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A NEAR-WALL TURBULENCE MODEL AND ITS APPLICATION TO 

FULLY DEVELOPED TURBULENT CHANNEL AND PIPE FLOWS 

S.-W. Kim 
Institute for Computational Mechanics in Propulsion 

Lewis Research Center 
Cleveland, Ohio 44135 

Summary 

A near-wall turbulence model and its incorporation into a multiple- 

time-scale turbulence model are presented in this report. 

the conservation of mass, momentum, and the turbulent kinetic energy 

equations are integrated up t o  the wall; and the energy transfer rate and 

the dissipation rate inside the near-wall layer are obtained from algebraic 

equations. The algebraic equations for the energy transfer rate and the 

dissipation rate inside the near-wall layer have been obtained from a 

k-equation turbulence model and the near wall analysis. 

turbulent channel flow and fully developed turbulent pipe flows were solved 

using a finite element method to test the predictive capability of the 

turbulence model. The computational results compared favorably with 

experimental data. It is also shown that the present turbulence model 

could resolve the over-shoot phenomena of the turbulent kinetic energy and 

the dissipation rate in the region very close to the wall. 

In the method, 

A fully developed 

*Work funded under Space Act Agreement C99066G. 
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Nomenclature 

Turbulence model constants for e equation, (1=1,3) 

Turbulence model constants for et equation, (1==1,3) 

A constant coefficient ( -0 .09)  

P 

A coefficient used in eddy viscosity equation 

Wall damping function for eddy viscosity equation 

Wall damping function for dissipation rate 

Total turbulent kinetic energy , (k=%+kt) 

Turbulent kinetic energy of eddies in the production range 

Turbulent kinetic energy of eddies in the dissipation range 

Normalized turbulent kinetic energy (-k/ur2) 

Production rate of turbulent kinetic energy 

Turbulent Reynolds number ( - k 2 / ( v e ) )  

Radial distance 

Time averaged velocity 

Non-dimensional velocity (-u/u,> 

Friction velocity ( = J ( , " / p ) )  

Normal Reynolds stress, R.M.S. value of the fluctuating 
axial velocity 

Reynolds stress 

Normalized Reynolds stress (=u"/ur2) 

Time averaged velocity in the y-coordinate direction 

turbulence velocity scale 

normal distance from the wall 

Wall coordinate (=u,y/v) 

Dissipation rate 

Transfer rate of turbulent kinetic energy from the 
production range to the dissipation range 
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Dissipation rate of turbulent kinetic energy 

Dissipation rate inside the near-wall layer 

Non-dimensional dissipation rate (-vc/u, 4 ) 

von Karman constant 

turbulence length scale 

mixing length 

kinematic viscosity of fluid 

turbulent eddy viscosity 

Turbulent Prandtl number for $ equation 

Turbulent Prandtl number for kt equations 

Turbulent Prandtl number for ep equation 

Turbulent Prandtl number for et equation 

Wall shearing stress 
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Introduction 

For wall bounded turbulent flows in the equilibrium state, the 

logarithmic velocity profile prevails in the near-wall region1. The most 

widely used wall function methods in numerical calculations of turbulent 

flows have been derived from the logarithmic velocity profile based on the 

experimental observation that the turbulence in the near-wall region can be 

described in terms of the wall shearing stress. The wall function methods 

are not valid at or near the separation point since the turbulence in this 

region can not be described in terms of the wall shearing stress. For 

unsteady turbulent flows, the logarithmic velocity profile no longer 

prevails in the near-wall or in the wake region 2 , therefore the wall 

function methods can not be applied. Other occasions in which the wall 

function methods become invalid include low turbulent Reynolds number flows 

in which the effect of molecular viscosity become important and flows over 

surfaces with mass injection and/or suction. The objective of this study is 

to eatablishes a near-wall turbulence model which can be used in place of 

wall function methods. Further application of the present near-wall 

turbulence model for complex turbulent flows such as the turbulent flow 

over a curved hill3 and the turbulent boundary layer - shock wave 

 interaction^^-^ can be found in Reference 6. 
Numerous efforts have been made to include the near-wall low turbulent 

Reynolds number region in turbulent flow computations. Various turbulence 

models which include the near-wall low turbulence region can be classified 

as two- or multi-layer turbulence rnodels7-l0, low Reynolds number 

turbulence models, and partially low Reynolds number turbulence models. The 

advantages and disadvantages of these various methods are discussed in the 

following. 
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In the two- or multi-layer turbulence models, the turbulence in the 

near-wall layer has been described by algebraic e~pressions~-~~. In these 

turbulence models, the turbulent kinetic energy and the dissipation rate in 

the near-wall layer have been constructed by piecewise continuous 

functions. As a consequence, the computational results may depend on the 

location of the partition between the near-wall layer and the fully 

turbulent region8. In some of these methods, a quadratic variation of the 

turbulent kinetic energy has been assumed in the near-wall region and the 

dissipation rate has been derived from the logarithmic velocity profile 

equation 4 . This class of methods is advantageous in studying the near-wall 

turbulence structure for equilibrium turbulent flows. However, these 

methods become invalid if the logarithmic velocity profile does not prevail 

in the near wall region. The underlying assumption that the turbulent 

kinetic energy is proportional to square of the distance from the wall 

inside the near-wall layer is also questionable, since the quadratic 

variation of the turbulent kinetic energy is valid only inside the viscous 

sublayer and become invalid as the fully turbulent region is approached. 

In the low Reynolds number turbulence models, the high Reynolds number 

turbulence models have been extended to include the near-wall low 

turbulence effectll. In this class of methods, the near-wall low turbulence 

effects have been incorporated into the high Reynolds number turbulence 

models by using the wall damping functions. These wall damping functions 

have been derived mostly from numerical experiments in such a way that the 

low Reynolds number turbulence models could reproduce the experimentally 

observed turbulent flow phenomena in the near-wall region. In this class of 

methods, a significant number of grid points has to be assigned in the near 

wall region in order to resolve the stiff dissipation rate equation. 
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Aside from the above two classes of methods, a new approach has been 

used in Chen and Patel12 to solve complex turbulent flow. In the method, 

only the turbulent kinetic energy equation of the k-E turbulence model has 

been extended to include the near-wall low turbulence effect and the 

dissipation rate inside the near-wall layer has been prescribed 

algebraically. 

k-equation turbulence model13. Thus the turbulent kinetic energy and the 

dissipation rate varies smoothly from the wall toward the outside fully 

turbulent region. In this case, it would be more appropriate to classify 

the turbulence model as a partially low Reynolds number turbulence model to 

distinguish it from the other two classes of methods. 

The dissipation rate equation has been obtained from a 

It has been shown previously that the high Reynolds number 

multiple- time-scale turbulence model16 yielded significantly improved 

computational results for a class of complex turbulent flows such as a wall 

jet flow17, a wake-boundary layer interaction flow18, a confined coaxial 

jet without swirl19, and a confined coaxial swirling jet20, to name a few. 

In the single-time-scale turbulence models such as the k-e turbulence 

models and the Reynolds stress turbulence models, a single-time-scale is 

used to express both the turbulent transport and the dissipation of the 

turbulent kinetic energy. However, this practice is inconsistent with 

physically observed turbulence in a sense that the turbulent transport is 

related to the time scale of energy containing large eddies and the 

dissipation rate of turbulent kinetic energy is related to the time scale 

of fine scale eddies in the dissipation range. The single time-scale 

turbulence models have been used most widely and yielded quite accurate 

computational results for many turbulent flows; however, the predictive 

capability degenerated significantly for complex turbulent flows with 
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strong inequilibrium turbulence. In the multiple-time-scale turbulence 

models16 9 21-24, the turbulent transport of mass and momentum has been 

described using the time scale of the large eddies; and the dissipation 

rate has been described using the time scale of the fine scale eddies. The 

improved computational results obtained by using the multiple-time-scale 

turbulence model for complex turbulent flows can be attributed to the above 

discussed physically consistent nature of the turbulence models. 

It has been shown that the k-equation turbulence models yielded highly 

accurate computational results for a class of standard turbulent boundary 

layer flows25, turbulent flows with drag reduction26, an unsteady fully 

developed turbulent channel flow27, and fully developed unsteady turbulent 

pipe flows2. However, the k-equation turbulence model itself is less useful 

for separated and/or swirling turbulent flows with complex geometry due to 

lack of a systematic method to evaluate the turbulence length scale. 

The near-wall turbulence model presented in this report belongs to the 

partially low Reynolds number turbulence models. In the model, the 

turbulence structure in the near-wall low turbulence region has been solved 

by extending the turbulent kinetic energy equations to include the low 

turbulence effect and the energy transfer rate and the dissipation rate 

have been prescribed algebraically. The energy transfer rate and the 

dissipation rate equations in the near-wall layer have been obtained from 

the k-equation turbulence model13. The rest of the flow domain has been 

solved by the high Reynolds number multiple-time-scale turbulence model 16 . 

Further advantages of this approach originating from physical and numerical 

considerations are discussed in the following section. 

Example problems considered include: a fully developed turbulent 

channel flow14 at Reynolds number (Re) of 30,800 and turbulent pipe flows15 
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for Re - 50,000 and 500,000. The computational results compared favorably 
with experimental data globally. More importantly, significantly improved 

computational results for the turbulence structure in the near-wall region, 

including the experimentally observed over-shoot phenomena of the turbulent 

kinetic energy and the dissipation rate, have been obtained. 

NEAR-WALL TURBULENCE MODEL 

The turbulence in external flows and that in near-wall boundary layer 

flows have quite different length scales28 9 29. The turbulence length scale 

of the external flows is related to the flow field characteristics. On the 

other hand, the turbulence length scale of boundary layer flows is strongly 

related to the normal distance from the wall. This nature of the wall 

bounded turbulent flows can be described quite naturally by the partially 

low Reynolds number turbulence models. The same purpose could be achieved 

by the low Reynolds number turbulence models as more experimental data 

become available. However, the gradient of the dissipation rate is the most 

stiff in the near-wall region, and a great number of grid points has to be 

used in the region for the low Reynolds number turbulence models to resolve 

the dissipation rate. Therefore, the partially low Reynolds number 

turbulence models seem to be more advantageous as compared with the low 

Reynolds number turbulence models, unless the low Reynolds number 

turbulence models can describe the wall bounded turbulent flows more 

accurately. 

Eddy Viscosity Equation in the Near-Wall Region - 

In the Prandtl-Kolmogorov theory, the eddy viscosity is given as; 

Vt = vsR 
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where vs and R are the turbulence velocity and length scales, respectively 

The velocity scale has been most frequently represented by the square root 

of the turbulent kinetic energy. The turbulent length scale in the fully 

turbulent region of wall bounded turbulent flows is given 

where cpf (lO.09) is a constant, Rm is the mixing length, IC is the von 

Karman constant, and y is the normal distance from the wall. The fully 

turbulent region extends from y+=30 up to y+=-300, where y+=u'y/u is the 

wall coordinate, U~==J(T~/~) is the friction velocity, rW is the wall 

shearing stress, and v is the kinematic viscosity of fluid. Thus the 

turbulent eddy viscosity in this fully turbulent region is given as; 

ut - k1I2R ( 4 )  

where k is the turbulent kinetic energy. 

The instantaneous velocity in the viscous sublayer region can be 

written asll; 

I ut = aly + a2y2 + . . . . 
v' = b2y2 + . . . . 
w' = c1y + c2y2 + . . . . 

(5) 

where the coefficients ai, bi, and ci are functions of time such that ai = 
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bi - ci = 0, and the over-bar denotes time average. Note that the 

fluctuating normal velocity component grows in proportion to the square of 

the distance from the wall due to the wall proximity effect. The turbulence 

in the very closed to the wall region, i.e., y=O can be written as; 

1 1 I -  - - I -  - 
k = - (uI2 + vt2 + wI2) = - (a12 + el2) y2 + . . . . 

2 2 

- u’v’ = alb2y - 3  

- 
where E is the dissipation rate, and u’v’ is a component of the Reynolds 

stress. Due to the difficulty in measuring the turbulence quantity in the 

very close to the wall region, there exist only a limited number of 

experimental data to support the above analysis. For example, the 

experimental data compiled by Cole30 showed that the turbulent kinetic 

energy grows in proportion to the square of the distance from the wall. 

In the Boussinesq eddy viscosity assumption, the Reynolds stress is 

given as; 

aui auj 

axj axi 
- Ui‘Uj‘ = ut (- + -) ( 9 )  

Very close to the wall, the velocity gradient is a constant. Thus eqs. ( 8 )  

and (9) indicate that the eddy viscosity is in proportion to the third 

power of the distance from the wall; whereas, eqs. (2-4) and ( 6 )  indicate 
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t ha t  the eddy viscosi ty  is  proportional t o  the square of the distance from 

the w a l l  i n  the viscous sublayer region. This difference is a t t r ibu ted  t o  

the f a c t  t ha t  the molecular viscosi ty  dominates i n  the viscous sublayer 

region and t h a t  the eddy viscosi ty  dominates i n  the f u l l y  turbulent region. 

The turbulent v i scos i ty  equation can be modified t o  include the e f f ec t  of  

molecular v i scos i ty  i n  the viscous sublayer region as ; 

Thus the damping function f, has t o  be a l inear  function of the distance 

from the wall and has t o  approach unity as  the f u l l y  turbulent region is  

approached. 

Note t h a t  the eddy viscosi ty  i n  the Prandtl mixing length theory is  

proportional t o  the fourth power of the distance from the wall ,  i . e . ;  

where &,-ny(l-exp(y+/A+)) and A+ is the w a l l  damping fac tor .  There also 

ex i s t s  a few low Reynolds number turbulence models i n  which the eddy 

v iscos i ty  var ies  i n  proportion t o  the fourth power of the distance from t h e  

wal l ,  see Reference 11 for  more discussion. 

In  the f u l l y  turbulent region of wall bounded turbulent flows, the 

d iss ipa t ion  rate is  re la ted  t o  the mixing length o r  the turbulence length 

scale  a s ;  
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- Cpf - 
a 

The dissipation rate given as eq. (12) vanishes in the region very 

close to the wall. However, the experimentally observed dissipation rate 

approaches a constant value in the region, see eq. .(7). Two slightly 

different approaches have been used to approximate the dissipation rate in 

the near-wall region. In the k-equation turbulence model of Gibson et. 

al. 25, Hassid and Poreh26, and Acharya and Reynolds27, the dissipation rate 

in the near-wall layer has been obtained by linear combination of eqs. (7) 

and (12),  and is given as; 

k312 2uk 
EW E C , , f 3 1 4  f,h - + -  

KY Y2 

where f,h is a wall damping function varying from null on the wali to unit 

in the fully turbulent region. On the other hand, in the k-equation 

turbulence model of Wolfshtein13, the dissipation rate in the near-wall 

layer was given as; 

1 c,,f314k312 
€w = - 

f € KY 

where f, has been chosen so that the dissipation rate would approach to the 

value given in eq. (7) for y=O and f, take unit value in the fully 

turbulent region. The fully turbulent region with equilibrium turbulence 

extends from y+=30 to y+=300 for wall bounded flows. Eq. (14) has also been 

used in the partially low Reynolds number k-c turbulence model of Chen and 
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Patel’* for numerical computations of separated turbulent flows. Eq. (14 )  

has been used in the present study, and partial justification is presented 

in the following paragraph. 

Consider the turbulent kinetic energy equation given as; 

where Uk is the turbulent Prandtl number for the k-equation and 

Pr--u.’u ‘(aui/axj) is the production rate. Very close to the wall (y=O), 

the molecular viscosity dominates over the turbulent eddy viscosity, and the 

convection term is found to be negligible compared with the diffusion term 

from an order of magnitude analysis1. Then the analytical solution of eq. 

(15) for y=O is given as eq. (7 ) .  For y>O, the turbulent eddy viscosity 

% j  

grows in proportion to the third power of the distance from the wall. Hence 

it can be argued that the dissipation rate given as eq. (7 ) ,  which is the 

analytical solution of eq. (15) for y=O, may valid only at very close to 

the wall. However, the dissipation rate given as eq. (7) retains 

significant magnitude even in the fully turbulent region, i.e. y+=lOO. For 

this reason, the work of Wolfshtein13 and Chen and Patel12 has been 

followed herein. In the present study, the near-wall damping function f o r  

eq. (14) is given as; 

where Rt-k2/(ve) is the turbulent Reynolds number and Ae=c,f3/2/(2n2). For 

y=O, eq. (14) takes the limit value given as eq. (7). 
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Substituting eq. (12) into eq. (10) yields: 

k2 
Vt - Cpf f, - 

E 

and substituting ew, eq. (14), for e in eq. (17) yields the eddy viscosity 

equation for the near-wall layer given as; 

k2 

‘ W Vt = Cpf f, - 

where f,=l-exp(A1+/Rt + A2Rt2) is a linear function of the distance from the  

wall in the viscous sublayer region and become unity in the fully turbulent 

region. AI-0.025 and A2-0.00001 have been used for the near wall layer i n  

the present study. 

For near-wall equilibrium turbulent flows, the production rate is 

approximately equal to dissipation rate (et), and hence the energy transfer 

rate ( e  ) from the low wave number production range to the high wave number 

dissipation range has to be approximately equal to both of them. The energy 

transfer rate and the dissipation rate inside the near-wall layer are given 

P 

as; 

1 c,f3I4 k3I2 

“Y 
€P - ‘t - ‘w - - 

f e 

Note that the production rate vanishes on the wall and grows to full 

strength at y+-15. Hence eq. (19) may not be a good approximation for 

O<y+<15. However, use of the vanishing boundary condition for the 
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turbulent kinetic energy on the wall yields the growth rate of the 

turbulent kinetic energy and the production rate which is in good agreement 

with experimental data as well as theoretical analysis. 

Multiple-Time-Scale Turbulence Eauations 

For clarity, the partially low Reynolds number multiple-time-scale 

turbulence equations are summarized below. The partition between the 

near-wall region and the fully turbulent outer region can be located 

between y+ 

kinetic energy equations for the entire flow domain are given as; 

greater than 40 and less than 300 approximately. The turbulent 

akt a ut akt 
( ( v  + -) - ) = €p - €t 9- - -  

axj axj Okt axj 

where uj is the time averaged velocity in the j-th spatial coordinate 

direction, Y is the kinematic viscosity of the fluid, vt is the turbulent 

eddy viscosity, and Ukp=0.75 and Ukt-0.75 are the turbulent Prandtl numbers 

for the 5 and kt equations, respectively. 
The energy transfer rate and the dissipation rate in the near-wall 

layer are given as eq. (19). The convection-diffusion equations for the 

energy transfer rate and the dissipation rate in the rest of the flow 

domain are given as; 

15 



P 
where u 

and Et equations, respectively, and c (1=1,3) and ctJ (1=1,3) are 

turbulence model constants. These model constants are given as; cpl-0.21, 

cp2-1.24, cP3= 1.84, ct1=0.29, ct2= 1.28, and ct3-1.66. Detailed derivation 

of these model constants can be found in Reference 1 6 .  

-1.15 and ~ ~ ~ - 1 . 1 5  are the turbulent Prandtl numbers for the E EP 

PI 

The eddy viscosity equation in the near-wall region is given as eq. 

(13); and the eddy viscosity in the rest of the flow domain is given as; 

k2 
"t - Cpf- 

'P 

COMPUTATIONAL RESULTS 

The turbulent boundary layer flows were solved by a finite element 

method3'. It has been shown in Reference 31 that the finite element method 

could solve a wide range of laminar boundary layer flows, such as the 

Blasius flat plate flow, the retarded Howarth flow, flow over a wedge, 

plane stagnation flow, flow over a circular cylinder, flow in the wake of a 

flat plate, uniform suction flow over a flat plate, flow over a cone, and 

flow over a sphere, as accurately as any available numerical methods 

including the semi-analytical methods (i.e., a fourth-order Runge-Kutta 

method1). Convergence study of the finite element method can be found in 

reference 31, and implementaion of the method for turbulent flows can be 
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found in Reference 32. For completeness, the computational procedure 

relevant to the present study is described briefly below. 

In each iteration, the momentum equation and the turbulence equations 

were solved sequentially with under-relaxation. The systems of equations 

have been solved iteratively until the maximum relative error of each 

turbulent flow variable became less than the specified convergence 

criterion for each flow variable. Each system of equations was solved by a 

penta-diagonal matrix algorithm (PDMA). Since the discrete system of 

equations contained five diagonal entries, the PDMA yielded exact solution 

for each system of equations. The convergence criterion used is given as; 

where i (=u, kp, eP, kt, or et) denotes each flow variable; Ai denotes the 

maximum magnitude of the i-th flow variable; N denotes the number of 

degrees of freedom for each flow variable; e=l~lO-~ has been used for 

velocity; and e-5~10'~ has been used for the rest of flow variables. 

1. Fullv DeveloDed Channel Flow 

The experimental data for the fully developed channel flow can be 

found in Laufer14. The Reynolds number based on the center line mean 

velocity (7 .07  m/sec) and the half of the channel width (0.0635 meters) was 

approximately 30,800. The partition between the near-wall layer and the 

fully turbulent region has been located at y+=lOO.'The near-wall layer has 

been discretized by 20 grid points; and the rest of the flow domain, by 40 

grid points. The Dirichlet boundary condition (u - 
prescribed at the wall; and the vanishing gradient 

kp = kt = 0) has been 

boundary condition, at 
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the center line of the channel. The pressure gradient estimated from the 

pressure measurement and the wall shearing stress measurement were -1.41 

kg-m/sec2-m3 and -1.40 kg-m/sec2-m3, respectively. In the present 

computation, dp/dx = -1.405 kg-m/sec2-m3 has been used. The converged 

solution has been obtained after approximately 400 iterations. 

The computational results for the velocity, the turbulent kinetic 

energy, and the Reynolds stress are compared with the experimental data in 

Figure 1. The velocity profile compared less favorably with the 

experimental data. The under-predicted velocity profile may due to the 

inaccurate pressure gradient. The magnitude and location of the maximum 

turbulent kinetic energy compared favorably with experimental data. It can 

be seen from the Reynolds stress profile that the present turbulence model 

yielded correct distribution of the turbulent viscosity. 

The normalized velocity, the turbulent kinetic energy, and the 

Reynolds stress inside the near-wall layer are shown in Figure 2; and the 

normalized dissipation rate, the ratio of Pr/ct, and the wall damping 

function are shown in Figure 3 .  The calculated magnitude and the location 

of the overshoots of the turbulent kinetic energy and the dissipation rate 

were in good agreement with the experimental data. The rest of 

computational results such as the ratio of production rate to dissipation 

rate of the turbulent kinetic energy and the wall damping function compared 

favorably with the semi-emperical data.ll It is shown in Reference 11 that 

only a few low Reynolds number turbulence models could yield the turbulent 

kinetic energy profile with overshoot in the near-wall region. It can be 

found in Reference 32 that the global computational results obtained by 

using various turbulence models with wall function methods compared 

satisfactorily with experimental data. However, the correct magnitude of 
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the overshoot of the turbulent kinetic energy and the dissipation rate have 

seldom been obtained. 

2 .  Fully DeveloDed Pipe Flows 

The fully developed pipe flows at Reynolds numbers of 50,000 and 

500,000 are considered below. The experimental data can be found in 

Laufer14. The Reynolds number was based on the diameter of pipe (0.24688 

meters) and the center line mean velocity. The center line velocities were 

3.048 m/sec and 30.48 m/sec for Re=50,000 and 500,000, respectively. In 

each case, the partition between the near-wall layer and the fully 

turbulent region has been located at y+=lOO. For Re=50,000, the near -wall 

layer has been discretized by 20 grid points; and the rest of the flow 

domain, by 40 grid points. For Re-500,000, the near-wall layer has been 

discretized by 20 grid points; and the rest of the flow domain, by 60 grid 

points. For both cases, the Dirichlet boundary condition (u - kp - k, - 0 )  

has been prescribed at the wall; and the vanishing gradient boundary 

condition, at the center line of the pipe. The pressure gradients estimated 

from the pressure measurements were -0.32 kg-m/sec2-m3 and -23.05 

kg-m/sec2 -m3 for Re-50,000 and 500,000, respectively. The converged 

solutions have been obtained after approximately 450 iterations for both 

cases. 

The computational results for the velocity, the turbulent kinetic 

energy, and the Reynolds stress for Re-50,000 are compared with 

experimental data in Figure 4 .  For this case, the computational results 

compared favorably with the experimental data. The Reynolds stress profile 

was slightly under-predicted, however, the difference was negligible. The 

normalized velocity, the turbulent kinetic energy, and the Reynolds stress 
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inside the near-wall layer are shown in Figure 5 ;  and the normalized 

dissipation rate, the ratio of Pr/et, and the wall damping function are 

shown in Figure 6 .  The calculated magnitude and the location of the 

overshoots of the turbulent kinetic energy and the dissipation rate were in 

excellent agreement with the experimental data. 

The computational results for the velocity, the turbulent kinetic 

energy, and the Reynolds stress for Re-500,000 are compared with 

experimental data in Figure 7 .  It was found that the mean velocity profile 

was severely under-predicted. Again, this may due to the inaccurate 

pressure gradient as in the fully developed channel flow case. The 

thickness of the near-wall layer (i.e., y+<lOO) for Re-500,000 case was 

approximately one order of magnitude smaller than that of Re-50,000 case. 

Both the calculated and the measured turbulent kinetic energy profiles 

exhibited strong peak in the region very close to the wall. 

The normalized velocity, turbulent kinetic energy, and Reynolds stress 

inside the near-wall layer are shown in Figure 8 ;  and the normalized 

dissipation rate, ratio of Pr/ct, and wall damping function are shown in 

Figure 10. Again, the calculated magnitude and the location of the 

overshoots of the turbulent kinetic energy and the dissipation rate were in 

excellent agreement with the experimental data. 

Conclusions and Discussion 

A near-wall turbulence model and numerical computations of fully 

developed turbulent channel flows and pipe flows using a partially low 

Reynolds number multiple-time-scale turbulence model have been presented. 

It has been shown that the present turbulence model yielded accurate 

computational results for the example flows considered. The correct 
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magnitude and location of the overshoots of the turbulent kinetic energy 

and the dissipation rate have been obtained only by a few low Reynolds 

number turbulence models1'; and have seldom been obtained by the two- or 

multi-layer turbulence models33. The turbulent kinetic energy and the 

dissipation rate overshoots obtained by using the present turbulence model 

were in excellent agreement with experimental data. The rest of the 

computational results in the near-wall region such as the normalized 

velocity profile, the Reynolds stress profile, the ratio of Production rate 

to dissipation rate, and the wall damping function compared favorably with 

experimental data. 

In the two- or multi-layer turbulence models, the turbulent kinetic 

energy in the near-wall layer is constructed by piecewise continuous 

functions; and the dissipation rate, by discontinuous functions. In the 

partially low Reynolds number turbulence models and in the low Reynolds 

number turbulence models, the turbulent kinetic energy and the dissipation 

rate vary smoothly from the wall toward the outside fully turbulent region. 

In this regard, the partially low Reynolds number turbulence models and the 

low Reynolds number turbulence models are more consistent with the 

experimentally observed distribution of the turbulent kinetic energy and 

the dissipation rate than the two- or multi-layer turbulence models are. A 

significant number of grid points has to be assigned in the near-wall layer 

for numerical computation of turbulent flows with the low Reynolds number 

turbulence models. However, with the use of partially low Reynolds number 

turbulence models, less number of grid points need to be assigned inside 

the near-wall layer and the stiff dissipation rate in the region need not 

be solved numerically. Therefore, many 

robust and more efficient with the use 

numerical codes can be made more 

of the partially low Reynolds number 
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turbulence models. 
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