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Abstract

For special model problems, Fourier analysis gives exact convergence rates for the

two-grid multigrid cycle and, for more general problems, provides estimates of the two-

grid convergence rates via local mode analysis. A method is presented for obtaining

multigrid convergence rate estimates for cycles involving more than two grids - using

essentially the same analysis as for the two-grid cycle.

For the simple case of the V-cycle used as a fast Laplace solver on the unit square, the

k-grid convergence rate bounds obtained by this method are sharper than the bounds

predicted by the variational theory. Both theoretical justification and experimental

evidence are presented.
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1. Introduction

Although the heuristic arguments which indicate that multigrid iterative methods lead to fast ellip-

tic solvers are easy to understand, they cannot predict convergence rates or guarantee convergence.

There exist methods which provide a means to calculate theoretical multigrid convergence rate

bounds for a large class of multigrid solvers for positive definite elliptic problems. Unfortunately,

the motivation and proofs of these bounds are relatively difficult. For special model problems, a

simpler calculation, based on Fourier analysis, provides exact convergence rates for the two-grid

algorithm, but the exact analysis becomes too complicated to carry out for more than two or three

grids.

In this paper we present a technique for obtaining convergence estimates for any number of grid

levels, thereby providing an easy method to verify that multigrid is a fast solver (i.e., only a fixed

number of iterations will solve the problem). Although the method is strictly valid for only a few

model problems and for only symmetric V-cycles, it provides a general insight into the details of

the basic interaction between the coarse grid correction and the relaxation. These new estimates

of the convergence rates for the k-grid problem are no more difficult to calculate than the exact

convergence rates for the two-grid problem.

In Section 2 we define a simple multigrid V-cycle and derive a formula for the iteration matrix

associated with a multigrid cycle. A brief introduction to the grid independent convergence rate

bounds given by the variational theory is given in Section 3. In Section 4 it is shown that bounds

on the k grid convergence rate can be found in terms of the k - 1 grid convergence rate, using the

same type of calculation as for obtaining the exact two grid convergence rates. Moreover, since the

two grid convergence rate can be found exactly, we obtain convergence rate bounds recursively for

any number of grid levels. It is shown that these bounds are sharper than those obtained by the

variational theory. In Section 5 we show the details of how the results of Section 4 can be used to

obtain convergence rates for a model problem. Finally, in Section 6, we compare the convergence

rate bounds predicted by our theory and the convergence rate bounds given by the variational

theory. The exact three grid convergence rates are compared to our three grid convergence rate

bounds.



2. Notation

2.1 Multtgrtd Cycle

A sequence of uniform grids is given with mesh sizes hk (k = 1,2,3,...), where hk+l = hk/2.

Consider the discrete equations on the hk grid of the form

AkUk = Fk (2)

where Ak is symmetric, positive definite. Given u(k°), an approximate solution to (1), the multigrid

cycle MG for producing an improved approximation u_1),

u_1}_- MG(k,u_°),Fk) (2)

is recursively defined as follows:

If k = 1 solve (1) by any direct or iterative method, yielding the final result u_1). Otherwise do

(A) through (E).

(A) Perform rl relaxation sweeps on (1), resulting in a new approximation ilk.

(B) Transfer ("restrict") residual from grid ht to grid hk-1.

Fk_l k-1= I_ (Fk - Akfi_). (3)

(C) Starting with u_°_)1 = 0, update coarse grid approximation.

u_ 1 _-- MG(k--",'k-l,'k" (0) rk_1(F k _ A_fik)). (4)

(D) Calculate uk = uk + I__,u_,, where I__ 1 is a suitable interpolation ("prolongation") from

grid hk-1 to grid hk.

(E) Perform r2 relaxation sweeps on (1), starting with _ and yielding the final result u_1).

This cycle is called V- cycle or V(rl,r2).

Note: The relaxations done in steps CA) and (D) need not be the same.

2.2 Error Analysis

As in the analysis of the classical fixed point linear iterative solvers, we are interested in analyzing

the "iteration matrix" associated with the multigrid process. If the error after the i-th iteration

can be written in terms of the error before the i-th iteration _s:

'-1)) (s)



then Bk isthe iterationmatrix. We are interestedin the convergencefactorof the V- cycle,ek,

given by

_, = inf{_ : IlUk- MC(k,,.,,Fk)II< _llUk- _,kllV,,_e Hi,} (6)

-- iny{_: IIBk_kll< _ll"kll V,.,,e H_,}

= IIBkll

where II"IIissome norm definedon Hk, the space ofallvectorsdefinedon the gridhr.

To findan expressionforthe iterationmatrix correspondingto a V- cycle,the steps(A)-(E)

are rewrittenin terms of the errors(truesolution - current approzimation). Given an initial

error,e(k°)= Uk - u(k°),the iterationmatrix isdefinedrecursivelyas follows:

Ifk = 1, then BI = 0 (theerroriseliminatedcompletely on the coarsestgrid).Otherwise

4')= B,,4°_, (7)

where e_I},the errorof the improved approximation u(I),isgivenby steps(A')-(E'):

(A I) After relaxation:

_,,= (c,,)',4°_,

where Gt is the iteration matrix of the (pre-)relaxation.

(B I) After residual transfer:

Ut-1 = A-_11I_-l Ak2k.

(C I) After computing coarse grid correction, since e(°_}1 = Uk-l:

e_l)l : Bk_le_O)_l.

(D _) After interpolating correction to fine grid:

,,k , (o) _
_1) = _k_,k_,[ek_l e_l)l)

= _,,- g_,(I- S,,_,)e_,.

(E _) After relaxation:

4'= (E,,)'%'),

where Ek is the iteration matrix of the (post-)relaxation.



Therefore for 1 < k __ m,

Bk = (Ek)"2(I - I__l(I- Bk-1)A;l_iI_-lAk)(Gk) "'

and

B1 =0.

(s)

3. Variational Theory

3.1 Notation

Consider the Euclidean spaces Hu = /_n_, k = 1, 2, .--, m and two types of inner products on

these spaces, one type is the usual discrete L 2 inner product in d-dimensions defined as

<,,_,v_>_= h__(_,_),(v_),
i

and the other is the "energy" or "operator" inner product (associated with an operator Lk) defined

as

(uk,,,_)_= (_,k,Lk,,k)_. (O)

The norms induced by these inner products are denoted by:

,1/2

and

_1/2JM"_l_k: (_k,"kJ_•

Adjoints relative to the (., .) inner products are denoted by (.)T and adjoints relative to the (., .)

inner products are denoted by (.)*.

3.2 Bounds Independent of the Number of Levels

The best available multi-level convergence rate bounds come from the analysis in the "variational"

setting, i.e., where it is assumed that:

a. The intergrid transfer operators are related by:

12-_= (12_,)T

and

4



b. the "Galerkin" choice of the coarse grid operators is assumed:

At-1 : I_-lAtl_-l.

For the complete theory for general domains and W- as well as V-cycles, see [3]. For positive

definite symmetric elliptic p.d.e.'s in the unit square, typical V-cycle convergence rate bounds

which are independent of the number of coarse grids are summarized below. For a more complete

discussion of the types of convergence proofs, see [6].

As in the standard variational multigrid analysis, see e.g., [4], [5] and [1], define two operators,

St and Tt:

St I t A -1 It-lA (10)= t--1 k-1 t t

and

Tt=I-Sk.

Then St and Tt are orthogonal projections in the (., .) inner product. Specifically:

(11)

1. StSt = St, Tt Tt = Tt and TtSt = St Tt = O.

2. For any uk,

uk = Tkut + Stut

and since S_ = St and T_ = Tt (but S T # St and TT ¢ Tt, in general), we also have

Illutlm = IIIStutll + IITtutlg . (12)

Note: If ut = $tttt, then ut E range(I__l), i.e. it is representable on the hi-1 grid. If

vt = Ttvlt, then I_-lAtvk = 0, i.e. vte nullspace(I_-lAt) and if v_ corresponds to an error, its

residual cannot be distinguished from the null vector on the hk-1 grid.

Let et be the operator norm convergence factor of the k grid V-cycle, see equation (6).

Theorem 1 If there exist _1, _2 > O, independent of k, such that for every ut in Hk and for all

k : 2,3,...,

and

then for every k = 2, 3,-..,

II(Gt)"utll + alllT (Ct)"utll , < Illukll (13)

IHCEk)'2u, + :211TkCEk)'2ukll --<Illu ll (14)

ek _ (lq-_i)-1/2(1+_2) -I/2. (15)
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Proof. See [3].

In [3], Theorem 1 is proved using recursive formulas of the form:

(t + - t)o<,<lsuP ) (16)_j

where j > 2.

Althbugh these formulas appear to give grid dependent bounds, notice that ej -- 1/(1 +/3),

independent of j. Therefore these formulas give the same convergence rate bound for the two grid

cycle as for an arbitrary number of grids. They cannot give sharper intermediate estimates for a

specific number of grids. In the next section we show that, under special assumptions, one can do

better than this.

4. Multi-Level Analysis

From equations(8)and (II),the two griditerationmatrix,B2, is:

B2= T2 (17)

Under certain assumptions about E2, 15, I_ and G2, it is feasible to explicitly calculate the

spectral radius of B2 and hence find exact asymptotic convergence rates for the two grid algorithm.

Section 5 contains the details of the calculation of the spectral radius of operators of the slightly

more general form (Ek)r2(T_ - c_Sk)(Gk)" where a is a scalar. Notice that the two grid operator

is of this form with a -- 0. In general, the k-grid V-cycle iteration matrix is given by

k -1 k-1 rl
Bk = (Ek)ra(Tk + I__lBk_lAk_lI_ Ak)(Gk) (18)

and isnot ofthisform unless,forinstance,Bk-1 isa constantmultipleofthe identity(i.e.,allerror

components on the k - 1stgridare uniformlyreduced).Itispossible,however,to obtainestimates

ofthe k gridconvergenceratesby replacingBk-i by the constant [IBk_11]k_ltimes the identity.

For convenience,fixthe number of relaxations,rl,and define

We assume the Aj's are symmetric and that Ai, Gj and _2i commute.

Theorem 2 If rl = r2 and for every j = 1,2,-.-,k, E i = G_, then Bj is positive semi-definite

and

]]G;TiVi]Ij <_ ]HBi]]i <_ ]_V;(Ti + HIBi-1]]j-ISj)Gi]Ii. (19)
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Proof.

Since I_ -1 1 T= (I_-1) , TY : (Tj)* and S i : (Sj)*, each Sj is symmetric with respect to the

energy inner product (B i = (By)*). Each B i is also positive semi-definite. This is most easily

seen by induction. 82 is positive semi-definite since (S2w2, w2)2 : ]]]T2G2w2[[] for every w2 e H2.

Assume Bi_ 1 is positive semi-definite for some j > 2. From formula (18),

-* - -* i -I i-I -
(Biwj,wi) i = (GiTiGjwi, wi)i-t-(GiI__lBi-lAi_lI _ AiGiwi, wj)j.

Since (Ti) 2 : T i for arbitrary w i e Hi, we can write

and, similarly, since 1]-1 : (i__1)i T,

-* i -1 5-1 - -1 5-1 - -1 5-1 -: (Bi-1(Ai_11, AiCi_i),(Ai_11; AiCi_i))i-1.Bi-lAi_lI _ AiGjwj, wi)i(Vi_-1

The right hand side of the previous equation is non-negative by the inductive assumption and thus

(Bi_i,_i)i (Ti#i_i,Ti#i_i)i + (Bi-, -1 i-1 - -, i-, -= (Ay_lq AiGiwi),(Ai-II; AiGiwy))i-,

_> IIITi5_i_i111_> o. (2o)

Therefore B i is positive semi-definite.

We can also use equation (20) to obtain the lower bound for the [_Bi[[l'S in equation (19).

To prove the upper bound in equation (19), let w i be an arbitrary vector in H i. By the definition

of IIIB1-1111-1and St,

- * i -1 5-1 -
(GjI;_IBi-IAi_II; AiGiwi, wi)i

Therefore,

-1 5-1 - -1 5-1 -
= (Bi_IAi_II; AiGiwi, Aj_lI; AiGiwi)i-1

_< []Bi_1 -1 5-1 - -1 5-1 -]]i-1(Ai-11; AiG_wi, Ai-II; AiGi_i)i-1

: [[[Bi_ 1[[i_ l(V; SiGitu$-, to1)1.

(Biwi, wi)i< ((e;Tiei + IIIBi-Illi-le;S_Vi)'_s, _s)i.

This proves the upper bound in equation (19) since, for any symmetric matrix, Di,

IIDilb =
(Diwi, wi)i

sup

w1e Hi (wi,wi)i
II_ill # o

(21)



Let 71 = 0 and define "fk recursively as

_, = IIl_;(Tk+ _k-lSk)_kllk.

The next theorem asserts that each "_ is a bound on the k-grid convergence rate.

Theorem 3 For every k >_ 2,

Proof.

From the definition of the "y's, we see that

Ill82Ill2= _2

IflllB_-llli-1- '_i-1, then for each uj 6 Hi,

(S;-;,uj)i < (e;(Ti + InB._-llll._-,s.,,)_.,,,.,i,-i)i

= IIIT.,_:,ill_+ IIIB..,-llb-lllS,_.,,,,,sll_

_< IIIT.,<_.,,.,.,II_+ _.,-lllS.,_.:.,.,,ll_

= (G;(T1+"/j_lSj)Gjuj, ui)i

and thereforeIIIBslI..,_<_.,.

(22)

(
/3 = inf I inf

k> 1 L uk6Hs,Tk_ku_#O

or equivalently,

From this definition we see that, for every j > 1,

llVs,.,.,l_+ ZlIIT,V:,._III__<li,,.,ll_

1 - 2 1

IIIT._:,..,II_+ i-7_-IIIs._C.,,.,.,ll.,-< 1+/3 III,.,.,111_.

(23)

(24)

In order to compare these bounds with the theoretical bounds of Theorem 3.1, we define a

constant, fl, independent of the number of grid levels, such that



Note: The constant/_ isgiven forsome common relaxationmethods and forpiecewise(bi)linear

finiteelements (i.e.,(bi)linearinterpolationfor finitedifferences)in [3].Equation (23)holds for

/_= 0 whenever the iterationmatrix of the relaxation,Gj, isa contraction.The convergencerate

of the V-cycle can be shown to be bounded away from one only when equation (23) holds fora

positive/_.

Theorem 4 For all k >_ 1,

_<11(1+

Proof.

Equation (25)holds for_/Isince_I = 0 and _ isnon-negative.

Assume 7j-1 _ 1/(1÷/_) forj > 2. For any wj E Hi, equation (24)impliesthat

+ -* -= (GjTjGjwj, UJj)j "Jc "_j-1 ((_Sj{_jU)j, tVj)j

1
<_ [

tuj)j.

Since G_(Tj ÷ _/j-IS#)G#issymmetric, then 7# < 1//(1÷/_) by definition(22).

Finally,we note that thisnew techniquehas another usefulfeature.Ifthe k-gridconvergence

rateisknown, then the k-{-1-gridratecan be estimated.Thus, ifthe convergencerateofa V-cycle

fora certainnumber ofgridsisknown, itispossibleto predictthe effectof adding one additional

grid.

In the next sectionwe show how to calculatethe convergenceratebounds, _/t.

5. Details of the Fourier Analysis

For certainmodel problems, itis possibleto calculateexact convergence ratesof the two grid

V-cycle. The same techniquescan be used to compute the k-gridconvergence rate bounds of

Theorem 4 forthe symmetric V-cycle.

The Fouriermode e_cp(iO_,x_/hA)on levelk appearsas the mode exp(t'20_,z_/hA-1)on levelk- 1

sincehA --.ShA-1.Therefore,on levelk - 1 itcoincideswith everyFouriermode ezp(iOZ,x_/hA)for

which 0__--O(mod_). Thus restrictionoperatorsintroducecouplingbetween each lower mode 0_and

its(2d- 1) high-frequencyharmonics {0Z:_/2 < 10--'[<-_r,_= O_(mod_)}.Interpolationintroduces

couplingamong the same modes. This issummarized inthe followingtwo formulas

0'=eC_od_)

(26)



and

x_-lexpCit '. _h) = ?_-l(O_')exp(iO_. _h). 02= 0(mod_). (27)

I_-1(0_) and .T__1(0_) are called the symbols of I_ -1 and I_ -1 respectively.

Since the fine and coarse grid operators, as well as the relaxation, do not introduce coupling of

more Fourier modes we conclude that the two level cycle has the 2 d harmonic modes as its invariant

subspace. Hence the convergence properties of the multigrid cycle can be studied by looking only

at the interactions of each set of 2d Fourier components.

Interpolation and restriction can be represented in matrix form as

._Ll(o_1)
_L1(o_)= : (28)

_Ll(oJ_) _×1

and

The fine grid operator is represented as

;tk(01)
;t_(o_)= "..

the coarse grid operator as

...

A_(°j_) 2_×2_

and the relaxationmatrix as

A/_-1(2_) : [_[,-I(201)]1× 1

9(o_')

g(oJ_)

(29)

(30)

, (31)

(32)

2d×2 d

In terms of these matrices the two level cycle is represented by the following 2 d × 2 d matrix

Bk(__) : [(_k(__)] r' [iF'- [__l(__)(Ak_l(2__))-l_'k-l(_)ak(__)] [(_k(_)] "1 " (33)

Take the simple case of the V-cycle used as a fast Laplace solver on the unit square. A few

simple relaxation methods (such as Richardson or damped Jacobi) can be easily analyzed for this

10



particularproblemsimply becausethe Fouriermodesareeigenvectorsof the relaxation.For this

2 dimensionalproblem,the two grid convergenceratesareobtainedby computingthe largest(in
absolute value) eigenvalue over all the 4 × 4 matrices given by formula (33). The bounds for the

convergence rates for more than two grids are computed in exactly the same manner, inserting a

constant in formula (33), preceding the interpolation symbol, in order to obtain the "Tkof Section 4.

For completeness we include some examples of some operators and the elements in their symbols.

If -Ai s) corresponds to the five point Laplacian, given by the stencil

A_s)- -- _ -1 4 -1 , (34)

then

_5)(_ : 4(sin2(0t/2) ÷ sin2(02/2))
' (35)

where 0 : (01, 02).

For bi-linear interpolation and the residual restriction operator which is its adjoint (usually

called full weighting), the elements of the symbol matrices are given by

and

__1(0) : (1 "_- C0S_12 )(1 "+-cose2),2

g(o)= I- 2 ,c2k(o_)

where c-I = supo_A_(_ and 0 < w < I.

(36)

_-1(_ __ (1 + cos01 _(1 + cos 02 _ (37)
2 " 2 ""

A simple relaxation, damped Richardson (which is the same as damped Jv_obi in simple cases

we consider), the elements of G_(_ are given by

(3s)

rk--lA rk
When the coarse grid operators are determined "variationally', i.e., At-i = I t _kJt-1, then

Ak_l(2_) Z Ikk_l i " i ^k -1 i= (g).
i=1

is a nine point discrete Laplacian, given by the stencil

-1 -1 -1

-1 8 -1

-1 -1 -1
h_

(39)

(40)

11



then

s-2cos(01)-2cos(02)-4cos(Odcos(02)
_91(01= 3hI

IfAi_ ] isgiven by the correspondingstencilon the hk-1 grid:

(41)

1_1I-1-1-11- -1 8 -1

°n]_-1 -I -I -I h,.__

(42)

then

;_(_I(_= 8-2cos(20d-2cos(202)-4cos(20_)cos(20_)
3hi_1 (43)

This coarsegridoperator,though correspondingto the same stencilas the finegridoperator,isin

factalsothe "variational"coarsegridoperatorwhen usingbi-hnearinterpolationand fullweighting.

This isconvenientwhen tryingto use the variationaltheory but tryingto keep the symbols ofthe

discreteoperatorssimple.

6. Results and Comparisons

In [2],itisobserved that the variationallyderivedbounds are too pessimistic,at leastfor typical

parameters in a multigridV-cycle when using a modest number of grids.Although in Section4

we prove that the k-gridbounds are smallerthan the gridindependent bounds of the variational

theory,itisnot known, ingeneral,how much betterthe new bounds are.The limitof the bounds,

_k, as k goes to infinity, does not always degrade to the theoretical rate of 1/(1 -f _). For a modest

number of grids, the new estimates are much closer to the actual convergence rates.

Moreover, we note that this new technique has another useful feature. If the k-grid convergence

rate is known, then the k + 1-grid rate can be estimated. Thus it is easy to predict the effect of

adding an extra grid to a given multigrid cycle.

Consider the simplest case of a one dimensional problem given by

d2u
-- f on (0,1) (44)dx 2

u(O) ----a ; u(1) -- b

12
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gamma(k)

1/(1 +ueto)

J

50.

Figure 1: The convergence rate bounds for the one dimensional model problem

Define a V-cycle using the standard three point discretization of the second derivative, linear

interpolation and damped Jacobi (with w = 2/3) for the relaxation. The convergence rate bounds

predicted in Section 4 for a V(1, 1) cycle (one pre- and one post-relaxation) are given in Figure 1.

The "/k are shown as a function of the number of grid levels, k. In contrast, the variational theory

gives a convergence rate bound equal to 0.408, see [2].
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Tables 1 and 2 compare the exact three gridconvergencerates (computed with a three grid

Fourieranalysis)to the bounds predictedby our theory.For the optimalc#,c#= 2/3,the bounds

stayclosefor r I -- r2 -_--I,...,4.

rl r2

1 1

2 2

3 3

4 4

a: ----1/2 co----2/3 co ----3/4

.2665 .1655 .2499

.1086 .0826 .0903

.0743 .0562 .0539

.0570 .0430 .0392

Table I: One-dimensional exact threegridconvergenceratesofV(rl,r2) usingdamped Jacobiwith
damping parameter 0:

rl r2

1 1

2 2

3 3

4 4

oJ---- 1/2 co---- 2/3 co----3/4

.2667 .1667 .2499

.1161 .0887 .0984

.0804 .0610 .0582

.0617 .0466 .0425

Table 2: One-dimensional estimatedthreegridconvergenceratesofV(rl, r2) usingdamped Jacobi
with damping parameter o_

14



Finally, for Poisson's equation with Dirichlet boundary conditions on the unit square, we com-

pare our bounds to the asymptotic convergence rates seen experimentally. Using the grid sizes

indicated in the first column of table 3, we ran experiments using a damped Jacobi relaxation, the

nine-point discretization of the Laplacian, A_9) as given in Section 5 and bilinear interpolation and

full weighting. Starting with a random initial error, the V(1, 1) multigrid cycle was used, rescaling

the error after every cycle in order to see the asymptotic convergence rate. The center column

contains the bounds given by our method. The grid independent bound given by the variational

theory is 0.40, see [3].

grid sizes

h = (114,1/2)

h -- (1//8,1/4,1//2)

h= (1//16,1/8,1/4,1/2)

h -- (1//32,1//16,1/8,1//4,1/2)

h -- (1//8,1//4)

h=(1/16,1/8,1/4)

h-- (1//32,1//16,1/8,1//4)

h--(1//16,1/8)

h=(1//32,1//16,1//8)

our

bounds

.110

.217

.258

.286

.206

.254

.284

.238

.275

worst case-

experimental

.110

.211

.241

.246

.206

.239

.245

.238

.244

Table 3: Comparison of bounds with actual rates for two-dimensional Laplacian (9 pt. stencil)
using damped Jacobi with damping parameter .75 and r -- 1. The grid independent bound is 0.40.
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