
UAH RESEARCH REPORT NO. 752

LANGUAGES FOR ARTIFICIAL INTELLIGENCE:

IMPLEMENTING A SCHEDULER

IN LISP AND IN ADA

Prepared by:

Dan Hays

Psychology Department

The University of Alabama in Huntsville
Huntsville, AL 35805

Prepared for:

John Wolfsberger

System Software Branch

Information and Electronics Systems Lab
George C. Marshall Space Flight Center

National Aeronautics and Space Administration

Marshall Space Flight Center, AL 35812

October 1988

https://ntrs.nasa.gov/search.jsp?R=19890004614 2020-03-20T04:17:25+00:00Z

LANGUAGES FOR ARTIFICIAL INTELLIGENCE:

Implementing a Scheduler in LISP and in Ada

Abstract

A prototype scheduler for space experiments originally

programmed in a dialect of LISP using some of the more traditional

techniques of that language, was recast using an object-oriented

LISP, Common LISP with Flavors on the Symbolics. This object-

structured version was in turn partially implemented in Ada. The

Flavors version showed a decided improvement in both speed of

execution and readability of code. The recasting into Ada involved

various practical problems of implementation as well as certain

challenges of reconceptualization in going from one language to the

other. Advantages were realized, however, in greater clarity of the

code, especially where more standard flow of control was used.

This exercise raised issues about the influence of programming

language on the design of flexible and sensitive programs such as

schedule planners, and called attention to the importance of factors

external to the languages themselves such as system embeddedness,

hardware context, and programmer practice.

D. Hays, et al. - Languages for AI - Abstract

Johnson Research Center, U. Alabama in Huntsville 35899 - October 1988, i

Table of Contents

I. Introduction

I I. The AI Language Problem

Ill. Versions of the Scheduler

A. The Original Version

B. The Common LiSP/Flavors Version

C. The Ada Version

IV. Issues and Conclusions

Appendices

PAGE

1

5

10

10

17

28

5O

D. Hays -Languages for A! - Johnson Research Center, UAH - October

1988, ii

LANGUAGES FOR ARTIFICIAL INTELLIGENCE:

Implementing a Scheduler in LISP and in Ada

I. Introduction

This report documents research to explore implementation of an

artificial intelligence application, a scheduler for space-resident

activities, in various computer languages. This task is one from a

larger research effort supported by Grant No. NAG8-641 from NASA's

Marshall Space Flight Center to the Johnson Research Center at the

University of Alabama in Huntsville. Donnie Ford is Principal

Investigator on this grant. John Wolfsberger at Marshall Space

Flight Center, is the Contract Monitor. Dan Hays is Task Leader for

the research described in this document and the author of this

report. 1 The report covers the project year.

Project Overview. A scheduler for experiments and other

resource-consuming activities in a Space setting, originally

developed by Floyd and Ford, was reprogrammed in two computer

languages. 2 The original was written in ZetaLISP, using classical

techniques of LISP programming. The other two languages used were

Common LISP with Flavors, an object oriented language, and Ada.

The suitability of yet other languages was also examined briefly.

1 Comments on this report or questions about the research may be addressed

to Dr. Hays at 135 Morton Hall, The University of Alabama in Huntsville,

Huntsville, Alabama 35899, or to Dr. Ford at Johnson Research Center,

Research Institute Building, The University of Alabama in Huntsville,
Huntsville, Alabama 35899.

2 An earlier report from this project was delivered as a paper: D. Hays, S.

Davis, and J. Wolfsberger, "An Object-Oriented Implementation of a Scheduler

in LISP and in Ada", to the 1988 Conference on Automation for Military and

Space Activities, Huntsville, AL.

D. Hays -Languages for A! - Johnson Research Ccntcr, UAH - October 1988 - p.

1

The scheduler incorporated various features of "artificial

intelligence" programs, such as extended and variable searches and

flexible input. Since it had been shown to work with data drawn

from space missions, it quaJJfied as a practical application of AI

programming techniques. Thus, the scheduler provided a sense of

realism that a more schematic or ad hoc program might not be able

tO.

As it turned out, the reprogramming became much more a matter

of reconceptualization, in going from one computer language to

another, than of simple translation (if there is such a thing, even in

the world of digital devices). In particular, the recasting of the

scheduler from LISP to Ada provided a number of lessons of

implementation.

Research Staff. Persons at UAH specifically involved in the

investigation reported here have included the following:

Dan Hays, PhD. Research Scientist at the Johnson Research

Center, and Associate Professor of Psychology. Dr. Hays Served

as Team Leader for this investigation.

Stephen W. Davis. Research Associate, Johnson Research

Center 3. Mr. Davis was responsible for the programming

reported, as well as for aspects of the conceptual development.

Professors Donnie Ford and Stephen Floyd of the Johnson Center

and the Management Science/Management Information Systems

Department of the School of Administrative Science, provided an

essential ingredient of this task by supplying the original scheduling

program (see below). They also assisted this project by commenting

3 Now at Advanced Technology Inc., in Huntsville, AL.

D. Hays -Languages for AI - Johnson Research Center, UAH - October 1988 - p.

2

program (see below). They also assisted this project by commenting

on the structure of their scheduler and their intentions in its design.

Discussion of various points was also provided by other personnel of

the Cognitive Systems Laboratory of the Johnson Center. In

addition, Mr. Davis was able to talk with several programmers in

other organizations who were familiar with Ada implementations,

during that part of the project.

Summary Conclusions. Though the discussion on which they rest

is contained subsequentty in this report, several conclusions from

this project seem worth calling attention to here.

1. The difference is considerable between brief "benchmarks"

and programs meant for use in situations.

2. "Translation" of practical programs will probably not be

straightforward if you are trying to make a program that works

well.

3. "Object-oriented" techniques may offer advantages to

conceptualizing computations such as those involved in the

scheduler investigated heie. They can also result in

improvements in performance.

4. What an "artificial intelligence technique" is, becomes less

clear after being examined.

5. Viewed as a case study, the adaptation of the scheduler to

Ada involved a number of problems that were in a sense external

to the language itself as an abstract structure. These ranged

from differences in implementation of memory allocation, to

_ D. Hays Languages forAI- Johnson Research Center, UAH - October 1988 - p. 3

"mundane" but sometimes frustrating problems of program

editors, hardware, and system features.

6. Finally, possibly because the project investigated a

program meant for real use, attention was called to contextual

factors, including the role of the programmer.

-. D. Hays Languages forAI- Johnson Research Center, UAH - October 1988 ° p. 4

II. The AI Language Problem

From a machine-centered point of view, the reasons to worry

about the choice of a programming language would seem to be few:

whether or not one can symbolize a problem for processing by

machine, and the efficiency of the resulting machine-level code,

thus performance of the program.

But even for fairly standard programming problems, such as

straightforward numerical computation, or retrieval of specific

information from fully specified locations in an electronically

stored corpus, possibility and efficiency are not enough, so that

individual preference and social factors influence choice of

computer languages. The relation of the programmer to the language

used is not just one of simple preference. For example, habitual

usage is certainly a major source of preference for a language, but it

also contributes to expertise in using the language.. Some language

features--and features of the facilities that are associated with a

language, such as editors, compilers, libraries of code, and so on--

may make a programming system harder or easier to use, more or

less prone to some kinds of oversight, easier or problematic when

other programs must be coordinated, and easier to read r_r more

opaque. Such features, which might collectively be called human

suitability factors, are now much more widely recognized than they

were in earlier decades. For example, features intended to protect

writers of programs from certain kinds of errors of reference were

important in the design of Ada. Other languages have constrained

unconditional branching commands, a source of problems in many

programs. Again, to take a simple example, the difficulty that most

persons have in counting nested parentheses without putting a finger

or a pencil on them has lead to graphic aids for pairing parentheses

D. Hays - Languages forAI- Johnson Research Center, UAH - October 1988 - p. 5

in LISP editors.

These five kinds of factors--possibility of expression, efficiency

of realization, individual preference, human suitability, and social

motives and constraints--apply to languages in which one may write

an "artificial intelligence" program, as well as to other

applications. Each will be discussed to some extent in this report.

The matter of languages for heuristic or otherwise "smart"

programs evokes more particular issues at this point in time,
however.

The question of which computer language to use for an AI program

is sometimes confounded in current thinking with the issue of the

acceptability of AI programs in the first place. Thus, some may

feel that a program written in a language familiar to their

applications, such as C or Fortran (depending), lends acceptability to

a program incorporating heuristic strategies, whereas a program to

accomplish the same results but written in a language that is not

well known to them, such as LISP or Prolog, adds unfamiliarity to

uncertainty. The acceptability of one or another kind of AI

programming concept is a serious question in some quarters. Lack of

understanding of what is involved in an AI program of one or another

sort may underlie reluctance to adopt AI techniques. Understanding

has not been helped in some instances by broad claims made for AI

programs by proponents or entrepreneurs. A better defined issue is

program validation. Many managers have raised questions about

program reliability. Since even programs which seem to promise

determinate or simple mathematical results have been known to

fail, incorporating programs which offer heuristic, or complexly

reasoned, solutions, seems to overextend program validation

procedures which are already expensive and error-prone enough, even

D. Hays Languages forAI- Johnson Research Center, UAH - October 1988 - p. 6

using the apparently simpler programs. If it can be said that, "After

all, this program is written in C," some reassurance may be felt. 4

It is probably no accident that many people today are considering

the incorporation of programs involving AI techniques at the same

time that they are contemplating much more extensively linked

software-hardware systems than they have previously had to

develop. A group might of course consider using isolated expert

systems in parts of their operations, running on small computers not

connected to one another; or adding more logical capability to a

decision-making program running on an isolated mainframe or

minicomputer. But it frequently seems to be the case that questions

about informationally interdependent computer systems seem to be

of concern to the groups that are also worried about how best to

incorporate heuristic programs.

We think that this connection is not at all accidental We

believe that distributed computing that has to be flexible, and that

is fairly complex, will probably have to use some of the techniques

of "intelligent" programs in order to accommodate its own

complexity.

That programs might be part of larger systems, or might have to

run on different hardware at different times or in different

settings, is a major external motivation for entertaining the idea

of using of one language rather than another. For these reasons and

some others, pressure has been spreading, at least in the U. S. and

Britain, to adopt Ada as a standard computer language, since part of

its design intention was portability among devices. During the past

year and even during the past several months, the Ada question has

4 At least by those who are reassured by the use of C. "

-- D. Hays Languages forAI- Johnson Research Center, UAH - October 1988 - p. 7

become a real one for many organizations that had previously only

had incidental opinions on the matter.

Because of the timeliness of the issue, we chose to examine Ada

ahead of some other languages that might have been looked at.

If, as noted above, the use of AI programs is unfamiliar to

managers and programmers in many settings, it is conversely true

that persons who have been involved in the development of

artificial intelligence methods have not often had to have their

programs work in the operational settings of government and

business. At this point, limited expert advisory systems do work in

probably hundreds of settings, but many other heuristic programs

are still in the laboratory stage, or demonstrate certain techniques

without incorporating them into rugged, responsive systems.

The step from demonstration to operation may be a large one, and

it is related to the language issue in certain ways. To take a simple

example, if one is using a language whose implementation requires

that the computer stop now and then for "garbage collection" of

released storage allocations, what may be a mild nuisance, in the

computer lab can become a faulty interface feature in an operational

setting. 5

Other issues relating language choice to operational status of a

program are likely to be more subtle. For example, even if use of a

certain language produces more efficient code for a run-time

systemmone thinks of some cases where AI programs originally

worked out in LISP were redone in carefully optimized Cmit may or

may not be easy to update or correct bugs in these programs in the

5 Stopping for garbage collection is not a problem with computing machines

such as the Symbolics which are designed especially to run list-processing

languages.

_ D. Hays Languages for AI- Johnson Research Center, UAH - October 1988 - p. 8

apparently leaner language.

These issues, implicated in the choice of languages for AI

programs, are large and in some cases difficult ones. This

investigation will not resolve them, but may add to their

understanding in a selected context.

,_ D. Hays - Languages forAI- Johnson Research Center, UAH - October 1988 - p. 9

III. Versions of the Scheduler

A. The Original Version

The goal of the project was to explore the usefulness of one or

another computer language in programming a moderately complex

problem involving some of the organizing techniques of machine

intelligence applications. To accomplish this, a prototype scheduler

for space module activities developed by Donnie R. Ford and Stephen

A. Floyd 6 was chosen for reprogramming . This scheduler had

several things to recommend it to this project.

• It addressed a problem of practical importance: scheduling

resource-consuming activities in the constrained setting of an

orbital Space facility. By extension, it could apply to formally

similar situations of scheduling.

• The program was large enough to be interesting: it actually did

something useful. At the same time, it was small enough to be

manageable for this exercise. (The moderate size and

complexity did have implications for issues discussed below.

Briefly, a more complex version would have had the chance to

be more flexible and more "intelligent" in certain senses; but

would have involved much more reimplementation time.)

• The scheduler worked. It had been demonstrated on a number of

occasions, and was known to be rugged. In particular, it had

been checked with realistic data from Space missions (see the

listing in Table 1, taken from of Floyd & Ford, 1986).

6 Stephen Floyd and Donnie Ford, "A Knowledge-based Decision Support

System for Payload Scheduling", Proceedings of the 1986 Conference on

Artificial Intelligence for Space, pp. 69-78. This paper is reprinted as

Appendix E.

D. Hays - Languages for AI- Johnson Research Center, UAH - October 1988 - p. 10

• It was written in the same lab we were in, though by different

persons. Thus, the original developers were close at hand to

resolve questions about how it was constructed.

Making comparisons among similar programs is not easy. If any

changes at all are made, it may be questioned whether the program

is really the same. Even in the area of limited-scope benchmarks,

reimplementing essentially the same procedure in another dialect of

a language, or preparing it to run on another machine, may raise

questions about the detailed correspondence of parts. If the program

has any complexity, and the languages, compilers, or machines are at

variance in any way, then exact correspondence is not possible, not

for that matter desirable, unless for some reason direct emulation

at issue.

In the versions prepared here, we were concerned to maintain the

major functioning of the original program, so that the various

versions would do about the same thing, though perhaps not in just

the same way. Such a task requires that judgements be made. It

should be clear that different approaches to the reprogramming

might have been undertaken. An attempt was made, though, to

preserve the major behavior of the original program. In addition,

both the original and subsequent programs were structured so as to

be open to further development. Thus, the coding might have been

simpler or more optimized if intentions for future development.had

not been kept in mind.

The prototype scheduler, in its 1986 version, was dubbed Dypas,

for Dynamic Payload Scheduler. It was written in ZetaLisp for the

Symbolics TM computing machine. It was programmed using what

might be called traditional LISP techniques. Property lists (a kind

D. Hays Languages for AI - Johnson Research Center, UAH - October 1988 - p. 11

of structure available in most traditional LISP implementations)

were used fairly heavily for information structures and for

specifying rules and evaluating them. Generation of possible

solutions involved a fair amount of concatenation of lists, and

searching over such structures.

Many varieties of scheduling programs exist, varying in scope of

constraints, in how they are tailored to likely process mixes, in

reliance on tightly algorithmic as contrasted with diverse and

heuristic bases, and so on. This scheduler was designed for space

tasks, and thus emphasized power requirements. Also, the processes

to be scheduled were mostly one of a kind, as contrasted to some

kinds of job-shop scheduling where the same kind of task might be

repeated. Because of the way space experiments are prepared to be

more or less self-contained, they did not rely on a variety of

resources. Various schedule planners for space activities have been

described. One that appears to be something like this one in general

scope is the MAESTRO system 7. Another is the scheduler of

Bahrami and his colleagues 8.

Floyd and Ford (1986) describe their routine in part as follows:

During the preparation phase the individual experiment

information is provided to the system from [a] data base and

appropriately stored, also the working memory is organized and

then prioritized for the scheduling phase. This is accomplished

using a priority scheme developed from user input. In the

7 A. L. Geoffroy, Daniel L. Britt, Ellen A Bailey, and John Gohring, "Power

and Resource Management Scheduling for Scientific Space Platform

Applications", Proceedings, AIAA, 1987, pp. 660-664.

8 K. A. Bahrami, E. Biefeld, L. Costello, and J. W. Klein, "Space IPower

System Scheduling Using an Expert System", American Chemical Society

Proceedings, 1986, pp. 1813-1818.

D. Hays Languages for AI- Johnson Research Center, UAH - October 1988 - p. 12

scheduling phase, the experiments are scheduled under [a]

heuristic procedure [see next quote] and the schedule is created.

The schedule itself is part of the knowledge base and is

represented as frames. As experiments are scheduled, the

subintervals required by the heuristic procedure are defined by

start and stop times of the experiments. For each interval the

power available, crew available and the experiments that are

currently on-going are determined and stored. This information

is required for the remaining two phases, namely operation and

rescheduling (1986, p. 73).

After setting the schedule, the 1986 Dypas displayed the

progression of the scheduled tasks, which included both routine

operations and experiments, using a graphical representation. This

"operation" phase was not part of the reimplementation of this

paper, which stops with a somewhat simpler display of information.

It may be noted that the information presentation of the original

scheduler, which used familiar Gantt chart formatting, was one of

its interesting and useful features.

The "heuristic procedure" referred to above that was central to

the scheduling was described by Floyd and Ford as follows:

The inference engine performs only forward chaining. This

was determined from the structure of the problem. There is an

abundance of related facts and information at the beginning of the

problem solving process which in turn accommodates the forward

chaining process. The conflict resolution problem is solved by

allowing the first rule that is satisfied to be implemented. This

necessitates an ordering of the rules. This resolution method

was chosen because of the short time frame for delivering a

[prototype] system. This also facilitates the search through the

D. Hays Languages forAI- Johnson Research Center, UAH - October 1988 - p. 13

working memory." (1986, p. 72)

They defined a procedure whereby an experiment (or other power-

consuming task) is "placed on the chart", with its beginning and

ending points tagging times for the possible start of other

processes. "By updating as each experiment is scheduled, one can

maintain for each subinterval of time the information necessary in

determining the time slot for the next experiment to be scheduled.

The determination of which experiment is to be scheduled next is

based on the user predefined priority structure in effect at the time

of the scheduling or rescheduling procedure." (1986, p. 72)

In practice this meant that long tasks, which usually also had

high priority, were scheduled early in the procedure, based on the

"first process to be satisfied" arrangement. Then, others were fit

in, as various priorities might be satisfied without exceeding power

capabilities. This kind of procedure seems reasonable for the mix of

tasks that would be present in space work, where frequently the

long-term uses of resources would be those that were important to

environmental stability and overall mission success.

Thus, the scheduler took into account important features of

space-resident tasks, and proceeded in a fairly direct way to

obtaining a feasible schedule that satisfied various constraints.

After system setup, the program calculated a schedule for the tasks

submitted to it as input databases, then displayed them graphically

as a Gantt chart on the screen of the Symbolics monitor.

The version of the scheduler essentially described above was

demonstrated on a number of occasions, both locally and in agency

settings, and at the 1986 American Association for Artificial

D. Hays - Languages for AI- Johnson Research Center, UAH - October 1988 - p. 14

Intelligence meeting in Philadelphia.

O. Hays -
Languages for AI - Johnson Research Center, UAH - October 1988 - p.

15

SUBSYST1D'IS:

I,ABOILATORY HODUI_ - SPACE STATIOH

DTNAHIC pAyLOAD SCHEDULER

PO_ERPRIORITY

NAHE WA_ CLASS AGENCY DURATION CREW

ECLSS 6200 I NASA CONTINUOUS w/TO

WIN. LAPSES OKAY
EVERY 4 HRS.

COI_tUNICATIONS 1480 I NASA

TIIEEHAL CONTROL 600 I NASA

HOUSEKZEPING(MISC) 6000 I NASA

CONTINUOUS 0

CONTINUOUS-REDUCES O

LZHEAELY TO 400W FOE
lO KW POWER LEVELS

CONTINUOUS l

pAlrLOAD/EXPERIHEWrsz

DOD/PAYLOAO I 890 II DOO

ESA PAYLOAD I 1845 II ESA

IPS 165 IX ESA
ELECT DIAG STA 435 II NASA

IECH 480 IU NASA

CILNE 930 IV U.K.
GEN PURPOSE COHP 383 lie NASA

SOLID POLYMER ELECT 415 IV 3H

IEF 125 IV NASA

II1.R 350 IV UtlOWQ

FES-VCGS 600 III HASA
ROTI 36 IV UAH

SFA'i 2648 IV NASA

RTG 94 IV HASA
TAPE RECORDER | 85 I[NASA

TIHE CODE CEN 32 II NASA

HASS 5PECTROHETER El5 IV JAPAH

TOOL CHARGER 50 II NASA

FIIJt PROCESSOR 163 II NASA

SUPER FURNANCE 786Q I_ G.E.
SILICON WAFER PROD k760 [II INTEL

TAPE RECORDER 2 85 [II NASA
TCA 612 IV ESA

HEA 1800 IV NASA

WELDING EX2 1610 IV NASA

CFES 890 III NASA
3-AAL 500 IV NASA

EHL 420 IV NASA

GFFC 375 IV NASA

ADSF 480 [V NASA
AR_ 215 IV NASA

SAFE 600 III NASA
SOLAR OBS 375 II NASA

LIGHTNING DET 125 ZV NASA

CRYSTAL GROWTH 1200 II NASA

COROT SEARCH 650 IZI JAPAN

LIFE SCI 1 135 lie A&M
LIFE SCI 2 1165 IlI UAB

LIFE SOl 3 842 IlI UAB

CLASSIFIED t i300 II ODD

CLASSIFIED 2 645 II DOO

HAPPING (WEATHER) 300 IlI USWS

HAPPING (GEO) 690 Ill USGS
ORBITER DOCKING 6500 ** NASA

OUITER SERVICER 2400 _t HASA

48 HR5 I

214 HRS l

260 IIR5 L
lO MIN OF EVERY NR L

200 HRS 0

260 HRS O

CONTINUOUS . |
(5 HIN/HR)

36 HRS 1-5 HIN.

EVERY 3 HRS

6 NRS 0

20 HRS 0

15 HRS 0

63 HRS 0

6 HRS 0

i2 HRS 0

CONTINUOUS 0

CONTINUOUS O
2 ItRS 0

CONTINUOUS 0

[IIR/DA¥ |

3Z lIR5 0
16 HRS 0

CONTINUOUS O
8 HRS 0

14 HRS 0

6 HRS 0

36 HR5 0
10 HRS 0

2 HRS 0

6 HRS 0

68 HRS t
8 HRS 0

15 HRS I

ORBIT/OA_TTME ONLY 0

FOR 36 ORBITS
ORBIT NICHTTIH£ ONLY 0

FO_ 12 ORBITS
I HR 0

ORBIT NIGHTTIME ONLY 0

FOR 40 ORBITS
36 NRS 0

22 HRS O

66 HRS 0
8 HRS O

18 HRS 0

CONTINUOUS (CAN BE 0

INTERRUPTED ANYTIHE)
60 HRS 0

26-72 HRS. WILL BE 0
GIVEN 6 HRS NOTICE

&-10 HRS, WILL BE 0

GIVEN 2 HRS NOTICE

** WILL BE GIVEN TOP PAYLOAD PRIORITY WHEN NEEDED

Table i.

Space-Resident Tasks Used to Check Dypas Scheduling

Programs (from Floyd and Ford,]9S6)

B. The Common LISP with Flavors Version

What was taken to be the main functioning of the 1986 Dypas

scheduler was reprogrammed into object-oriented LISP. The base

dialect for this reprogramming effort was Common LISP, the

standard dialect of LISP that has gained wide acceptance over the

past several years. More important to the language issue than the

base dialect was the use of the object-oriented programming

facilities of Flavors, an extension of LISP. As in the case of the

earlier scheduler, this version was developed for the Symbolics

computer 9. The Flavors/Common LISP program was developed

under Release 7 of the Symbolics operating system. S. Davis was the

programmer.

The processes, that is, the activities to be scheduled, were

treated as major objects in the program. They were generated,

evaluated, sent messages and in effect queried. The scheduler

itself, called a "Dypas", was also treated as an object.

(In fact, the scheduler objects were constructed to run under a

multitasking operating system, so that there could be as many as

four Dypases working in virtual concurrency, communicating via

several state variables. This fact may help explain some of the

internal program details, since this version was set up also to

explore one kind of (quasi) concurrent organization that we are

interested in looking at for future versions of the scheduler.)

A list of names of the main methods, the computations to be

made, actions to be taken, invoked upon receipt of a message by a

computational object may suggest something of the approach taken.

9 Variously, Symbolics Model 3640 and 3670 machines were used.

D. Hays - Languages for AI- Johnson Research Center, UAH - October 1988 - p. 17

The following methods were defined for dypas-processes:

- make-instance

-describe-process (to provide a consistent format for noting

information about the process's priority, current status,

'geometry', next neighbors, and so on)

- remove-process

- create-node

- initlz-node

- collect-time

The following methods were among those written for scheduler

(dypas) objects:

- initlz

-find-root (a major method; see below)

-find-children (a major method, also discussed below)

- find-max-power-in-interval

- power-at (more particular)

- graphical representation

- presentation-print

- print-power@

- print-name

-draw-tree (last several for communicating results to user)

- initlz-hash

-build-hash (to set information up for quick access)

The labeling of the methods suggests what the program is mainly

about, namely, setting up computational entities, manipulating them

in familiar kinds of structures such as trees, displaying them, and

so on.

D. Hays Languages for AI- Johnson Research Center, UAH - October 1988 - p. 18

They also indicate that this program, as an example of object-

oriented realization, is structured more as what one of us (Hays)

refers to as "standard computational modularization" or even

"standard proceduralization" rather than "radical objectification",

where the objects are treated in more metaphorical terms. Traces

of the latter can be found in this program, in references such as

"schedule-me" and "schedule-us".

One of the central methods for a dypas, find-root, is shown as

Figure 1. Even without a tracing out of all of the details included, it

may suggest some of the approach taken. The method sorts currently

schedulable processes to identify those that need to be attached

first, then sets them in place.

A lengthier dypas method, find-children, is listed in Figure 2. It

looks ahead, so to speak, to try out places for subsequently

scheduled processes. In doing so, it consults information on

resource needs, priority, and timing. The problematical part of the

scheduling for this application is handled by find-children.

These two methods roughly reflect the general strategy of the

original scheduler of assigning high priority processes first,

considering constraints of resource usage (mostly power

requirements), then fitting in activities of less importance to the

mission, less power drain, and so on. A listing of the Common

LISP/Flavors version of the scheduler is given in Appendix B.

Instructions for running it on a Symbolics computer are given in

Appendix A.

It is interesting that in the mix of space tasks on which these

schedulers were tested, the high priority processes tended to be of

D. Hays Languages for AI- Johnson Research Center, UAH - October 1988 - p. 19

long duration and generally required substantial power. Less

critical processes were frequently shorter and less demanding of

resources, though there was some variation. These real-world

correlations are not essential to the performance of either

scheduler, but it might be noted that in actual scheduling

applications the processes being worked with might very well have

particular features such as these.

Rethinking the Scheduler. Though broadly similar in the way

scheduling proceeded, the original LISP version and the Common

LISP/Flavors version differed in various ways, as one might expect.

The Flavors version of the Dypas scheduler is clearly a recasting

and not just a translation to another programming system.

Both versions have in common the input of a record-like

description of the tasks to be scheduled, though these were formed

somewhat differently. The original version used property lists. The

Common LISP version used a somewhat leaner record format.

"Rules" for weighting the assignment of tasks to time periods,

given constraints of resource availability, were incorporated into

the original program as list structures. Neither program as

developed contained the overhead needed to ask for and immediately

take in arbitrary new rules, or to modify old ones short of entering

the appropriate part of the code. (Writing a more or less arbitrary

rule processor that impacted scheduling computation would have

involved a much greater programming and debugging effort than

either project could manage--and was not necessary either to

illustrate the principles involved, or to obtain programs that

worked. Indeed, to write such a "shell"would have involved

somewhat different programming considerations overall.) Even so,

D. Hays - Languages for AI - Johnson Research Center, UAH - October 1988 - p. 20

,4--

the original version had a fairly strong rules-orientation

conceptually, it seems to us. The Common LISP/Flavors version

streamlined the "rules" of the earlier version into program logic.

That is, the invariant high priority rules of the original program that

essentially gave great weight to power requirements, and so on, can

be seen as for-loops in the central dypas methods of the recast

version. Thus, the approach of the second program was to embed

some of the semantics in the procedural logic, rather than to include

it in LISP structures which were referenced. This approach probably

contributed to the efficiency of the second version. But the effect,

of weighting certain kinds of factors in the search for a pattern for

the processes that would meet constraints, was about the same in

beth schedulers. Even the original scheduler, though much more

given to structures that could be construed as "rules", seemed to

opt for computational efficiency in its search-and-fit strategies.

One might not expect, just on the face of it, for an object-

oriented program to run efficiently. Though it seems pretty clear

that the "objectification" of computational entities that an object-

oriented system allows, can make thinking about the parts of a

problem easier, the overhead involved Could be great enough to trade

clarity for bookkeeping overload. This would seem to be especially

true if the "objects" were generated in the profusion required for

searching and testing the fit of a schedule, or some other

problematical pattern of the kind likely to be found in AI

applications..

It turned out that the Flavors version of the scheduler was

decidedly more efficient than the original version. Running on the

same machine, with the tasks of Table 1, the second version ran over

4 times as fast as the original, for the main record-consultation and

scheduling part of the program. (The display of items in a Gantt

D. Hays - Languages for AI- Johnson Research Center, UAH - October 1988 - p. 21

chart was not implemented in the Common LISP version; nor was

this included in the timing figures.)

Thus, reliance on "objects" hardly swamped time or space

resources. It is not clear, on the other hand, that the use of object-

oriented facilities speeded up the scheduler, since there were

several other reasons that the second scheduler would run faster

than the original version. Because of these additional factors, we

cannot say that the Flavors realization of objects was definitely a

factor in speed, but we can at least say that we were left with the

strong impression, after going through traces of some of the

computation, that the implementation of objects in the Symbolics

version of Flavors seemed to work fairly leanly so may well have

contributed to the speedier performance. 1°

Other factors 11 contributing to the faster performance of the

Common LISP/Flavors version would probably include:

use of efficient hash addressing schemes for the "data"

records consulted by the program in working with tasks to be

scheduled;

- incorporation of high priority factors into program logic;

- miscellaneous program features.

Relative to the last point, it should be noted that although both

versions of the program were intended to work with practical data

in realistic situations, the second version was written with

efficiency definitely in mind.

10 By contrast, we have experienced sluggish performance of object-

oriented programs in some earlier systems, as well as major memory

requirements..
11 One difference between the two versions that had little to do with

performance differential, so far as we can tell, was the use of ZetaLISP for

the first version, and Common LISP as the base dialect of the second version.

D. Hays - Languages for AI - Johnson Research Center, UAH - October 1988 - p. 22

It might be noted also that some classical LISP programming

techniques may result in time-consuming operation. The use of

property lists is a conceptual aid, but is not always recommended,

for this and other reasons. Again, because of search

implementation, the original scheduler did a very large amount of

'cons-ing' or list concatenationma familiar kind of behavior of

traditional LISP programs. 12

We were concerned with broadening the facility of the Common

LISP scheduler to handle rules in a more direct fashion. Some time

was spent in discussing ways to recast the scheduler into yet

another version that maintained the DYPAS objectification, but that

allowed rule substitution and more of a rule logic. Davis was able to

implement a version of the well-known RETE rule-examination

algorithm. It is given in Appendix C. The rule-based object-oriented

program variant was still in the design stage by the project's end,

however.

On the subject of rules, and inference patterns that work with

logical structures, it may be remarked that, although one often

thinks of "intelligent" programs as being ones which process logic

statements (e.g., standard advisory expert systems, or theorem-

proving programs), rule-processing is by no means coextensive with

the kinds of heuristic, flexible computation we include as examples

of "machine intelligence". The case of scheduling of one or another

sort, where computations of resource usage are important, suggest

that some mix of propositional processing and numeric computation,

even numeric modeling, could be useful. Several strategies of

12 It is often something of an eye-opener for a person who is familiar only

with algorithmic programming, to monitor a trace of computation which uses

list-processing techniques.

D. Hays - Languages forAI- Johnson Research Center, UAH - October 1988 - p. 23

construction are possible in engineering this mix.

Summary: the Common LISP�Flavors Object Version. The original

scheduler for space-resident tasks, constructed using more

traditional techniques of list-processing, was redone, using the

object-oriented facilities of Common LISP with Flavors. Both the

original and the object version ran on the Symbolics computer. The

Flavors version incorporated what was taken to be the main thrust

of design of the original scheduler, including a basically forward-

chaining logic, search for an acceptable fit of tasks satisfying

resource requirements, input of records describing the tasks, and so

on. The Flavors version, however, set up computational "objects",

and was organized as object-associated"methods" which did the

main work of computation based on information or messages passed

to the objects, in the usual object-oriented fashion. This program

also involved several features, such as hash-addressing of

representations of the tasks to be scheduled, aimed at enhancing

efficiency. The result was a program that did about the same thing

as the original but was much speedier.

D. Hays - Languages for AI - Johnson Research Center, UAH - October 1988 - p. 24

(defmetbod (Find-root dypas) ()

(loop with processes-sorted =

(map "list #'car

(sort (loop for object in FRESENTATIONS

collect (dypas-process-otber object))

#'> :key #'cdr))

with available-power - *m_imum-wattage*

with pane - (get-pane "messages)

for object in processes-sorted :;: MAIN LOOP

for runpower = (dypas-process-max-power object)

when (>= available-power runpower)

do (setf available-power (- available-power runpower))

and do (push object ROOT)

and do (push object SCHEDULED)

and do (build-hash SELF runpower 0

(dypas-process-runtime object))

and do (create-node object T "Ignore)

and do (setf (dypas-process-begin object) O)

and do (serf (dypas-process-end object)

(dypas-process-runtime object))

and do (newpush (dypas-process-runtime object) START-TIMES)

and do (setf (dypas-process-condition object) "scheduled)

and do (let ((pro (dypas-process-name object)))

(dw:with-output-as-presentation (:stream pane

:type "dypas-process

:object pro)

(format pane "~&~S scheduled with ~D left.~Z"

pro available-power)))))

The

Figure 1.

find root method from the scheduler,
o

Common LISP/Flavors version.

(defmethod (Find-children dypas) (&key (stream *standard-output*)
(verbosenil))

(let ((clock-begin (get-universal-time))

(schedule-us (map "list #'car

(sort(loopfor objectin PRESENTATIONS

when (not (memberobjectROOT))

collect(dypas-process-otberobject))

#'> :key #'cdr))))

(loopfor schedule-mein schedule-us ;;; MAIN LOOP
do (if verbose

(formatstream "'&~Z~'bSchedulinq~S'"

(dypas-process-nameschedule-me)))

(let*((those-scheduled(map "list#'car

(sort(loopfor object in SCHEDULED

collect(consobject

(collect-time object)))

#'< :key#'cdr))))
(fresh-linestream)

(loopfor process-beforein those-scheduled::; SUB [DOP
do

<if verbose

(formatstream"~& Behind ~S"

(dypas-process-nameprocess-before)))

(let*((begin-time(collect-timeprocess-before))

(required-power(dypas-process-maa-powerschedule-me))

(available-power (- *maximun-wattage*
(find-ma_imwn-power-in-interval

SELF schedule-me begin-time))))
(if verbose

(formatstream"~_.Available-Power- ~D~

Re_ired-Power = ~D"

Begin-Time - ~D"

Available-PowerRequired-PowerBegin-Time))

Figure 2.

The find children method

(begins)

(cond ((>- available-power required-power)

(setf <dypas-process-begin schedule-me) begin-time)
(setf (dypas-process-end schedule-me)

(+ begin-time (dypas-process-runtimeschedule-me)))

(create-nodeschedule-meprocess-before"ignore)

(build-hash_LF required-powerbegin-time

<+begin-time

(dypas-process-runtimeschedule-me)))

(pushscbedu]e-meSCK_DULED)

(ne_oushbegin-timeSTART-TIMES)

(newpush(dypas-process-endschedule-me)START-TIM_S)

(setf(dypas-process-conditionschedule-me)
"scheduled)

(return

(ifverbose

(presentation-print *program*
(dypas-process-nameschedule-me) stream))))

(verbose (format stream "'7. Look-beyond "S"

<dypas-process-name process-before))))))))
(formatstream"~&~%Schedulingtook ~\\time-interval\V'

(time-difference(get-universal-time)clock-begin)))

(let* ((sum-usage-area (loopfor object in PRESENTATIONS

summing(* (dypas-process-max-power object)
(dypas-process-runtmeobject))))

(longest-runtime(eval "(max,@_TART-TIMES)))

<validation (/ sum-usage-area (* lonqest-runtime *_aximu_-vattaqe*>)))

(formatstream"~7.Longestprocessruntlme~\\time-interval\\"

lox]est-runti_e)
(formatstream"_2ower to time ratio~2.5F"validation)))

Figure 2.

The find children method

(cont'd)

C. The Ada Version

The Flavors version of the scheduler was chosen for

implementation using Ada, the language and programming system of

the U. S. Department of Defense.

This came at a time, early 1988, when many groups in work

organizations were very much concerned with questions of adopting

Ada for some of their own programming activities. At the time, the

drive to adopt Ada, or at least to evaluate it for adoption, had

extended well beyond those groups who were writing programs

directly for Department of Defense projects.

Given a choice of programming languages to explore for an AI

problem, Ada was most interesting to us, and it seemed probably

most interesting in general, for several reasons.

One reason was, of course, timeliness. The push to use Ada, or to

say why you weren't going to, was underway.

It seemed also especially important to include in the evaluation

of Ada some of the programming techniques of machine intelligence.

When the design of Ada was worked out, several years earlier, AI

programs were probably not so much considered in its design 13

Since that time, a few people in the field have been concerned with

just this issue. Some of their work has been reported in the annual

13 This is a conjecture. Among the many persons who were concerned with

Ada in its stage of design and initial negotiation, some must have been aware

of the sorts of requirements of programs that were heavy on search and

dynamically generated, evanescent structures. But since AI applications were

much more in exploratory stages at that earlier time, it seems unlikely that

they would have been considered in the same arena as control programs,

database programs, and other more standard applications.

D. Hays Languages for AI- Johnson Research Center, UAH - October 1988 - p. 28

AI and Ada conferences (or AIDA, to use the more memorable

abbreviation) which were held the past two years. But in the

mainstream of developmental work in artificial intelligence, judging

from the publications and major conferences of the American

Association for Artificial Intelligence, Ada has not been a language

that has been used, and the question of its adoption was not one that

people who were primarily concerned with the development of AI

methodology were concerned with. This would be quite proper, since

implementation details operate at a somewhat different level than

problems of program logic or concept. 14 Since Ada was rapidly

being adopted, it seemed especially important to see how well it

suited the needs of AI programming. There was even a note of

urgency. A programming system not specifically designed for

heuristic programming gave indications of being adopted, largely

because of external pressures 15 At the time, AI programs were

just gaining a foothold in many organizations, but the foothold was

tenuous in some cases. If Ada turned out to be widely adopted, but

unsuitable for the kinds of procedures useful to machine intelligence

applications, their benefits could not be realized.

Even if the adoption of Ada had not been an externally important

issue, Ada would have been interesting to explore. It is a very rich

programming system. And, it differs considerably from list-

processing languages.

Ada and LISP: a Note on their Locale. LiSP is today a highly

evolved family of programming languages, with direct lineage to the

language formulated by John McCarthy over two decades ago. Ada, as

14 The issues are not entirely separate, since a programming system can

both set constraints on the realization of techniques and also make it easier to

use certain kinds.

15 Which might be merited in the main. The overall suitability of Ada was a

larger question than we were prepared to address.

D. Hays Languages for AI- Johnson Research Center, UAH - October 1988 - p. 29

a living language, so to speak, is in its early stages 16 As an

evolutionary product, most of its variation and selection has been on

the conceptual level, though there are indications of evolutionary

variation in its implementations over the past couple of years.

Conceptually, Ada might be said to have drawn on the forms of

previously existing computer languages, especially those which

carefully controlled the definitions of variables and the transfer and

binding of information. With its concern for portability and

communication among routines, and its intentions of comprehensive

usefulness (the evolutionary equivalent of territorial dominance, one

is tempted to theorize), Ada seems to emerge as something of a

super-species, or at least as a candidate for such an ecological

position. By contrast, LISP dialects, despite a certain level of

general capability, if not a certain aggrandizement of form and

posture over the past decade, have remained ecologically fairly

specialized. They are very much "niche" languages, though the size

of the niches has increased lately with the rapid growth of interest

in artificial intelligence and other symbolic processing. 17

Ada and LISP: some Language Features. The details of each

language are voluminous. There are some immediately contrastive

features, though.

Figure 3 lists instructions for a simple kind of computation, first

in generic LISP, then in Ada. The Ada code is realized as an Ada

function; the LISP code is a LISP function. Each version assumes

that certain terms have been defined and given values, and that

niceties to insure program acceptance have been observed.

16 Persons who have been involved in the lengthy history of formulating,

revising, and supervising early implementations of Ada might disagree.

17 There are signs that the expanded arena of supercomputing with tightly

interconnected processors will be another somewhat specialized niche for LISP

variants.

D. Hays Languages for AI - Johnson Research Center, UAH - October 1988 - p. 30

Both examples use recursion.

Perhaps tile most obvious difference between the two is that the

LISP version looks like LISP, and the Ada version looks something

like Pascal or various other languages that trace certain amounts of

their syntax and notation to Algol. Neither are exactly "natural"

ways to tell a computer to do somethingmno one talks like this--but

each can be figured out. At a superficial level, the LISP function

seems replete with parentheses. We are left wondering, in each

case, about how recursion and other features are handled during

actual computation.

Apart from these impressions, a more substantial difference in

the languages is indicated by this example, that is, the emphasis on

control of keywords and variables in Ada. There are reserved terms

in LISP, even if they are not conventionally given in boldface, but it

is a much more easily extensible language. Ada is more the cousin

of Pascal or Modula-2 in being "strongly typed", that is in specifying

or carefully restricting the definition of kinds and conventions of

elementary data units. Interestingly, in the treatment of typing,

numbers receive more attention than other conceivable data units,

belying the traditional, math-procedural concerns of these

languages. Along with the typing, Ada constrains very carefully, if

not severely, what can be passed as information to a routine. Some

of the limitations of reference and binding are likely to be

experienced as frustrations by persons used to programming in list-

processing languages. They are used to handling problems that arise

in working with the dynamically generated structures of symbolic

computation by layering or nesting references to whatever

structures may have come about. Such references are a bit tighter

in Ada, but also probably less prone to unexpected errors.

D. Hays - Languages for AI- Johnson Research Center, UAH - October 1988 - p. 31

Figure 4 shows Ada code for pushing an item onto a stack and

popping it up. This kind of action is familiar in many kinds of

programming, including assembly language routines. Pushing down

and popping up are frequently used list-processing operations.

In this example, the two stack-manipulation operations are

contained in an Ada "package" along with some definitional

material. The package concept is not limited to Ada, but is one of

its distinctive facilities. In a package, one can gather together, or

"wrap", related computational entities such as constants, types, or

procedures. The package is a convenient place to place the code. It

can be found there if it needs to be revised or expanded. A subtler,

related benefit is that within the package, referencing is simpler, so

that less overhead of cross-referencing is involved in using the

items wrapped within.

This push/pop package works on data items of type "integer".

Some kind of floating point numeric representation, or character

representations, would need additional code. However, Ada does

allow terms for such operations to be "loaded" so that they could be

applicable to more than one type, assuming that the proper code

were available and had been suitably referenced within the system.

Davis chose to program the integer push/pop routines as taking

place in a vector array. An alternative, rather more bulky approach

would have been to try to reimplement LISP-like data units in Ada.

The latter course would have provided needless overhead for most

situations. However, using the built-in array addressing of Ada (or

Pascal, or Modula-2, or whatever) does mean that the array must be

large enough to hold the data items that will be needed, and not so

large that too much memory relative will be taken relative to other

D. Hays - Languages for AI- Johnson Research Center, UAH - October 1988 - p. 32

needs of the program.

This choice brings up another matter involved in doing list-

processing in languages that provide handier facilities for other

kinds of operations or memory allocation. Frequently, it is the best

course of action to adapt facilities of the language one is working

with, rather than to try to rewrite or comprehensively simulate the

source language in the target language. Choices of just how to use

the facilities of the resident language may have to be made after

surveying just what is needed to program the problem at hand.

Finally, in connection with Figure 4, note the code, here

unamplified, to raise error conditions when an attempt is made to

exceed stack depth or to pop an item from an empty stack. Though it

is not apparent from the example, Ada's error handling facilities are

generally thought to be very convenient in comparison to those of

other contemporary languages.

The extensive features of Ada are discussed in a number of

publications. Sources that we have found especially accessible are

the texts by G. Booch; various works written by N. Gehani; and I.

Sommerville's book on Software Engineering with Ada, to name just

a few. Though some of the material was written fairly early in the

short life history of Ada, comments in various articles contained in

Comparing and Assessing Programming Languages: Ada, C, Pascal,

edited by A. Feuer and N. Gehani (Prentice-Hall, 1984), are clear and

still relevant.

So far as discussions of LISP, the features of the language are

described clearly for programmers in a number of textbooks, often

containing "AI" in the title (texts by Winston, Brooks, Anderson et

D. Hays - Languages forAI- Johnson Research Center, UAH - October 1988 - p. 33

al., and Tanimoto come to mind). More technical discussions of

strategies of implementation, and issues of how variables are

accessed and transferred are contained in comments in G. Steele's

basic reference on Common LISP, and in Abelson and Sussman's

Structure and Interpretation of Computer Programs.

Direct comparisons of LISP, or other list-processing languages,

with Ada, or for that matter other languages such as Pascal or

Modula-2, are not so easy to come by, though the discussions in the

last AIDA conferences are relevant.

Another example of Ada code for a list-processing job is given in

Figure 5. The two parts of Figure 5 show how the LISP function,

maplist, could be implemented in Ada. This example is taken from

Gehani's 1983 book on advanced programming in Ada. 18

Maplist applies an operation (function) to each of the members

of a list that is specified. This is the kind of thing that one

frequently needs to do in symbolic programming. It is convenient

not to have to specify anything about the list, such as its number of

members, or the kind of members that are in the list.

The Ada code is presented for a "generic" routine, one that has

meaning in broad contexts.

program for this function.

have to be taken care of.

Gehani only sketches the actual Ada

In practice a number of details would

Note that the definitional part of the

routine is much lengthier than the "action code" or function body.

suggestion is given of some of the matters that would have to be

accounted for to handle the kinds of lists (sequentially linked, with

expandable items, etc.) that are the basis of LISP data structures.

18 Also from Prentice-Hall.

D. Hays - Languages forAI- Johnson Research Center, UAH - October 1988 - p. 34

A

When working with a dialect of LISP, what one takes as basic

functions such as maplist or other "map" variants, or ones to

traverse lists and match items, pair items, reverse lists, and so on,

come to be relied on and thought of as simple operations, though

their actual coding may be non-trivial and in some cases may be

fairly subtle. This is true of the list manipulating part of Prolog

dialects.

When faced with handling list processing in languages with

Algol-like statement syntax and different kinds of management of

information items, the usefulness of such functions becomes felt

very definitely. One impulse is to reimplement them, necessarily

together with a basic list representation, in the new language.

Another approach is to implement just some of the more important

ones. In either case, some accommodation will have been made to

the facilities of the target language. Yet another approach is to try

to rethink the problem as one whose solution has to take place in the

second language, without reference to the way it would have been

solved in a list processing programming system. If the target

language is one in which it is difficult to do some things, such as

run-time storage allocation and deallocation, problems at the

conceptual level may result.

Recasting the Scheduler into Ada. It would have been a much

tougher job to reprogram the Ford-Floyd Dypas scheduler more or

less directly into Ada, than to work with the Davis Common

LISP/Flavors version.

The original scheduler relied heavily on traditional LISP

programming techniques and facilities. Though it is not unorderly in

overall structure, it looks much less modular than the Flavors

version, and at least to a programmer unfamiliar with its underlying

D. Hays Languages forAI- Johnson Research Center, UAH - October 1988 - p. 35

conceptualization, would seem to be far from the intense

modularization demanded by Ada programming.

Thus, the fairly "procedularized" recasting, using certain of the

object oriented facilities of Flavors, lent itself to translation into

Ada, at least at the level of major program modularization. It was

not difficult to sketch a fairly direct correspondence between the

methods defined for the Flavors objects, and Ada procedures or

generic functions.

It did appear,though, that problems might be encountered in

storage allocation overhead, and possibly also in straining bounds of

readily available memory. These are matters where language

facility and system convention and coordination interact, so that

knowledge just of Ada language specifications could not tell us

exactly what would come about in doing large-scale searches in a

program implemented for various systems running Ada. 19

Figure 6 shows Ada code for setting up the major objects of the

conceptualization of the scheduler used in the Flavors version. The

Dypas_process was taken as the main object. (Treating individual

schedulers as objects, as in the Flavors version, was not considered

to be a good idea here. Instead, in a possible version that would use

concurrent processing we would intend it to be handled more

directly by the concurrent facilities built into Ada.)

Figure 7 lists the central procedure, FIND_CHILDREN, in Ada. In

comparison with the LISP/Flavors version, shown in Figure 2, the

Ada version is leaner. Its logic is revealed almost skeletally. The

19 It is interesting that relative to a programming system and language that

is meant to be machine independent to a large extent, we so quickly

encountered a system problem in our planning.

O. Hays - Languages forAI - Johnson Research Center, UAH - October 1988 - p. 36

work of computation is mostly handled by calls to routines. Some

of the routines are unique to the scheduler, such as SCHEDULE_ME.

Others reflect more basic functions such as CREATE NODE or PUSH.

The modularization and readability of Ada is seen very nicely

here. By comparison, the parallel Common LISP procedure, even in

the organizing context of some kind of object-oriented structuring,

seems to have more little details to take care of.

Not visible in this central procedure are the complexities of

specification and reference of the related declarations and routines.

About Ada Objects. Ada is sometimes referred to as a language

that is based on computational "objects". Booch, for example, in

both editions of his text, emphasizes the importance of Ada Objects.

This terminology may be confusing to someone not familiar with

the exact facilities of the language, since the term "object-oriented

programming" or "object-oriented programming system" (OOPS, for

short) is probably more frequently used today to refer to facilities

such as those in Smalltalk-802o, or Flavors extensions for LISP,

and several more recent languages.

The usage is closer to the terminology of "first-class objects" or

"second-class objects" in discussions of symbolic programming

languages, which have to do with matters of reference within a

program.

Both Ada objects and OOPS objects involve "information-hiding",

as do the procedures of Modula-2 and other languages when internal

20 The language and programming system developed by Xerox Palo Alto

Research Center, and now available for various machines.

D. Hays Languages forAI- Johnson Research Center, UAH - October 1988 - p. 37

terminology is not meaningful outside of procedural boundaries.

The inheritance of properties by instantiated objects is not easy

to manage in Ada, though it is a common and useful feature of

languages such as Smalltalk. The Generic definition facilities for

Types in Ada do not allow such referencing. Thus, hierarchies of

objects are not possible (unless simulated somehow), much less

multiple inheritance, where an object can draw characteristics from

more than one branch.

For this reason, translation from Flavors into Ada may run into

constraints fairly quickly, if many features of object-oriented

programming were included in the original.

Problems of Implementation. In redoing the Flavors version of

the scheduler using Ada, we had two kinds of problems. The first

were basically matters of language differences, such as different

ways of handling objects. The second, actually more serious

difficulties were experienced in areas peripheral to the language

itself. Of these, systems-related problems were very important.

These often interacted with what might be termed mundane

problems of working with specific language systems and hardware.

Some of these problems may have been unique to this particular

project, though we suspect that the sorts of problems that we

encountered were not.

Our situation in starting to work with the Ada scheduler may also

have been not exactly unique. The person doing the bulk of the

programming was not experienced in using Ada for any kind of

application. He had a sort of textbook familiarity with it, and

shared programmer lore, but had not programmed anything more than

D. Hays - Languages for AI- Johnson Research Center, UAH - October 1988 - p. 38

a few exercises using the language. However, he would qualify both

as "an experienced programmer" and as "an experienced AI

programmer". Besides LISP dialects, he had programmed in Pascal

and in C, so was familiar with the sorts of syntax and referencing in

those languages. Besides these, he was familiar with several AI

programming "shells". In other words, he was both experienced in

programming, and used to some variety of programming systems. 21

Thus, the experience of recasting the scheduler into Ada could be

taken as a kind of case study in language adoption.

Relative to learning to use Ada as a language the following

comments can be made from this particular case:

• Textbook material was easily available, and generally clear,

though some of the more available and better known texts talked

about the language somewhat more than getting down to

examples that were worked out in thorough detail. 22 Such a

level of discussion was not a particular problem for someone

experienced in programming and knowledgeable about computer

systems, but might be puzzling to persons Jess experienced. (The

level of discussion may have been a function of the relative

novelty of the language, and possibly also was traceable to the

scarce availability of validated compilers for Ada at the time

some of the textbooks were written. Since that time, we have

noticed somewhat more detailed and less discursive material

available.)

• We expected Ada not to be so restricted in its referencing as

it was. Possibly because the problem being worked with needed

somewhat flexible referencing, we found that it was easy to

21 By contrast, other accomplished programmers specialize in just one

language.

22 It will not surprise persons used to such material that some of the

examples in the texts did not work.

D. Hays Languages forAI- Johnson Research Center, UAH - October 1988 - p. 39

assume that such was available.

• As the conventions of the language became more familiar,

the value of Ada's modularity for clear communication and

structuring of program logic was very pleasant to discover.

• The facilities of the language for error handling were good

to have in an explicit form.

• Though primarily used in planning developments of the Ada

version, the facilities for concurrency seemed adequate.

• Generally, relative to ease of learning, Ada had extensive

facilities, each replete with particular conventions and

restrictions, so the information load was fairly heavy.

So far as learning Ada, features of the language itself were not

nearly so important as the computational facilities associated with

one or another implementation of the language. Ironically, Ada is a

language whose realization in compiler form has been a matter of

explicit early discussion and subsequent attention by the

Department of Defense, its genitor. Compilers must be validated, to

check that the numerous specifications are met. Along with the

concern for validation is the well-known insistence on multiple-

machine usage. When taken together with the care in cross-

referencing routines and information items, and the safeguards for

internal consistency that is also part of the language design, a large

amount of compilation time seems to be taken up with checking the

code for such matters. Thus, to compile even short procedures

frequently involved substantial turn-around. 23

Turnaround time is turnaround time, and can be adjusted to. When

taken together with sparse documentation and diagnostics, though,

23 The suspicion was also raised in some cases that compilation time tended

to be lengthy because of the complexity of the language; or perhaps even

because some of the compilers had not been well tuned.

D. Hays - Languages for AI- Johnson Research Center, UAH - October 1988 - p. 40

the delays for compilation seemed especially frustrating. In some

cases, no information was given regarding the reasons for an

unsuccessful compilation, and a search of the documentation did not

readily provide clues. We were left wondering

- if the cause of the problem were an error or faulty

assumption in the program (likely),

- if so, what the error or inconsistency was,

- if in fact the problem might have resulted from not doing

what the editor or compilation front-end expected rather than

being a language error (more likely that we would have thought at

the outset),

if the problem were in the procedure itself or in the linkage

checking,

- if we had run into a compiler flaw (not as likely as we

thought at times, but with some of the earlier versions of

compilers which we worked with, a possibility that could not be

dismissed).

Problems with compilers, editors, linkage checkers, and so on

were encountered both with the Symbolics (which in general has a

superior user interface and system facilities) and with IBM Personal

Computers and their clones (which are not known for either). Ada on

the Symbolics would of course be written on top of the basic list-

processing structure of the machine and its system software. We

felt that this made it not the ideal machine to benchmark Ada on

because of this indirectness of implementation. Even so, because of

the Symbolics' system facilities, we had thought that its Ada would

be easier to use. The main problem that we had with it (which may

also have been to some extent a function of our place on the learning

curve) was inadequate diagnostics. We are curious, however, as to

the future of an Ada implementation on this machine, since the

Symbolics systems software has already developed smooth-running

D. Hays Languages forAI - Johnson Research Center, UAH - October 1988 - p. 41

multi-tasking, and has a number of other excellent software and

interface features to recommend it.

Generally speaking, Vaxes are not as convenient to use in

preparing and editing programs (though they have been steps ahead

of other minicomputers and various mainframes). We certainly had

no quarrel with Vax Ada itself, which must be something of a

landmark. Unfortunately, because of mundane reasons, such as

chronic hardware problems on one machine, and uneven access then

memory inadequacy on the other Vax, for much of the time we were

unable to use one of these machines.

Thus, our early plan of developing the Ada version both for the

Symbolics and for the Vax was frustrated, given the time for this

part of the project.

Even though there was no chance of programming the complete

scheduler for a PC, some time was spent in working with smaller

routines using two kinds of Ada on IBM and similar personal

computers. Both of the Adas were in "early" versions 24. Both were

fairly frustrating to use. (We have since used a revised version of

one of the PC Adas, and do not believe we would have had the same

problems with it.)

Status of the Implementation. The complete scheduler had not

been implemented into fully functioning Ada by the close of the

project period. We felt that we had learned a considerable amount,

but also felt a sense of frustration that so many "peripheral"

matters, such as hardware access, capability of editing software,

and especially Ada-related system software (either compilers or

24 A relative term. It appeared that an "early" version of an Aria

implementation was one that did not work very well.

D. Hays - Languages for AI- Johnson Research Center, UAH - October 1988 - p. 42

closely related system features), had been sources of problems.

These are some interim conclusions regarding the Ada

programming experience that we felt could be offered at the end of

the project period:

• Ado is a large and capable language,

• Partly because of language complexity, and partly because of

system and compiler problems, using Ada for a reasonably complex

program involved various frustrations and delays.

• It seems to take somewhat longer to implement and integrate a

program of moderate complexity than would be the case with a

language of more traditional scope of integration.

• Ado routines are easy to read, in general

• The transition to using Ada confidently, when other languages

have been used, may take longer and use more resources than one

anticipates.

• Translating AI applications such as this scheduler into Ado are

easier if they are "proceduralized".

• We remained suspicious of the ability of computer systems

operating with Ada as their language/programming systems to

efficiently use memory in the voluminous and dynamic ways that

often seem necessary for AI problems.

O. Hays - Languages for AI. Johnson Research Center, UAH - October 1988 - p. 43

the collect-time function in LISP

(defun coUect-time (process)

(ff (eq T (process-before process))

(process-rtmtime process)

(+ (process-runtime process)

(collect-time (process-before process)))))

; ff this is true

; then do this

; else do this

the collect time function in Ada (recursive version)

function COLLECTTIME(P: in out PROCESS)

begin

tf T = PROCESS.BEFORE

then return PROCESS.R_;

elseif return PROCESS.RUNTIME +

end COLLECT_TIME;

is

COLLECT_TIME(PROCESS. BEFORE);

Figure 3.

Illustration of a function programmed in generic

LISP, and in Ada.

© G"
-,-i
•.M 4J

,mq._

(9 0 r_

m _

0

....,d
U

r_

co

omll

om

o_

_ r_<

< =< _'-_

_0

r._

_Z

<

< .-<__

Ii

"_

co

c_
e-,

0

v

.,-I

o
q4

0
(,..)

q-i
0

..-,

U3

I

4_

0
0

u_

.,-._

r.13
r,z3

0

I

f.,
¢'j

r,t)

rj
0

r,13

rj
0

,,j

r_

0

r,/'j
.,e

0

c13

0
I_ --,

0 "

Z

0

_ _2-_

. Z_. _

0'3
• _

r..)___ _ d o_
O_ _ :._ I _

I _ ',
© __ _

,--t

_J

o

'4--_

o

0
-,-t

_3

r_

o
q-4

0

M

©

a- I

m

o

2_

4_

,2J

IV. Issues and Conclusions

What was Learned. Probably the most interesting finding to

emerge from the various attempts to recast the original LISP

scheduler into other programming contexts, was the efficiency and

speed of the object-oriented version. The improvement in

performance was substantial, and though it seemed to result from

several factors (program organization, speedy addressing schemes,

and so on), the programs were comparable in some important ways.

Apart from the difficulties of comparing any two complex programs,

the original scheduler and the Flavors version ran on the same

computing machine, and both were within the LISP programming

milieu. Thus, questions of recasting list-processing programs to an

essentially non-list-processing environment, as in the later

exploration of Ada, were irrelevant here.

The improvement in performance was especially interesting since

object-oriented techniques are commonly offered as aids to clearer

and more communicable conceptualization of a problem, but are not

usually suggested as leading to markedly improved efficiency. We

found here that at least in this case, the "objectification" at the

very least did not detract from performance and may well have

contributed to the improvement.

In relation to the above, we also learned more clearly the relation

between ordinary object-oriented techniques, which in the

literature are often discussed as just radical cases of "information

hiding" in procedures, and the tradition of very modular procedural

organization of programs--which of course is a strong cultural

feature found in the design of Ada 25.

2S And other current languages in that tradition such as Pascal, Modula-2,
and others.

D. Hays Languages for AI- Johnson Research Center, UAH - October 1988 - p. 50

It should be noted, though, that very tight modularization is not

necessarily a programming ideal for AI programs, especially when

it implies, as it often does, extensive constraints on symbolic

reference, ability to pass on information among procedures, and

kinds of data structures that are convenient to use within a

particular system. We ran into these constraints almost

immediately in setting up the recasting of the scheduler into Ada, in

the restrictions on generic types. (We think we would have had even

more problems with a more narrowly conceived language such as

Modula-2, despite its conceptual neatness.)

This is not to say that we have anything against clarity of

organization of programs 26. Both clarity and effectiveness can

come from other organizational principles, and other

language/system bases. For example, the kind of organization into

inference routines and modifiable knowledge corpora that has

emerged in some machine intelligence work, is relatively clear and

certainly useful, but is different in approach from what would be

recommended by the dogmas of the Wirth school of thought.

Intelligence in Machines. A curious phenomenon of work in AI is

the disappearance of intelligence when a process is examined

closely, or comes to be understood. 27 The case of now you see it,

now you don't 'intelligence' in the routines was something that we

experienced in regard to each of the programs that we worked with.

26 Regretably often taken to be the sole property of "structured"

algorithmic languages such as Pascal.

27 Though this has often been pointed out for the case of machines, it also

seems to apply at times when human intelligence is carefully scrutinized, and

what seems to have been whim or wisdom seems to be more determined by

simple causes than not.

. D. Hays - Languages forAI- Johnson Research Center, UAH - October 1988 - p. 51

What seemed to be more significant was the embeddedness of

intelligence into the routines. Even in the original scheduler, much

is arranged and specified rather than left for inference. The Flavors

version of the scheduler in some ways went a little farther in

incorporating actual heuristics about the situation of scheduling

space tasks into code.

What this implies is that the critical issue is not whether a

program is intelligent because it does some reasoning or not, or is

smarter or less smart in an absolute situational sense, but the

modifiability of the program to meet new situations together with

the situational adequately of response. This makes the matter of

program "smartness" much more a matter of both interface and

external connectedness to a world of events and meanings, than

necessary features of internal procedure. So flexibifity and

aptness become important more than particular formal features

that may have been seized upon as indicators of program virtue.

The now you see it phenomenon also is related to issues of

programming language features and capabilities. Assume for the

moment that only one computer arrangement was being used.

Various high level languages, in which programmers would express

what needs to be done to solve real problems through computation,

must be transformed into machine instructions. The machine will do

what it can do. But, it turns out that it is much easier to do some

things using some higher-level languages. It is virtually impossible

to do some things with some languages. For example, it used to be

next to impossible to do any substantial amount of list processing

with Fortran, and it is still difficult to do so without special

routines in more specific languages.

So the reality of the programming language, with its domain of

D. Hays - Languages for AI- Johnson Research Center, UAH - October 1988 - p. 52

meanings and operational possibilities, is very real indeed.

If machines are different from one another in certain ways, the

discussion becomes more complex. For example, in this project the

difference between the underlying structure of the Symbolics, which

has special hardware facilities to help list-processing addressing

and even some higher order operations, is different enough from the

underlying structure of a Vax, or a PC, that one would want to

examine not just language differences when exploring how programs

should best be written for these systems.

From the point of view of the humans who use the computers,

either the possibilities and constraints of the software, or the

possibilities and constraints of the hardware, could be the source of

easy problem solution, or of frustration in trying to solve a

computational problem. In this project, for example, the major

problem was what software would allow or facilitate. It turned out

that even on the same machine, it was relatively easy to solve

certain problems with some software, and a real challenge to do so

with another programming language, even one that is advertised as

being diverse and capable.

Possible Future Investigation. Further exploration of Ada would

seem to be of considerable interest. Beth the more limited approach

to the scheduling problem, and ones that were only mentioned in

passing here, such as multitasking versions, would be interesting to

gain more experience with.

Of languages that are in concept more limited than Ada, Modula-2

and C seem especially interesting. C is widely used and has a good

reputation for implementing efficient programming solutions.

Modula-2 is becoming increasingly appreciated by people who write

D. Hays - Languages for AI- Johnson Research Center, UAH - October 1988 - p. 53

serious software, including applications for machine control and

coordination. Both have certain restrictions of conceptualization,

though.

Because of the results for the object-oriented version, it might

also be worthwhile to pursue that kind of technique in future

studies.

In addition, various projects have been underway to provide either

somewhat general list-processing facilities, or more specialized

"expert system" systems written in some of the more classically

structured languages. These could be evaluated using problems such

as this scheduler.

Summary. A realistic application involving the concepts and

certain programming techniques of artificial intelligence, was

examined in several versions. The original, in classic LISP,

contrasted with an object-oriented version. Work on a recasting

into Ada, at base a differently structured language, involved a

number of both practical and conceptual problems.

D. Hays - Languages for AI- Johnson Research Center, UAH - October 1988 - p. 54

APPENDICES

Appendix

A. Instructions for Common LiSP/Flavors DYPAS Scheduler

B. Common LISP/Flavors Scheduler: Listing

C. Rule-Search (RETE) Algorithm Adaptation

D. Routines from Ada Version of the Scheduler

E Floyd and Ford's Description of their Scheduler

D. Hays et al. -Languages forAI- Johnson Research Center, UAH - October 1988

Appendix A.

Instructions for Common LiSP/Flavors DYPAS Scheduler

These are the instructions supplied by

S. Davis for running the Common LISP/Flavors
Version of the Scheduler

on the Symbolics computing machine.

D. Hays et al. -Languages forAI- Johnson Research Center, UAH - October 1988

To Set Up the Common LISP/Flavors Version of DYPAS -

Begin by restoring the distribution from tape. The best way

to do this is by entering the Command Processor command;

Edit File SYS:SITE;DYPAS.TRANSLATIONS

and typing the form

(fs:set-logical-pathname-host "DYPAS"

:translations '(("** ;" ">dypas>**>")))

The physical directories do not have to exist. Now, evaluate
and save this file, then go back to the Listener.

From the Command Processor do a Restore Distribution, specify

the Cart Unit to use and begin restoring.

To load DYPAS into working memory do;

Load System DYPAS

then type <SELECT>-Square.

A-I

Running DYPAS is equally simple. Six of the eight commands

displayed are mouse sensitive. The two that are not are Describe

Process and Remove Process. They are available from the Keyboard.

Describe Process is also available by mousing on a process name

after selecting Show Schedule. The top four commands should be

selected in sequence initially, and then used logically
afterwards. A short introduction of these commands follow.

sets-up program definitions and clears the Frame

Base. It is always correct to select this command first.

Initialize prepares DYPAS working memory for new processes.

SE_CT _ allows the user to individually select the

processes he wants to schedule. When selected it brings up other
windows that can be logically followed.

SCHEDULE begins the scheduling process, but does it in the

background. You can then actively Describe Processes, Create

Processes or Show Schedule to give a dynamic view of what is being
scheduled.

SHOW SCHEDULE does its best description after the scheduling

is done. You can Describe Processes by mousing on the tree

structure for any process name that is sensitive.

Try removing a few processes after scheduling and then select

Schedule again. See what kind of schedule differences exist. When

you want to begin again select Initialize and start fresh.

NOTE: To allow DYPAS to run quickly, keep the mouse pointer out of

the Message window. Some of the processes are mouse sensitive and

it will slow down the scheduling when mouse and process conflict.

A-2

Appendix B.

Common LiSP/Flavors Scheduler: Listing

D. Hays et al. -Languages forAI- Johnson Research Center, UAH - October 1988

I
-K

I

n:

°°

0

X
t...4

°.

,--t

I

0
t_

0
I

u_
0

co
H

"0
0

_n

t_ r_
D

G I

tO o_
.._ aO
0 I

n_ 0

•,4 1.1

_ U
O

O _ _

_ O

"t

"_ ".-t

0 r_

0 _ tO

,

>4 O "_

O O

""t CO

o

(11 =

B-1

A

z

01
0

O

g "0
0

_ :N a)

0 o_ o_o o_ a_ 0

I _ _ _ ? 0
o3 _

........ I 0

_ .,.-t O O N O
_ _o 0.,.,..-I r.o E-.*

0 0 C I _J _
0 -,-I 0 _ _ 0 r..-
W _ 0_ _ _'

l o_ o3

0 0 :

ro
O_ O_

"0
o _
t_ r0

o o
u_ u_ u_4

"0

0

Z
H

Z
0

z

5"

0
e_

°°

..

0

.,-I

._
C
0

0

0

0

TTT _ : o

.......... 0 _,_

0 _00

_ -_11_ _ _ n_ r'_
• ._'_ 0 0 o_

_ 0
I v

_ -,-'t

A

A
A

0

-f'_

0

A _

0
m

0

m _ I

I _

0 (P

_,.0 0
I 0
0_ ,-.4

0 _._ 0 0

0
0

/J
J J

r_ r_

-,-.I .,-i
I I

-_i -,'4
•_ .la

r_

.,-I 01
_"D A

t

Z
• H
e' (.9

m

O

A

A
O _ °

• 0

_ _ o N
_ -;-I _ 0

t_ _ 0 o_ 0

>_ .,._ _- _

v 0

¢_

"D

(0 ,I_

0 X_

_ _ 0

oi •

U U 0
0 _ 0 _

_ 0._

I_ "_ O r.,.l
0 00nn

0 _ 0_

_ _ v

C

_ A

I

r_

0 0

U 0 0 I
0 _ .0 co

•,-_ _

I_,-t • 0

o10 _ t_

r_ _ 0 _ _

v

0
0
0

I

r_
0.,

0

!

,-4 ,-_ .,-_

_ 0

-0 r., _
0 ,_ r'n

(_ _
ng
v

B-2

A

A

C A

o

0
0

0

o

eO M

_÷

0

0

* 0

A

A
A

0

A

09

_z
0

(n

_Z

01

A

A
A

0 0

I I

A

-_1 -I_ -,.-I

r_ _ -,-I r_

O

_., _ _ "_ 0

<

0

A

E_

o
(3

Z

D

,--I -_ ,--_

•;'-t _ _ ._
. ,_ _ O

O _1 _ O 0

-r_ .._ O -rm

c_ 0 _.D 0
O .rm O .r-I

_ _ _ _ _ 0

mo m.D _ O

W _ 0 0 0 0 0

@ _.1 0 O O O O

_ _ _ _ i ,

I n. (/I co w w

N

"_ O O

O u_'O

O

o
u_ ,--I

"0

B-3

B-4

A
A
A

0

0

:D _ 0
,_ _ 0

:= 0
0 .,_ _ r,n

-tin 0
._

0 _ _

_ 0 "0

,"_ • 0 0 _ ,_

._ 0 0
_ 0 0 V

I c_ {_

0

0 _} (_

_ _ 0

0 -M
•_ _ 0

0
"_ _ 0

,--I

A
A A

I ,'_ A

0 I -,'t

O_ 0._ _ _
_ _._ (1} o I

. i _-_}

I _ _ _ _ _

O 0 _1 I :4 0

_ 0 >_ I

0 ,-I

-- _: 0

.M :_ -M

0 _ ._ h r_

_4 0
0 <_

-M

l

t t = 'M

II II II

A
A

z

0 0

0'1 _1

-M .M

_ I
_ _ 0 _

_ _.-,I I _ ,.1_

0 0 _-_ _ I _ "_ I_ 0 0

A 1

t oO _}

;-I _ I

_ _I-_ .-I

}.4 I.,.lI _ .,-I

_ _ _ 0

: 0 _., _, 0,, _ _ _1 .,-_ _ • _l _10_,_

_÷

•,-I 0
0

B-5

O v
'O

v 0 I_'_ ._ ._
I '_I - .I_ I o]

e_ .,,.¢ _ _.-r-),.,=_

.... _ 0 • _
E 3_ 0

O
E
r_

•) ,4

0 _3_ _ _ _1

_,l I _ 0 i

co _ E 0._

Q, rn _n _ Q_ 0

"0 _ E_ _ :
_ 0 0 _ _ q.4 .

@ _ ;>, • 0 C) _ - 0

N _ _.J _ o) 04-.4 -,_ _ I _ .,'4

.o 0 _ _ O_ co _ _ 0 _ -,._ ._ o

0 0._ "" °")" °) " "" "* "* **)" ")

_I 0
J_ 0

B-6

A
O1
Z
O
H

_A

.v-4

---, _ ¢J ¢1

O o_ O O O
O g O _ _

n.O _ I I

_ _ O O
O I O O O
O _ O h h

0

-M _ 0 0

I I | _ I

tO _ 0_ (O 01
O O O _ ¢0
O O O O O
0 00 _"_ 0

i I I _ I

_ u_ u_ u_ _

A

I
w_

A_

I
O

A

cO

O

O g L _ "

n. _a ._ "O _ "-

4=) I O _ _ I "M P

4 .:l 0., _ _ _O _ 0
I 1.4

O _ _ I 0") I -M tO ._

N _: _ _ .i_ .0 .M 0

,_ _ 0
.u_ 0_0_ 0 _ 0

O
"O

t

II

O

0
n,

I1

= -M

-,4 I_

_fll O

!

_ A
_ A

O
0 o_

O
O_
[¢0
r.t)

>.,_
"0 -

rO
0

-r'_ N

O m _

O O_

_4
"_ O O

A

_ A
0

01 (11 r/) r/)

-,_ O •
_ o o

_1 O _ O

• "O O_

Ill _ I
O cO co O _J
0 • _ _ _

0 O ,'4
t _ 0 0_

0 _ 0_ _ _,
O I -_

0 _ 0
, _ 0 0 O

I _

I 0

ng
0

"0

A
A

0

I

O
U
O

0

0_n.

A

i
0

0_

ul

A

O O
O

O
O O

_ 0 (1}

_ c_

O A) -,-_

ol _ _ U
_J cru _

O 0 '_

_'0

:>_

0
0

0

I

O
u_

B-7

,-t ol

O
0

0 I

•o'0 _

O
0

c_. oo

A

_o _ _ co

0 0 _ -,-_
O ,._ t ,-t
_ _ .. _ O_

C _ -,-4 0 r_ 0

0 _ -,'_ _ _ ._,
L_ .1_ _ 0 0 -,-I 0

:1_ ,o ,, ,o .o ,* ,,

A

r_

,--I

A
+

0

0 _ _,_

co

0 _" ,.,_ I._

A
A
A
A
II

°o

v

r_ i-1 I
rn

•,4 ._ cn

I-t

0 _ ,..-t I1)

A

en

t

,r-J

- _

! i

,rt ,..-_ _

"_ _'_ _ 0
0 c_:_

_ ,..,.._ _._

_A

A

m_ _ MM

._._

- _

_1 _

0
1

0

._

-

B-8

Appendix C.

Rule-Search (RETE) Algorithm Adaptation

This is an adaptation by S. Davis of the

RETE algorithm of Charles Forgy

for a future version

of the Common LISP/Flavors scheduler

D. Hays et al. -Languages for AI - Johnson Research Ccntcr, UAH - Octobcr

1988

;;; -"- Mode: LISP; Syntax: Common-Lisp; Package: RETE; Base: i0.; Default-character-style: (:FIX :ROMAN

:LARGE) ; -*-

;; ; Stephen W. Davis

;; ; Johnson Research Center 205-895-6257

(defun rule-lnterpreter nll

(let (choice)

(do ((add-llst database (cdr add-llst))

(confllct-set nll (append (enter-clause (car add-list)) conflict-set)))

((and (null add-llst) (null conflict-set)) database)

(cond ((null add-list)

(setq choice (conflict-resolutlon conflict-set))

(perfor_-actlon choice)

(setq add-list (cdr choice))

(setq confllct-set (remove-repeats confllct-set (second choice))))

))))

(defun confllct-resolutlon (confllct-set) (first conflict-set))

(defun perform-action (action)

(let ((rule (first action))

(pred (first (second action)))

(actor (second (second action)))

(lesser (third (second action))))

(format t "~%Firing rule ~A --> ~A is ~: [a~;the ~] ~A~@[of ~A~]. '' rule actor lesser

pred lesser)

(setq database (cons (second action) database))

(values)))

(defun remove-repeats (confllct-set action)

(do ((temp confllct-set (cdr temp))

(result nil (cond ((equal (cadar temp) action) result)

(t (cons (car temp) result)))))

((null temp) result)))

(defun enter-clause (clause)

(let* ((pred (car clause))

(args (cdr clause)))

(putprop pred (cons args (get pred 'bindings)) 'blndlngs)

(append

(mapcan #' (lambda (prod) (enter-flrst args prod)) (get pred 'first))

(mapcan #' (lambda (prod) (enter-second args prod)) (get pred 'second))

(mapcan #' (lambda (prod) (enter-thlrd args prod)) (get pred 'third)))))

(defun enter-flrst (args prod)

(mapcan #' (lambda (x) (match-and-execute x prod))

(cross-product (list args) (clauses prod 'second) (clauses prod 'third))))

(defun clauses (prod position)

(or (get (get prod position) 'bindings)

(llst nil)))

(defun cross-product (lisl lls2 lis3)

(mapCAN #' (lambda (x)

(mapCAN #' (lambda (y)

(mapCAR #' (lambda (z) (list x y z)) lis3))

lls2))

lisl))

(defun match-and-execute (args prod)

(cond ((apply (get prod 'condition) args)

C-i

(check-for-dups prod (apply (get prod 'action) args)))
(t nil)))

(defun check-for-dups (prod action)

(cond ((member* action database) nil)

(t (llst (llst prod action)))))

(defun member* (target lls)

(do ((temp lls (cdr temp)))

((null temp) nil)

(cond ((equal (car temp) target) (return temp)))))

(defun enter-second (args prod)

(mapcan #' (lambda (x) (match-and-execute x prod))

(cross-product (clauses prod 'first) (llst args) (clauses prod 'third))))

(defun enter-third (args prod)

(mapcan #' (lambda (x) (match-and-execute x prod))

(cross-product (clauses prod 'flrst) (clauses prod 'second) (list args))))

(defun traceon2 ()

(trace enter-flrst enter-clause remove-repeats perform-actlon

confllct-resolutlon rule-interpreter clauses enter-thlrd enter-second

member* check-for-dups match-and-execute cross-product putprop))

C-2

;;; -*- Mode:LISP;Syntax:Common-Lisp; Package: RETE; Base: I0.; Default-character-style: (:FIX :ROMAN

:LARGE) ; -"-

;;; Stephen W. Davis home: 205-533-7308

;; ; Johnson Research Center 205-895-6257

(defun encode-productlons nll (setq inltllst ' ()) (maPcar 'encode-a-productlon product

ions))

(defun encode-a-productlon (production)

(let ((name (first production))

(condition (second production))

(action (fourth production)))

(let ((predl (first (first condition)))

(pred2 (first (second condition)))

(pred3 (first (third condition)))

(predact (first action)))

(when (notmember predact Initllst)

(serf (symbol-plist predact) nil)

(push predact inltllst))

(serf (symbol-plist name) nil)

(cond ((and predl (notmember predl inltllst))

(serf (symbol-plist predl) nil)

(push predl initllst)

(cond ((and pred2 (notmember pred2 initllst))

(serf (symbol-pllst pred2) nil)

(push pred2 inltllst)

(cond ((and pred3 (notmember pred3 initllst))

(serf (symbol-plist pred3) nil)

(push pred3 inltllst)))

)))))

(encode-conditlon condition name)

(putprop name (build-actlon (mapcar 'cdr condition) action) 'action)))

(defun encode-conditlon (conditions prodname)

(let (first second third)

(setq first (first conditions))

(update prodname (first first) 'first)

(cond ((cdr conditions)

(setq second (second conditions))

(update prodname (first second) 'second)))

(cond ((cddr conditions)

(setq third (third conditions))

(update prodname (first third) "third)))

(putprop prodname (build-condltlon (cdr first) (cdr second) (cdr third))

'condition)))

(defun update (prodname pred relation)

(putprop prodname pred relation)

(putprop pred (cons prodname (get pred relation)) relation))

(defun build-condltlon (varsl vars2 vars3)

'(lambda (first second third) , (build-test varsl vats2 vats3)))

(defun build-test (varsl vats2 vats3)

(let ((test (append (encode-palr varsl vars2 'first 'second)

(encode-pair varsl vars3 'first 'third)

(encode-pair vars2 vats3 'second 'third))))

(cond ((null test) t)

((null (cdr test)) (first test))

(t (cons 'and test)))))

C-3

;; ;ENCODE-PAIR (-X -Y) (-Z -X) FIRST SECOND

; ; ; ENCODE-PAIR ((EQ (FIRST FIRST) (SECOND SECOND))

(defun encode-palr (varsl vars2 namel name2)

(and varsl vars2 (cond ((eq (first varsl) (first vats2))

'((eq (first ,namel) (first ,name2))))

((and (cdr varsl) (eq (second varsl) (flrst vats2))

' ((eq (second ,namel) (first ,name2))))

((and (cdr vars2) (eq (first varsl) (second vars2)))

'((eq (first ,namel) (second ,name2))))

((and (cdr varsl) (cdr vats2) (eq (second varsl) (second vars2)

' ((eq (second ,namel)(second ,name2)))))))

(defun build-actlon (condition action)

'(lambda (first second third) (llst (quote ,(first action))

,@(descrlbe-args condition (cdr action)))

(defun descrlbe-args (condition action)

(let ((argsl (first condition))

(args2 (second condition))

(args3 (third condition)))

(mapcar #' (lambda (x) (cond ((equal x (car argsl)) ' (first first))

((and (cdr argsl) (equal x (second argsl)

rst))

((equal x (first args2)) ' (first second)

((and (cdr args2) (equal x (second args2)

cond))

ird))))

((equal x (first args3)) ' (first third)

((and (cdr args3) (equal x (second args3

action)))

' (second fi

' (second se

) ' (second th

(defun traceon nll

(trace descrlbe-args build-actlon encode-pair build-test build-condition

update encode-conditlon encode-a-production encode-productions))

C-4

;; ; -*- Syntax: Common-Lisp; Package: RETE; Base: I0; Mode: LISP; Default-character-st

yle: (:FIX :ROMAN :LARGE) -*-

(cp:deflne-command (com-productlon-system :command-table "User ")

((trace 'scl:boolean

:prompt "Trace forms"

:default nll

:dlsplay-default t

:documentation "Trace all encoding and firing forms."))

(if trace (progn (traceon) (traceon2))

(untrace))

(productlon-system))

(cp:define-command (com-encode-productlons :command-table "User")

((trace 'scl:boolean

:prompt "Trace forms"

:default nll

:dlsplay-default t

:documentation "Trace all encoding and firing forms."))

(if trace (traceon)

(untrace))

(encode-productlons))

(cp:define-command (com-rule-lnterpreter :command-table "User")

((trace 'scl:boolean

:prompt "Trace forms"

:default nll

:display-default t

:documentation "Trace all encoding and firing forms."))

(if trace (traceon2)

(untrace))

(rule-lnterpreter))

C-5

n .. k

;;; -*- Mode: LISP; Syntax: Common-Lisp; Package: RETE; Base: 10.; Default-character-s

tyle: (:FIX :ROMAN :LARGE); -*-

;;; Stephen W. Davis home: 205-533-7308

;;; Johnson Research Center 205-895-6257

(defun Productlon-System nll (in-package 'rete) (inltvars) (encode-productlons) (rule

-interpreter))

(proclaim ' (special productions database initllst))

(defun putprop (predicate value slot) (serf (get predicate slot) value))

(defun inltvars ()

(setq productions ' ((pl

(p2

(p3

(p4

(p5

(p6

(p7

(p8

))

(father =x -y) (wife -z -x))

(mother -x -y) (husband -z -x)) implies

(wife -x -y)) implies (husband -y -x))

(husband -x -y)) implies (wife -y -x))

(father -x -z) (mother -y -z)) implies

(father -x -z) (mother =y -z)) implies

(husband -x -y)) implies (male -x))

(wife -x -y)) implies (female -x))

implies (mother =z =y))

(father =z =y))

(husband =x =y))

(wife =y _x))

(setq database ' ((father Alan Alta) (wife Alice Alan)

(mother Bertha Bet) (husband Bob Bertha)

(wife Caitlin Carter)

(husband David Dianne)

(father Earnest Earnie) (mother Evelyn Earnie)

(father Frank Fred) (mother Fellcia Fred)

(husband George Georgia)

(wife Helen Herbert))))

(Defvar *hook-level* 0)

(defun hook (x)

(let ((*evalhook* 'eval-hook-function))

(eval x)))

(defun eval-hook-functlon (form &optional env)

(let ((*hook-level* (incf *hook-level*)))

(format *trace-output* "~%~v@TForm: ~S"

(* *hook-level* 2) form)

(let ((values (multiple-value-list

(evalhook form

#' eval-hook- function

nll

env))))

(format *trace-output* "~%~v@TValue: ~{~S~} "

(* *hook-level* 2) values)

(values-llst values))))

C-6

Appendix D.

Routines from Ada Version of the Scheduler

These routines were programmed

by S. Davis

as part of the Ada adaptation
of the scheduler.

D. Hays et al. -Languages forAI- Johnson Research Center, UAH - October 1988

D-1

©

I

,<

>.

rj
©

©

emu

©

I
C_
.<

>.

D-2

Appendix E.

Floyd and Ford's Description of their Scheduler

from the 1986 Proceedings of the Conference

on Applications of Artificial Intelligence to Space

D. Hays et al. -Languages forAI- Johnson Research Center, UAH - October 1988

A Knowledge-based Decision Support System for Payload Scheduling

Stephen Floyd*
and

Donnie Ford**

*Department of Management Information Systems and Management Science

School of Administrative Sciences, University of Alabama in Huntsville

**Cognitive Systems Laboratory - Johnson Research Center

University of Alabama in Huntsville

ABSTRACT

The purpose of this paper is to illustrate the role that artificial

intelligence/expert systems technologies can play in the development and

implementation of effective decision support systems. A recently developed

prototype system for supporting the scheduling of subsystems and

payloads/experiments for NASA's space station program is presented and serves

to highlight various concepts. The potential integration of knowledge based systems

and decision support systems which has been proposed in several recent articles and

presentations is illustrated.

I. INTRODUCTION

At the Sixth International DSS Conference (DSS-86) Peter Keen in the closing

plenary address entitled "DSS: The Next Decade" discussed what he perceived as the

important roles of current and future AI/ES technology in extending the field of

decision support systems. Among his perceptions was the fact that the field of AI

could play a major role in the development of systems to support the tougher,

ill-structured types of problems. He also viewed current AI/ES hardware and

software technology as "power tools" for DSS development. A few months earlier John

Little in an article entitled "Research Opportunities in the Decision and Management

Sciences" promoted similar observations while discussing research priorities of

NSF's Decision and Management Science program [9]. Major among these priorities was

the role that expert systems technology could play in advancing the Decision

Sciences. Similar ideas have been expressed over the past few year by other
reseachers in articles and at major conferences such as ORSA/TIMS, DSS-86, IDS and

AAAI [8], [13], [16], [17]. This paper supports these observatl ons by

describing knowledge-based DSS for scheduling payloads for NASA's space station

program. The payload scheduling system serves to illustrate the potential

integration of DSS and ES as it involves the addition of a knowledge based component

to a system which currently provides decision support via extensive interaction

between scheduling personnel and more traditional scheduling techniques. It is the

authors _ hope that the following discussion of the scheduling system will help other

researchers in establishing the applicability of the new "power tools" in DSS

development •

This paper concerns the development of a solution procedure and interactive

system for scheduling subsystems and payloads/experiments for the National

Aeronautics and Space Administration space station program. Traditionally,

scheduling problems have been viewed as static in nature (i.e., a schedule is

developed for a particular planning horizon and adhered to) and were cast as having

one or move clearly defined objectives (e.g., minimize overall completion time,

E-I
w

maximize resource utilization, etc.). As such, these problems were most commonly

solved via application of optimal seeking algorithms, heuristics or simulation

analysis [1] [4] [6] [7] [15]. The payload scheduling problem, in contrast, is

representative of a class of scheduling problems which are highly dynamic in nature.

Not only may the various parameters change at any time, but the objectives

themselves may change also. As will be illustrated in this paper, the nature of

this class of problems is such that they can be most effectively solved by knowledge

based expert systems [2] [3] [5] [II] [18] [19].

Provided in the first section of the paper is a detailed description of the

class of problems under investigation. After an overview of the problem domain, the

specifics are provided for the NASA problem which lead to the development of the

system. The third section discusses the initial dynamic scheduler solution strategy

that was developed for the prototype system. The details of this prototype expert

system and its development are provided in the fourth section. The fifth section

discusses future enhancements that have been identified for the system. The final

section of the paper provides some concluding remarks on the research to date, and

some suggestions for future research in the area of dynamic scheduling.

2, PROBLEM DESCRIPTION

The application addressed in this paper concerns development of a system for

the scheduling of subsystems and payloads aboard the space station. Subsystems

are systems which function to support space station on an ongoing basis. These

include such subsystems as life support systems, communications systems, and

various "housekeeping" systems. Aboard space station will also be various payloads

and experiments. These will be sponsored not only by NASA but also by other U.S.

and foreign government agencies, universities and private industries.

Each of the subsystems or payloads has a certain set of characteristics and

requirements which must be considered in determining when during the mission it

should be scheduled. For example, each subsystem and most of the

payload/experiments will draw operating power from Space Station's limited power

supply. Additionally, certain of them will require astronaut intervention either on

a continuous basis for the duration of the experiment or for specified subintervals

of time. Some subsystems and experiments are continuous in nature and run

uninterupted throughout the entire mission. Still others operate either

continuously or intermittently for only a spedfied subinterval of the mission time

window. The nature of some experiments will require that they be conducted only

during certain phases of the mission (e.g., during day orbit, during night orbit,

during certain orientations of space station, etc.). These example characteristics,

as well as others which will not be detailed here, coupled with the fact that
payload/experiments are placed in priority classes which must be reflected in the

schedule, form the basic criteria for establishing feasible schedules.

The complexity of the scheduling problem is compounded further by the fact that

events which will be occurring during the mission will serve either directly or

indirectly to upset current schedules and/or influence future ones. For example, at

any time during the mission an ongoing experiment may fail or be aborted for some

reason, a scheduled experiment may be withdrawn from the schedule, an experiment or

entire class of experiments may be added and/or experiment priorities changed. The

scheduler must be designed to handle such dynamic changes via interaction with

various mission personnel, including astronauts, mission planning specialists and

principal investigators of affected experiments.

E-2

As mentioned previously, each subsystem and payload/experiment will consume

various resources. Major among these will be energy from the Space Station's power

supply and manpower provided by the astronauts on board. Such limited resources

place constraints on what systems and experiments can be concurrently ongoing.

Additionally, and this is another of the dynamic aspects of the problem, the power

and manpower allotments themselves may change at various times throughout the

mission. In some instances the change notification will provide lead time for

scheduling adjustments, whereas in others no lead time will be provided. Changes

will occur, for exampled when vehicles dock with Space Station. Such changes result

from the fact that the docking will usually draw on such resources as the power and

manpower supply. In light of the above mentioned characteristics, the scheduler

must have capabilities beyond the generation of traditional static feasible

schedules. The dynamic scheduler must have the capacity to respond interactlvely

to such changes and, when required, maintain feasibility via a rescheduling
procedure.

A final characteristic of the payload scheduling problem is that the scheduling

objectives are variable. During the course of a Space Station mission, mission

specialists may re-structure the scheduling objectives. For example, it might be

that early in a mission a resource leveling strategy is adopted which will maintain

a fairly constant and conservative power consumption rate. Such an objective

would naturally "stretch out" the scheduling of experiments over some designated

planning horizon. Later in the mission cycle, however, factors may change this

objective to one of scheduling as many payloads/experlments as possible (subject to

the maximum power availability and other constraints) in a given time frame. These

characteristics then establish the need to develop a system which is capable of not

only establishing static schedules but also of dynamically maintaining feasible

payload/experiment schedules which reflect the varying parameters of the problem.

3. SOLUTION STRATEGY

Sample data around which the prototype system could be constructed was provided

by NASA's Power Branch. The data as considered by NASA to be representative of

actual scheduling data. As seen from Table I, four subsystems and forty-flve (45)

payloads/experiments were included. Provided in the table are the experiment name,

the associated power consumption requirements in kilowatts, the sponsoring agency,

the time duration (including other specifications such as continuous/intermittent,

day orbit/nlght orbit, etc.) and crew involvlement required. In addition to the

data in the ".able, other problem specifications were also provided. Most pertinent

among these were (I) the specification of a normal lab module power level of 25

kilowatts, (2) a priority structure based on the sponsoring agency and the nature of

the payloads/experiments, and (3) a two-week scheduling horizon. Additionally,

several system requirements pertaining to the actual operation of the scheduler were

specified. These provided a framework for the user interface and system output as

detailed later in the system description section of the paper.

To prototype an initial system for user evaluation and feedback, a

means of generating feasible schedules in the absence of a complete corporate
knowledge base had to be developed. This was accomplished via the modification of

a scheduling strategy presently used by NASA scheduling personnel which involves

conceptualizing schedules using a Gantt chart type format. This heuristic procedure

is representative of those that when augumented by various scheduling rules will

comprise the scheduling knowledge base of the final system. An example schedule

for a simple four experiment problem is given in figure l. As can be seen,

experiments one, two and three are continuous, and experiment four is intermittent.

E-3

Given inside the bars, which represent the experiment durations, is the power

requirement of the particular experiment. For simplicity these power requirements
are assumed constant as long as the experiment is "on." Through the use of this

four experiment example, the heuristic will now be described.

As an experiment is placed on the chart, its beginning and ending point(s) serve
to divide the overall time window, the x-axis, into intervals as illustrated by the

dotted lines in figure 1. By updating as each experiment is scheduled, one can
maintain for each subinterval of time the Information necessary in determining the

time slot for the next experiment to be scheduled. The determination of which

experiment is to be scheduled next is based on the user predeflned priority

structure in effect at the time of the scheduling or reschedullng procedure. For

the sake of illustration we will simplify the four experiment example further by

assuming a single scheduling objective of maximizing power utilization. Each

experiment is scheduled by searching through time on the x-axls in figure I from

left to right until a subinterval or group of successive subintervals is found which

has sufficient duration and power availability to support the given experiment.

The experiment is then scheduled and added to the chart in correspondence with
this subinterval. Subinterval information is updated to reflect resource

availability to reflect resource availability (i.e., power and manpower) and the

scheduling procedure continues.

Applying the scheduling heuristic to the representative problem provided by

NASA is obviously much more involved than the example provided above as the various

experiment characteristics and requirements must be matched to appropriate

intervals. As the number of requirements increases for experiments, so too does the

amount of infor marion being kept on each subinterval. Additionally, as the number

of experiments already scheduled Increases, the number of subintervals to be

examined during each individual scheduling process also increases. This increase in

the number of subintervals is compounded even further when the experiment

scheduled is of an intermittent nature. These facts, coupled with the previously

mentioned dynamic aspects of the problem, necessitate an automated procedure for

generating schedules. The next section of the paper will describe the prototype

system developed to accomplish this.

4. SYSTEM DESCRIPTION

The prototype system follows the basic production system structure of a

knowledge base, inference engine and working memory or global data base. The

knowledge base consists of a reduced set of scheduling rules and knowledge

pertinent to the example problem. The system utilizes a frame representation

scheme which allows for utilization and exploitation of knowledge other than rules.

This feature increases the speed and efficiency of the system; in particular,

the Inferencing process.

The inference engine performs only forward chaining. This was determined from

the structure of the problem. There is an abundance of related facts and

information at the beginning of the problem solving process which in turn

accomodates the forward chaining process. The conflict resolution problem is solved

by allowing the first rule that is satisfied to be implemented. This necessitates

an ordering of the rules. This resolution method was chosen because of the short

time frame for delivering a "demo" system. This also facilitates the search through

the working memory.

The working memory consists of a list of experiment names. Associated with

E-4

these names are certain facts that are placed into the knowledge base. These

include the power requirements, identification number, priority class, sponsoring

agency, duration of the experiment, and the required crew involvement. Using this

information, a priori=ized list of experiments is generated for utilization during

the scheduling phase.

The system has been designed and developed in an open-ended fashion to allow

system to be extended with only minor adjustments. It contains, in addition to the

knowledge-base system structure, an output interface which is at present for

demonstration purposes only. This interface will be detailed later, he system

itself is dynamic in that it moves through or between different phases of the

problem solution. The phases include preparation, scheduling, operation, and

res cheduli ng.

During the preparation phase the individual experiment information is provided

to the system from an external data base source and appropriately stored, also the

working memory is organized and then prioritlzed for the scheduling phase. This is

accomplished using a priority scheme developed from user input. In the scheduling

phase, the experiments are scheduled under the previously explained heuristic

procedure and the schedule is created. The schedule itself is part of the knowledge

base and is represented as frames. As experiments are scheduled, the subintervals

required by the heuristic procedure are defined by start and stop times of the

experiments. For each interval the power available, crew available, and the

experiments that are currently on-golng are determined and stored. This information

is required for the remaining two phases, namely operation and rescheduling. The

initial schedule is provided to the user for evaluation in a Gantt chart format with

appropriate labels (i.e., experiment identification, start and end times, resource

loadings, etc.). The user is then afforded an apportunity to make several types of

scheduling changes including changing the planning horizon, manually scheduling

experiments, reprioritlzing experiments, changing rfesource parameters, etc. Based

on nthe changes specified, the system determines whether any rule/constraint

conflicts exist and if so performs a rescheduling operation as descrSibed below to
resolve the conflicts. In cases where the specified changes do not allow for

conflict resolution, the user is so informed.

The output interface during the operation and rescheduling phases is graphical

in nature and menu driven. During the operation and rescheduling phases, the system

simulates control of the power source for the experiments, i.e., it turns them off

or on at the appropriate times indicated by the schedule and updates all the

necessary interface information accordingly. The operation phase has two modes:

(l) static and (2) dynamic. In the static mode, the system is capable of displaying

a power utilization graph for a two week, one week, one day or six hour period of

time. Also, the vital information for each experiment (start time, end time, etc.)

can be requested by the user simply by using the mouse and a selection menu. In the

dynamic mode, the system uses the output interface (see figure 2) to interact with

the user through four basic windows - a current status window, a schedule window, a

power curve window and a message window. The current status window shows the

current status of all the experiments of a payload at a particular point in time.

This is accomplished, as illustrated in the window at the top of the screen tn

figure 2, by representing each experiment as a numbered box. Reverse video is
then used to differentiate the on state. Labels placed within the boxes indicate

such statuses as aborted, removed, completed, etc. The schedule window (bottom left

of screen in figure 2) displays the names of the experiments on separate lines and

uses a Gantt chart format similar to that shown in figure I to display the

scheduling of each experiment. This window simulates movement through time, i.e. as

E-5

time passes the bars that represent the experiment move to the left and disappear as

the experiment is completed. When the experiment is completed the word "completed"

appears next to the experiment name. In the schedule window the experiments are also

numbered to provide a cross-reference to the numbered experiment boxes in the

current status window. The power curve window (middle right of display screen) plots

percent power utilization as it scrolls through time. The remaining window is the

message Window. This is used for interaction and control purposes.

One of the important capabilities built into this system is its ability to
reschedule the experiments when deemed necessary. This is one of the main

differentiators of this system when compared to others developed for such scheduling

applications. The system is capable of determining when it is necessary to

reschedule. When such a determination is made, the experiments affected are

identified and removed from the active schedule. A rescheduling is conducted and

the new schedule is implemented (i.e., made active). There are, based on the

initial problem description, a limited number of occurences that would warrant a

reschedule. These include an experiment failure, an experiment abort, a power

allotment increase or decrease, or the announced arrival of orbital docking and/or

servicing vehicles. The first two occurrences require an automatic rescheduling

while the others require the system to check working memory and the knowledge base

to determine if rescheduling is in fact necessary. Thus we see the system is

capable of moving between the different phases, capable of recognizing where it is

and what knowledge is applicable, and dynamic in its ability to genenrate and

maintain a schedule that will accomplish the objective or objectives of the mission
as specified by mission

planning specialists.

5. FUTURE ENHANCEMENTS

While the system demonstrates the potential of using a knowledge base system

approach in the area of scheduling, there are several enhancements that have

been identified and are currently being implemented to improve the

performance and capabilities of the system. First and foremost is that more

experiential knowledge needs to be added to the knowledge base. Sessions have been

scheduled with the appropriate NASA personnel to begin the task of knowledge

engineering [2] [3] [II] [18]. Also, knowledge concerning the determination of

alternatives to the schedule instead of Just developing a single initial schedule

will be added. This will provide the system with the capability of helping NASA

personnel in satisfying the dynamic objectives experienced during a mission and

will also facilitate the rescheduling process. An example of such an objective is

when power allotment reduction forces the schedule to run past the end-of-mission

time. Having "knowledge" of alternatlves, the system will have a better

understanding of which experiments to schedule. Should it continue with the normal

reschedullng rules or does some special set of priorities apply? Not only will more

objectives be handled in the enhanced system, but the system will be able to handle

more constraints, (e.g., fluctuating power requirements of experiments, orientation

of the experiments, etc.). Another area of knowledge enhancement concerns

the rescheduling function. It has been determined that the system should be

capable of performing a qulck-flx reschedule when necessary. This will provide

the necessary time to perform a more detailed and thorough reschedule in the event

of an emergency situation where a temporary "quick fix" is necessary.

The second area of improvement and enhancement to the system is efficiency.

Not only is the efficiency of the code being considered, but a more efftclent and

effective method for searching the schedule and determining experiment slots is

E-6
m

under development. This search process, as was mentioned previously, is complicated

by the scheduling of intermittant experiments early in the scheduling process. In

particular, one experiment in the sample data is required to be scheduled ten

minutes out of every hour that the mission is operating. Under the present system

this creates 336 additional time intervals that might have to be checked for power

and crew availability in determining a feasible interval for a later experiment.

The present system takes 15 minutes to schedule the 47 test experiments. The

majority of this time is due to the early scheduling of intermittent experiments.

Another efficiency enhancement is for the system itself to determine the mission

time horizon. This will reduce any excess time that is added in order to accomodate

all the experiments. At present, the time horizon is driven by the number of

experiments requireing crew involvement and the number of crew available to work

with the experiments. A critical path algorithm is being investigsted for

application in this area.

The final area of enhancements is in the user interface, both input and output

Interfaces. On the input side, a query/answer system will be added to allow for

easy input of experiment data and knowledge base maintenance. This interface will

have a limited, natural language parser [10] [12] and will exploit the use of

graphics. On the output side several enhancements will be made. First, the system

will have an explanation capability for how and why it chose the schedule it is

recommending. This capability will soon be provided since the system is currently

being redone using an expert system shell which provides how and why facilities.

Also, a hardcopy capability for printing out the schedule in "readable" form will be

added. Currently the schedule is only stored in symbiolic form. These output

enhancements will facilitate the evaluation of system performance. This should

allow the system in turn to gain user acceptance more quickly and will also help

facilitate the implementation phase.

6. CONCLUSIONS

This paper has detailed a knowledge-based system for solving the NASA space

station payload/experiment scheduling problem. The problem is representative of a

larger class of dynamic scheduling problems which, for the most part, have been

ineffectively handled using more traditional numeric techniques. An expert systems

approach allows one to effectively deal with the dynamics and incomplete information

which characterize this class of problem. Still in prototype form the system is

meeting with wide acceptance and interest not only from the sponsoring agency, but

also from other independent sources.

The interest this project has received indicates that there is potential for

further research in this area. The wide problem domain encompassed by dynamic

scheduling provides many areas for future applications (e.g., project scheduling,
production scheduling, manpower scheduling, etc.). Additionally, as systems are

implemented and knowledge engineering continues, there is a good likelihood that

commonalities will be established across various scheduling applicat[ons.

This would allow devlopment of an expert system shell for such problems. Such

a shell would allow scheduling systems to be readily developed and implemented.

REFERENCES

I. Baker, K. R., Introduction to Sequencing and Scheduling, New York: John

Wiley and Sons, Inc. 1974.

2. Barr, A. and F[egenbaum, E., The Handbook of Artificial Intelligence,

Volumes I and II, William Kaufmannm Inc., 1982.

E-7

3. Davis, Randall, and Douglas B. Lenat, Knowledge - Based Systems in

Artificial Intelligence, New York: McGraw- _Liil, Inc., 1982.

4. French, S., Sequencing and Scheduling: An Introduction to the Mathematics

of the Job Shop, New York: John Wiley and Sons, Inc., 1982.

_.. Harmon, Paul, and David King, Expert Systems, New York: John Wiley and

Sons, Inc., 1985.

6. Johnson, L. A. and D. C. Montgomery, Operations Research in Production

Planning, Scheduling and Inventory Control, New York: John Wiley and Sons,

Inc., L974.

7. Lawler, E. L., J. K. Lenstra and A. H. G. Rinnooy Kan, "Recent Developments

in Deterministic Sequencing and Scheduling: A Survey," in M. A. H. Dempster

et. al. (Eds.), Deterministic and Stochastic Scheduling, Reidel, Dordrecht,

1982, 35-73.
8. Lehner, P. E. and Donnel, M. L. "Building Decision Aids: Exploiting the

Syne=gy Between Decision Analysis and Artificial Intelligence," Paper at

ORSA/TIMS, San Francisco, May 1984.

9. Little, John D. C., "Research Opportunities in the Decision and Management

Sciences", Management Science, Vol. 32, No. t, January 1986.
I0. Rauch-Hindin, Wendy, "Natural Language: An Easy Way to Talk to Computers,"

Systems & Software, January, 1984, pp. 187-230.

II. Rlesbeck, C. K. and Roger Schank, "Comprehension by Computer: Expectation-

based Analysis of Sentences in Context," in W. J. M. Levelt and G. B. Hores

d_Arcais (Eds.),Studles in the Perception of Language. Chichester, England:

John Wiley and Sons, 1976, pp. 247-294.

12. Rich, E., Artificial Intelligence, New York: McGraw-Hill, Inc., 1983.

13. Sprague, R., "The Role of Expert Systems in DSS," Paper at ORSA/TIMS,

Dallas, Nov. 1984.

14. Symbolics software. Report, Symbolics, Inc., 21t50 Califa Street,

Woodland Hills, California, 1981.

15. Tersine, Richard J., Productlon/Operations Management: Concepts,
Structure, and Analysis, (2nd ed.), New York:" North-Holland Press, 1985.

16. Turban, E., and King, David, "Building Expert Systems For Decision

Support," DSS-86 Transactions, Jane Fedorowlcz, Editor, 1986.

17. Turban, E., and Watkins, P., "Integrating Expert Systems and Decision

Support Systems," MIS Quarterly, June 1986.

18. Waterman, Donald A., A Guide to Expert S_stems, Reading, Massachusetts:

Addl s on-We sley Pu bii shi ng'-Com-m_-ny:-"

19. Winston, Patrick H., Artlclal Intelligence, (2nd ed.), Reading,

Massachusetts: Addlson-Wesley Publishing Company, 1984.

20. Winston, P. H., and Horn, B. K. P. L_SP, Reading, Massachusetts: Addison-

Wesley Publishing Company.

E-8

SUESTST_:

KA_fE

LAJBOIL&TORT HOOUTJ_ - SPACE STATION

DI_IC pAYLOAD SCHEDULZK

POWERPRIORITY

gAFFS CLASS AGENCT DURATION CP.EI_

ECLSS 6200 I NASA

COItIUNICATIONS 1480 I

TH£A_AL CONTROL 600 I

NOUSEI_EPING(HISC) 6000 I

CONTINUOUS W/20

HIN. LAPSES OICAY
EVERY 4 HF.5.

NASA CONTINUOUS 0

NASA CONTINUOUS-REDUCES O
LINEARLY TO 400W FOE
10 KW POWER LEVELS

NASA CONTINUOU5 L

PAYLOAD/EXPERIMENTS

ODD/PAYLOAD I 890 IZ
ESA PAYLOAD I LSAS II

IPS 165 II

EL£CT OIAG STA 435 [_

IECH 480 II1
Ci_E 930 IV

Gr.N PURPOSE COHP 383 III

SOLID POLYMER ELECT 415 IV

lET L25 IV

HI_ 350 IV

FES-VCGS 600 III

IU_TI 36 IV

SEH 2648 IV

RTG 94 IV
TAPE RECORDER 1 85 II

TIHE COD_ GEN _2 IZ

NASS SPECTROHET_R 215 IV
TOOL CHARGER 50 II

FII.H PROCESSOR 163 11

SUPER FURNANCE 7840 II
SILICON HAFER PROD 4760 III

TAPE RECORDER 2 85 III
TGA 6L2 IV
HER 1800 IV

WELDING EXP 1610 "IV

CFES 890 Ill
3-AAL 500 IV

F..HL 420 IV
GFFC 375 IV

ROSY 480 IV
ZI_ IV

SAFE 400 UI

SOLAR. OBS 37_ IZ

LIGHTNING DET 125 IV

CRYSTAL GROWTH 1200 II

CO_T SEARCH 650 Ill

LIFE SCZ 1 135 Ill
LIFE SCI 2 1145 IIZ

LIFE SCI 3 8&2 Ill

CLASSIFIED l 1300 II

CLASSIFIED 2 645 ZI

/_PPING (WEATHER) 300 II[

HAPPING (GEO) 690 III
ORBITER DOCKING 6500 **

onaITER SERVICER 2400 "**

DUO 48 HiS 1

ESA 214 NL_ 1
ESA 240 lIES l

NASA LO HIN OF EVERY HE L

NASA 200 NRS 0
U.K. 240 HRS 0

NASA CONTINUOUS . 1

(5 HIN/HR)
3H 36 NRS l-5 HIN.

EVERY 3 HRS

NASA 6 HRS 0

uIIOUq 20 NRS 0
NASA 15 HRS 0

UAN 43 HAS 0
NASA 6 HAS 0

NASA 12 NRS 0
NASA CONTINUOUS 0

NASA CONTZNUOU3 0

JAPAN Z ilAS 0
NASA CONTINUOUS 0

NASA I HE/DAY e l

G.E. 32 IIRS 0
INTEL 14 NRS 0

NASA CONTINUOUS 0
ESA 8 HAS 0
NASA 14 HES 0

NASA 4 HRS 0

NASA 36 HAS 0
NASA 10 HRS 0
NASA Z HR5 0

NASA 6 HRS 0
NASA 48 fiRS L

NASA 8 NRS 0
NASA 15 HES l

NASA ORBIT/DAYTIME ONLY 0
FO_ J& ORBZTS

NASA ORBIT NIGHTTIME ONLY 0

FOR L2 ORBITS
NASA [HA 0

JAPAN ORBIT NIGHTTIME ONLY 0

FOR 40 OREITS

A&M 36 HP..q 0

UA8 22 HAS 0

UA8 66 URE 0
DOD 8 HRS 0

0DO 18 HAS 0

USWS CONTINUOUS (CAN BE 0
INTER&OPTED ANYTIME)

USGS 60 HRS 0

NASA 24-72 NRS, WILL BE 0
GIVEN 6 HAS NOTICE

NASA 4-10 HRS, WILL BE 0
GIVEN Z HAS NOTIC_

** MILL BE GIVEN TOP PAYLOAD PRIORITY WHEN NEEDED

Table 1. Experiment Data

2

Experiment

3

PO_r

Avallable (KW)

|O KW

OIt_OllgAI; PAG_ IS

OF POOR QTJAI.ITY

10 KW

I

I

I

I

I

I
3 I

I
I

I

I
t "
I

!

I I

I I

I '1

I I

I I

I I

5 13 11 3

1_ wJ
I
I

I

F7-B-1
I I
I I

I I

I I

I I

I I

1 n I 13

I
I

I

I

11

Time

FlSure 1. Example Schedul_

"_mm

....L_wmm_t

|m

:_ _ .',_._ ,., ,..,_

• z

_che_ler

Ftoure 2. Scheduler Display Screen

E-IO

