
and strains in a complex TBC, the finite element approach was selected 
to model a cylindrical TBC specimen. Experimental evidence reported 
in the literature indicated the presence o f  (near-sinusoidal) rough 
interface between the ceramic coat and the bond coat. Oxidation of 
the bond coat at ceramic-bond interface was observed, as was a small 
amount of  cracking in the ceramics near the ceramic-bond interface. 
To account for these complex features, a plane-strain finite element 
computer program known as TBCOC has been developed, taking advantage 
of a generic computer code known as MARC. This generic code has been 
made available to this co-operative research effort through the use 
of a supercomputer (Cray I) at NASA Lewis Research Center. The TBCOC 
model contains 1316 nodal points and 2140 finite elements. It is 
capable of a uniform isothermal loading. Results of a sample computer 
run are presented. The loading for this run is a 1800F (1OOOC) drop 
from 1292OF ( 7 O O O C ) .  Material properties used are best estimates for 
1292OF, based largely on experimental/commercial data as well as those 
used in the literature. These results have been favorably correlated 
with runs using a less sophisticated finite element model (the Basic 
TBC) in mid-1984. Stress build-ups (in shearing, radial, and to a 
lesser extent, hoop stresses) in the vicinity of the sinusoidal 
ceramic-bond interface have been observed. The greatest tensile 
stress concentration occurs in the ceramic layer in the immediate 
vicinity of the peaks of the sinusoidal interface. This tensile 
build-up nearly coincides with cracks observed in experimental work 
reported by other investigators in recent years. 
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TABLE I. - MATERIAL PROPERTIES 

E ( p s i )  l! P (pci) 

Ceramic 4 x l o 6  0 . 2 5  0 . 2 0 4  

Bond Coat 20 x l o 6  0.27  0 . 2 5 2  

Substrate 2 5 . 5  x 10 0.25 0.280 6 

a (in./in./OF) 

5 . 5 6  x 

8 . 4 2  x 

7 . 7 3  x 10-6 

Figure  1. C y l i n d r i c a l  Specimens w i t h  S p a l l e d  
Th.ermal Barrier Coat ings 
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Figure 2. SEM Photomicrograph of the Cross Section of a Thermal Barrier - - -  
Coating System. (Specimen has failed (delaminated) but not 
yet spalled.) 
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Figure 3. SEM Photomicrograph of the Cross Section of a Thermal Barrier 
Coating System. (Specimen has failed (delaminated) on cooling. 
Spalling would occur on subsequent heat up.) 
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FIGURE 4. CYLINDRICAL TBC TEST SPECIMEN 
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FIGURE 6. OVERVIEW OF THE ADVANCED TBCOC MODEL 

FIGURE 7. TBCOC MODEL (PART 1) 
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FIGURE 8. TBCOC M O D E L  (PART 2 )  

F IGURE 9 .  TBCOC M O D E L  (PART 3) 
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FIGURE 10. TBCOC M O D E L  (PART 4) 
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FIGURE 13. FINITE ELEMENT DETAILS (PART 2C) 
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FIGURE 15. RADIAL STRESSES (PART 2C) IN PSI 
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FIGURE 16. TANGENTIAL STRESSES (PART 2C) IN PSI 
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R = 0.255 in. R = 0.256 in. 
FIGURE 17. SHEARING STRESSES (PART 2C) IN PSI 

R = 0.257 in. 

123 



ORIGINAL PAGE IS 
OF PdOR QBALITY 

I I 
R = 0.253 in. R = 0.254 

FIGURE 18. RADIAL STRESSES (PART 2D) 

in. 
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FIGURE 19. TANGENTIAL STRESSES (PART 2D) IN PSI 
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FIGURE 20. SHEARING STRESSES (PART 20) IN PSI 
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