
NASA Technical Memorandum 101519

A Strategy for Reducing Turnaround Time in Design Optimization

Using a Distributed Computer System

Katherine C. Young, Sharon L. Padula, and James L. Rogers

G.Jlb 1

N89-1_991

October 1988

NationalAeronautics and
S0ace Administration

LangleyResearchCenter
Hampton,Virginia 23665-5225

https://ntrs.nasa.gov/search.jsp?R=19890004620 2020-03-20T04:32:46+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42830458?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

_ .,,,,,j qt.,,,p _

A STRATEGY FOR REDUCING TURNAROUND TIME IN DESIGN OPTIMIZATION USING A

DISTRIBUTED COMPUTER SYSTEM

Katherlne C. Young, Sharon L. Padula, and James L. Rogers

NASA Langley Research Center

Hampton, Virginia 23665

ABSTRACT

There is a need to explore methods for reducing

lengthly computer turnaround or clock time associated

with engineering design problems. Different strategies

can be employed to reduce this turnaround time. One

strategy is the use of a supercomputer, which can be cost-

ly in terms of hardware acquisition and software
modification. Another strategy is to run validated

analysis software on a network of existing smaller com-

puters so that portions of the computation can be done in

parallel. This paper focuses on the implementation of this

second strategy using two types of problems. The first

type is a traditional structural design optimization

problem, which is characterized by a simple data flow

and a complicated analysis. The second type of problem

uses an existing computer program designed to study

multilevel optimization techniques. This problem is
characterized by complicated data flow and a simple

analysis. The paper shows that distributed computing can
be a viable means for reducing computational turnaround

time for engineering design problems that lend themsel-

ves to decomposition. Parallel computing can be ac-

complished with a minimal cost in terms of hardware and
software.

INTRODUCTION

Traditionally, large aerospace design problems are

divided into disciplines with each discipline contributing

to the design of one or more components and to the con-

figuration of the entire vehicle. This division of labor

simplifies the task of individual design teams and allows
them to make progress even when physically separated

from one another. The division of large design problems

into subsystems also avoids some of the limitations that

computers have in handling the total structural analyses

and design optimization of large problems.

In recent years there has been promising research
done in the field of multilevel optimization for large

structural design problems. 12" Using multilevel optimiza-

tion methods, large problems are decomposed into hierar-

chicaUy related smaller subsystems, where the structural

analysis and design optimization for each subsystem are

done simultaneously.

The multilevel optimization method relates well to

current research in computer science in the areas of

parallel processing 3 on a parallel computer and distributed

processing over a network of computers. If optimization
for the subsystems can be run simultaneously, then turn-

around time for the total system optimization can be

reduced. While parallel processing is a means of im-

plementing multilevel decomposition techniques, this op-

tion generally requires hardware acquisition and computer

code modification. A less costly option is to use an exist-

ing network of computers to simulate parallel processing.

It is, therefore, the purpose of this paper to investigate

distributed computing over a network of existing worksta-

tions as a means of decreasing the turnaround time for

design optimization problems. Distributed computing will

be applied to two types of problems. The first problem

chosen is a traditional structural design optimization

problem, which is characterized by simple data flow and

complicated analysis. The second problem chosen is an

idealized design optimization problem that utilizes multi-

level optimization techniques. This problem is charac-

terized by complicated data flow and simple analysis.

AVAILABLE COMPUTER RESOURCES

The hardware chosen for this project is a network of
eight MicroVAX* workstations and an Ethemet local area

network(LAN) circuit (Figure 1). Each MicroVax

workstation is configured with 6 million bytes (6MB) of

main memory and a 71MB hard disk.

Although eight workstations are available for dis-

tributed computing, only a subset of these is used. This is

done for several reasons. First, experience has shown that

hardware problems occur and requiring all eight of the

workstations to be operational at all times is unrealistic.

Second, the primary user of a workstation often has a

CPU intensive program running, which inhibits the execu-
tion of the distributed batch processes. Therefore, the
workload for a workstation is examined before it is

chosen to be used in the distributed system.

6 8

Figure 1. Network of workstations

The workstations are connected by two networks,

DECnet and LaRCNET. DECnet is the product name for

software and hardware that allows Digital Equipment

Corporation (DEC) computers to operate over a com-
munications network. LaRCNET 4 is a local area net-

work developed at the NASA Langley Research Center
(LaRC) to provide f'de transfer between multi-vendor dis-

tributed computers at the Langley site. Both networks

*'t.lse of commercial products and names of manufacturers in

this report does not constitute an official endorsement of

such products or manufacturers, either express or implied,
by the National Aeronautics and Space Administration.

use the same physical Ethernet, but because of software

implementation differences in accessing the network,
LaRCNET's transmission rate is faster than DECnet's.

However, because LaRCNET sometimes experiences

problems and is not operational, a choice of network is
made at execution time. The software selected for this

project consists of application pro g_rn5 s written in
FORTRAN 77, and the DEC VAX/VMS operating sys-

tem, which allows the use of remote batch processing.
The two application programs are described next in this

paper.

DISTRIBUTED STRUCTURAL

OPTIMIZATION

In 1986 engineers at Langley Research Center were

given the task of redesigning the solid rocket booster

(SRB) joint that had failed in the Shuttle tragedy. One

group of engineers at LaRC was involved in optimizing a

new design that might be a candidate for the booster joint

if the existing SRB joint could not be successfully
modified 6,7.

The SRB joint redesign is a structural sizing problem
whose goal is to reduce the weight and stresses in the

joinL PROSSS s, a system of structural analysis and op-

timization computer programs is used in this design op-
timization work which is done on a DEC MicroVAX

workstation. Seven design variables are used in the op-
timization process. To estimate the gradients of the ob-

jective function and constraints with respect to a given
design variable, that variable is perturbed and the t-mite

element model is reanalyzed. The analysis of the finite

element model is repeated eight times, once for each

design variable and once for the baseline. A single op-

timization cycle (seven design variables and the baseline

analysis) takes three hours and forty five minutes to com-

plete. The time spent by the optimization software is

negligible compared to the time spent in analysis. Since

five to seven cycles are needed to converge to f'mal op-
timization results, the turnaround time is from nineteen to

twenty six hours. Because of the need to reduce turn-

around time, it is expedient to distribute the SRB joint

design optimization system over a network of worksta-
tions.

Since all eight of the workstations used in this project
are seldom available at one time, the system is distributed

to some set of four. Figure 2 shows the mapping of the
problem onto four workstations. Three of these worksta-

tions run only the analyses for the perturbed design vari-

modificationsare required in PROSSS to allow the

analysis for the design variables to be distributed.

The parallel processing for this distributed system is
initiated by a set of five VAX/VMS DEC command lan-

Figure2. Four workstation distribution for
SRB joh_t opt

guage (DCL) Ides: one interactive procedure and four

batch procedures. The interactive procedure queries the

user for input parameters such as: total number of design
variables, maximum number of optimization cycles,

names of the workstations to use, which network software

to use, and the time limit to wait for the data file to be

received. The interactive procedure also submits the

batch procedure files to queues on the distributed

workstations. The four batch procedures control the data
flow between the workstations. Their purpose is to

monitor data Ides, execute the analysis, and then send the

results to the next step of analysis. These batch proce-
dures also contain instructions to close down the dis-

tributed system if a data file does not arrive within a

specified time limit. These checks are necessary because

of the possibility of hardware and software problems. It
is observed that if one of the workstations procedures ter-

minates abnormally, then the other workstations wait in-

definitely and large event logging files are generated

which eventually f'dl these workstation disks.

This design problem has the necessary computational

requirements (long analysis times and uncomplicated data

flow) to demonstrate the value of a distributed computer

system. The resulting distributed system reduces the time

of one optimization cycle from three hours and forty five
minutes to one hour. This work is documented in

reference 6.

DISTRIBUTED MULTILEVEL

OPTIMIZATION

As aerospace systems become more complex, the

need for automatic and mathematically rigorous system

3

integration becomes more critical. Multilevel optimization

is one technique for integrating component designs into a

total system design and then iteratively improving the

performance of the system as a whole. Multilevel op-
timization can be hampered by the sheer size of the

problems involved. For example, optimizing the design

of a SRB joint component taxes micro-computer resour-
ces; combining all design components into an optimum
solid rocket booster model can overwhelm the largest

computer available.

Application of distributed processing is another way

to improve the performance of system integration techni-

ques. Typically, the most complicated system, with
hundreds of components and thousands of design vari-

ables, has relatively small amounts of data coupling. This

means that the components can be designed separately

and in parallel. Only gross details and the sensitivity of

those solutions to changes in other parts of the system
must be communicated. Thus, the same type of parallel

processing which is so effective in the SRB joint design

should be beneficial in large design problems.

The Multilevel Simulator
The multilevel simulator is a computer program 9

designed to investigate multilevel optimization techni-

ques. The simulator mimics the qualitative behavior and

data couplings occurring among subsystems of a complex

engineering system. Simple analytical functions are used

in place of realistic disciplinary analyses. In this way,

numerous multilevel optimization techniques can be in-

vestigated in a relatively short period of time.

Converting the multilevel simulator for distributed

processing is considerably more complicated than for the
SRB joint design problem. System design problems often

decompose into numerous levels. For example, an

aircraft is composed of different subsystems such as

propulsion, wings, fuselage, etc. The propulsion subsys-
tem is also a collection of subsystems such as compressor

and turbine. Thus, the aircraft system has at least three

levels. The multilevel simulator allows decomposition to

any number of levels with any number of subsystems on a
level.

The original multilevel simulator is a single

FORTRAN computer program. Information is passed

from one subsystem to another as parameters in sub-
routine calls. The distributed multilevel simulator re-

quires the conversion of subroutines into distributed com-

puter programs. Minor software changes are required in

the input and output sections of the distributed programs.

Each subsystem needs to receive data from a lower level,

execute its optimization code and then pass the computed

results to the next higher level. In addition to changes in

the simulator programs to allow for input and output of

data, one new FORTRAN program is needed to act as a

data manager. The data manager collects the dam from

the subsystems on one level, and then transfers the com-

bined data to each of the subsystems on the next level.

Each level has a continuously executing data manager

program.
The test case chosen has 25 design variables and is

decomposed into four levels with a total of nine units

(one system and eight subsystems) (figure 3). To allow
the work of the simulator to be distributed to different

processors requires the partitioning of the multilevel

simulator application program. Nine copies of the op-
timization code and related analysis codes are required for

the test case. The distributed applications codes are

denoted by TOPLEVEL and LEViS j, where i denotes

level number and j denotes subsystem number. Thus

LEV1S1 is the code for Level 1 subsystem 1, LEV2S1 is

the code for Level 2 subsystem 1 and so on.

MULTILEVEL DECOMPOSITION FOR TEST CASE

LlVI[L 0 I SYSTEM]TOIq.EVEL

|
i

[-11"
LEV1 S2

I_vlmlM

22

LEV2S_

f
LIVI[L 1 I IllUll_llrrlM

I 11

LEVlSl

l
LEVIL I

t

IUIIIIIYIITIIII,I ql I
LEV1 S3

+ +

['--[I.-=.........===I
ro'-.-I

MEV_3 I

Figure 3. Schematic of multilevel simulator

Five workstations are used for distributing the subsys-

tems (figure 4). Of the five workstations used, one is the

controller workstation on which the system level and data

manager codes are executed and four handle the sublevels
and their analyses. Each workstation handles all levels

for the same subsystem. For example as shown in

Figures 3 and 4, LEV1S3, LEV2S3, and LEV3S3 are

grouped together on the same workstation. This is
facilitated in VAX/VMS by making a directory or

separate work area for each level on the workstation.

With the five workstation hardware configuration, any
number of levels can be handled with the number of sub-

systems per level limited to four.

DCL Command Flies

After partitioning the FORTRAN application program

into independent program units, the next task is to adapt
the command files that distribute and control the execu-

tion of the system. These command files are written in

the VAX/VMS DEC Command Language (DCL) 5. There

are DCL command files for each subsystem (8), each data

manager (2) and the total system (2), resulting is a total
of twelve for the test case. Of these twelve DCL files,

there are five types (see Appendix for a listing). Type I is
an interactive procedure and Types II, III, IV and V are

batch processors that are started by the interactive proce-

dure and continue to execute until a termination file ap-

pears in their directory or work area.

The interactive procedure, Type I, is similar to the in-

teractive procedure for the distributed SRB joint problem.

It queries the user for input parameters as to which net-
work to use, the time limit that a workstation should wait

4

Figure 4. Five workstation distribution for
simulator

for data to arrive, number of levels and subsystems,

which workstations are to be used in the distribution, and

which workstation is acting as the controller. This com-

mand f'de also distributes the FORTRAN executable fide,

input data file and a DCL command f'de to each worksta-

tion for each subsystem executing on that workstation.
Its final function is to submit the DCL command file to

the batch queue of each distributed workstation for execu-
tion.

Type II is a batch procedure file that waits for the re-

quired output data files from the other subsystems on that

same level, executes the data manager for that level, and

then passes the combined data up to the subsystems on

the next level as input f'des. There are two such proce-
dure files, one for level 2 and one for level 3.

A Type III procedure file executes each subsystem

and is the simplest of the three procedure ides. Its func-

tion is to wait for a data input file, execute the optimiza-

tion code and pass the output to the level data manager.

theresultsdowntothelowestlevel. If convergencehas
occurredor the maximum number of cycles has been met,

the top level optimizer generates an output file. This out-

put file acts as a signal to the time checker procedure

(Type V) to send the termination file to all workstations.

Type V is a procedure that is used as the time check-

er and system terminator. The interactive procedure
(Type I) passes the time limit, and workstation names to

this procedure as parameters. When the time limit is ex-

ceeded or the top level optimizer generates an output f'de,
a termination file is sent to all workstations.

Table 1

Problem #Levels_Design Turnaround File
Variables in min Transfer

Simulator
Distributed 4 25 7 33

Simulator

Sequential 4 25 2 0
SRB Distributed 1 7 60 18

SRB Sequential 1 7 225 0

RESULTS

Table 1 summarizes the difference between the dis-

tributed and sequential version of both the SRB joint

redesign and multilevel simulator problems. Notice that

the turnaround time for the distributed simulator is longer

than that for the original sequential program. That is to

be expected because the simulator test case has many

levels, many design variables and lots of Ides to transfer,

but has very simple analysis requirements. The data
transfer requirements for the distributed simulator test

case simply overwhelm the problem and explain why the
distributed case takes over three times more clock time

than the sequential case. If this was an actual system

design problem instead of a simulated one, the cost of

data transfer would probably be negligible compared to

the cost of analysis. For example, utilizing distributed

computing in a component design problem like the SRB

joint design produces considerable savings in turnaround
time. Here the number of levels and design variables is

small, the number of Ides transferred is moderate, but the

analysis time is large.

CONCLUDING REMARKS

It is concluded flaat using a distributed computer sys-

tem of existing hardware, linked by a network, is an ef-

fective way to reduce turnaround time. The benefits of

parallel computing can be simulated with minimal chan-

ges to application software. Experimentation with the

distributed and serial implementations of the multilevel

simulator reveals that the time required for data transmis-

sion from one network workstation to another may exceed

the total turnaround time savings if the analyses per-

formed at each workstation have short execution times.

On the other hand, the distributed implementation of the

SRB joint problem proves to be beneficial because the

analysis time is extensive. Thus, the conclusion is reached
that the distributed system is workable and will reduce

turnaround time for typical engineering design problems.

REFERENCES

1. Sobieszczanski-Sobieskij.; James, B. B.; and Riley,

M. F.: "Structural Sizing by Generalized, Multilevel

Optimization." ALA2t3.galII_L Vol. 25, Number 1,

January 1987, pp. 139-145.
2. Wrenn, G. A., and Dovi, A. R.: "Multilevel

Decomposition Approach to the Preliminary Sizing
of a Transport Aircraft Wing";

AIAA/ASME/ASCE/AHS 28th Structures,

Dynamics, and Materials Conference, Monterey,

Cal., April 6-8, 1987, AIAA Paper No. 87-0714-CP.
3. Noor, A. K.; Storaasli, O. O., and Fulton, R. E.:

"Impact of New Computing Systems on Finite

Element Computations", State-of-the-Art Surveys on
Finite Element Technology, edited by Noor and

Pilkey, ASME Special Publication H00290, Nov.

1983, pp. 499-530.
4. Riddle, E. P.: "NASA LaRC Distributed Computing

Network", Vim 44 Conference Proceedings. April

1986, pp. 2-44 through 2-49.

5. MicroVMS User's Manual, Digital Equipment

Corporation, Order Number AA-FW63A-TN, Part 2,
June 1985.

6. Barthelemy, J. F. M.; Chang, K.; and Rogers, J. L.
Jr.: "Shuttle Solid Rocket Booster Bolted Field Joint

Optimization". AIAA Paper 87-0702-CP, Presented
at the AIAA/ASMFJASCE/AHS 28 Structures,

Structural Dynamics and Materials Conference,

Monterey, CA, April 6-8, 1987.

7. Rogers, James L.; Young, Katherine C., and

Barthelemy, Jean-Francois M.: "Distributed

Computer System Enhances Productivity for SRB

Joint Optimization", NASA TM 89108, February
1987.

8. Rogers, J. J., Jr.; Sobieszczanski-Sobieski, J.; and

Bhat, R. B.: "An Implementation of the

Programming Structural Synthesis System

(PROSSS)", NASA TM 83180, December 1981.

9. Padula, S. L., and Young, K. C.: "Simulator for

Multilevel Optimization Research", NASA TM

87751, June 1986.

APPENDIX

appendix contai_ the DCL procedure film reed to implemem the distributed
systa_ for the multilevel ,fimulat_ det_a'ibed in this paper. Figure 3 is a

schematic of the 25 vtriable te, t cue md _ 4 m • mapping of _ _t _
at•to five MicroVAX oompuu_.
Each sub*y_m is im-udized with the follo_n 8 filor:

LEViSj.IN input data (constant throughout te,t c•se)
LEViSj.EXE FORTRAN optimization code
RUNij DCL co_unand f'de

V.DAT input paramete_

Each subey_m c_nmunicate,withthe data managerusing the followingfiles:
LEVtSj.CM input data from data manager
LVij.CM output data smt to data manage= where i denote* level number

and j denote, which sublystem ee that level
The DCL cortes•ntis am of the five types defined below. Although a choice of
network option is uaed in the teat case, only DEC.net corms•ntis are included here

for amplicity.

TYPE I Interactive procedure for total system

s_ PROCEDURE TO D[s_mt_rrE Joss AND DATA TO WORKSTATIONS

$_ WRrI'FEN IN DEC COMMAND LANGUAGE (1)CL)

S_

$ ON ERROR THEN GOTO ERR
$!

$! INITLMAZE AND INQUIRE ABOUT INPUT PARAMETERS
$ INQUIRE TIMEL " ENTER TIME LIMIT FOR THE PROCESSES IN
MINIJ'rES"
St

$! LEVEL AND sub_ytaem INFORMATION
$T

S INQUIRE NL "PLEASE ENTER NUMBER OF LEVELS"
$ INQUIRE NLrMI2 "ENTER NUMBER OF SUBSYSTEMS IN BOTTOM
LEVEL"

$ INQUIRE NUML2 "ENTER NUMBER OF SUBSYSTEMS IN NEXT LEVEL"
$ INQUIRE NUML1 "ENTER NUMBER OF SUBSYSTEMS IN TOP LEVEL"
St
S! DETERMINE MAXIMUM NUMBER OF SUBSYSTEMS ON A LEVEL

S_
S MAXS = NUML1
$ IF NUML1 .LT. NUML2 _ MAXS = NUMI2

$ IF NUML3 .GT. MAXS THEN MAXS = NUMI2
S_
St SELECT WORKSTATIONS

S_

$ INQUIRE NI "ENTER WORKSTATION NAME FOR THE DATA
MANAGERS"
SNCT= 1
$ REPEAT:

SNCT=NCT + 1

S INQUIRE N'NCT' "PLEASE ENTER WORKSTATION FOR SUBSYSTEMS

$ IF NCT .LE. MAXS THEN GOTO REPEAT
St

$! CLEAN UP FILES ON WORKSTATIONS
$!

$ D_ [SIM]*.OUT;*

$ DEL [SIM....]*.OUT;*
S DEL [SIM...]*.CM;*
S_
S! COPY DATA FILEs AND DATA MANAGERS TO WORKSTATION

$_

S COPY V.DAT [SIM.LEVFA2]V.DAT

S COPY DATA MANAGER.EXE [SlM.LEVEL3]*
S COPY DATA MANAGER.EXE {SlM.LEVEL2]*
$ COPY TOPLEV.EXE [SIM.LEVELI]*

S COPY RUNC23.COM [SIM.LEVEL3]RUNC'23.COM
S COPY RUNCI2.COM [SIMJ..EVEL2]RUNCI ZCOM
S COPY RUNT.COM [SIM.LEVELI|RUNT.COM
S_

S[COPY FILES FOR SUBSYSTEMS TO EACH LEVEL OF WORKSTATION
$_
$ LEVELI = o

$ LEVELCr = 0
$ LEVELCYCI_:

$ LEVELCT = LEVELCT + 1

$ IF (LEVELCT.GT.NL) THEN GOTO CONTINUE
$ SUBLIM = NUML'I..CT'

$ SUBSYSTEM_COUNT = 0
$CT=2
$ LEVELI = LEVEL1 + 1
$ SUBSYSTEMCYCLE:

S SUBSYSTEM COUNT = SYBSYSTEM_COUNT + 1
S IF (SUBSYSTEM_COUNT.GT.SUBLIM) THEN GOTO LEVELCYCLE
$ WORKSTATION = N'CT"

S DEL 'WORKSTATION' ::[SIM.LEVEL'LEVELI ']V.DAT;*
$ DEL 'WORKSTATION°::[SIM.LEVEL'LEVEL1 ']*.CM:*

$ FILE1 = FSFAO('!SL!SL'.LEVEL1,SUBSYSTEM COUNT)
$ FILE2 = FSFAOC!AS!SL!SL!AS'.'RUN",LEVELI .subeystem_count," corn')
$ FILE3 =

FSFAO('!A S!SL!AS!SL!AS",ºLEV',LEVEL t,"S ",su'_yst_n count,".EXE")
$ FILE4 =

FSFAO('!A S!SL!AS!SL!AS'.'LEV"J._EVEL[,'S',sulmystern,count,'.IN")
S[USE DECNET

St

$ COPYI :

$ COPY 'HLE2' 'WORKSTATION'::[SIM.LEVEL'LEVELI']*

$ COPY 'FILE3' "bVORKSTATION'::[SIM.LEVEL'LEVEL1 ']*
$ COPY 'HLE4' 'WORKSTATION'::[SIM.LEVEL'LEVEL1 ']*
S IF LEVEL1 .NE. NL THEN GOTO NEXT

$ COPY V. DAT 'WORKSTATION' ::[SI M.LEVEL' LE VELI']*
$ NEXT:

St

$! SUBMIT COMMAND _ TO BATCH QUrEUE
$_

$ SUB MYr/17,EMOTE 'WORKSTATION':: ISIM.LEVEL'LEVELI ']RUN'FILEt '
./PARAMETERS=('NI ')
$CT-CT+ 1

$ CK)TO subsyste_-nCYCLE
$_

$! SUBMIT DATA MANAGER COMMAND FILES TO BATCH QUEUE
$_
S CONTINUE:
$_

$ IF NL .EQ. 2 THEN GOTO LEVEL2

$ SUB MIT/NOPRINT [SIM.LEVEL3]RUNC23
- /PARAMETERS-('NUML3','NUML2','N2','NY,'N4','N5',)
S LEVEL2:

$ SLIBMIT/NOPRINT [SIM.LEVEL2]RUNC 12 -
/PARA METERS ,,('NUML2' .'NUMLI ','N2' ,'N3'.'N4", 'N5 '3
$ SUBMIT/NOPRINT [SIM.LEVELI]RUNT -

/PARAMETERS=('NUMLI ','NUMLY,'NL','N2','N3','N4','N5')
$ SUBMr]'/NOPRINT [SIM.LEVEL1]TIMECK -

/PARAMETERS=('TIMEL', 'N2', 'N3 ', 'N4 ', 'N5")
$ GOTO FINISH

S ERR:

$ WRITE "YOU HAVE AN ERROR IN THIS PROCEDURE"
$ FINISH:

TYPE H Batch file for data managers

$[

$_
$_

$_
$!

St
$_
S!

$_
ST
$!

$_

$ SET DEF [SIM.LEVEL2]
$ DEL OUT.DAT;*

RUNCI2.COM -- DATA MANAGER BETWEEN LEVELS 1 AND 2

INPUT
Pl = # OF SUBSYSTEMS IN LEVEL 2

P2 = # OF SUBSYSTEMS IN LEVEL 1

P3 = NODE NAME FOR LEVELISI RUN
P4 ffiNODE NAME FOR LEVELIS1 RUN
P5 = NODE NAME FOR LEVEL1 $3 RUN

CLEAN UP FILES AND INITIALIZE

$ PURGE *."

$ SET VER
$ START1 :
$VNUM =2

$ LSUB -, P1
$ NSUB ,, 0

$ FNUM - 20
$_

$! BEGIN WAITING LOOP FOR INIRTF DATA FILES
$!
$ BEGIN:

$ IF LSUB .EQ. 0 THEN GOTO CHECKV
SLSUB =LSUB - 1
$ FNUM ,- FNUM + 1

$!
$! CONSTRUCT INPUT FILE NAMES
$!

$ UNIT = FSFAOC!AS!SL!AS'TLV',FNI.JM,".CM ")
$ START:

$ SET MESSAGE/NOF/NOS/NOI/NOT
$ NOTOPF__I :
$_.

$! CHECK FOR TERMINATION FILE OUT,DAT AND INPUT DATA FILES
$!

$ FILEX = F$ F$SEARCHCOUT.DAT")
$ IF FILEX .NF__. "" THEN OOTO FINISH
$ WAIT 00:00:05.00

$ OPEN/READ/ERROR=NOTOPEN1 FILE 'uNrI"
$ CLOSE FILE
$ GOTO BEGIN

$!
$! CHECK FOR [NPLrr FILE V.DAT

$!
$ CHECKV:

$ _ ,,,,F$ SEARCHCOUT.DAT")
$ IF FILEX .NES. "" THEN GOTO FINISH
$ WAIT 00:00:05.00

$ OPEN/READ/ERROR_"HECKV FILE V.DAT
$ CLOSE FILE
$ SET MESSAUE/F/S/[/T
$_

$! RUN DATA MANAGER PROGRAM
$!

$ RUN DATAMANAGER
$_
$! SEND COMBINED DATA UP TO SUBSYSTEMS ON NEXT LEVEL

$_
$CT=3

$ SEND_DATA:
$ WORKSTATION =P'CT'
$ NSUB = NSUB * 1

$ LVS = FSFAO('!AS fSL!AS","t.EVELI S',NSUB,'.CM")

$ COPY 'LVS" 'WORKSTATION'::[SIM.LEVEL1]'LVS'
$ COPY V.DAT "WORKSTATION'::[SIM.LEVEL1]V.DAT
$ IF NSUB .EQ, 'P2' THEN GOTO START4
$CT=CT+]

$ GOTO SENDDATA
$ START4:

$ COPY VS.DAT [SIM.LEVELI]VJ)AT
$ GOTO START1
$ FINISH:

TYPE HI Batch Procedure for each subsystem

$!

$! PROCEDURE RUNI I EXECUTES LEVEL1SI
V.

$! INPt_
$! Pl * WORKSTATION NAME WHERE TOPLEV RUNS
$_

$!

$ SET DEF [SIM.LEVEL1]
$ DEL *.OUT;*'
$ DEL OUT.DAT;*
$ PURGE *.*

$ SET VER

$ START:
$ SET MESSAGE/NOF/NOS/NOI/NOT
$ NOTOPEN:

$!
$! CHECK FOR TERMINATION FILE OUTDAT
$!

$ FILEX = F$SEARCHCOUT.DA'F)
$ IF FILEX .NES. "" THEN GOTO FINISH

$ WAIT 00:00:05.00
$ RUNIT:

$! WAIT FOR INPUT DATA FILES V.DAT AND LEVELISI.CM
$_
$ OPEN/READ/ERROR=NOTOPEN FILE VDAT

$ CLOSE FILE
$ SET MESSAGE/F/S/Ill"
$ NOTOPEN2:

$ FILEX *F$SEARCHCOUT.DAT")
$ IF FILEX .NES. "" THEN GOTO FINISH
$ WAIT 00:03:05,00

$ RUN1T:

$ OPEN/READ/ERROR=NOTOPEN2 FILE LEVEL 1S 1.CM
$ CLOSE FILE
$ RUN2:
$!

$! RUN LEVEL 1 SUBSYSTEM I OPTIMIZATION CODE
St

$ RUN LEVEL1S1
$I
$I USE DECNET TO COPY LV1].CM TO LEVEL DATA MANAGER

$_

$ COPY [SIM.LEVELI]LVll.CM 'PI'::[SIM.LEVELI]*
$ GOTO START FINISH:

TYPE IV Batch file to manage data for top level and

run system optimization

$!
$!

$_
$!

$!

$!
$!

$!
$_

$!

PROCEDURE RUNq_.COM RUNS TOPLEVEL OPTIMIZATION

Pl NUM OF SUBSYSTEMS IN LEVEL 1

P2 NUMOF SUBSYSTEM LNBoTroM LEVEL

1>3 NUM OF LEVELS
P,4 WORKSTATION NAME FOR BOTTOM LEVEL SUB 1
P5 WORKSTATION NAME FOR BO'ITOM LEVEL SUB 2

P6 WORKSTATION NAME FOR BOTTOM LEVEL SUB 3
P7 WORKSTATION NAME FOR BOTTOM LEVEL SUB 4

$ ON ERROR THEN GOTO ERR

$ SET DEF [SIM.LEVELI1
$ DEL OUT.DAT;*
$ PURGE *.*

$ NUM_SYSB = P2
$ NUM_SYSI = Pl
$ SET VER

$ START:

SNBI -1
$NBB=0

$ SET MESSAGE/NOF/NOS/NOI/NOT
$ NOTOPEN:

*!
$! CHECK FOR TERMINATION FILE OUT.DAT
$!

$ FU..,EX = F$SEARCHCOUTDA'I")
$ IF FII.EX .NES. _" THEN GOTO STOP
$ WAIT 00:00:05.00

$r
$! WAIT FOR INPUT FILE FROM LEVEL l SUBSYSTEMS

$I

$ IF(N'B I.GT.NUM_SYSI) THEN GOTO NEXT
$ OPEN/READ/ERROR=NOTOPEN FILE LVI 'NB1 '.CM
$ CLOSE FILE

$N'BI =NBI +1
$ GOTO NOTOPEN
$,NEXT:

$ OPEN/READ/ERROR=NOTOPEN FILE V.DAT
$ CLOSE FiLE

$!
$! RUN TOP LEVEL OPTIMIZATION CODE
$_

$!
$ SET MESSAGE/F/S/I/I"
$ RUN TOPLEV

$! CHECK FOR TERMINATION FILE OUT.DAT

$ FILEX * F$SEARCHC'OUT.DAT')
$ IF FILEX .NES. ""THEN O(YFO STOP

$_
$I SEND INPUT FILES TO BOTI'OM LEVEL SUBSYSTEMS
St

$CT-4
$ REPEAT:
$ WORKSTATION = P'CT'
$ NBB =NBB + 1

$ COPY LEV'P3'S'NBB'.CM

"WORKSTATION'::ISIM.LEVEL'P3"]LEV'P3"S'N'BB'.CM
$ COPY VSDAT 'WORKSTATION'::[SIM.LEVEL'P3']V.DAT
$CT*CT+ 1
$ IF NBB .LT. NUMSYSB THEN CA)TO REPEAT

$ COPY VS,DAT [KCY.LEVEL'P3']VDAT
$ PURGE *.SAV

$ GOTO START
$ STOP:
$ DONE:

$!
$! COPY OUTPUT FILE TO PRINTER
t_

$ PRINT TOPLEV.OtYI"
$ GOTO FINISH
$ ERR:

$ COPY [SIM]ERR.DAT OUT.DAT
$ FINISH:

$ FILEX = F$SEARCH('OUT.DAT')
$ IF FILEX ,NES. "" THEN GOTO FLNISH

$ CONTINUE:
$ WAIT 00:00:10.00

$ GOTO START

$ TIME= FSTIME()
$ SHOW SYMBOL TIME
$ STOP:
$_
$1 SEND TERMINATION FILE OL'TDAT TO STOP ALL PROCESSORS

$ COPY OUT.ERR OUT.DAT

$ FINISH:

$ COPY OUT,DAT WORKSTATION'P2':: [S[M.LEVELI]OUT.DAT
$ COFY OUT.DAT WORKSTATION'I_':: [SIM.LEVEL1 }OL'T.DAT
$ COPY OUT.DAT WORKSTATION'P3':: [SIM.LEVEL1]OUT.DAT

$ COPY OUT.DAT WORKSTAT[ON'P'2':: [SIM.LEVEL2]OUT,DAT
$ COPY OUT.DAT WORKSTATION' PS':: [Sl M.LEVEL21OU'I'.DAT
$ COPY OUT.DAT WORKSTATION'P3':: [SIM.LEVEL2]OUT.DAT
$ COPY OUT,DAT WORKSTATION'P4':: [SIM.LEVEL2IOUT.DAT

$ COPY OUT.DAT [SIM, LEVEL2]*
$ COPY OUT.DAT WORKSTATION'P3':: [SIM.LEVELB)OUT.DAT

$ COPY OUT.DAT [SIM, LEVEL3]*
SMAK_UBJECq'='PROCESSES SHUTDOWN" OUT.DAT SIM
$ EXIT:

Type V Batch Procedure that acts as time checker
and system terminator

This procedure file must be in the same directory as

the TOPLEVEL procedure file

$_
$! PROCEDURE TIMECK. COM

$t INPUT
$! P1 =TIME LIMIT IN SECONDS

$! P2 = NODE NAME FOR OTHER PROCESSOR
$! P3 = NODE NAME FOR OTHER PROCESSOR
$! I>4 = NODE NAME FOR OTHER PROCESSOR

$! P5 = NODE NAME FOR OTHER PROCESSOR

$ ON ERROR THEN GOTO STOP

$ SET VER

$ TIME = FSTIME ()
$ TIMEL - Pl
$TIMEC = 0

$ SET DEF [SIM,LEVELI]

$_ CHECK TIME

$_
$ START:
$ TIMEC ,, TIMEC + 10

$ IF TIMEC .GT, "IqMEL THEN GOTO STOP
$!

$! CHECK FOR TERMLNATION FILE GENERATED BY TOPLEV
$!

8

t. Report No.

I NASA TM-101519

Report Documentation Page

2. Government Accession No.

4. Title and SuOtltle

A Strategy for Reducing Turnaround Time in Design

Optimization Using a Distributed Computer System

7. Author(s)

Katherine C. Young, Sharon L. Padula, and James L. Rogers

3. Recipient's Catalog No.

5. Report Date

October 1988

6. Performing Organization Code

8. Performing Organization Report No.

10. Work Unit No.

9. Performing Organization Name and Address

NASA Langley Research Center, Hampton, VA 23665

12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration

Washington, DC 20546

505-63-01-07

11. Contract or Grant No.

13. Type of Report and Period Covered

Technical Memorandum

14. Sponsoring Agency Code

15. Supplementary Notes

Presented at The 1988 ASME Design Technology Conferences - The Design Automation

Conference, Kissimmee, Florida, September 25-28, 1988

16. Abstract

There is a need to explore methods for reducing lengthly computer turnround or clock time

associated with engineering design problems. Different strategies can be employed to reduce this

turnaround time. One strategy is to run validated analysis software on a network of existing

smaller computers so that portions of the computation can be done in parallel. This paper

focuses on the implementation of this method using two types of problems. The first type is a

traditional structural design optimization problem, which is characterized by a simple data flow

and a complicated analysis. The second types of problem uses an existing compter program

designed to study multilevel optimization techniques. This problem is characterized by

complicated data flow and a simple analysis. The paper shows that distributed computing can be

a viable means for reducing computational turnaround time for engineering design problems that

lend themselves to decomposition. Parallel computing can be accomplished with a minimal cost

in terms of hardware and software.

17. Key Words ISuggested by Author(s))

Parallel computing

Distributed processing

Multilevel optimization

19. Security Classif. (of this report)

Unclassified

NASA FORM 1626 OCT 88

Unclassified

18. Distribution Statement

Unclassified - Unlimited

Subject Category 61

• . . Price

_A02

Security Classff. (of this page)

