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I. COMPUTATION AND ANALYSIS OF FREE SURFACE FLOV OF A THIN
LIQUID FILM UNDER ZERO AND NORMAL GRAVITY

1.1 Summary

The results of a numerical computation and theoretical analysis are
presented for the flow of a thin liquid film in the presence or absence of
a gravitational body force. The numerical computations employed a
curvilinear body-fitted coordinate system. The governing transport
equations were discretized using the finite control-volume formulation and

solved implicitly. The computer code PHOENICS was used for this purpose.

Five different flow systems were studied: (a) falling film down a
vertical wall, (b) plane film flow along a horizontal plate, (c) plane film
flow at zero gravity, (d) radial film flow along a horizontal plate and (e)
radial film flow at zero gravity. In all these systems, the distribution
of the film height, the flow field and resistance exerted by the solid wall

were studied.

For the flow of a laminar falling film, a fully-developed flow regime
is present where an equilibrium is established between the gravitational
body force and the shear force at the wall. It was found that a film
introduced at a height above or below the equilibrium height eventually
reaches the equilibrium condition for that flow rate. In the developing
region, the height of the free surface and the distribution of the velocity
components change simultaneously. For plane flow along a horizontal plate,

the film height rises up and forms a hydraulic jump where a change of the



flow regime from supercritical to subcritical takes place. For plane flow
under zero gravity, the film height increases monotonically. The shape of
the velocity profile becomes parabolic after some distance from the

entrance but the flow never attains a fully-developed condition.

For radial flow the height of the film and the downstream flow
structure are determined by the flow rate, inlet height and magnitude of
the gravitational acceleration. For larger flow rates, the film height
decreases downstream under zero gravity whereas the film height increases
slightly downstream when the gravitational body force is present. For
smaller flow rates and inlet film heights, the fluid level downstream rises
to a height above the inlet. This rise happens suddenly under normal
gravity whereas the rise occurrs more gradually under zero gravity. The
level of the fluid decreases slowly after the jump. This rise or jump is
also found to be associated with a region of flow separation. The flow
re-attaches after the separation 2zone and the velocity profile becomes

parabolic downstream.



1.2 Introduction

The flow of a thin liquid film 'is encountered in many engineering
devices. During evaporation or condensation on a solid surface in a
compact heat exchanger or cooling tower, spin coating in metal industries,
and impingement of a liquid jet on a solid wall as in impingement cooling,
a thin film is quite commonly found. Besides practical applications, the
fluid mechanics of thin film flow is important from a theoretical point of
view since both viscosity and free-surface effects are important in these
flows. Moreover, the understanding of such flows under reduced or zero
gravity is essential for proper design of heat exchangers for space

applications.

The falling of a thin liquid film along a plane vertical wall has been
.studied by many investigators since the turn of this century. For steady
fully-developed laminar flow, a theoretical solution can be derived from a
simple balance between the gravitational body force and the shear force at
the solid wall (Bird, et al. [1]). The film height remains constant and
the velocity profile across the film becomes parabolic in the fully
developed region. The analysis of developing flow when a film is

introduced at its equilibrium height is also available in the literature.

A film falling under the influence of gravity ceases to be laminar and
constant in thickness when the flow rate is high. Vaves tend to appear on
the surface and the flow becomes turbulent as the flow rate is increased.
A number of theoretical as well as experimental studies have been performed
to understand the flow in wavy-laminar and turbulent regions. A review of

such studies has been prepared by Faghri and Payvar [2]. This review also




included the experimental studies on laminar flow with constant thickness.

A somewhat less studied problem is the spread of a liquid film over a
plate. Vatson [3] presented results of analytical and experimental studies
of the radial spread of a liquid jet impinging on a horizontal plane for
laminar and turbulent flows. By using the boundary layer approximations
for the governing equations, he derived analytical solutions using a
similarity transformation along with the Pohlhausen integral method. His
analysis covered the regions where the boundary layer thickness is 1less
than the film height and where the film is totally engulfed by the boundary
layer. The effects of the gravitational pressure gradient was discussed.
The possibility of a hydraulic jump in such a flow was also anticipated.
However, the analysis was applicable only to regions before the jump and
.the jump height could be predicted for any given location of the jump. The

agreement between the experimental data and the analysis was satisfactory.

Another interesting problem of thin film research is the spreading of
the film under the action of centrifugal force as seen in a rotating
system. An approximate analytical solution for laminar flow on a rotating
disk was developed by Rauscher et al. [4]. An asymptotic expansion
technique was used where the radial spread of the fluid was perturbed to
determine the effects of convection, Coriolis acceleration, radial
diffusion, surface curvature and surface tension. These higher order
effects were discussed on a physical basis. The turbulent counterpart of
the rotating disk problem was solved by Murthy [5] where the governing
transport equations were integrated across the thickness of the film and

the reduced equations were solved analytically.



The heat transfer in a thin film has also been studied by many
investigators, particularly dealing with evaporation or condensation. The
earliest study in this regard is credited to Nusselt [6], who developed an
analytical solution for film condensation along a vertical isothermal wall.
The analysis given by Nusselt has been improved by several investigators to
include the effects of inertia, vapor pressure, etc. Sparrow and Gregg [7]
developed a theory for rotating condensation where the removal of the
condensate took place due to centrifugal force instead of the force due to
gravity. Butuzov and Rifert [8] performed experiments to verify the theory
developed in [7]. 1In a more recent study, Butuzov and Rifert [9] presented
experimental as well as theoretical results_for the reverse problem of film

evaporation from a rotating disk.

In the previous studies concerning thin .liquid films, the
investigators have tried to develop analytical models or have taken
experimental data. Some of these models are quite approximate in nature
and do not bring out the finer details of the flow field. A numerical
finite-difference solution of a thin film flow is not available at the
present time. These flows are difficult to solve by the finite-difference
method since the geometry of the free surface is not known ahead of time,
and the surface profile cannot be fitted in a regular Cartesian or
cylindrical coordinate system. Moreover, none of the studies mentioned
above has considered the flow under reduced or =zero gravity, which is
expected to be different from the flow under normal gravity. A proper
understanding of such flows is essential in the design of space cooling

systems.




The present study is undertaken to develop a general numerical
solution procedure for thin film flows which can be applicable to both
plane and radial systems, and to both normal and zero gravity environments.
The numerical solution is supplemented with a one-dimensional analysis.
The results highlight the effects of gravity for different configurations
of the flow.

1.3 Problem Formulation

The equations governing the conservation of mass and momentum in a

thin film of fluid which is newtonian with constant properties are given by

7.V=0 (1.1)
2 " - ’
p g% =-Vp +u 2y P8 (1.2)

These governing equations have to be supplemented with appropriate

boundary conditions. At the solid wall the no-slip condition exists,

-
therefore, V = 0. 0n the free surface the shear stress vanishes which

implies 0;/6n = 0, where n is the coordinate normal to the free surface.
Moreover, in the absence of any significant surface tension, the static
pressure on the free surface must equal the ambient pressure. By setting p
equal to the difference between the actual and ambient pressures, then p =
0 on the free surface since pressure is a scalar quantity. Boundary
conditions must also be assigned in the direction of the flow at two

locations if the problem is elliptic. The locations usually are the



entrance and exit to the control volume or computation domain. At the

. -
entrance, the film height and velocity are prescribed: h = h, and V =

in’
-

Vin. These also determine the flow rate and the Reynolds and Froude

numbers. At the exit the flow condition is usually unknown, so the fully
developed condition 5?/0n = 0 is prescribed. Moreover, if the film height
or Froude number is known at the exit, this information can also be
prescribed as a boundary condition. A boundary condition for the pressure
has to be given at one location in the direction of the flow. In the
numerical computation, it is convenient to prescribe this condition at the
outlet of the flow field. The coo;dinate system used here is shown in Fig.
1.1. The boundary conditions for different flow systems are listed in
Table 1 in the component form. The flow configurations considered in the
present investigation are shown in Fig. 1.2. They can be broadly
classified into two groups:

(P) Plane thin film flow

(R) Radial thin film flow

In the first group, three problems will be considered:
(P1) Palling film along a vertical wall
(P2) Plane flow along a horizontal wall

(P3) Plane flow under zero gravity

The first case is a classical problem where the major driving
mechanism is the gravitational body force. This problem was used to check
the accuracy of the present numerical scheme. The effects of introducing

the film at a height other than the equilibrium height for a given flow
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rate will be investigated for this case.

For plane flow along a horizontal wall, different flow regimes may be
present depending on the film height and fluid velocity. For plane flow
under zero gravity, the orientation of the solid wall is immaterial. The
flow remains the same whether the plate is vertical, horizontal or

inclined. In this case, the flow is driven by inertial and viscous forces.

In the second group, we will again consider two problems according to
the presence or absence of gravity.
(R1) Radial flow under zero gravity

(R2) Radial flow along a horizontal plate under normal gravity.

As the flow spreads out radially, the cross sectional area of the flow
increases downstream. The velocity decreases downstream due to friction
and the change in area. The flow field changes continuously as the fluid
moves downstream and can never become fully developed. Different phenomena

may also happen according to the rate of the flow.

1.4 Theoretical Analysis

Ve consider the one-dimensional flow of a thin film where the film
height h is a function of the radial (longitudinal, for plane flow)
location r. Let W be the average velocity of the film in that direction
and ( be the volume flow rate. In the case of plane flow, {§ is the volume
flow rate per unit of cross sectional area. The volume flow rate is given

by



g = (2r )% hv (1.3)

_ { 0, for plane system
where K = { 1: for radial system

Expressing the friction at the wall in terms of the friction coefficient

gives

2

Tw = C¢ 2;. (1.4)

It is assumed that Ce is constant in the present analysis.

Integrating eqn. (1.2) across the thickness of the film and

substituting the eqns. (1.3) and (1.4) results in

2 Ce y2
d v fv
(g *8h)=-5§ (1.5)
This momentum equation has to be solved along with eqn. (1.3) to

determine the flow field, and will be carried out in the following

subsections.

1.44 Flow Under Zero Gravity
For a steady flow under zero gravity, the governing equations, eqns.

(1.3) and (1.5), reduce to

Q= (zrr)K h¥ = constant (1.6)




v °f w2
V a? = - 2— h_ ) (1.7)

Eliminating h from eqns. (1.6) and (1.7) gives

-2 Y K
Vedv= pa)| (27r)" dr

Integrating this equation and substituting the inlet boundary

condition (i.e., at r=ry, W=V, and h = h,) yields the solution in the

form
v 1 gi(r'—fmf hy 14 ¥
VT T T =5 (& (1.8)
L7 1R

Solving for h results in the following relation

h r K

EI=A§_1+(1-A)(;,—) (1.9)
c

where A = gi -(-K—f—fﬂq (1.10)

It can be observed in eqn. (1.9) that for plane flow where'K = 0 the
film height increases monotonically with radial location r. This increase
in height is due to a decrease in velocity because of {friction. For
inviscid flow when no resistance is exerted by the solid wall, the film

height remains the same at all downstream locations beginning from the

10



| entrance. In an axisymmetric radial system, however, it is noticed that h
can decrease or increase depending on the radial location. The 1location

for the minimum h can be determined by differentiating eqn. (1.9) which

| gives
O or winn = ()2 (111
(;}:—l)min=2ﬂ¢1-l (1.12)

From eqn. (1.11) we find that a minimum exists if A < 1/2. Otherwise, the

film height increases continuously from the entrance.

1.4.2 Flow on a horizontal plane under normal gravity

This analysis is applicable for radial and planar.flows under normal
gravity with a free surface. The flow of a thin film resembles open
channel flow, so the Froude number may be a useful parameter. Ve define

the Froude number as

Fr= Y _ (1.13)

v/ eh

Expressing eqns. (1.3) and (1.5) in terms of the Froude number results in
g = (2er)% g pr 03/2 (1.14)

2 c
F f 2
=) ]

Crn(rs B (1.15)

’ 11




(a) Plane Flow
For plane flow, K = 0, so eqns. (1.14) and (1.15) can be reduced to

the following form:

11/3
dfr 3 Fr
 ah Nt (1.16)

where

R = [ g_EE_ }1/3 (1.17)
cfg g
Integration of this equation gives
i P83 pr28 . pae (1.18)

To evaluate the integration constant, the Froude number must be
specified at one location in the flow. The methodology of the present
analysis is somewhat similar to Fanno flow analysis of one-dimensional
compressible flow with friction. For Fanno flow, it is customary to
evaluate the integration constant at a critical location where the Mach
number is unity. It is assumed that a critical location exists in the flow

*
field. Let Fr = 1 at a location where R = R .
Substituting this in eqn. (1.18) and rearranging gives
* - -
R-R = (o230 1) - 14 ¥3 1 (1.19)

12




Equation (1.19) is a double-valued function as shown in Fig. 1.3. The
two stems of the function represent subcritical and supercritical flows

where the Froude number is less and greater than unity, respectively.

Since two solutions exist at any location, the possibility of a sudden
jump from supercritical to subcritical flow exists. The opposite is not
true since that would violate the second law of thermodynamics. The height
of the film before and after the jump can be related by the conservation of

mass and momentum across the jump. For plane flow this is given by

o1 2 1) (1.20)

where subscript 1 indicates conditions before the jump and subscript 2

indicates conditions after the jump.

(b) Axisymmetric Radial Flow
For radial flow, K = 1, so eqns. (1.14) and (1.15) can be transformed

into the following form

dFr _ Fr (2 + Pr?) 3prt!/3 32/ (1.21)
BB "o (re%- 1) 2 (Fr2- 1)
where
Tr
- 2 s (1.22)
[ T J_g- Cf }
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The radial distance has been non-dimensionalized in terms of other flow
parameters. An analytical solution for eqn. (1.21) is not possible, so a
numerical integration was performed using the Euler method. It can be
noticed that the equation is singular at Fr = 1. Therefore, the critical
condition cannot be directly applied as a boundary condition in the
numerical solution. To avoid this singularity, the equation can be
expanded around the singular point and the solution can be found at a short
distance from the singular point from the lowest-order expansion. The
numerical integration was then carried out beginning from a short distance
away from the singular point, where the solution is already known. The
solution is shown in Fig. 1.4.

It should be noted that the critical radius, R*, appears as a
parameter. Also, the shape of the curve in somewhat different from that
for plane flow. This is because the flow spreads out as it propagates
radially downstream. The double-valued nature of the solution still

remains in radial flow which indicates the possibility of a hydraulic jump.

1.4.3 Characteristic Behavior of the Flow
Since the equations of tramsport in a thin film are somewhat similar
to those for one-dimensional compressible flow, it may be useful to analyze

the characteristic behavior of the flow.

The conservation equation in its time-dependent form can be written as

N8 (Kpy -

T

H’JH
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where

where Ty is the surface shear stress. These are two first-order ordinary
differential equations in t and r with two dependent variables, h and V.
Expressing the equations in the characteristic form results in the

following equation

Rt +C Rx =8
where
V+gh h
& my
R = hl = Riemann invariants
V + gh
1 =
C V- ¢r§5; l WVave speed

It can be seen that the first invariant always propagates downstream. The
second invariant, however, propagates downstream for supercritical flow (Fr
= W/v/ghy > 1) and propagates upstream for subcritical flow (Fr < 1). This

implies that both V and h must be prescribed upstream for supercritical

15



flow while only one is prescribed upstream and one downstream for
subcritical flow. This analysis will assist in determining the appropriate
location of the boundary conditions for the computations addressed in the

following sections.

1.5 Numerical Solution Procedure

The governing transport equations along with the appropriate boundary
conditions were solved numerically using a finite-difference scheme. Since
the free surface geometry cannot be handled very well with a regular
rectangular or cylindrical coordinate system, a boundary-fitted curvilinear
coordinate system had to be used. In this system, the free surface of the

film was used as one of the boundaries of the control volume.

A curvilinear system can be either orthogonal or non-orthogonal
depending on whether the faces of the control cells are orthogonal to each
other or not. The orthogonal system has the advantage of simplicity
compared to the non-orthogonal system. In either system, the vectorial
form of the governing equations [i.e., eqns. (1.1) and (1.2)] can be
written in terms of components and can be discretized to determine the
finite-difference equations. In most of the computations presented, the

coordinate system was non-orthogonal.

Within the range of the general non-orthogonal coordinate system there
exist several options in formulating the equations. These options arise
from the freedom available in the choice of velocity components and their
direction with reference to the coordinates. Thus, velocity and force

vectors can be resolved either into their Cartesian, covariant or

16




contravariant components. Moreover, the problem can be solved in a
physical domain or transformed into a domain where the grid cells are
rectangular and other physical quantities are non-dimensional or reduced in
dimension. Although all these options are obviously equivalent to each
other from the physical point of view, they are substantially different as
far as numerical treatment is concerned, each presenting its own problems.
Some of these problems are highlighted in the paper by Galea and Markatos

[10] and are discussed briefly below.

The resolution of the velocity and other vectors into Cartesian
components is possibly the simplest app;oach, but this leads to an
inaccurate numerical formulation, in particular for the pressure gradient
term driving the flow. The use of contravariant components makes the
formulation of convective terms straightforward, but still does not solve
the problem of accurately formulating the pressure gradient and does not
help with respect to properly assigning the value of the velocity convected
into the distorted grid cell. The use of covariant components solves the
two problems above, but leads to more complicated calculations for the
convective terms. In the present study, the problem was solved in the

physical domain where covariant velocity components were used.

The grid system used can be considered as a distorted version of the
usual orthogonal Cartesian grid system in which grid lines and control
cells are stretched, bent and twisted in a arbitrary manner, subject to the
cells retaining their topologically Cartesian character. This means that
grid cells always have six sides and eight corners in a three-dimensional

case.
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As shown in Fig. 1.1, the local coordinates are defined along lines
joining adjacent cell centers. The z-axis was taken in the stream line
direction and y-axis in the direction across the film. The resolutes of
the velocity vectors in the y and z directions are v and w, respectively,

and can be defined as

el &~

- -+ - :
Here j and k are unit vectors in the direction of the coordinate axes. In

general, the resolutes are not the same as the velocity components in these

directions, but can be related to them by geometrical factors.

The finite difference equations were derived by the application of the
conservation principle of mass and momentum to the grid cells. The
transport processes for each cell are convection and diffusion. MNoreover,
there may be a momentum or mass source within the cell. The mass flux
across a cell boundary was computed exactly from the scalar product of the
velocity vector and the vector representing the area of the cell face.
Note that this can be written out in terms of velocity resolutes and
geometrical factors including angles between cell faces. In the
calculation of convection across a cell face, special attention was given
to the change of orientation of the coordinate axes from cell to cell and
the curvature of a cell face. These resulted in extra terms in the

calculation of convection. However, the representation of convection was

18



exact and did not involve any approximation due to the non-orthogonality of

the grids.

The calculation of diffusion is somewhat more complicated than
convection. The diffusion flux was calculated assuming the coordinate
system to be locally orthogonal. This obviously neglects cell curvature
and non-orthogonal orientation and may incorporate a substantial amount of
error where the process is primarily diffusive. However, in the thin film
calculation this approximation should not introduce severe inaccuracies,
particularly when the film enters the control volume with a reasonably high

velocity.

The relative importance of convection and diffusion at each cell was
determined from the magnitude of the local Peclet number. A hybrid
difference scheme demonstrated by Patankar [11] was used. The calculation
of the momentum source due to the pressure gradient and that due to the
gravitational body force could be accomplished without any approximation

for non-orthogonality.

The grid generation was achieved in two steps. First, the grid cells
were formed by algebraic interpolation between the boundary points. This
provided an approximately equal volume for each control cell. The
boundaries for the interior cells were then smoothed to make the cell faces
more orthogonal to each other. This operation resulted in a better
representation of diffusion in the flow field and more accurate

computations. The details of the formulation in a body-fitted coordinate

19



system and the generation of grid cells are described in the work by

Spalding et al. [12].

The number of grids in the y-z plane was determined from a series of
computations with different grid sizes. A sample of this investigation is
shown in Fig. 1.5 where the free surface profile for radial flow under zero
gravity is plotted. It can be seen that the free surface profile is
somewhat sensitive to the grid size. The solution obtained by using 20 x
20 grids is somewhat different from that obtained with 40 x 20 grids in z-y
directions. The differences become smaller when the 40 x 20 solution is
compared with the 50 x 25 solution. Finally, the difference completely
disappears when the solution corresponding to 50 x 25 grids is compared
with the 55 x 27 solution. Therefore, 50 grids in the direction of flow
and 25 in the direction across the film was found to be adequate and was
used for all radial flow computations. For plane flow, it was found that
the solution corresponding to 40 x 20 grids in the z-y plane precisely
predicts the friction coefficient and velocity profile in a falling film
system. Therefore, further refinement of the grids appeared to be
unnecessary and all computations for plane flow were carried out using 40 x
20 grids except for case P2, vhich involved a complex free surface profile.

For this case 50 x 25 grids were used.

The flow field was solved by using SIMPLEST algorithm as discussed by
Spalding [13]. One special feature of this algorithm is that in the
discretized form of the momentum equation, the convection terms are lumped
together with the source term. This results in a faster convergence for

some flow conditions. The algorithm works in an iterative manner where the
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continuity equation is transformed and used as a pressure correction
equation. The computation starts by guessing a pressure field. This is
used to determine velocity components from their corresponding momentum
equations. The modified continuity equation is then used to determine the
amount of pressure correction. The guessed pressure, the amount of
pressure  correction and the solution corresponding to the momentum
equations are then assembled together to give the flow rate and pressure
field for that step. The new pressure serves as a guess for the next step.
The solution proceeds across the control volume until the normalized

'6. The above

residual for each equation was approximately 10
finite-difference formulation and solupion procedure is incorporated in
computer program PHOENICS that was used in the present study. In the free
surface flow discussed here, both the zero-shear condition and the p = 0
.condition at the free surface need to be satisfied. These two conditions
cannot be simultaneously given at a boundary. 0On the other hand, the free
surface geometry, which is unknown in the problem has to be given before

solving the flow field by a finite-difference method. To avoid this

difficulty, an iteration scheme has been adapted as described below.

(1) Guess a free surface profile.

(2) Solve the flow field completely for that profile using the
zero- shear condition on the free surface boundary.

(c¢) Find the pressure distribution on the free surface and calculate
its deviation from an ideal zero-pressure free surface. The
measure used here is the RMS (root-mean- square) error.

(d) Calculate and reduce the RMS error on the free surface by

successive alteration of the surface profile.

21




(e) The results with the minimum error give the required final

solution.

The accuracy of the computation depends somewhat on the assumption of
the form of free surface. In the results presented here, hyperbolas with
two or more degrees of freedom were used to represent the computation

domain.

1.6 Results and Discussion
1.64 Plane Film B

The flow of a plane film along a vertical wall under the influence of
gravity is a classical fluid mechanics problem where an analytical solution
is available for fully-developed laminar flow. In the fully-developed
.region, the film height remains constant and the velocity profile has a
parabolic appearance. Numerical computations using the present methodology
were performed for a film which has already reached the fully-developed
condition. A parabolic velocity profile with the same shape as given by
the analytical solution was used for the incoming fluid. The Reynolds
number for the film was Re = 50 where water was used as the fluid. It was
found that for the entire domain, the velocity profile across the film
remains about the same and the friction coefficient was equivalent to that

of the analytical solution. In the present investigation, the friction

coefficient is defined as

Cf = 1—2—-2 (1.23)
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where W is the average velocity of the fluid across the film. This
definition is applicable for both plane and radial flow. For plane flow

with constant thickness, W is a constant because of continuity.

The distribution of pressure on the free surface was also computed and
the RMS error was determined to be 0.18 Pa. This non-zero figure of RMS
error may be attributed to the inaccuracy associated with the
representation of flow field by finite-difference equations. This amount
of error cannot be avoided in a numerical solution, so it provides a lower

bound on the error that can be expected in thin film computations.

The developing flow of a falling film when introduced at a height
equal to, or above or below the equilibrium height was also investigated.
The flow conditions are summarized in Table 2 and the results are shown in
Table 3 and Figs. 1.6-1.9. When the film enters the control volume at the
equilibrium height, the height remains the same and the development of the
velocity profile from uniform to parabolic occurs as the flow moves
downstream. VWhen the film enters with a height other than the equilibrium
height, a gradual adjustment of height takes place until the flow reaches
the equilibrium height. The adjustment of the free surface and the
development of the velocity profile occur simultaneously in this flow. To

model the free surface, we have assumed a profile of the form

- { hy, (1+ % )3, for z < z

6 , for z?> z (1.24)

The {first part of this profile provides the variation of the free surface
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height in the developing flow region and the second part gives the height
after the adjustment is completed. The downstream location where the free

surface adjustment is complete is zy-

For the computation with hin = §, we find that the RMS error on the
free surface condition is 1.2 Pa. The uniform entrance condition provides
a higher RMS error than the parabolic entrance since a developing flow
region is present where the pressure has to conform with the flow
development. An error of this order may be acceptable for a free surface
computation since no variation of height is expected to take place when a
film is introduced at the equilibrium height. The distance required for
flow development was found to be about 5 times the film thickness in this
case. A flow is defined to be fully-developed when the wall shear stress
is within 2 % of the final equilibrium value. This definition is similar
to that given by Kays and Crawford [14] for developing flow in closed

conduits.

As evident from Fig. 1.6 the adjustment of film height takes places
for a length of 0.006 m (i.e., approximately 10§) when a film is
introduced at a height 207 more than the equilibrium height. In this
situation the velocity profile also becomes fully-developed at the same
location. A film introduced at a height 207 lower than the equilibrium is
found to take a shorter distance for the adjustment of the free surface and
the velocity profile. The distribution of the free surface pressure is
shown in Fig. 1.7. It can be noticed that most of the pressure variation
takes place in the developing flow region and its value becomes very close

to zero when the flow becomes fully developed. The RMS error in pressure
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is small in all cases which indicates that modeling the free surface with

an equation of the form of eqn. (1.24) is reasonably accurate.

The variation of the friction coefficient along the length of the film
is shown in TFig. 1.8. The distributions for h, = 6 and h, = 0.86 are
very close to each other, but for hin = 1.2§ the variation is significantly
different. The friction coefficient first decreases to a value lower than
that for the equilibrium condition and then rises up to the equilibrium
value. This is due to two counter-acting phenomena that affect the film in
the developing flow region in this case. The wall {friction propagates
outward as the boundary layer develops beginning from the entrance point
which tends to reduce the velocity of the fluid. The thickness of the
film, however, decreases and tends to increase the fluid velocity due to
the area available for the flow. Since the first effect starts from the
wall, it is more dominant in the earlier part of the flow development and
then the second effect takes over in the region downstream. It can also
mentioned that when the film is introduced below the equilibrium height,
the increase in the film height and the propagation of the shear tend to
reduce the film velocity, so the behavior is not analogous to the case when
the film is introduced above the equilibrium height. In all situatioms, a
plane falling film eventually attains a fully-developed flow. This is
confirmed by comparison of the velocity profile in a location near the exit
as shown in Fig. 1.9. The variation of the velocity and the friction

coefficient are identical in all situationms.

The flow of a plane {film was also investigated for a horizontal

orientation of the plate where the gravity acts across the thickness of the
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film instead of in the direction of the main flow. The flow conditions
used here are listed in Table 2 and the corresponding free surface geometry
is described in Table 3. Figs. 1.10-1.13 present the computational

results.

In Fig. 1.10 it can be seen that after the film enters the control
volume, the liquid film height increases rapidly within a short distance
until it is about 4 times the inlet height. The film height then levels
off slowly as the flow moves downstream. Close to the exit the height
decreases to accommodate the outlet boundary condition. In this case, the
inlet Froude number is 3.0 which means that the flow enters the control
volume at a supercritical condition. The transition of the flow from
supercritical to subcritical takes place with a rapid change in fluid
level. Once the subcritical condition is established, the change in height
is basically due to the deceleration of the flow by friction at the wall.
Figure 1.10 also shows the results obtained by Thomas [15] for a
one-dimensional model of the flow under the same flow conditions. This
result was obtained by numerical integration of the subcritical and
supercritical streams proceeding from the end points and matching the
conditions at the jump location. The one-dimensional solution seems to be
quite different from the two-dimensional flow considered here, particularly
in the subcritical region. It appears to be quite strongly influenced by
the downstream boundary condition whereas in the two-dimensional case the
influence is less dramatic. A computation using the present numerical
scheme where the free surface was forced to take the form obtained by
Thomas [15] showed a RMS error of 21.62 Pa on the free surface pressure,
which is about 10 times the RMS error in our final solution, as listed in
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Table 3. Therefore, the free surface profile predicted by the 2-D solution

is likely to be much more accurate than that predicted by the 1-D solution.

The distribution of the flow velocity across the thickness of the film
is shown in Fig. 1.11 for two locations on the plate. The velocity profile
is parabolic in nature. Even though the average velocity decreases
downstream, the local velocity may increase or decrease depending on the
location across the film thickness. In the numerical results, it was also
seen that there is a separated flow region around the location of the jump.
To cope with the rapid rise of the fluid level, flow separation occurs near
the wall, which reattaches again at a doqup;eam location. The profiles

shown here correspond to locations beyond the reattachment point. Inside

the recirculating flow region, the fluid moves in a direction opposite to

the main flow at locations adjacent to the wall. Even.though the velocity
is positive at all locations after reattachment, the acceleration of the

fluid near the wall continues for a distance as seen in Fig. 1.11.

The shear stress exerted by the wall and the corresponding friction
coefficient are shown in Figs. 1.12 and 1.13, respectively. The wall shear
stress decreases rapidly after the entrance, which is due to the
simultaneous adjustment of the film height and the development of the
velocity profile from uniform entrance conditions to a two-dimensional
form. Both effects aid to a decrease in the shear stress. The shear
stress is negative in the recirculating flow region and becomes positive
again after reattachment. The two locations corresponding to zero shear
are the separation and reattachment locations. In Fig. 1.12, it can be
also noted that the wall shear becomes constant at an intermediate location
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of the flow and rises again near the exit. The increase in the wall shear
stress and the friction coefficient are due to an increase in flow velocity

near the wall as the exit is approached.

The remaining part of the investigation concerning plane film flow is
the flow of a film under zero gravity. In this situation the orientation
of the plate become immaterial and an identical flow condition is achieved
if the plate is horizontal, vertical or inclined. Consider a situation
where the film is introduced at a height edﬁal to the equilibrium
fully-developed flow in a falling film system. In the absence of gravity,
the flow is acted on only by viscous and inertial forces and the film
height is expected to increase downstream. To model the free surface, we
assume a profile of the form given in Table 2. The flow conditions are
also listed in the same table. The results are shown in Table 3 and Figs.

1.14-1.18.

Figure 1.14 shows the variation of the film height with distance which
increases monotonically. The figure also shows the analytical solution
derived in the previous section. The analytical solution requires the
specification of a friction coefficient. In the present investigation it
was taken from the numerical solution instead of assuming it to be constant
throughout the region. The comparison between the analytical and numerical

solutions appears to be good in most regions of the flow.

The variation of the free surface pressure is shown in Fig. 1.15.
Analogous to the falling film flow, most of the pressure variations occur

in regions close to the entrance where the development of the velocity from
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a uniform to parabolic profile takes place, which is analogous to the
falling film flow. However, in contrast to the falling film, the velocity
keeps changing as the flow moves downstream and never attains a
fully-developed situation. To illustrate this point, the velocity profile
at three different locations on the plate are plotted in Fig. 1.16. Even
though the profile becomes parabolic in nature, the magnitude of the
velocity decreases continuously. The shear stress exerted by the solid
wall is shown in Fig. 1.17 and the corresponding friction coefficient is
plotted in Fig. 1.18. It can be noticed that the shear stress decreases
continuously as the flow moves downstream, whereas the friction coefficient
has a minimum at an intermediate locationvapd then increases downstream.
The largest variations of the shear stress occur close to the entrance due
to the development of the velocity from a uniform to a parabolic profile.
After the velocity profile is parabolic, the slight reduction in the shear
stress is due to the deceleration of the flow, which is small compared to
the reduction of the average velocity in regions away from the entrance.

This results in an increase in the friction coefficient.

1.6.2 Radial Film Flow

The system where a fluid is introduced at the center of a circular
horizontal plate and spreads uniformly in all radial directions was also
studied. Two combinations of flow rates and initial film heights were
chosen and water was used as the fluid. These cases were studied for
zero-gravity (g = 0) and normal gravity (g = 9.81 m/s2) situations. The
effect of critical outflow as may happen at the exit of the plate was
studied for one case. The flow parameters for different cases studied here

are shown in Table 4. The surface profile and corresponding RMS error for
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the surface pressure for different cases are listed in Table 5. The
constants appearing in each profile equation were optimized to give the
minimum possible error in the free surface pressure. The values appearing
in Table 5 are optimum values corresponding to each flow configuration. It
can be noticed that all RMS errors are on the order of 1 Pa, so the

solutions may be considered to be acceptable.

Figure 1.19 shows the variation of the film height with the radial
distance for cases R1A and R2A. These cases correspond to the same flow
rate and inlet film height but the gravitational acceleration for R1A is g
= 0.0 and for R24 is g = 9.8t m/s2. ~ The one-dimensional analyticél
solutions, as discussed in a previous section, corresponding to these cases
are also shown in the figure. The analytical solution requires the
specification of a friction coefficient which was taken to be the average
friction factor in the numerical solution. The comparison between the 1-D
and 2-D solutions appears to be quite reasonable. In the derivation of the
one-dimensional solution it was assumed that the film has a uniform
velocity across its thickness, whereas in reality the film has a parabolic
velocity profile as seen in Fig. 1.20. This assumption, along with the
assumption of a constant friction coefficient may be the primary reasons

for the difference between the 1-D and 2-D solutionms.

Comparing the film height for the case R1A with that for the case R2A,
it can be seen that gravity has very significant effect in determining the
flov behavior of the film at this flow rate. In the absence of gravity,
the film height gradually decreases in the downstream direction, whereas

when g = 9.81 m/s2, the film height slightly increases as the flow proceeds
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downstream. In the absence of gravity, there is no static pressure
gradient across the thickness of the film and the momentum balance in the
film is solely due to inertial and viscous effects. The pressure variation
is significant for a film of moderate thickness which tends to flatten out

the free surface.

The variation of velocity across the film thickness is shown in Fig.
1.20 for two different locations. The profile remains parabolic but its
magnitude decreases downstream due to the increase in area available for
the flow. The decrease is less dramatic for the zero gravity case since
the film height also decreases downstream.  The distribution of free
surface pressure for the two cases are plotted in Fig. 1.21. Figures 1.22
and 1.23 show the variation of the wall shear stress and the {friction
'coefficient at this rate of flow, respectively. The largest variations of
these quantities appear to be in'regions close to the inlet. This is
primarily an outcome of the development of the velocity profile from
uniform at entrance to parabolic in downstream locations. For case R2A,
the wall shear decreases downstream, which is expected since the velocity
of the fluid decreases and consequently encounters less resistance from the
wall. 1In case R1A, however, the wall shear stress increases slightly at
locations far downstream. This is due to the local acceleration of the
flow in the region next to the wall. It may be pointed out that even
though the velocity profile is parabolic, the actual shape of the parabola
changes along the plate. This is caused by the increase of the local
velocity next to the wall. The increase of the friction coefficient for
cases R1A and R2A is primarily caused by a decrease of the average velocity

as the fluid moves downstream.
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Figures 1.24-1.28 demonstrate the behavior of the flow when the film
is introduced at a smaller height and flow rate. As in the previous two
cases, case R1B and R2B correspond to identical flow and boundary
conditions, but the gravitational acceleration in case R1B is g = 0.0 and
in case R2B is g = 9.81 m/s2. Case R2C is an extension of case R2B where
the film at the exit is forced to have a Froude number of Fr = 1. Vhen the
radius of the plate is finite and ends at the exit of the computation
domain, the fluid spreads over the plate and then free falls over the edge
of the plate. For a free-falling exit situation, a subcritical flow (Fr <
1) has to transform to a supercritical flow (Fr > 1) at the discharge
location. To incorporate this effect, the Froude number at the edge of the
plate is set to Fr = 1, which corresponds to critical flow. Cases R1B and
'R2B does not take into account this effect and the plate is assumed to

extend somewhat beyond the end of the computation domain.

The film height for the three different cases are shown in Fig. 1.24.
The analytical solution corresponding to case B2B is shown here for
comparison. At this condition, the fluid rises up and forms a hydraulic
jump close to the entrance. The shape of the free surface and its maximum
height depend on the gravitational body force and exit boundary condition.
In case R1B, which corresponds to a situation where g = 0.0, the increase
of the fluid level is about 107 more than the other two cases when g = 9.81

m/s2.

The presence of gravity, which causes a pressure gradient across the
thickness of the film, tends to flatten out the free surface profile. It
is also evident that a sudden rise of the flow occurs when gravity is
present which contrasts the gradual increase of the fluid level when g =

0.0. After the jump, the height of the film slowly decreases as the fluid
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proceeds further downstream. In case R2C, when the outlet is constrained
to have Froude number of Fr = 1, 'the film maintains about the same
thickness for the most regions of the plate and suddenly drops very close
to the exit. In Fig. 1.24, it can be also noticed that the height and
location of the jump is the same for both cases R2B and R2C. This may
suggest that the jump height is determined by the flow rate and Froude
number before the jump, rather than conditions at the outlet. The
conditions of the flow after the jump, however, depend on the exit
conditions as evident from the shape of the free surface. This observation
is consistent with an open channel flow where the flow rate and Froude
number before the jump determine the heightAafter the jump, and the fluid

motion downstream is subcritical and affected by the outlet condition.

Figure 1.24 also shows the analytical solution corresponding to
one-dimensional radial flow in the presence of gravity. The solution
requires the specification of the friction coefficient and one boundary
condition. The friction coefficient used here is 2.0, which is the average
value after the jump as obtained in the numerical solution corresponding to
case R2B or R2C. VWhen the inlet condition is wused as the boundary
condition, the analytical solution predicts a jump to a height close to
that of the numerical solution and the film height diminishes slowly
thereafter. The figure also shows the film height when the exit boundary
condition corresponding to case R2B is used. The solution shows that the
film height gradually increases in the upstream direction, but no drop in
fluid level is obtained near the inlet. This behavior of the analytical
solution reaffirms the previous observation that the exit boundary

condition in the subcritical region cannot influence the supercritical flow
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before the jump. The numerical solution is between the two analytical
solutions. The one-dimensional solution does not account for the details
of the behavior of the flow 1like separation after the jump and the
parabolic velocity profile thereafter. The difference between the
analytical and numerical solutions may be attributed to these fine details

of the flow field.

The velocity profile across the film at two radial locations are shown
in Fig. 1.25. The velocity profile appears to be parabolic at each
location both in the presence and absence of gravity. The magnitude of the
velocity at z/z = 0.8 is less than that at z/z = 0.4 due to the larger
area available for the flow. At a particular location, the velocity is

greater for the case of g = 9.81 m/s2 than the corresponding zero-gravity
case. This is because of the smaller film thickness in.the presence of the
gravitational field at this flow rate. The free surface pressure for the
three cases studied here are shown in Fig. 1.26. The pressure at
intermediate locations become very close to zero. There are some
fluctuations close to the inlet and the exit for the case R2C. This is due
to the rapid change of the flow in these regions to account for the imposed
boundary conditions. The assumed form of the free surface profile may not
be very precise in these regions. A more complex profile assumption with a
larger number of degrees of freedom may smooth out these pressure
fluctuations. However, the profiles used in the present investigation are
reasonably simple to handle in computation and capture the most significant
structures of the flow and yield solutions that are physically realistic
and accurate enough for engineering applications. Therefore, it is

preferable to use a rather simple free surface profile rather than making
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it very general to fit all regions of the flow. It should be also
mentioned that the present free surface profiles were also arrived at after
a number of trials with different parabolas, hyperbolas and polynomials for
each case studied and the form selected was found to be the most accurate

and general.

The wall shear stresses and friction coefficients for cases R1B, R2B
and R2C are plotted in Figs. 1.27 and 1.28. In case R1B, which corresponds
to g = 0.0, the shear stress is positive and high near the entrance. At a
location downstream, it becomes negative and then rises up to positive
values again and diminishes slowly thereafter. The negative value of shear
stress is due to separation of the flow after the jump. It becomes
positive again when the flow reattaches, and assumes a parabolic profile.
The small decrease in the magnitude of shear stress as the flow moves
further downstream is due to the gradual expansion of the flow because of
the area change. In cases R2B and R2C, the shear stress starts with a
negative value, rises up to a positive value at a location downstream and
slowly diminishes thereafter. In these cases, the jump occurs immediately
downstream from the entrance and results in flow separation in that region.
It may be noticed that the value of shear stress is slightly different near
the entrance for cases BR2B and B2C. In case R2B a uniform velocity profile
was assumed at the entrance, whereas in case R2C a parabolic velocity
profile was assumed. Even though both profiles become distorted due to
flow seperation, the magnitude of the wall shear stress is somewhat
affected by the entrance condition. The separation of the flow results in
a very complex distribution of the friction coefficient near the entrance

as seen in Fig. 1.28. After the flow reattaches to the surface, the
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friction coefficient gradually increases downstream. It may be recalled
that the friction coefficient in the present investigation is defined in
terms of the local velocity. The gradual decrease of the local average
velocity as the fluid spreads downstream overpowers the loss of wall shear

stress and increases the friction coefficient downstream.

1.7 Conclusions

The present study developed a numerical solution procedure for the
computation of plane or radial thin film flow in a normal or zero gravity
environment. An analytical solution was also derived for a one-dimensional
approximation of the flow. A reasonable agreement between the numerical
and analytical solutions was obtained for most flow configurations

considered here.

Five different flow systems were studied: (a) plane falling film, (b)
plane flow on a horizontal plate, (c) plane flow under zero gravity, (d)
radial flow on a horizontal plate, and (e) radial flow under zero gravity.
For plane falling films, an equilibrium fully-developed region is present
where the gravitational body force is balanced by the viscous shear force
at the wall. The film, whether introduced at the equilibrium height or at
a height above or below the equilibrium, eventually comes to this
fully-developed condition. In the fully developed region the numerical
velocity profile, which is parabolic, matched exactly with the analytical
solution irrespective of the entrance condition of the film. When a film
is introduced at its equilibrium height and with the same velocity profile
as that of fully-developed flow, no further change in the velocity

distribution is found to happen as the film proceeds downstream. This
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gives confidence in the stability and accuracy of the present numerical
scheme. The error on the estimation of the free surface pressure in this
case is the minimum that cannot be avoided in a numerical computation. An
estimate on the error bound of the free surface pressure was developed from
the calculation of developing flow and it was concluded that an error of
the order of 1 Pa may be acceptable. The length of the developing region
was found to be small. Both the free surface height and velocity profile
appeared to arrive at the equilibrium condition within 10 times the
equilibrium film thickness. The length was found to be relatively larger

when the film begins with a height above the equilibrium height.

For plane flow on a horizontal plate it was found that the film height

increases rapidly and forms a hydraulic jump. The flow regime changes from

the supercritical entrance condition to a subcritical downstream condition.
The analysis of the flow indicated that both supercritical and subcritical
flow proceed towards a critical flow when friction is present. The sudden
rise of the fluid level resulted in flow separation adjacent to the solid
wall. The flow reattached again at a downstream location and developed a
parabolic velocity profile. The location of separation and reattachment
could be determined from a plot of shear stress at the wall, which vanishes

at these locations.

For a plane flow under zero gravity it was found that the film
thickness monotonically increases as the flow moves downstream. The
velocity profile is parabolic except for regions very close to the
entrance. The shear stress at the wall decreases as the flow moves

downstream. The friction coefficient was computed in terms of the local
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average velocity and was found to increase after coming to a minimum at an

intermediate location on the plate.

For radial flow, computations were performed for two sets of flow
rates and inlet heights. The behavior of the flow was found to depend
significantly on the flow rate and magnitude of the gravitational
acceleration. At the higher flow rate, it was found that the {film
decreases in thickness downstream under zero gravity whereas the thickness
increases downstream when the gravitational acceleration is g = 9.81 m/s2.
The velocity profile was parabolic in most regions, even though the shape
of the profile changed as the flow moved downstream. The change here was
more severe than plane flow since the area available for the fluid
increased downstream. For zero gravity it was found that the wall shear at
locations far downstream increased due to the local acceleration of fluid

near the wall.

Vhen the £ilm thickness at the inlet is low and the Froude number is
greater than unity, the flow jumped up within a short distance from the
entrance and remained subcritical downstream. The jump happened at the
same location and height whether or not the Froude number at the exit was
Fr = 1. The flow after the jump was affected by the outlet condition.
For the same flow condition when the gravitational acceleration is reduced
to zero, it was found that the rise in fluid level still occurs, even
though the rise is more gradual and to a greater height than the
corresponding jump case. The jump or rise in fluid level was also found to
be associated with flow separation. The flow was found to reattach to the
surface and form a parabolic profile after the jump. After the
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reattachment, the wall shear stress slightly decreased as the flow moved
downstream, irrespective of whether or not gravity was present. For radial
flow, the friction coefficient was found to increase downstream in regions

somewhat away from the entrance and flow separation.
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Nomenclature

A Optimization parameter in free surface equation, flow parameter
(defined by eqn. (1.10))

an Optimization parameter in free surface equation

bn Optimization parameter in free surface equation

C Optimization parameter in free surface equation, wave speed

¢ Friction coefficient

Fr  Froude number, V/y/ gh

g Acceleration due to gravity

h Film height -
h;, Inlet film height

hout Film height at exit

p Static pressure

t Time

K Exponent for eqn. (1.3)

q Flow rate

r Radial coordinate

T Radial location for critical flow

Re Reynolds number, 4Q/v

R Riemann invariant, dimensionless radial coordinate (eqns. (1.17) and
(1.22))

R Critical radius (dimensionless)

v Normal component of velocity

v Velocity vector
W Component of velocity along the plate

v Average velocity along the plate
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ym
Z

zn
%
Zg9

Coordinate normal to main flow direction
Maximum value of y

Coordinate along the plate

Maximum value of z

Optimization parameter in free surface equation

Optimization parameter in free surface equation

Greek symbols

p
L

Density

Dynamic viscosity

Shear stress at wall
Equilibrium film thickness

Kinematic viscosity
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Table 2: Flow Conditions: Plane Flow

General data: p = 913.026 kg/m’

v = 7.432 x 105 n?/s

Case P1A: h.

in 0.000595 m

0.1561 m/s, g = 9.81 m/s?

in
Free surface profile: h = §, where 6 = 0.000595 m
Case P1B: h, = 0.000714 m (1.26)

in
0.1301 m/s, g = 9.81 m/s

i

2

in
h=h, (1+ i)an for z < z;

Free surface profile: {
h

§, for z > zy

Case P1C:

in = 0.000476 m (0.86)
., = 0.1952 m/s, g = 9.81 n/s?
_ zyan
Free surface profile: { h = hin (1+ I) for z < %
h =46, for z > z
Case P2: h. = 0.0009674 m, Fr._ = 3.0
in in
V., = 0.2922 n/s , Zoyy = 0-1445 m

2
Fr . = 1.0, h . =0.002012 m, g = 9.81 n/s

Free surface profile: [h = LT (1 +§), for z < z,
b
h = Ch, [2-(1 z 5 “]; for z,<z<z,
z- z
h=(h)z:z+-—-——2._.x
2 (zout - Zg)
(hout ) hz = 22)’ for z > Zy
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Case P3:

h.
in

vin

0.000595 m

H

0.1561 m/s, g = 0.0

Free surface profile: h = hin (1 + %)an
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Table 3: Summary of Results: Plane Flow

RMS Error in
Problem Optimum Profile Pressure (Pa)
Case P1A (Parabolic Inlet) -- 0.1818
Case P1A (Uniform Inlet) -- 1.2
Case P1B A= 0.004 0.3346
an = -0.199
zy = 0.006
Case P1C AM= 0.00001 0.5536
an = 0.0445
zy = 0.0015
Case P2 A = 0.055 2.172
an = §6.0486
B= 0.05
bn = -0.6
C = 3.5924
zy = 0.01445 m
z2 = 0.14161 m
Case P3 A= 0.003 0.6013
an = 0.93
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General data:

Case Ri1A:

Case R1B

Case R2A:

Case R2B:

Table 4: Flow Conditions: Radial Flow

913.026 Kg/u®

p:

v= 7.432 x 105 n?/s
r; = 0.0508 m

r g = 0-1953 m

hy, =0.02m, V. =0.14996 m/s

Q- 9.573 x 104 u%/s, g = 0.0
g

le: h = r - A ,an
Free surface profile: h = iy ( f;;fr_x )

hin = 0.000508 m, Vin = 0.1248 m/s

g = 2.023 x 107 n/s, g = 0.0

Free surface profile: h = h, ( ;%—1751 )28, for r < Iy
in

h=Chy [2 —(;%—)bn ], forr 2 r,
in
h, =0.02m, V; = 0.14996 /s
0= 9.573x 1074 ud/s, g = 9.81 m/s>
Free surface profile: h =h, ( ;g—ljéx )an
in
hin = 0.000508 m, vin = 0.1248 m/s
Q- 2.0236 x 1079 n%/s, g = 9.81 m/s>
i _ r- A ,an
Free surface profile: h =h, ( I )™, for r <1,
- _(Ebn
h=Ch, [2 (rin) ], forr 2 r,
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Case R2C: hin = 0.000508 m, vin = 0.1248 m/s

Q= 2.0236 x 10°° u3/s, g = 9.81 n/s’

hyye = 0-00030265 m (Fr = 1.0)
r- A ,an
hln(i‘_—i—n—:—x) fOl'I'(I'l
: T \b
Chyy [2-G)° ), forrar

Free surface profile: h

=
i

h = hout’ at r = Tout
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Problem

Table 5:

Summary of Results:

Radial Flow

Optimum Profile

RMS Error in
Pressure (Pa)

Case R1A

Case R1B

Case R2A

Case R2B

Case R2C

A=-0.05
an = -1.0
A= 0.044
an = 2.2876
r, = 0.06236
C= 9.74
bn = 0.02
A= 0.01
an = 0.04
A= 0.04
an = 8.8337
r, = 0.05369
C = 8.1225
bn = 0.05
A= 0.04
an = 8.822
r, = 0.05369
C= 8.1
bn = 0.0
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1.238

0.2961

1.06

0.5478

0.7552



N ywee surface

Flow in s
N — —

T W Flow out
S S S S,

Fg.11  The coordinate system on a grid cell
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S S Vo4

LLLL

Pl. Plane falling film P2 Plane film flow on horizontal plate

N
N

N

Z

g=0

LS

S 77

P3. Plane film flow under zero gravity

g: N\

V4 ST 77 7T

Rl. Radial film flow under .=~ .. zero gravily
g T
RC. Radial . .. ; film flow on horizontal plate

Fgl.2  Flow systems in present Investigation
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One-dimensional plane flow analysis under 1-g and 0-g

2.1. Introduction

The governing equations and boundary conditions are presented for the situation of a
thin liquid layer emanating from a pressurized vessel and traveling along a horizontal plate
with a constant initial height and uniform initial velocity as shown in Fig. 2.1. This situation
is the same as channel flow, but since the liquid height is very thin the effect of viscosity
must be accounted for. It is desired to find the liquid height at any distance down the length
of the plate for different Froude numbers and Reynolds numbers specified at the inlet. Since
the inlet Froude number will usually be greater than unity, it is possible that a hydraulic
jump will occur at some point in the computational domain. A hydraulic jump is when
the flow suddenly changes from supercritical (Fr > 1) to subcritical (Fr < 1) flow, which is
~accompanied by a sudden increase in the liquid height. This is analogous to the shock wave
in gas dynamics when the flow changes from supersonic (M > 1) to subsonic (M < 1) flow
in a very short distance. The similarity between the hydraulic jump and the shock wave
in gas dynamics suggests using the familiar approach of modeling the flow as a transient
phenomena and allowing the solution to march in time to achieve the desired steady state

results. The eflects of microgravity on the flow is also examined.

2.2. Mathematical Modeling

The generalized governing equations for an incompressible fluid with constant properties

are as follows:

Continuity equation:
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y-direction momentum equation:

) (3u Ou Ou 6u) _ oP ( 0Tz OTgy OTuz
Oz

5 Yas T Vay Oz * Oy * 62>+pgz

w—
at Oz dy 0z
The general boundary conditions for these equations are those on the flat plate and on

the free surface of the liquid:

y=0: u=0, v=0

yzh:vz%}ti-i—ugl;-
200(1 + 62) gu
(+(82)) (
oz

y=h: ppr =0
where h is the film thickness; pnr is the stress tangent to the film surface; and o is the

surface tension.

The following assumptions are introduced to reduce the complexity of the governing

equations:
Assumptions:

o Incompressible fluid

.w:%:gzzo

e Boundary layer assumptions
e No surface tension
e No interfacial shear on the free surface
The governing equations and boundary conditions then reduce to the following forms:

Continuity equation:
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y-direction momentum equation:

x-direction momentum equation:

du odu ou 1 6P 8%u
— T el ———— V—.——

En u(—9—£+ oy p 6:c+ dy?
Boundary conditions:

P(z,h,t)=0

u(m],y,t) =1ux

u(z,y,0) = uo
(% y=h
v(z,0,t) =0

Integrating the conservation equations across the thin layer results in quasi - one-

dimensional governing equations:

Continuity equation:

8u+8v_
oz Oy

h /Oy h8v
it —_— =0
L (5)a+ [ ()

Leibniz’s rule:

d (B B of(z,t dB dA
-d—;:/A flz,t)dt = /A —f;é?-)dt—kf(x,B)-E—f(z,A)-E;
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/h(3u>d 0 /h y Oh
0o \dOz y“('):couy_(ulh).am

The kinematic condition at the free surface for unsteady problems is used as one of the

free surface boundary conditions:

on o

ot +ulh Oz vk
oh_, o

uln oz vln ot

o rh o/ Oh
%./0 udy—(vlh———a—z>+v|h—'v|o—0

1 hd
e

d, .. 08h_

y-direction momentum equation -

0P

h /8P h
T Ngy — — d
/0 (ay)dy pg/o Y
P=—-pgy+C

P = pg(h —y) (2.2)
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x-direction - momentum equation -

ou Ou +' ou 1 OP 4 0*u
— v- T e 8 — B
ot " "oz Oy p Oz "ay2

L 6 L= L[ o[ (G2
RS

on
at(”h) vl 5r

/oh(gf) B:c/ Pdy - Pl - 52 o

o h
=5;/0 pg(h - y)dy
8 /1
=52 (3091
h 182y k9 /8y
/ (a—yf)dy*/o EZ(a_y)dy
h r0u
= dl —
./0 (By)

hy Bu h §(uv) hy Qv
= - — )d
./ ( 8y)dy /0 dy d 0 ("ay) y

8 oh  rh/ Bu ho(ur)  [hy O /1 A ou
S B [ (o [ e (o2 o) 42
pe(Bh) —uln- 5o+ ) (“«%) Yl Toy @ /0 ("ay)dy 32 \29 +”/o By

From the continuity equation

S
=
b
S’
3
?
SE
-+
N
|
N’
a
<
“+
T
e
N’
E
!
T
<
=
-+
S~
TN
SN’
L
L
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B
= "oz \27 g 0y / n Oy

(uv)ln = uln - vln
o 2y 20

0

Oxr ot
oh oh
— 2 *  —— @ ——
= (uln)” 5o +ul - 5

(2.3)

8 _ 3 h 2 1 2 3u
~3_t_(uh)+-3_1>_[/(‘) udy+§gh]_—u<6—y>

The following assumptions were made to simplify the governing equations:

0

/huzd ~ @*h
0 y=

with an analogy to the Blasius solution of frictional flow over a flat plate where uq is replaced

In addition:
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0 _Oh ou ou

which resulted in the following governing equations:

ah = Q = constant (2.4)

6z 08 1 0.332%2
R P T h2] _ a8z 2.5
5t " bz [‘“ 39 fazjv (25)

These equations form a system of nonlinear partial differential equations. After the
equations are nondimensionalized, the dimensionless liquid height is eliminated from the
" momentum equation which leaves one nonlinear partial differential equation with one de-
pendent variable which is the dimensionless velocity. The assumption involving the term
O0h/0t was made to simplify the governing equations so that the height of the liquid film
could be eliminated. By using this assumption, it is understood that the unsteady solutions
with respect to time are not accurate, but the accuracy of the steady state solution is not

affected. An analysis concerning the term f(;' u?dy is given in Appendix 2.1.

Dimensionless variables:

0} h z
— =V ) —_—=
2 hy ki ¢
2
Uuj uj 2 u]h1
P Mg WM _p
h] gh1 " 14 €1
=1V h=hié :C:—"h]f t‘—:%
1

x-direction momentum equation:
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(mméﬁﬁ%) Mzokmvﬂmm+%ﬂm@ﬂ:,&%%mvy/ggz%gg
) = w.ssza%ﬂ/@

0.332V2

1
‘7 '/'2 ! . 2 - _—
(V) (‘ 6+ 2Fr? d )5 ~ VReiVE

1

.69 4 a2, 2(V2<5+ ghféz
2u§

1 0.332V3/2
5(V), (vza .&2) _ 9332V
W+ Vet 552°8) =~ Jhet

Continuity equation:

(@V)(hi6) = Q

V6 = constant =1 or § = ;. Substituting and dividing by ; gives:

1 1 1 1/-0.332V3/2
e} s ) )
(V)r + ) * 2Fr? V)¢ 6 e1é

1 1 0.332V5/2
V), +V(Vv+ - ) o 205
(V- + ( +2Fr'f V2>5 Re;

Dimensionless governing equation:
Vi +VGe=H
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where

1 1 0.332V5/2

— . —_

G=V . Bl
Yo v Vet

For the case when the gravity is zero, the equation for G is as follows:

G=V

The governing equation has one time derivative and one space derivative, so an initial
condition and a boundary value are needed.

Initial condition:

T=0: V=VW=101fr § <€ <&,

Boundary condition: B

62612 FT‘:FT‘], V=1

2.3. Numerical solution procedure

Due to the similarity between the hydraulic jump and the shock wave in gas dynamics the
MacCormack explicit method, which is quite often used for the solution of compressible flow
problems, will be used in the present numerical analysis. Since it is an explicit method, the
unknown variables are found in terms of known quantities, as opposed to implicit methods
which must solve a matrix equation to obtain the solution of the problem.

The MacCormack method is a two-step scheme that uses first-order finite-difference
approximations. The scheme first predicts the solution at the next time step with a forward
time, forward space (FTFS) differencing scheme and then corrects the prediction with a
forward time, backward space (FTBS) scheme. This results in a approximation that is

second-order accurate in both time and space (Hankey, 1982).

When applied to the one-dimensional linear convection equation,

QE‘FC?—E—O
ot dz
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At
n+l _ . n__ o0 , ;
u;" = cA:z:(u”] uy) Forward predictor
n-+1 1 n n+1 At n+1 n-+1
wrt = cjul Ful - e—(ul T — ) Backward corrector
J 217 J Az ? J-1

" and

The backward corrector can be seen as an arithmetic average of the old solution, uf,

the new solution based on the predicted solution, u®t! — ¢2t (4! _ 4™ +1) which uses a
p bl 7 Az 2 J—l ]

backward difference.

The governing equation for the present problem is as follows:

1 1 0.332V/5/2
Vi +VGe=H , G=V 4 — 2_(—-——->
¢ * 2Fr? V2 VHe €
Forward predictor: FTFS
vrtl_yn Gn., - G"
J J yr|—2td J] - H"
AT Y [ At H,
— A
VPR = VP -V R (Gl — G+ ATH]
vt _ vyl BT on  _omy] 4 ArED (2.8)
j i |1 Aﬁ( 7+1 3|+ ATH] .

Backward corrector: FTBS

The finite-difference equation based on the predicted solution using a forward time,

backward space differencing scheme is as follows

n+1 ra+l +1 +1
Vi) -v J,vm[‘“—“‘—l‘—c? —m"] _ g
At - A€ J
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+1\t __ yrn+1l +1 n+1 +1 n-+1
(Y = v - vy (c]. - G;.‘_l> + ATH]

ATy _
(V=1

AT —= — —
) +1 1
1-— KE(G;’ — G;‘_l)] + ATH;‘

The corrected solution is the arithmetic average of the past and predicted solutions

1 —[ AT = —
n+1 __ 1 +1 +1 +1
vl - 5{V,-" LV [_1_ Kg(G? _ G;.‘_I)J + ATHT } (2.9)
where
Gr = VP4 (-1_)2 (2.10)
J 7 2Fr? Ve . '
0.332(V)5/2
H} = 93320V (2.11)
RE]fj
Gt oyt (1) (2.12)
i 2Fr%<vﬁ) .
2
—— 0.332(Vnt1)s/2
HI = 05 ) (2.13)

V/Rexg;

Since the forward predictor velocity is in terms of a forward-space approximation, an
outlet boundary condition on the velocity is needed. For the case of 1-g, it is assumed that
the Froude number at the outlet is unity, which is a common boundary condition when a
liquid falls over an edge because the liquid accelerates from a subcritical velocity to the

critical velocity. The Froude number and the dimensionless velocity are related as follows:
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Frp\2/3 1 \2/3 -2/3
‘/n = = | — = F
() =(55) =

For the microgravity case, the slop~é‘ at the last node is set equal to the slope at the next
to last node.

The solution of the governing equation using the MacCormack explicit method proceeds

as follows:

e The parameters pertaining to the numerical domain and the inlet and outlet boundary

conditions are specified.

o The initial velocity distribution is input to the program.

e The variables G and H are computed using the velocity profile at the old time step as
given in eqgs. (2.10, 2.11).

e The velocity distribution at the midpoint time step is calculated in terms of the velocity,
G, and H at the old time step as shown in eq. (2.8). An outlet boundary condition is
needed at this step because of the forward-space approximation.

¢ The variables G and H are computed again by using the velocity profile at the midpoint
time step as presented in eqs. (2.12, 2.13).

o The velocity distribution at the new time step is calculated using eq. (2.9). The inlet

boundary condition is used in this step because of the backward-space approximation.
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o The values of the velocity distribution at the new time step are used as the initial velocity

profile for the next iteration.

e The process is repeated until steady values are reached.
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PSEUDO-CODE FOR CHANNEL FLOW

* Input parameters *

FT]» R(:], V]s {l? En, AT? Aé

* Input initial velocity distribution at the old time step *

VOLD(I) = 1

10

* Compute G and H at the old time step *
GOLD(I) = GOLD(VOLD(I), Fry)

HOLD(I) = HOLD(VOLD(I), Re;, £(1))

* Compute V at the mid time step *

VMID(I) = VMID(VOLD(I), Ar, Af, GOLD(I + 1), HOLD(I))

* Compute G and H at the mid time step *
GMID(I) = GMID(V MID(I), Fr1)

HMID(I) = HMID(VMID(I), Re, £(I))

* Compute V at the new time step *

VNEW(I)= VNEW(VOLD(I), VMID(I), GMID(I), GMID(I - 1), HMID(I))

* Test for convergence *

* Let V at the new time step be V at the old time step *

VOLD(I) = VNEW(I)

GOTO 10

* Print results *
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2.4. Analytical Solution for Microgravity

The gravity term in the conservation of axial momentum equation can be set to zero

to simulate a microgravity situation. For one-dimensional steady flow, the conservation of

mass and axial momentum are as follows:

@ = uh = constant

d /ul Csu?
4 gh) = Y
d:z:(2+g) 2 h

where

Cy =0.664,/—
Tu

vh
zuyhy

:0.664\/

Setting g = 0 results in:
du Cyu?

UT— = ——=

dz 2 h

The liquid film height can be eliminated from both equations with the following result:

C
2 du = ~5Qi dz
Integrating this equation gives:
Cy 1
<z - —-=C
2Qm u !
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C
v _1-HE
u) 1_%1% h

C C
h = —2112 — -2—‘f:l:] + h1
--C
h=Zw-21)+h
vh
h =0.33 -
2 :cu;hl (1,‘ $1)+h]

This equation has been solved for the following conditions:

=2
v =1.55x10"% I

sec
uy =393 L
hy = 0.01 in
z1 = 2.0 in

which corresponds to an inlet Reynolds number of Re; = 25.36.

2.5. Results and Discussion

The results of the computer program for 1-g are shown Figures 2.2 - 2.7. The figures

show the converged solutions of the problem with inlet Froude numbers ranging from 1.0 to
6.0 and inlet Reynolds ranging from 12.68 to 76.06. In the 1-g situation, it is observed that
a hydraulic jump is predicted and the location of the jump changes with the Froude number.

At very low Froude numbers, the jump is located almost at the liquid inlet. As the Froude
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number increases, the jump is pushed back away from where the liquid enters the numerical

domain, which is what has been seen experimentally.

Figures 2.8 - 2.10 present solutions of the problem under microgravity conditions for
inlet Reynolds numbers of 25.36, 50.71, and 101.4. Figure 2.8 also presents the analytical
results of the case under 0-g. For the microgravity simulation, the results are quite different
than the results of the 1-g simulation because a hydraulic jump is not predicted. The liquid
film height increases monotonically along the length of the plate. It is shown in the graphs
that as the Reynolds number increases, the liquid film height becomes smaller. Figure 2.8

shows the excellent agreement between the analytical and numerical solutions for 0-g.

Figure 2.11 presents the dimensionless liquid film height for the case when the slope at
the outlet is set equal to the slope of the node just inside the computational domain. It was

found that the solution did not converge with this outlet boundary condition.

Figures 2.12 - 2.15 present the results of the 1-g simulation when the friction at the
wall is increased by a factor of three. The graphs show that as the friction increases, two
phenomena occur: the thickness of the film increases, and the location of the hydraulic jump
is closer to the entrance than when the friction is less. This is what one would expect in a

physical situation.
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Appendix 2.1

The following is an analysis of the validity of the assumption concerning the term foh u?dy.

The following approximation is given:

h
/0 uldy ~ w2h

whereas by the definition of the mean velocity:

h/ udy
wh= 1 [[ v

It is therefore necessary to determine whether the following equation is accurate:

= g (e

Since the flow situation is similar to boundary layer flow, a modified approximate solution

to the boundary layer velocity profile will be used to examine the approximation.

* Jo B
_r.y
2 h
T dy
d = — e e
v 2 hk
dy = g—}idU
/ uldy = / szn2U< dU)
2 /2
2hV / sinfUdU
2 /2
2hV [ U - -l-sm2U]
T 4 0
2
_%/92 = 0.5hV2
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h
/0 u’dy = 0.5hV2 (5)

h h Ty
= [ vesin(l.Y
/Oudy '/(; sm<2 h)dy
w/2
:/ / 1';osinU(g-}idU>
0 T

Vo )2
2h w‘/ sinUdU
Q

T

_2hV,

—
"

17 rh 2 1712hV 12

- d =_ b

Jﬁuﬂ h[w}
4RV

T2

1 h 42 V2
E[ /0 udy} = 4};2& = 0.405hV2 (6)

For this particular velocity profile, the approximation for the term foh u?dy is within 20%

of the exact value. Therefore, it is recommended that the approximation be used in the

present analysis.
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One-dimensional radial flow analysis including solid-body rotation under 1-g and 0-g

3.1. Introduction

The governing equations and boundary conditions are presented for the situation of a
thin liquid layer emanating from a pressurized vessel and traveling radially along a horizontal
disk with a constant initial height and uniform initial velocity as shown in Fig. 3.1. It is
desired to find the liquid height at any distance along the radius of the disk for different
Froude numbers and Reynolds numbers specified at the inlet. Since the inlet Froude number
will usually be greater than unity, it is possible that a hydraulic jump will occur at some
point in the computational domain. A.hydraulic jump is when the flow suddenly changes
from supercritical (Fr > 1) to subcritical (Fr < 1) flow, which is accompanied by a sudden
increase in the height of the liquid. This is analogous to the shock wave in gas dynamics

~when the flow changes from supersonic (M > 1) to subsonic (M < 1) flow in a very short
distance. The similarity between the hydraulic jump and the shock wave in gas dynamics
suggests using the familiar approach of modeling the flow as a transient phenomena and
allowing the solution to march in time to achieve the desired steady state results. The

effects of microgravity and solid-body rotation on the flow are examined.

3.2. Mathematical Modeling

The generalized governing equations for an incompressible fluid with constant properties

are as follows:

r-direction momentum equation:

(?ﬁ+ g_zf vOu v2+ Bu)_ aP (32u 18u v 16% 28v 62u>,
P\ot ™ "or "ro8 7 V82T K

TGt rer 2T e 258 T 9.2

6-direction momentum equation:
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(81} Ov vlv uv av)_ 10P. (321) 10w v+132'v 2 8u B%v

3 Yo tree Ty Ve, s Mty 2t Tt 32)“’9“’

z-direction momentum equation:

(@wL‘ZIEKEQ’f ?_’f)_if_) (@Jrlﬁ%riy ‘92)+
Ve Tres TYer) T Tas T eE T rar Trzaer T g2) Y-

continuity equation:

o u 100 O
3r+r r08 Oz

The general boundary conditions for these equations are those on the disk and on the

free surface of the liquid:

z=0: u=0, w=0, v=wr

z=h: w—%h—}—ug—

Pnr =0, Pan=—pn+ (;36—( %h)
where h is the film thickness; pn,, stress tangent to the film surface; p,,, normal stress; o,

surface tension;.
The following assumptions are introduced to reduce the complexity of the governing
equations:

o Incompressible fluid

. §y=yr=yo=0

e Boundary layer assumptions
e No surface tension

No interfacial shear on the free surface
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o Solid body rotation, v = wr, but neglect the contribution made by the azimuthal mo-

mentum equation.

The last assumption was made as a first step to include the effect of rotation on the flow.

In the future, the azimuthal momentum equation will be included in the analysis.
The governing equations and boundary conditions then reduce to the following forms:

continuity equation:

du u Ow
-

mL 4 =0
or r 0z

z-direction momentum equation:

Boundary conditions:
P(r,h,t) =0

u(ry, z,t) = ug
u(r,z,0) = ug

(%)

w(r,0,t) =0

=0
z=h

Integrating the conservation equations across the thin layer results in quasi - one-

dimensional governing equations:

Continuity equation:

117




Q‘lj+u+6w_0
or . r 8z

B G [ (s [ (5o

Leibniz’s rule:

d (B af(z, dB
2;/,4 f(:c,t)dt:/A —j—(gm—t)dt-i-f(:c,B)»E—;—

k s6u 8 rh dh
f (E)dzfé?/o wdz —ul 5

The kinematic condition at the free surface for unsteady problems is used as one of the

free surface boundary conditions:

oh oh

gr Ty = wh

Ly OB I
ey Tt Wk
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0 \§z /)% T Wik Wl

la(rﬂh) N ?ﬁ _
r Or at

0 (3.1)

z-direction momentum equation: -

P = pg(h - 2) (3.2)

r-direction momentum equation:

§E+u6u+ ou 2 16P+ 0%u
ot or 0z T por 922
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/oh(?a:) 6t/ wdz —ulp 7 ah
8

Bh
“a(h) vl
h/ Bu _h O(uw) dw
[ (wge)ae= [} Hgthae [} (s52 e

~(u)ls ~ (vl — [ (222

h /5%y h 6 ou
f (5 )e== az(az)dz
k 76u
:./0 d(@z)
-(?-’f)
h \0z/lo

a
5 (BR) — 2k

From the continuity equation:

[ (g)e = [ (g ()

Using the kinematic condition at the free surface:

/oh oh
(uw)ln =UIh( + ulp - )

ot
oh , Ok
=uln = @M)'g;
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;. Bh hy Bu 8h oh
{7 p 2 _ 2
at(uh) ulp Bt (ua )dz+u|h 5t +/ ( >dz+/ ( )dz rhw

0 /(1 , Ou
=*5;<59h>'”(5;)0

o)+ 2 [ (g e+ o 15 oo = 2 (5a) (5

0, _ 1 s Oh 2 1 2)_ (@3>
at(uh)+r/0 or dz + (uln) or rhe ——BT(Z‘qh “\ 8z




Assumption:

a _ 1 3 ) 2 3 1 2 au
—_ 4 T — -z — -
Bt(u’l) ' rar(ru h) = rhe or <2gh ) V(az) 0
18, ,.. 17 8
S rathy =2 | L2 2 ]
ar(r ) r[rar(u k) +a*h
é . , alh
RERCEOR
8 8, , 8 /1 2) a2h ) (au)
5110+ 5 (8h) + 5 (G0m) + 2 = ot = (3 .
6 — a _2 l 2 . 2 'l_L2 3u
(W) + 5 (3t 598) = (et = ) —o(37) 0

Assumption:

Assumption:

oh
-5{_0
I S T
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r-direction momentum equation:

on & 1, u? 0.33242
o ) o)
3t+6r<uh+29h hlrw

r ar/v
Continuity equation:
10, _
;b—;(ruh) =0
rih = constant = Q
Dimensionless variables: ‘
] h r iy hi
3 hy hy J mo Yn
h =2
e Ll Re; s B Fr?
v gh1
h -—
a=mV  h=hb§ r=ht t=2r w=2Ag
iy hi

Radial momentum equation:

(3.3)

(3.4)



vV ., 8T,
(1) + @)z V2o + 3 %

av 4 V2
§2 4+ Yy 52] _ [ 2 _ ] 033 3/2/
o+ ar[ + 5r 5|60’ ~ =] ~ 0332V [ Ret

Continuity equation: ;

rah = Q

(hlé)‘(ﬁlV)(hﬁ) =Q

ey wens

vi= 2 ¢ :

Divide both sides by 6 and eliminate it from the radial momentum equation with the

continuity equation:

% V2 .332V3/2
] lﬁwH 1 =£92—~—0332
5r T 55¢ 2Fr? §€  6JReil
&
= v

BR8] s (B)] e - Y (e

v L8[V & (1)2]_ ) Yj_o.s:*.zvs/2 ¢
aﬂwfag[g*zh] ve) | =<9

Dimensionless governing equation:
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V, + VEGe = H (3.5)

where

v 3 1\2
G = ? + §F—T¥(“‘/—E> (3'6)

V: o o0.332v5/2 [ ¢

_ 2 _
H=1& £ &1 Re;

(3.7)

For the case when gravity is zero, the equation for G is as follows:

‘/
G =~
4

The governing equation has one time derivative and one space derivative, so an initial

condition and a boundary value are needed.
Initial condition:
T=0: V=VW=10for § <€ <€,
Boundary condition:
E=6: Fr=Fr, V=1

3.3. Numerical solution procedure

The MacCormack explicit method is quite often used for the solution of compressible
flow problems. Since it is an explicit method, the unknown variables are found in terms of

known quantities, as opposed to implicit methods which must solve a matrix equation to

obtain the solution of the problem.

The MacCormack method is a two-step scheme that uses first-order finite-difference
approximations. The scheme first predicts the solution at the next time step with a forward

time, forward space (FTFS) differencing scheme and then corrects the prediction with a
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forward time, backward space (FTBS) scheme. This results in a approximation that is

second-order accurate in both time and space (Hankey, 1982).

When applied to the one-dimensional linear convection equation,

ou + ou 0
ot " oz
the MacCormack method yields (Anderson et al., 1984)

At
n+l1 _ . n__ —"(mn N 3
ujl =g - e (ufpr —uj) Forward predictor
: 1 =5 At ——
u? = 2y 4T - e T (T gt Backward corrector
J 217 7 Az -1

The corrector can be seen as an arithmetic average of the old solution, u}, and the new

solution based on the predicted solution, u**! — ¢t (41 — 4"t} which uses a backward
p L] Az\™3 -0

"difference.

The governing equation for the present problem is as follows:

V. +VEG; = H

where

o= grarglve)

VZ  0.332v5/2 [ ¢

H=¢£0— — -
J £ & Rey
Forward predictor: FTFS
vt _yn n o _gn
ne. +1 _ gn
] < ]+I/j£][ .7Af J}__HJ_
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Vn+] — Vn . Vné] Af( e Gn)JrATHn

VT ¢ Aé(GJ - G;‘)] + ATH? (3.8)

Backward corrector: FTBS

The finite-difference equation based on the predicted solution using a forward time,

backward space differencing scheme is as follows

(Vrrly — yptl Gl gl
i=1] _
J J + Vn-HgJ [ }

(ng)l - an+l Vn+l£J AE (Gn-H _ Gn+l> + AT Hn-H

n+1y +1 +1 n+1 ‘ n+1
(7 = i [1 - 57 (677 - )| + e
The corrected solution is the arithmetic average of the past and predicted solutions

Vn-H [Vn (V] +])I]

AT n n n
Vn+1 {V" + Vn-H {1 _ éJ_A_é(Gj+l _ GJ+11)] + ATHT +]} (3_9)
where
(%L £1 1 2
n_ _J2 _— 3.10
C =% T are (vj"gj) (310)

(VP 0.332(VP)S/2 [
6 & VEe &1)

H? = 0% -
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Gptl = e . ( L )2
’ € 2Fr? an-Héj
nt12 TTT\5/2
gny - £:0? - V; ) B 0.332(Vj"“r )5/ \/’ZJ‘
’ ’ {7. él Re,

(3.12)

(3.13)

Since the forward predictor velocity is in terms of a forward-space approximation, an

outlet boundary condition on the velocity is needed. For the case of 1-g, it is assumed that

the Froude number at the outlet is unity, which is a common boundary condition when a

liquid falls over an edge. The Froude number and the dimensionless velocity are related as

follows:

V, = (9 . Fr%)’“ _ (g . _}_)”’
tn Fr? tn  Fr?

For the microgravity case, the slope at the last node is set equal to the slope at the next

to last node since the outlet boundary condition can not be specified by the Froude number.

The solution of the governing equation using the MacCormack explicit method proceeds

as follows:

o The parameters pertaining to the numerical domain and the inlet and outlet boundary

conditions are specified.

e The initial velocity distribution is input to the program.
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The variables G and H are computed using the velocity profile at the old time step as

given in egs. (3.10, 3.11).

The velocity distribution at the midpoint time step is calculated in terms of the velocity,
G, and H at the old time step as shown in eq. (3.8). An outlet boundary condition is

needed at this step because of the forward-space approximation.

The variables G and H are computed again by using the velocity profile at the midpoint

time step as presented in eqgs. (3.12, 3.13).

The velocity distribution at the new time step is calculated using eq. (3.9). The inlet

boundary condition is used in this step because of the backward-space approximation.

The values of the velocity distribution at the new time step are used as the initial velocity

profile for the next iteration.

The process is repeated until steady values are reached.
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PSEUDO-CODE FOR RADIAL FLOW

* Input parameters *

FT‘], RE], 519 fn’ AT’ AC- 0

* Input initial velocity distribution at the old time step *

VOLD(I) =1

10

* Compute G and H at the old time step *
GOLD(I) = GOLD(VOLD(I), Fry)

HOLD(I) = HOLD(VOLD(I), Rey, ¢(I))

* Compute V at the mid time step *

VMID(I) = VMID(VOLD(I), Ar, A¢, GOLD(I + 1), HOLD(I))

* Compute G and H at the mid time step *
GMID(I) = GMID(VMID(I), Fry)

HMID(I)= HMID(VMID(I), Rei1, £(I))

* Compute V at the new time step *

VNEW(I) = VNEW(VOLD(I), VMID(I), GMID(I), GMID(I — 1), HMID(I))

* Test for convergence *

* Let V at the new time step be V at the old time step *

VOLD(I) = VNEW(I)

GOTO 10

* Print results *
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3.9 Results

The results of the computer program that predicts the height of liquid in radial flow
with a free surface on a disk under 1-g are shown in Figures 3.2 - 3.6. These figures show
the dimensionless liquid film height under 1-g with no rotation as the initial Froude number
changes from Fr; = 2.0 - 6.0 and the initial Reynolds number changes from Re; = 25.36 -
76.06. The outlet boundary condition for these cases is Fr, = 1.0, which corresponds to a
liquid falling over an edge. For small initial Froude numbers (Fr; — 1), a radial hydraulic
jump is predicted very close to the inner radius of the disk. A hydraulic jump is when the
liquid film height suddenly increases when the flow changes from supercritical (Fr > 1) to
subcritical flow (Fr < 1). As the initial Froude number increases, the radius of the hydraulic
jump increases, which agrees with experimental data. For all of the cases in this set of figures,
the liquid film height first decreases and then increases in the supercritical region. As will
be shown in other cases, this is not always true if the inlet Reynolds number is sufficiently

~ small.

Figures 3.7 - 3.11 give the results of when the gravity term is set to zero, which cor-
responds to a microgravity simulation. The inlet condition was specified with the inlet
Reynolds number which ranged from Re; = 25.36 - 76.06. The outlet boundary condition

was specified by forcing the slope of the curve at the outlet be equal to the slope just before

the outlet. In all of the cases studied, a hydraulic jump did not appear. The trend in all
of the cases in these figures was an initial decrease in the liquid height followed by a mono-
tonic increase of the liquid film height. It can be seen that as the initial Reynolds number

increases, the liquid film height decreases at all points along the radius.

Figures 3.12 - 3.14 demonstrate the effect of solid-body rotation on the liquid film height.
Figure 3.12 shows the flow field without rotation, Fig. 3.13 presents the liquid height with
the dimensionless angular velocity set to 2 = 1073, and the Fig. 3.14 shows the film height
with = 1072, With Q = 1073, the shape of the hydraulic jump has been ’stretched’ along

the radial axis, while with Q = 1072 the hydraulic jump has been completely 'washed out.’
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Figure 3.15 shows the results of the program when there is gravity, no rotation, and the
outlet boundary condition is specified such that the slope at the outlet is equal to the slope
just before the outlet. It can be seen that the solution does not converge even when the time

step is decreased to 0.1 of the time step with the outlet boundary condition specified.

Figure 3.16 compares the results of the channel flow with that of the radial flow with
the same inlet and outlet conditions. The height of the liquid film for channel flow is

approximately twice that of radial flow.

Figures 3.17 - 3.19 compare the results of the computer program under 1-g when the
friction at the wall is increased by a factor of three. The graphs show that the effect of
increasing the friction is the same as in channel flow: the height of the liquid film is increased,

and the location of the hydraulic jump is closer to the inlet of the computational domain.
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